文档库 最新最全的文档下载
当前位置:文档库 › 储罐与管道强度设计

储罐与管道强度设计

储罐与管道强度设计
储罐与管道强度设计

1、载荷的分类。1).永久荷载2).可变荷载3).偶然荷载

2、厚壁管道和薄壁管道的选择。(如果D/错误!未找到引用源。<20

则按厚壁管考虑,油气管道多用薄壁管道考虑。)

3、管道许用应力的计算。错误!未找到引用源。=K错误!未找到引

用源。(K、强度设计系数。错误!未找到引用源。、焊缝系数错

误!未找到引用源。钢管的最低屈服强度。)

4、地下管道产生轴向应力的原因:1)温度变化2)环向应力的

泊松效应。

5、支墩受力平衡的校核条件:T错误!未找到引用源。K错误!未找

到引用源。P(K安全系数错误!未找到引用源。P管道作用

在支墩上的推力T支墩受到的土壤阻力)

6、当错误!未找到引用源。时弯管在内压作用下环向应力最小,当

错误!未找到引用源。时弯管在内压作用下环向应力的最大。在

弯曲的外缘为轴向拉应力,而在弯曲的内缘为轴向压应力。7、什么是简单管道弯曲,弹性管道弯曲的最小半径:指埋在土壤

中的管道相对于土壤既不能做轴向移动也不能做横向移动。错

误!未找到引用源。=错误!未找到引用源。

8、弯管和直管的应力有什么区别壁厚有什么区别:1)弯管应力分

布式不均匀的,最大应力一般高于直管的最大应力。2)弯管和

直管一样,内环向应力的决定壁厚再用轴向应力校核。

9、管道的跨度计算,何种情况用刚度计算,何种情况用强度计算:

对于输油和输气管道用强度条件决定跨度即可,对于蒸汽管道

和其他对挠度有特殊限制要求的管道,应同时按强度条件和刚

度条件计算跨度选数值较小者。

10、应力增强系数:指弯管在弯矩作用下的最大弯曲应力和直管受

同样弯矩是的最大弯曲应力的比之。

11、埋地管道在地下所处的位置:一般情况下管顶覆土厚度

1~1.2m,热油管道深取1.2m穿越铁路和公路时管顶距铁轨底

不小于1.3m,距公路不小于1m。

12、固定支墩的的作用:可视为把过渡段缩减至零的措施,作用是

限制管道的热伸长量。

13:管道补强的规定

1:在主管上直接开孔焊接支管:当支管外径小于0.5倍主管外径时,可采用补强圈进行局部补强,也可增加主管和支管壁厚进行整体补强。

2:当相邻两支管中心线的间距小于两支管开孔直径之和,但大于或等于两支管直径之和的三分之二时,应进行联合补强或增大主管管壁厚度。当进行联合补强时,支管中心线之间的补强面积不得小于两开孔所需总补强面积的二分之一。当相邻两支管中心线的间距小于两支管直径之和的三分之二时,不得开孔。

3:当支管直径小于或等于50mm时,可不补强。

4:当支管外径等于或大于二分之一主管外径时,应采用三通或全包型补强。

5:开孔边缘距主管焊缝宜大于主管壁厚的5倍。

14、热应力定义:在管道中由于温度变化所产生的应力。

15、环向应力最大最小在何处?(内压引起轴向应力、环向应力的)错误!未找到引用源。最小,错误!未找到引用源。最大。

16.波纹式补偿器与填料函式补偿器的优缺点和异同点?

答:波纹式补偿器的优点是体积小和结构严密。缺点是为了防止补偿器产生纵向弯曲,补偿器不能做的太长,波纹总数一般不能超过6个,这使得补偿器的补偿能力受到了限制。填料函式补偿器优点体积小补偿能力大,适用于因地域受到限制不宜采用Ⅱ形补偿器的管道上。缺点结构难于做到十分严密,填料压的太紧就妨碍伸缩,太松就会漏油。异同:波纹式补偿器是用于3——4毫米的钢板、红铜、铝板等金属薄片制成的。它利用金属本身的弹性伸缩来减小管道的热应力。填料函式补偿器是用铸铁或钢制成的。

17.管道应力主要有内压引起,不仅可以引起轴向应力还可以引起环向应力。

18.金属钢油罐的分类?

答:根据其形状可以分为立式圆柱形油罐、卧式圆柱形油罐和特殊形状油罐。立式圆柱形油罐按顶部结构分为浮顶油罐、拱顶油罐、内浮顶油罐、锥顶油罐和无力矩顶灌。特殊形状油罐包括球形罐、滴状油罐。

19.架空管道的荷载类型?

答:垂直荷载、横向水平荷载、轴向水平荷载。垂直荷载包括管道自重、保温结构重量、管内输送介质重量、管道附件重量; 横向水平荷

载主要是风荷载,它作用于管道上,然后沿着管道以横向集中力的形式传给管架。轴向水平荷载指管道的轴向推力,它包括:管道的轴向摩擦力、管道内压引起的不平衡轴向力、补偿器的反弹力。

20.支架敷设的类型和条件?

答:按支架高低分类:低支架敷设、中支架和高支架敷设、沿墙敷设;按管架的结构类型分类:独立式管架、组合式管架;按支架对管道的约束形式分类:固定支架和活动支架。为了适应热胀冷缩的要求,通常每隔一定距离就设定一个固定支架,在两个固定支架之间设定一个补偿器。

21.储罐的壁厚是什么原理设计的,上层壁板根据什么设计下层壁板根据什么设计?

答:在壁板上,环向应力占主导作用,因此,壁厚是根据环向应力确定的,也就是说,每一圈罐壁板上的最大的环向应力不超过材料的许用应力[σ], 即:σ

≤[σ]

m ax

x

22.抗风圈根据什么方法设计及其原理作用、要求?

答:抗风圈设置在油罐的顶部,我国通常将抗风圈置于包边角钢以下一米的位置,抗风圈的外形可以是圆的也可以是多边形的,它是由钢

可按板和型钢拼装成的组合断面结构。抗风圈所需最小截面系数W

z

下式计算:W

=0.082D2H 抗风圈与管壁连接处上下各16倍壁板厚

z

度范围内可以认为能与抗风圈同时工作。

23.罐壁设计对管材的要求?

罐壁是油罐的主要承载构件,罐壁圈板有多块钢板焊接而成,它们之

间的焊缝采用对接连接,各圈壁板的纵向焊缝应错开,其间距应不小于500mm。对接连接的钢板若厚度大于6mm必须开坡口。

24、管道弯曲时产生哪些应力,下沉时产生哪些应力?

弯曲时:在圆弧的外边缘产生轴向拉应力,内边缘承受轴向压应力下沉时:1)由于管道偏离原来的直线位置承受弯曲,从而产生新的弯曲应力。2)由于管道弯曲而使管道的长度有所增加而产生拉伸应力。

25:油罐定点法和变点法计算有何不同,各自的优缺点?

定点法:定点设计法能在一定的范围内较好的反应各层圈罐壁板的实际应用水平,计算简单,得到了广泛地应用。但是,罐壁各层圈板在边缘力系的影响下,最大环向应力的位置不一定都是在距底边0.3米处,若油罐容量较大,就应该更为精确的确定最大环向应力的位置并计算壁厚,减少罐壁的用钢量。

变点法:这种方法能考虑罐底板的约束对罐壁受力的影响,同时也考虑了下层厚壁板对上层薄壁板的影响,确定各圈环向应力最大处的位置,按该位置的薄膜环向应力计算各圈板的壁厚。这种变点法更符合罐壁应力的实际状况,用它计算大容量罐时,可减少某些圈的壁厚和罐壁总用钢量,并在最大板厚限度范围内有可能建更大直径的储罐。

26、钢制油罐承载能力的要求。

1:足够的强度。2:足够的抵抗断裂的能力。3:足够的抵抗风荷的能力。4:足够的抗震能力。5:油罐要有足够稳固的基础。

27、油罐的抗震措施与要求。

措施1:增加罐底边缘板厚度2:增大底层壁板厚度3;改变油罐的径高比4:加设锚固螺栓5:为了防止出现象足,可在组合应力最大的部位加上预应力钢筋及垫板。

要求:在整个使用期间内,在罐区的最大地震烈度下不产生破坏。

管道及储罐强度设计

▲管道:管子、连接件、阀门等连接而成用于输送气液体和带固体颗粒流体的装置▲强度:金属材料在外力作用下,抵抗永久变形或断裂的能力 ▲地面敷设的优缺点优点:不影响土壤环境,且不受地下水位影响,检修方便发现和清除事故容易。缺点:管道直接设置在空气中,对于非常温管增加冷热能量的损失,限制了通道的高度,不美观。 ●失效机理: ①材料:a.塑性失稳b.断裂c.疲劳d.应力腐蚀开裂e.氢致开裂f.裂纹的动态扩展。 ②结构—丧失了稳定性 a.塑性失稳:由于变形引起的截面几何尺寸的改变而导致的丧失平衡的现象。图 b.断裂:由于裂纹的不稳定扩展造成的。产生原因:制造—焊缝,母材缺陷、夹渣、分层等;施工—机械损伤、表面划度、凹坑;运行—介质、腐蚀环境。 c.疲劳:材料在交变应力作用下的破坏。原因:内压变化—间歇输送、正反输送、输气;外力变化—风载荷、海底管跨的涡激振动、公路下未加套管的管道d.应力腐蚀开裂:基本条件:局部环境;敏感元件;应力条件e.氢致开S-酸性环境,腐蚀产生氢侵入钢内而产生的裂纹。f.裂纹的动态扩展:输气裂:H 2 管道特有的现象 ●管道的结构失稳:a 轴向载荷-轴向失稳b外压-径向失稳c弯曲-径向失稳 d联合载荷-径向失稳。 ●弹性敷设是利用管道在外力或自重作用下产生弹性弯曲变形来改变管道的走向或适应高程的变化。 ●按工艺分,弯头可以分为预制弯管、冷弯弯管、热煨弯管 ●永久荷载:施加在管道上不变的,其变化与平均值相比可以忽略不计,其变化是单调的并且趋于限值的荷载。 ●可变载荷:施加在管道结构上由人群、物料、交通工具引起的使用或占用荷载●偶然荷载:设计使用期内偶然出现或不出现其数值很大,可持续时间很短的荷载。 ●环向应力是由管道输送介质的内压产生的。 ●地下管道产生轴向应力的原因是温度变化和环向应力的泊松效应。 ●管道热应力:在管道中由于温度变化产生的应力. ●管道出现温度变化的主要原因:管道在敷设施工时的温度由外部气温决定,而在运行过程中则由输送产品的温度决定,两者之间必然存在差别,不可避免在管道运行过程中产生应力或伸缩变形。 ●地下管道应力应变的特点:根据摩擦阻力与热伸缩力的大小,可以将埋地管道分成自由伸缩段、过渡段和嵌固段。在自由伸长段,土壤与管壁的摩擦力为零,也即在该截面处不受约束可以自由伸长,其变形量也大,随着管道向埋地段延伸时,土壤与管壁之间的摩擦阻力越来越大,管段受到周围土壤的约束,使管道变形量越来越小,这段称为过渡段。当这一变化达到某一长度时,摩擦阻力与热伸缩力相平衡,管段的伸缩完全被约束,即不会因温度的变化而产生伸缩变形,受到完全的强制补偿,此段称为嵌固阶段。 ◆管道发生下沉会在管道上产生两种新的应力:一是由于管道偏离原来的直线位置产生弯曲,从而产生新的弯曲应力;二是由于管道弯曲而使管道的长度有所增加而产生的拉伸应力。 ◆支墩的作用是限制管道的热伸长量。支墩按型式可以分为上托式支墩、预埋式支墩、卡式支墩 ◆应力增强系数:弯管内弧环向应力比直管环向应力增大的倍数。应力缩减系数:弯管内弧环向应力比直管环向应力减小的倍数

大型原油储罐设计中主要安全问题及对策

大型原油储罐设计中主要安全问题及对策 大型储罐有节省钢材、占地少、投资省、便于操作、管理等优点。随着国民经济的飞速发展,我国油品储罐越来越趋向大型化。国内第一座10万立方米大型钢制原油外浮顶储罐于1985 年从日本引进。发达国家建造、使用大型储罐已有近30 年历史,而我国尚处于起步阶段。影响大型储罐安全运营的因素很多,一旦发生事故,就可能引发重大事故,损失将十分惨重。因此,迫切需要及时总结经验,提出改进措施。笔者对其中的主要安全问题进 行分析,并提出对策,为工程设计提供参考。 1 大型原油储罐工程危险性分析 1.1 原油危险性分析 原油为甲B 类易燃液体,具有易燃性;爆炸极限范围较窄,但数值较低,具有一定的爆炸危险性,同时原油的易沸溢性,应在救火工作时引起特别重视。 1.2 火灾爆炸事故原因分析 原油的特性决定了火灾爆炸危险性是大型原油储罐最主要也是最重要的危险因素。发生着火事故的三个必要条件为:着火源、可燃物和空气。 着火源的问题主要是通过加强管理来解决,可燃物泄漏问题则必须在储罐设计过程中加以预防和控制。 泄漏的原油暴露在空气中,即构成可燃物。原油泄漏,在储运中发生较为频繁,主要有冒罐跑油,脱水跑油,设备、管线、阀件损坏跑油,以及密封不良造成油气挥发,另外还存在着罐底开焊破裂、浮盘沉底等特大型泄漏事故的可能性。 腐蚀是发生泄漏的重要因素之一。国内外曾发生多起因油罐底部腐蚀造成的漏油事故。对原油储罐内腐蚀情况初步调查的结果表明,罐底腐蚀情况严重,大多为溃疡状的坑点腐蚀,主要发生在焊接热影响区、凹陷 及变形处,罐顶腐蚀次之,为伴有孔蚀的不均匀全面腐蚀,罐壁腐蚀较轻,为均匀点蚀,主要发生在油水界面,油与空气界面处。相对而言,储罐底部的外腐蚀更为严重,主要发生在边缘板与环梁基础接触的一面。 浮盘沉底事故是浮顶油罐生产作业时非常忌讳的严重恶性设备事故之一。该类事故的发生,一方面反映了设计、施工、管理等方面的严重缺陷,另一方面又将造成大量原油泄漏,严重影响生产、污染环境并构成火灾隐患。 2 大型原油储罐设计中的主要安全问题及其对策 2.1 储罐地基和基础 储罐工程地基勘察和罐基础设计是确保大型储罐安全运营最根本的保证。根据石化行业标准规定,必须在工程选址过程中进行工程地质勘察,针对一般地基、软土地基、山区地基和特殊土地基,分别探明情况,提出相应的地基处理方法,同时还应作场地和地基的地震效应评价,避免建在软硬不一的地基上或活动性地质断裂带的影响范围内。 常见的罐基础形式有环墙(梁)式、外环墙(梁)式和护坡式。应根据地质条件进行选型。罐基础必须具 有足够的整体稳定性、均匀性和足够的平面抗弯刚度,罐壁正下方基础构造的刚度应予加强,支持底板的基床应富于柔性以吸收焊接变形,宜设防水隔油层和漏油信号管,地下水位与基础顶面之间的距离不得小于毛细水所能达到的高度(一般为 2m )。

储罐设计

毕 业 设 计 容器施工图设计—导热油储罐 完成日期 2014 年 6 月 10 日 院系名称: 化学工程学院 专业名称: 过程装备与控制工程 学生姓名: 陈培培 学 号: 2010032306 指导教师: 邓春 企业指导: 马程鹤、武彦巧

容器施工图设计—导热油储罐 摘要 导热油是用于间接传递热量的一类热稳定性较好的专用油品,属于烃类有机物,导热油具有抗热裂化和化学氧化的性能,传热效率好,散热快等特性。钢制储罐作为重要的基础设施,广泛应用于石油化工行业,本毕业设计主要依据《钢制卧式容器》[1]进行导热油储罐的机械设计计算。计算部分包括:设备的选材和焊接的确定、强度及稳定性的设计计算和校核、支座和法兰的选用。最后,利用AutoCAD绘图软件绘制出满足机械强度设计计算要求的导热油储罐的设备总图。 关键词:导热油、储罐、机械设计

Design of h eat transfer oil storage tank Abstract Heat transfer oil is a type of special oil product with excellent thermal stability and is widely used indirect heat transfer .It belongs to the hydrocarbon organics . Heat transfer oil has good performance of thermal cracking and chemical oxidation , high heat transfer effect and fast heat dissipation .Steel storage tank as an important infrastructure ,is widely utilized in petrochemical industry .This paper aims to do the mechanical design of heat transfer oil storage tank on the basis of ―JB/T 4731-2005 Steel horizontal vessels on saddle supports ‖The design includes the selection of equipment material and determination of welding , design and examination of strength and stability ,selection of support and flange .Finally , software ,general drawing for the heat transfer oil storage tank is plotted via AutoCAD. Key words: h eat transfer oil . storage tank . mechanical design

储罐与管道强度设计

1、载荷的分类。1).永久荷载2).可变荷载3).偶然荷载 2、厚壁管道和薄壁管道的选择。(如果D/错误!未找到引用源。<20 则按厚壁管考虑,油气管道多用薄壁管道考虑。) 3、管道许用应力的计算。错误!未找到引用源。=K错误!未找到引 用源。(K、强度设计系数。错误!未找到引用源。、焊缝系数错 误!未找到引用源。钢管的最低屈服强度。) 4、地下管道产生轴向应力的原因:1)温度变化2)环向应力的 泊松效应。 5、支墩受力平衡的校核条件:T错误!未找到引用源。K错误!未找 到引用源。P(K安全系数错误!未找到引用源。P管道作用 在支墩上的推力T支墩受到的土壤阻力) 6、当错误!未找到引用源。时弯管在内压作用下环向应力最小,当 错误!未找到引用源。时弯管在内压作用下环向应力的最大。在 弯曲的外缘为轴向拉应力,而在弯曲的内缘为轴向压应力。7、什么是简单管道弯曲,弹性管道弯曲的最小半径:指埋在土壤 中的管道相对于土壤既不能做轴向移动也不能做横向移动。错 误!未找到引用源。=错误!未找到引用源。 8、弯管和直管的应力有什么区别壁厚有什么区别:1)弯管应力分 布式不均匀的,最大应力一般高于直管的最大应力。2)弯管和 直管一样,内环向应力的决定壁厚再用轴向应力校核。 9、管道的跨度计算,何种情况用刚度计算,何种情况用强度计算: 对于输油和输气管道用强度条件决定跨度即可,对于蒸汽管道

和其他对挠度有特殊限制要求的管道,应同时按强度条件和刚 度条件计算跨度选数值较小者。 10、应力增强系数:指弯管在弯矩作用下的最大弯曲应力和直管受 同样弯矩是的最大弯曲应力的比之。 11、埋地管道在地下所处的位置:一般情况下管顶覆土厚度 1~1.2m,热油管道深取1.2m穿越铁路和公路时管顶距铁轨底 不小于1.3m,距公路不小于1m。 12、固定支墩的的作用:可视为把过渡段缩减至零的措施,作用是 限制管道的热伸长量。 13:管道补强的规定 1:在主管上直接开孔焊接支管:当支管外径小于0.5倍主管外径时,可采用补强圈进行局部补强,也可增加主管和支管壁厚进行整体补强。 2:当相邻两支管中心线的间距小于两支管开孔直径之和,但大于或等于两支管直径之和的三分之二时,应进行联合补强或增大主管管壁厚度。当进行联合补强时,支管中心线之间的补强面积不得小于两开孔所需总补强面积的二分之一。当相邻两支管中心线的间距小于两支管直径之和的三分之二时,不得开孔。 3:当支管直径小于或等于50mm时,可不补强。 4:当支管外径等于或大于二分之一主管外径时,应采用三通或全包型补强。 5:开孔边缘距主管焊缝宜大于主管壁厚的5倍。

2015秋-管道与储罐强度思考题

管道与储罐强度(思考题) 引言 1、解释“强度”一词的含义。 2、怎样理解应变,正应变、剪应变的含义是什么? 3、试举出几个管材机械性能参数的例子。 4、管壁中的一点的应力状态? 5、怎样进行管道的强度设计。 第一章 1、埋地管道的设计中怎样进行载荷分类,为什么需要载荷分类。 2、怎样推导薄壁管道的环向应力公式? 3、管道的环向应力计算公式有哪两种,适用条件,常用的是那种,写出其表达式。 4、为什么取设计系数,怎样选取输油管道的设计系数? 怎样选取输气管道的设计系数。 5、为什么划分输气管道的地区等级,怎样划分? 6、什么是管道的规定最低屈服强度,举出几种强度级别管道钢的规定最低屈服极限,并说明其国际单位 制和英制的数值换算关系。 7、管道产生轴向应力或变形的原因是什么?怎样计算埋地直管段中的轴向应力? 8、埋地管道中的固定支墩的作用是什么?从哪几个方面进行固定支墩的设计计算? 9、怎样计算管道对固定支墩的推力? 10、管道中弯曲应力与弯曲曲率的关系怎样? 11、怎样计算管道下沉段的弯曲应力? 12、什么是弯管的特征系数和柔性系数? 13、怎样进行管道三通的补强设计? 14、分析管道中一点的应力状态,说明每个应力分量产生的原因。 15、怎样进行管道中组合应力校核? 16、埋地管道产生轴向屈曲的主要原因是什么? 17、陆上埋地管道的稳定性验算时的安全系数一般取多少? 18、什么极限状态的定义?什么是失效概率的定义?在干涉理论中怎样计算失效概率? 19、什么是分项安全系数?举例说明典型的分项安全系数设计方程。 20、简述在管道设计中考虑的极限状态。 第二章 1、地上管道的支承形式? 2、怎样在管道系统中设置固定支架和活动支架? 3、你能举出几种长输管道的跨越形式? 4、地上管道的垂直载荷有哪些? 5、地上管道的水平载荷是什么原因产生的? 6、地上管道的轴向载荷有哪些? 7、地上管道的跨度设计采用什么理论,需要考虑哪些条件? 8、地上管道跨度设计的刚度条件中的位移限制值一般取多大? 9、平面管道分析采用什么方法?各有什么特点? 10、地上管道热应力补偿的几种方式? 11、写出地上管道热应力补偿弯曲管段的简易校核的公式。 12、管道产生振动的原因有哪些?

管道及储罐强度设计题库

管道及储罐强度设计(第二次) 改动的地方:简答题第三题,计算题第一题,计算题第十一题 名词解释 1.工作压力 在正常操作条件下,容器可能达到的最高压力 2.材料强度 是指载荷作用下材料抵抗永久变形和断裂的能力。屈服点和抗拉强度是钢材常用的强度判据。 3.储罐的小呼吸 罐内储液(油品)在没有收、发作业静止储存情况下,随着环境气温、压力在一天内昼夜周期变化,罐内气相温度、储液(油品)的蒸发速度、蒸气(油气)浓度和蒸气压力也随着变化,这种排出或通过呼吸阀储液蒸气(油气)和吸入空气的过程叫做储罐的小呼吸 4.自限性 局部屈服或小量塑性变形就可以使变形连续条件得到局部或全部的满足,塑性变形不再继续发展并以此缓解以致完全消除产生这种应力的原因。 5.无力矩理论(薄膜理论)

假定壁厚与直径相比小得多,壳壁象薄膜一样,只能承受拉(压)应力弯曲内力的影响,而不能承受弯矩和弯曲应力,或者说,忽略这样计算得到的应力,称薄膜应力。 6.壳体中面 壳体厚度中点构成的曲面,中面与壳体内外表面等距离。 7.安全系数 考虑到材料性能、载荷条件、设计方法、加工制造和操作等方面的不确定因素而确定的质量保证系数。 8.容器最小壁厚 由刚度条件确定,且不包括腐蚀裕量的最小必须厚度。 (1)对碳素钢、低合金钢制容器: (2)对高合金钢制容器: 不小于2mm (3)对封头:

9.一次应力 一次应力:由于压力和其他机械荷载所引起与内力、内力矩平衡所产生的,法向或切向应力,随外力荷载的增加而增加。 10.储罐的小呼吸损耗 罐内储液(油品)在没有收、发作业静止储存情况下,随着环境气温、压力在一天内昼夜周期变化,罐内气相温度、储液(油品)的蒸发速度、蒸气(油气)浓度和蒸气压力也随着变化,这种排出或通过呼吸阀储液蒸气(油气)和吸入空气的过程所造成的储液(油品)损耗称作储罐小呼吸损耗 11耦联振动周期和波面晃动周期 耦联振动周期:罐内液体和储罐结合在一起的第一振动周期。 波面晃动周期:罐内储液的晃动一次的时间 12压力容器工艺设计 工艺设计 1.根据原始参数和工艺要求选择容器形式,要求能够完成生产任务、有较好的经济效益;

空气储罐设计

设计要求 1、设计题目:空气储罐的机械设计 2、最高工作压力:0.8 MP a 3、工作温度:常温 4、工作介质:空气 5、全容积:163 m 设计参数的选择: 设计压力:取1.1倍的最高压力,0.88MP<1.6属于低压容器。 筒体几何尺寸确定:按长径比为3.6,确定长L=640000mm,D=1800mm 设计温度取50 因空气属于无毒无害气体,材料取Q345为低合金钢,合金元素含量较少,其强度,韧性耐腐蚀性,低温和高温性能均优于同含量的碳素钢,是压力容器专用钢板,主要用于制造低压容器和多层高压容器! 封头设计:椭圆形封头是由半个椭圆球面和短圆筒组成,球面与筒体间有直边段。直边段可以避免封头和和筒体的连接焊缝处出现经向曲率突变,以改善曲率变化平滑连续,故应力分布比较均匀;且椭圆形封头深度较半球形封头小得多,易冲压成型,在实际生产中多有模具,是目前中低压容器应用较多的封头。 因此选用以内径为基准的标准型椭圆形封头为了防止热应力和边缘应力的叠加,减少应力集中,在封头和筒体连接处必须有一段过渡的直边段,直边段的高度依据标准选择。封头材料与筒体相同,选用头和筒体连接处必须有一段过渡的直边段,直边段的高度依据标准选择。 选材和筒体一致Q345R

接管设计3.4 接管设计优质低碳钢的强度较低,塑性好,焊接性能好,因此在化工设备制造中常用作热交换器列管、设备接管、法兰的垫片包皮。优质中碳钢的强度较高,韧性较好,但焊接性能较差,不宜用作接管用钢。 由于接管要求焊接性能好且塑性好。故选择 20 号优质低碳钢的普通无缝钢管制作各型号接管 3.5 法兰设计法兰连接的强度和紧密性比较好,装拆也比较方便,因而在大多数场合比螺纹连接、承插式连接、铆焊连接等型式的可拆连接显得优越,从而获得广泛应用。 平焊法兰连接刚性较差,只能在低压,直径不太大,温度不高的情况下使用。由于Q345R 为碳素钢,设计温度 50℃ <300℃,且介质无毒无害,可以选用带颈平焊法兰,即 SO 型法兰。 储罐的设计压力较小要保证法兰连接面的紧密性,必须合适地选择压紧面的形状。 对于压力不高的场合,常用突台形压紧面。突面结构简单,加工方便,装卸容易,且便于进行防腐衬里。储罐由于设计压力为 0.88MPa,空气无毒无害,可选择突面(RF)压紧面。 由于法兰钢件的质量较大,需要承受大的冲击力作用,塑性、韧性和其他方面的力学性能也较高,所以不用铸钢件,可以采用锻钢件。接管材料为 20 号钢,法兰材料选用 20Ⅱ锻钢。 3.6接管与法兰分配 3.6.6 N1、N2空气进、出口公称尺寸 DN250,接管尺寸? 273 x6 。接管采用无缝钢管,材料为 20 号钢。伸出长度为 150mm 。 选取 0.88MPa 等级的带颈平焊突面法兰,材料选用 20Ⅱ,法兰标记为:SO300-2.5 RF3.6.2 N3排污口; 公称尺寸 DN40,接管采用 45 x3.5 无缝钢管,材料为 20 号钢,外伸长度为150mm。选取 0.88MPa 等级的带颈平焊突面法兰,材料选用 20Ⅱ,法兰标记为:SO40-1.6 RF 3.6.3 N4安全阀口公称尺寸 DN80,接管采用?89 x4 无缝钢管,材料为 20 号钢,外伸长度为 150mm。根据 GB12459-99,选用 90°弯头;弯头上方仍有一定

变刚度调平在大型储罐基础设计中的应用

浙江建筑,第26卷,第5期,2009年5月Zhejiang Constructi on,Vol .26,No .5,May .2009 收稿日期:2008-12-03 作者简介:陈长林(1975—),男,安徽合肥人,工程师,从事建筑结构设计工作。 变刚度调平在大型储罐基础设计中的应用 Appli cati on of Sti ffness Var i a ti on Leveli n g i n Huge Storage Tank Desi gn 陈长林1 ,樊诗兰 2 CHEN Chang 2lin,FAN Shi 2lan (1.温州市工业设计院,浙江温州325003;2.温州市长城建设监理有限公司,浙江温州325003) 摘 要:建造在软土地基上的大型储罐基础,由于地基土的压缩变形会产生各种沉降变形,其中罐周不均匀沉降即沉降差对其影响最为不利。通过变刚度调平设计,可以大大降低储罐基础的不均匀沉降,工程实践证明这种方法是切实可行的。 关键词:变刚度调平设计;沉降差;大型储罐基础 中图分类号:T U473.1+3 文献标识码:B 文章编号:1008-3707(2009)05-0030-02 目前,钢储罐的容量不断增大,有的储罐直径甚至接近100m 。储罐大型化后,其基础荷载大,覆盖面积也较大,在储罐建设中经常会遇到不良土质、不均匀土层、沟壑暗滨等非理想土层作为储罐的地基。而建在这种软土地基上大型储罐不可避免地会产生各种沉降变形。储罐的主要沉降有:整体均匀沉降、整体平面倾斜沉降、罐周不均匀沉降、罐周局部沉降以及底板的碟形沉降和局部沉降,其中罐周不均匀沉降即沉降差对结构的影响最为不利 [1] 。从而需 要对之进行处理,但是地基处理是否得当直接关系到工程的质量、进度和经济,因此合理地选择处理方法是非常必要的。 几种常见的地基处理方法[2-3] : (1)加载预压:在储罐安装就位后,利用储罐内进水试漏的同时对地基进行预压; (2)水泥搅拌:分湿法和干法两种,它利用深层搅拌机将水泥浆与地基土在原位拌和,形成柱状水泥体,可提高承载力,减小沉降量; (3)CFG 桩:在碎石桩中掺和石屑、粉煤灰的低标号桩,它同褥垫层一起组成复合地基; (4)强夯置换:采用高能量夯锤,原理是置换与挤淤; (5)桩基础:该方法安全性高,适合于各类罐基础。 1 变刚度调平设计的基本原理 按传统基础的概念设计采用均匀布桩(相同桩 距、相同桩长)基础,初始竖向支承刚度是均匀分布的。设置于其上的刚度有限的基础(承台)受均布荷载作用时,由于土与土、桩与桩、土与桩的相互作用导致地基或桩群的竖向支承刚度分布发生内弱外强变化,会导致罐基础出现内大外小的蝶形沉降和内小外大的马鞍形反力分布。而这种变形与反力分布模式必然导致底板整体弯矩、冲切力和剪力增大,引发上部结构的过大次应力,降低使用寿命。为此本文提出了按照变刚度调平的原理进行大型储罐基础设计。 《建筑桩基技术规范(JGJ 9422008)》[4] 提出:“变刚度调平设计是考虑上部结构形式、荷载和地层分布以及相互作用效应,通过调整桩径、桩长、桩距等改变基桩支承刚度分布,以使建筑物沉降趋于均匀、承台内力降低的设计方法”。变刚度调平设计突破传统设计理念,是一种新的概念设计方法,旨在减小差异变形、降低承台内力和上部结构次内力,以节约资源,提高建筑物使用寿命,确保正常使用功能。其基本思路是通过调整地基和基桩的刚度分

大型石油储罐设计选型与安全

编号:AQ-JS-01737 ( 安全技术) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 大型石油储罐设计选型与安全 Design selection and safety of large oil storage tank

大型石油储罐设计选型与安全 使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科 学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。 大型储罐有节省钢材、占地少、投资省、便于操作、管理等优点。随着国民经济的飞速发展,我国油品储罐越来越趋向大型化。国内第一座10万立方米大型钢制原油外浮顶储罐于1985年从日本引进。发达国家建造、使用大型储罐已有近30年历史,而我国尚处于起步阶段。影响大型储罐安全运营的因素很多,一旦发生事故,就可能引发重大事故,损失将十分惨重。因此,迫切需要及时总结经验,提出改进措施。笔者对其中的主要安全问题进行分析,并提出对策,为工程设计提供参考。 目前,我国成品油储罐主要有内浮顶储罐、拱顶储罐两种型式。由于内浮顶罐的浮顶随油面的升降而升降,浮顶与液面之间不存在气体空间,油品蒸发量小,因而基本上消除了大小呼吸损耗,既降低油品损耗外,又减少对大气的污染,所以,易蒸发的油品储罐多采用铝浮盘内浮顶储罐。

密封装置:浮顶储罐绝大部分液面是被浮顶覆盖的,而浮顶与罐壁之间的环形空间要依靠密封装置来减少油品的蒸发损失及气候变化对油品的影响,密封材料应满足耐温、耐磨、耐腐蚀、阻燃、抗渗透、抗老化、等性能要求。油罐内浮顶与罐壁之间的密封带应采用丁腈胶带。 1大型原油储罐工程危险性分析 1.1原油危险性分析 原油为甲B类易燃液体,具有易燃性爆炸极限范围较窄,但数值较低,具有一定的爆炸危险性,同时原油的易沸溢性,应在救火工作时引起特别重视。 1.2火灾爆炸事故原因分析 原油的特性决定了火灾爆炸危险性是大型原油储罐最主要也是最重要的危险因素。发生着火事故的三个必要条件为:着火源、可燃物和空气。 着火源的问题主要是通过加强管理来解决,可燃物泄漏问题则必须在储罐设计过程中加以预防和控制。

管道与储罐强度

中国石油大学函授生考试试卷 课程 管道与储罐强度 教师 李岩芳 2013 /2014 学年 第2学期 班级 13级油气储运 ____________ 成 绩_______ 一、填空题(2’×15=30’) 1、常用的立式圆柱形油罐按其顶的结构可分为 、 、 三大种油罐。 2、为满足强度要求,罐壁下节点处的轴向应力σ与其材料屈服极限s σ的关系为 。 3我国在设计油罐时,一般根据 原则来计算其直径和高度。一般说来,等壁厚油罐的公称容积不超 过 米3。 4如果在壁厚为t 的罐壁上开一直径为D 的人孔,需用截面积为 的金属来进行补强。当罐壁开孔接管的直径不超过 时,可不进行补强。 5、根据 原则,拱顶油罐的罐顶曲率半径约为 倍罐壁筒体直径。 6、我国将抗风圈一般设计在 的位置上。某地区的瞬时风速为60s m /,则在该地区建10,0003m 浮顶罐时,所用抗风圈的最小截面系数为 3cm 。一般说来,抗风圈与罐壁连接处上下各 倍壁板厚度能与抗风圈同时工作。 7、设计浮顶罐时,浮船外径比油罐内径小 毫米。 8、一般说来,管道的弹性截面系数W 与其塑性截面系数,W 的关系为 ,通常采用 截面系数来进行管路跨度设计,使其满足强度要求。 9、直角弯管的柔性要比相同直径相同壁厚曲管的柔性 。 10、Π型补偿器可采用 或 的办法来提高其补偿能力。 11、通常,管道的跨度可按管子的 和 两个条件来确定。 12、某水平铺设的管道其中间跨度计算值为10米,则其边跨的计算值为 米;若将该管道铺设在30度斜坡上,则其中间跨的计算值为 米。 13、柔性系数 ij δ是指 。

14、某平面管系按正常方法铺设于两固定约束端之间,在某一温差 t下,用弹性中心法求得约束端的作用力比值为P x/P y=5,若将温差改变为2 t,则P x/P y= 。 15、一般地,公称容积5万3m的浮顶罐,其直径约为m。 二、选择,将选择项画“√”。(20分) (1)、立式油罐罐壁筒体的抗弯刚度与它的(高度直径壁厚)有关。(2)、立式油罐罐壁最大环向应力的位置是在(罐壁最下端罐壁最下端以上0.3m处不确定)。 (3)、使用一个加强圈以后罐壁可以承受的风压力是P,如果不使用加强圈,则它能承受的风压力应(是P/2 是P/3 重新计算)。 (4)、罐底边缘板厚度与(油罐内径、板材强度、底圈罐壁厚度)有关。(5)、两端固定的直管段的热应力要比同样条件下非直线布置的管段的热应力(大、小、不确定)。 (6)、当拱顶罐呼吸阀中真空阀开启进气时,包边角钢内承受(拉应力、压应力)。(7)、一般埋地管线敷设在(地下水位线以上、地下水位线以下、冰冻线以上)。(8)、下列(罐壁设加强圈、罐顶设加强筋、罐顶设置呼吸阀)措施可增强拱顶罐的抗风能力。 (9)、平面管道热应力计算时,弹性中心法求出的弹性力的作用点在(管系的形心、固定支座处、管系的弹性中心)。 (10)、门型补偿器可采用(预先拉伸或预先压缩、预先弯曲、预先扭转)的办法来提高其补偿能力。 三、简答题(4’×5=20’) 1、设计油罐罐壁为什么有最大和最小壁厚的要求,它们各与哪些因素有关? 2、简述回转薄壳的第一、第二曲率半径的定义,并以拱顶油罐的罐壁和罐顶为

大型储罐的基础设计及构造研究 丁园

大型储罐的基础设计及构造研究丁园 发表时间:2019-12-09T09:57:41.753Z 来源:《基层建设》2019年第25期作者:丁园 [导读] 摘要:大型储罐在实际应用过程中,由于这种类型储罐的本体大多数都是利用钢板来进行焊接,所以其在外形尺寸方面比较大,荷载比较大,沉降量也比较大。 中国纺织科学研究院有限公司上海聚友化工有限公司北京 100025 摘要:大型储罐在实际应用过程中,由于这种类型储罐的本体大多数都是利用钢板来进行焊接,所以其在外形尺寸方面比较大,荷载比较大,沉降量也比较大。与此同时,这种类型的储罐在实际应用过程中,其整体刚度比较低,同时具有一定柔性特征。储罐基础产生的不均匀沉降要求较高,如果基础有较大的不均匀沉降,就会直接影响到储罐的正常使用。本文对大型储罐的基础设计及构造进行研究。 关键词:大型储罐;基础设计;构造 1 大型储罐的基础设计形式 1.1 护坡式基础 当天然地基承载力特征值大于或等于基底平均压力、地基变形满足规范要求的允许值且场地不收限制时,可采用护坡式基础。护坡式基础是在储罐底面四周用素土或碎石沿着基础砌成护坡。其优点是工程投资少、施工方便;缺点是对调整地基不均匀沉降作用小效果差,且占地面积大。如果基础大量沉降后,周围护坡破裂,罐底各层填料往往在大于后流失,造成基底局部掏空,所以在这种背景下,护坡式基础在设计已经不常见。 1.2 外环墙式基础 外环墙式基础是将钢筋混凝土环墙离开储罐外壁一定距离,罐体坐落在由砂石土构成的基础上。其优点是受力状态较好,具有一定的稳定性,较环墙式基础省钢筋和水泥;缺点是调整不均匀沉降的能力较差,当罐壁下节点处的下沉量低于外环墙顶时易造成两者之间的凹陷。一般用于车间内部生产原料储罐,容积控制在1000m3以内。 1.3 环墙式基础 环墙式基础在设计中使用较多,系将储罐壁板直接安装在钢筋混凝土环墙上,大部分用与软和中软场地的浮顶罐及内浮顶罐。环墙式基础在实际应用过程中,其最明显的优点之一就是在平面抗弯的刚度程度上比较大,这样有利于调整不均匀沉降问题,减少罐壁的变形。罐体自身的荷载在某种程度上可以给地基传递相对较均匀的压力。与此同时,使用时可以调整中心和边缘的沉降,防止环墙内砂垫层或土的侧向变形或流散,整体的稳定性较好,抗震效果较理想,有利于为施工提供便利操作方式。减少罐底潮气对罐底板的腐蚀,并且有利于事故的处理。但是环墙基础在实际应用过程中,还存在一定的缺点。最明显的缺点问题之一就是环墙的竖向抗力刚度比环墙内填料相差较大,受力状态不均匀,导致罐壁和罐底的受力效果受到影响,达不到最理想的状态。除此之外,钢筋及水泥等材料消耗较大,在其中所需要投入的成本也比较高。 1.4 钢筋混凝土桩筏基础 在地基土相对比较软弱,地基处理有困难或不做处理时,宜采用钢筋混凝土桩筏基础,一般是由底部桩基、钢筋混凝土承台板及环墙组合而成的基础形式。桩筏基础承载力相对比较高,整体性也比较良好,具有非常良好的抵抗地基不均匀沉降的优势特征。由于储罐的直径比较大,承台要满足刚性基础的要求的情况下设计的较厚,桩基数量也较多,故其最大的缺点就是对钢筋及水泥等材料的整体消耗比较大,投资规模较大。 2 储罐基础地基处理方法 在不良土质或特殊地基上建造大型储罐时,如果对原有地基不做任何处理,则储罐的安全会经常出现各种问题。这时,必须采取措施改善地基土的力学性能,提高土的抗剪强度,改善土的压缩性能,改善饱和土的渗透性,改善砂土的动力特性等,使其在上部结构荷载作用下不发生破坏或出现过大的变形,保证储罐的正常使用。常用的地基处理方法有换填垫层法、充水预压法、强夯法和强夯置换法、振冲法、砂石桩法、水泥粉煤灰碎石桩法、水泥土搅拌法、绘图挤密桩法、钢筋混凝土桩复核地基法等。储罐地基处理方法的选定应根据储罐对地基的要求,结合地质勘查报告选定几种地基处理方案。对初步选出的方案分别从加固原理、适用范围、处理效果、工程进度、材料来源、设备条件、工程费用等进行反复综合研究对比,选择最合适的地基处理方法。方案确定后,还应根据现有条件进行相应的现场实验及施工,以检验设计参数和处理效果。当岩土工程条件较为复杂时,可由两种或多种地基处理措施组成的综合处理方法将会达到较好的地基处理效果。 3 储罐基础的构造及材料要求 3.1 沥青砂绝缘层 储罐基础顶面应设置沥青砂绝缘层。利用沥青砂绝缘层的根本目的就是为了实现对罐底腐蚀问题的提前预防和有效阻止。与此同时,通过这种基础设计模式在其中科学合理的利用,还可以使其下面的砂石土填料层稳固,尽可能减少透水性,避免出现严重的渗漏现象,避免罐底遭受到严重的腐蚀。除此之外,利用沥青砂绝缘层,有利于对罐底进行方便快捷的铺设和施工操作。沥青砂绝缘层所用的沥青材料,主要是根据储罐内储存介质的温度,按沥青的软化点来选用。当储罐内介质温度低于80℃时,宜采用60号甲、乙道路石油沥青,也可采用30号甲、乙建筑石油沥青;当储罐内介质温度等于或高于80℃时,宜采用30号甲、乙建筑石油沥青。沥青砂绝缘层的配合比一般为(质量比)7::9,即沥青7:中砂93(并掺一部分滑石粉),砂石在其中的整个含泥量不能够超过5%。当储罐内储存介质最高温度高于90℃时,罐基础表面应采取隔热措施。在施工中要注意的一点就是,在针对沥青或者是砂石进行搅拌的时候,应当尽可能将砂石进行加热处理,一般需要加热到100~150℃左右。另外,石油沥青也需要进行加热操作,一般需要加热到160℃~180℃,如果是在冬天的时候,加热温度还需要更高一些。在这一温度的基础上,需要立即将砂石和石油沥青进行拌合,保证拌合的均匀性,紧接着可以对其进行浇筑,提高使用率。 3.2 中粗砂垫层 沥青砂绝缘层下面应设置中粗砂垫层,砂垫层宜采用质地坚硬的中、粗砂,亦可采用最大粒径不超过20mm的砂石混合物,不宜采用细砂,不得采用粉砂和冰结砂。砂中不得含植物残体、垃圾等杂质,应级配良好。砂垫层的作用,主要是使压力分布均匀,调整和减少地基的不均匀沉降;当厚度不小于300mm时,可防止地下毛细管水的渗入,当底板开裂时,可作为漏油显示信号的通道。对于有的储罐基础因

管道及储罐强度设计考试题(2020年九月整理).doc

管道及储罐强度设计考试题 年级: 专业: 姓名: 一、填空题(20分) 1.地下敷设管道的埋设深度的确定要综合考虑、、等因素。 2.输油管道的设计温度,当加热输送时应为;当不加热输送时,应。 3.弯头或弯管是整个管道系统的一个组成部分,其所能承受的温度和压力,应,以保证管道系统安全。 4.锚杆的锚固力,与、、、,以及等因素有关。 5.内管与外管的联结构造,其联结件包括、、、和等。 6.敷管船法敷设管线可细分为、、、、五种。 二、简答题(40分) 1.管道或管道附件的开孔补强应符合哪些规定? 2.地上敷设管道的支承形式按管道跨越形式分类有哪些? 3.简介迄今国内外用于管道维修补强的方法。 4.简介光壳球在外载荷作用下的临界荷载计算和设计厚度的方法。 三、计算题(40分) 1.管道外径237mm,管壁厚9mm,内压10MPa,分别按精确值和薄壁近似公式计算管道的轴向应力和管道横截面的截面稀疏,并比较两种计算方法的差别。(6分) 2.一条直径0.219m、壁厚8.2mm的支管接在一条直径0.400m、壁厚10mm的主管上,支管材料的屈服极限σs= 241MPa,主管材料的屈服极限σs=317MPa。该管道的工作压力为10MPa,工作温度52℃,管道运行地区为一级地区。试设计补强圈的厚度。(12分)

3.设油罐进出油管线为φ159×4.5 钢管,钢管材料的弹性模量为197.5GPa,热胀系数为 1.22×10-51/℃,操作温度为100℃,若安装温度为0℃,当管线在1点处固定时,求管 线的热应力和对油罐的推力。(10分) 4.已知有效波的高度H0=3.05m,有效波的周期T=10s,水深d=30.5m,波的方向和管子垂 直。其余参数为管子直径D=0.305m,海床坡度=0。假定海堤围年地图,摩擦系数μ=0.5。 是根据以上条件确定管道受到的动水作用力。(12分)

管道与储罐强度

中国石油大学函授生考试试卷 课程管道与储罐强度教师李岩芳2013 /2014 学年第2学期 班级13级油气储运____________ 成绩_______ 一、填空题(2’×15=30’) 1、常用的立式圆柱形油罐按其顶的结构可分为、、三大种油罐。 2、为满足强度要求,罐壁下节点处的轴向应力σ与其材料屈服极限 σ的关系 s 为。 3我国在设计油罐时,一般根据原则来计算其直径和高度。一般说来,等壁厚油罐的公称容积不超 过米3。 4如果在壁厚为t的罐壁上开一直径为D的人孔,需用截面积为的金属来进行补强。当罐壁开孔接管的直径不超过时,可不进行补强。 5、根据原则,拱顶油罐的罐顶曲率半径约为倍罐壁筒体直径。 6、我国将抗风圈一般设计在的位置上。某地区的瞬时风速为60s m浮顶罐时,所用抗风圈的最小 m/,则在该地区建10,0003 截面系数为3 cm。一般说来,抗风圈与罐壁连接处上下各倍壁板厚度能与抗风圈同时工作。 7、设计浮顶罐时,浮船外径比油罐内径小毫米。 8、一般说来,管道的弹性截面系数W与其塑性截面系数,W的关系为,通常采用截面系数来进行管路跨度设计,使其满足强度要求。 9、直角弯管的柔性要比相同直径相同壁厚曲管的柔性。 10、Π型补偿器可采用或的办法来提高其补偿能力。 11、通常,管道的跨度可按管子的和两个条件来确定。 12、某水平铺设的管道其中间跨度计算值为10米,则其边跨的计算值为米;若将该管道铺设在30度斜坡上,则其中间跨的计算值为米。 13、柔性系数ijδ是指。

14、某平面管系按正常方法铺设于两固定约束端之间,在某一温差 t下,用弹性中心法求得约束端的作用力比值为P x/P y=5,若将温差改变为2 t,则P x/P y= 。 15、一般地,公称容积5万3m的浮顶罐,其直径约为m。 二、选择,将选择项画“√”。(20分) (1)、立式油罐罐壁筒体的抗弯刚度与它的(高度直径壁厚)有关。(2)、立式油罐罐壁最大环向应力的位置是在(罐壁最下端罐壁最下端以上0.3m处不确定)。 (3)、使用一个加强圈以后罐壁可以承受的风压力是P,如果不使用加强圈,则它能承受的风压力应(是P/2 是P/3 重新计算)。 (4)、罐底边缘板厚度与(油罐内径、板材强度、底圈罐壁厚度)有关。(5)、两端固定的直管段的热应力要比同样条件下非直线布置的管段的热应力(大、小、不确定)。 (6)、当拱顶罐呼吸阀中真空阀开启进气时,包边角钢内承受(拉应力、压应力)。(7)、一般埋地管线敷设在(地下水位线以上、地下水位线以下、冰冻线以上)。(8)、下列(罐壁设加强圈、罐顶设加强筋、罐顶设置呼吸阀)措施可增强拱顶罐的抗风能力。 (9)、平面管道热应力计算时,弹性中心法求出的弹性力的作用点在(管系的形心、固定支座处、管系的弹性中心)。 (10)、门型补偿器可采用(预先拉伸或预先压缩、预先弯曲、预先扭转)的办法来提高其补偿能力。 三、简答题(4’×5=20’) 1、设计油罐罐壁为什么有最大和最小壁厚的要求,它们各与哪些因素有关? 2、简述回转薄壳的第一、第二曲率半径的定义,并以拱顶油罐的罐壁和罐顶为

大型石油储罐设计选型与安全详细版

文件编号:GD/FS-7100 (安全管理范本系列) 大型石油储罐设计选型与 安全详细版 In Order To Simplify The Management Process And Improve The Management Efficiency, It Is Necessary To Make Effective Use Of Production Resources And Carry Out Production Activities. 编辑:_________________ 单位:_________________ 日期:_________________

大型石油储罐设计选型与安全详细 版 提示语:本安全管理文件适合使用于平时合理组织的生产过程中,有效利用生产资源,经济合理地进行生产活动,以达到实现简化管理过程,提高管理效率,实现预期的生产目标。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 大型储罐有节省钢材、占地少、投资省、便于操作、管理等优点。随着国民经济的飞速发展,我国油品储罐越来越趋向大型化。国内第一座10万立方米大型钢制原油外浮顶储罐于1985年从日本引进。发达国家建造、使用大型储罐已有近30年历史,而我国尚处于起步阶段。影响大型储罐安全运营的因素很多,一旦发生事故,就可能引发重大事故,损失将十分惨重。因此,迫切需要及时总结经验,提出改进措施。笔者对其中的主要安全问题进行分析,并提出对策,为工程设计提供参考。 目前,我国成品油储罐主要有内浮顶储罐、拱顶

储罐两种型式。由于内浮顶罐的浮顶随油面的升降而升降,浮顶与液面之间不存在气体空间,油品蒸发量小,因而基本上消除了大小呼吸损耗,既降低油品损耗外,又减少对大气的污染,所以,易蒸发的油品储罐多采用铝浮盘内浮顶储罐。 密封装置:浮顶储罐绝大部分液面是被浮顶覆盖的,而浮顶与罐壁之间的环形空间要依靠密封装置来减少油品的蒸发损失及气候变化对油品的影响,密封材料应满足耐温、耐磨、耐腐蚀、阻燃、抗渗透、抗老化、等性能要求。油罐内浮顶与罐壁之间的密封带应采用丁腈胶带。 1 大型原油储罐工程危险性分析 1.1 原油危险性分析 原油为甲B类易燃液体,具有易燃性爆炸极限范围较窄,但数值较低,具有一定的爆炸危险性,同

管道与储罐强度设计-题

《油罐及管道强度设计》综合复习资料 一、 选择,将选择项画“√”。(10分) (1)、立式油罐罐壁筒体的抗弯刚度与它的(高度 直径 壁厚)有关。 (2)、立式油罐罐壁最大环向应力的位置是在(罐壁最下端 罐壁最下端以上0.3m 处 不确定)。 (3)、使用一个加强圈以后罐壁可以承受的风压力是P ,如果不使用加强圈,则它能承受的风压力应( 是P/2 是P/3 重新计算)。 (4)、罐底边缘板厚度与(油罐内径、板材强度、底圈罐壁厚度)有关。 (5)、两端固定的直管段的热应力要比同样条件下非直线布置的管段的热应力(大、小、不确定)。 (6)、当拱顶罐呼吸阀中真空阀开启进气时,包边角钢内承受(拉应力、压应力)。 (7)、罐壁下节点处的00θ与M 呈(线性、非线性)关系,而罐底下节点处的0M 与0θ呈(线性、非线性)关系。 (8)、对管道热应力进行判断的经验公式如果得到满足,则管道(1、不用校核其热应力;2、也要校核其热应力;3、不一定要校核其热应力)。 (9)、对于容积超过20003m 的油罐,其直径与高度的比值随容积的增大而(基本不变、增大、减小)。 (10)、罐底中幅板厚度与(油罐内径、地基状况、底圈罐壁厚度)有关。 (11)、一般埋地管线敷设在(地下水位线以上、地下水位线以下 、冰冻线以上)。 (12)、 下列(罐壁设加强圈、罐顶设加强筋、罐顶设置呼吸阀)措施可增强拱顶罐的抗风能力。 (13)、平面管道热应力计算时,弹性中心法求出的弹性力的作用点在(管系的形心、固定支座处、管系的弹性中心)。 (14)、门型补偿器可采用(预先拉伸或预先压缩、预先弯曲、预先扭转)的办法来提高其补偿能力。 (15)、两端固定的直管段的热应力要比同样条件下非直线布置的管段的热应力(大、小、不确定)。

相关文档
相关文档 最新文档