文档库 最新最全的文档下载
当前位置:文档库 › 西电专用集成电路设计iC Process

西电专用集成电路设计iC Process

数字集成电路设计_笔记归纳..

第三章、器件 一、超深亚微米工艺条件下MOS 管主要二阶效应: 1、速度饱和效应:主要出现在短沟道NMOS 管,PMOS 速度饱和效应不显著。主要原因是 TH G S V V -太大。在沟道电场强度不高时载流子速度正比于电场强度(μξν=) ,即载流子迁移率是常数。但在电场强度很高时载流子的速度将由于散射效应而趋于饱和,不再随电场 强度的增加而线性增加。此时近似表达式为:μξυ=(c ξξ<),c s a t μξυυ==(c ξξ≥) ,出现饱和速度时的漏源电压D SAT V 是一个常数。线性区的电流公式不变,但一旦达到DSAT V ,电流即可饱和,此时DS I 与GS V 成线性关系(不再是低压时的平方关系)。 2、Latch-up 效应:由于单阱工艺的NPNP 结构,可能会出现VDD 到VSS 的短路大电流。 正反馈机制:PNP 微正向导通,射集电流反馈入NPN 的基极,电流放大后又反馈到PNP 的基极,再次放大加剧导通。 克服的方法:1、减少阱/衬底的寄生电阻,从而减少馈入基极的电流,于是削弱了正反馈。 2、保护环。 3、短沟道效应:在沟道较长时,沟道耗尽区主要来自MOS 场效应,而当沟道较短时,漏衬结(反偏)、源衬结的耗尽区将不可忽略,即栅下的一部分区域已被耗尽,只需要一个较小的阈值电压就足以引起强反型。所以短沟时VT 随L 的减小而减小。 此外,提高漏源电压可以得到类似的效应,短沟时VT 随VDS 增加而减小,因为这增加了反偏漏衬结耗尽区的宽度。这一效应被称为漏端感应源端势垒降低。

4、漏端感应源端势垒降低(DIBL): VDS增加会使源端势垒下降,沟道长度缩短会使源端势垒下降。VDS很大时反偏漏衬结击穿,漏源穿通,将不受栅压控制。 5、亚阈值效应(弱反型导通):当电压低于阈值电压时MOS管已部分导通。不存在导电沟道时源(n+)体(p)漏(n+)三端实际上形成了一个寄生的双极性晶体管。一般希望该效应越小越好,尤其在依靠电荷在电容上存储的动态电路,因为其工作会受亚阈值漏电的严重影响。 绝缘体上硅(SOI) 6、沟长调制:长沟器件:沟道夹断饱和;短沟器件:载流子速度饱和。 7、热载流子效应:由于器件发展过程中,电压降低的幅度不及器件尺寸,导致电场强度提高,使得电子速度增加。漏端强电场一方面引起高能热电子与晶格碰撞产生电子空穴对,从而形成衬底电流,另一方面使电子隧穿到栅氧中,形成栅电流并改变阈值电压。 影响:1、使器件参数变差,引起长期的可靠性问题,可能导致器件失效。2、衬底电流会引入噪声、Latch-up、和动态节点漏电。 解决:LDD(轻掺杂漏):在漏源区和沟道间加一段电阻率较高的轻掺杂n-区。缺点是使器件跨导和IDS减小。 8、体效应:衬底偏置体效应、衬底电流感应体效应(衬底电流在衬底电阻上的压降造成衬偏电压)。 二、MOSFET器件模型 1、目的、意义:减少设计时间和制造成本。 2、要求:精确;有物理基础;可扩展性,能预测不同尺寸器件性能;高效率性,减少迭代次数和模拟时间 3、结构电阻:沟道等效电阻、寄生电阻 4、结构电容: 三、特征尺寸缩小 目的:1、尺寸更小;2、速度更快;3、功耗更低;4、成本更低、 方式: 1、恒场律(全比例缩小),理想模型,尺寸和电压按统一比例缩小。 优点:提高了集成密度 未改善:功率密度。 问题:1、电流密度增加;2、VTH小使得抗干扰能力差;3、电源电压标准改变带来不便;4、漏源耗尽层宽度不按比例缩小。 2、恒压律,目前最普遍,仅尺寸缩小,电压保持不变。 优点:1、电源电压不变;2、提高了集成密度 问题:1、电流密度、功率密度极大增加;2、功耗增加;3、沟道电场增加,将产生热载流子效应、速度饱和效应等负面效应;4、衬底浓度的增加使PN结寄生电容增加,速度下降。 3、一般化缩小,对今天最实用,尺寸和电压按不同比例缩小。 限制因素:长期使用的可靠性、载流子的极限速度、功耗。

软件工程专业课程

软件工程专业的课程体系设计
骆 斌 张大良 邵 栋1 210093)
(南京大学软件学院 1、引言
南京市汉口路 22 号
软件工程是指开发、操作和维护软件系统的系统、规范、可度量的方法。从历史上看, 软件工程学科曾是计算机科学的一个分支,但随着软件产业不断发展的需求,传统的计算 机学科逐步上升到计算学科, 2001 年 IEEE 发布的计算学科教学规划把计算学科划分为计算 机科学、计算机工程、软件工程、信息系统、信息技术和其他有待发展的学科等子学科, 标志了软件工程这个名词作为与计算机理论相对应的各种软件实践技术的总称已经得到世 界范围内的公认。 我国在 2001 年底推出了示范性软件学院计划,把我国软件工程专业定位在面向软件产 业培养高素质的工程型软件实用人才。围绕这一定位,软件工程教育应该围绕大型软件开 发过程中的工程方法、关键技术和相关工具展开,在专业教学过程力图使得学生具备科学 世界观,掌握科学方法,具有扎实软件基础,受到良好软件工程训练,熟悉软件应用和工 具,参与过实际项目,拥有较好职业素质。 本文研究软件工程专业的课程体系设计,在研究过程中引入了科学的方法,参照 IEEE CC2001 的成熟做法, 首先明确专业的学科定位和人才培养定位, 然后建立相关的知识体系, 再后确定课程体系,最后确定课程设置和教学计划。 2、软件工程专业的相关知识领域简介 课程体系必须建立在对本专业知识体系的全面研究之上。作为软件工程专业人才培养 的基本依据,我校编写的《复合型软件实用人才的知识体系》定义了基本素质 BAS,计算 机软件基础 CSE,软件工程与软件管理 SEM,数学、工程和职业基础 MEP,软件系统与应 用 SSA,软件工具与产品 STP 等 6 个知识体系子类,并在各子类之下细分为知识领域、知 识单元和知识点三级。为方便讨论课程体系设计,现将与专业相关的 5 个子类的知识领域 简单列举如下: 1)CSE 定义了从事软件工作所应具备的软件专业基础知识,包括离散数学基础 CSE.DS,程序设计与算法基础 CSE.PF,计算机硬件基础 CSE.CH,系统软件基础 CSE.SS, 数据库应用基础 CSE.DB,网络通信基础 CSE.NC 和软件构造技术 CSE.CT 等知识领域。 2)SEM 定义了软件工程与软件管理知识,包括软件模型与分析 SEM.MA,软件设计 SEM.DE,软件检验和有效性验证 SEM.VV,软件演化 SEM.EV,软件过程 SEM.PR,软件 质量 SEM.QA 和软件管理 SEM.MG 等知识领域。 3)MEP 定义从事软件工作所应具备的数学、工程和职业知识,包括软件的数学基础 MEP.MF,软件的工程基础 MEP.EF,软件行业的职业素质 MEP.PP,软件业的外国语能力 MEP.FL 等知识领域。 4)SSA 定义从事某一方面软件工作应具备的专业或领域应用知识,包括网络工程与网 络应用 https://www.wendangku.net/doc/1113476080.html,(计算机网络进阶 AN,分布式计算 DC,多媒体技术 MM) ,嵌入式与实时
1
骆斌,教授,副院长,博士;张大良,教授,副校长,软件学院教学委员会主任;邵栋,讲师。联系邮件, luobin@https://www.wendangku.net/doc/1113476080.html,。

软件工程课程表

软件工程专业本科教学计划 专业代码080611W (国家)0406 (学校) 一、培养目标和基本规格 (一) 培养目标 软件工程专业本科生的培养目标是:针对国民经济信息化建设和发展的需要,面向软件产业界对软件工程技术人才的需求,培养具有良好的综合素质、良好的职业道德、扎实的软件工程理论知识及较强的英语综合应用能力,掌握自然科学和与软件有关的法律基础知识、具有自主学习和使用先进软件开发技术和工具的能力,具有软件开发实践和项目组织的初步经验,具有创新、创业、竞争意识和团队精神。学生毕业后能从事大型软件项目的开发,具有软件企业所需要的较高层次的软件工程技术和管理人才的素质,能适应技术进步和社会需求变化对高素质软件工程专门人才的基本要求。 (二) 培养规格 本专业学生应掌握软件工程领域坚实的基础理论和宽广的专业知识,具有良好的系统分析、设计及软件工程项目的组织与管理能力,具备运用先进软件开发技术、方法和工具的能力,具备与软件有关的法律知识,具备独立工作能力和团队精神。 毕业生应获得以下几方面的知识和能力: 1、掌握软件工程专业的基本理论、基本知识和基本技能,特别是软件项目管理与开发技术、信息系统的分析与设计技术、网络数据库开发技术、网络信息安全和嵌入式软件开发技术; 2、熟练掌握需求分析和建模、软件设计和实现、软件评审与测试、软件过程改进与项目管理、设计人机交互界面的基本方法,能运用先进软件技术和开发工具进行软件系统的开发与维护工作。 3、掌握与软件有关的法律法规、国际惯例,具备自觉运用法律知识进行软件知识产权保护的素质。 4、具有创业意识、创新精神和良好的职业素质,具有良好的人际沟通能力和团队精神。 5、了解软件工程领域的最新成果、发展动态和法律法规; 6、具有良好的英语写作和交际能力,外语水平达到规定的等级要求。 二、学制:四年。 三、授予学位:工学学士。

地方高校软件工程专业课程体系研究

地方高校软件工程专业课程体系研究 摘要:针对大数据时代下地方应用型高校软件工程专业人才培养中课程体系存在的问题,分析了大数据环境对软件工程专业人才的要求。以咸阳师范学院为例,介绍了对传统课程体系进行的调整。一方面调整了整个课程体系的结构,另一方面在理论教学和实践教学中融入了大数据相关理论和技术等内容。通过近年来的探索与实践,该套课程体系可以有效提升学生的创新应用能力,为同类高校软件工程专业的人才培养提供了思路。 关键词:大数据时代;地方应用型高校;软件工程专业;课程体系 0引言 大数据作为继云计算、物联网之后IT行业又一颠覆性的技术,备受人们的关注,大数据技术正从概念转向实际的应用,涌现出越来越多的大数据技术应用成功案例,大数据的价值也在迅速增长。2015年,中国大数据市场规模达到115.9亿元人民币,增速达38%,预计2016~2018年中国大数据市场规模将维持40%左右的高速增长[1]。大数据时代的到来,使得软件行业对人才的应用能力和综合素质提出了更高的要求。咸阳师范学院作为咸阳市地方应用型高校以服务咸阳地区经济社会发展为己任,肩负着培养满足咸阳地方社会需求软件人才的使命,需要把培养面向大数据时代的软件工程专业人才作为战略任务来抓。而课程体系的建设是软件工程专业人才培养体系最重要的一个方面。本文通过分析我院传统软件工程专业课程体系,以及大数据时代下企业对软件工程专业人才要求,找出大数据时代下软件工程专业应用型人才中课程体系存在的问题,探索出我院面向大数据环境的应用型软件工程人才中课程体系的建设。 1我院软件工程专业传统的课程体系 自我院计算机系成立以来,软件工程专业一直是我院重点建设专业。2013年,“‘3+1’校企合作软件人才培养模式创新实验区”被确定为省级人才培养模式创新实验区。一直以来,该专业以培养“厚基础、强能力、高素质”应用型人才的为培养目标,以企业、市场需求为导向,重视实践、技能和应用能力的培养,与尚观科技、中软国际、华清远见、蓝鸥科技等西安多家企业联合,采取3+1嵌入式校企联合教育培养模式,将课程教学、工程实践、行业理念进行无缝结合。课程体系是一个专业所设置的课程相互间的分工与配合[2],主要反映在基础课与专业课,理论课与实践课,必修课与选修课之间的比例关系上[3]。地方应用型本科院校的课程体系设计既要体现基础知识的传授,也要体现实践能力的培养,同时还要考虑学生的职业能力规划发展问题。我院2013-2015级软件工程专业课程体系结构图如图1所示。图12013-2015级软件工程专业课程体系结构图从图1可以看出通识教育必修课程的教学阶段共3个半学年,主要涉及思想政治基础知识、体育、人文历史、外语应用能力等;相关学科基础类课程主要包括高数、线性代数、数字逻辑等数学类课程;本学科基础类课程主要涉及程序设计语言、计算机网络、操作系统、数据结构、计算机组成原理等;专业技能教学阶段强调对学生工程性、实用性、技术性和复合型能力的培养,主要安排专业必修课程和专业选修课程。专业必修课程包括面向对象程序设计、软件工程、数据库原理与应用、软件设计与体系结构、算法分析与设计等,专业选修课程包括Web软件开发、Linux系统应用程序开发、移动终端开发等。根据教育部专业教学指导委员会软件工程行业规范[4],本着“轻理论,重实践”的原则,我院在一定程度上压缩理论课课

软件工程导论课程教学大纲

《软件工程导论》课程教学大纲 一、课程性质、地位和作用 《软件工程导论》是是软件工程专业的专业基础课程,属必修课。 本课程主要讲述建造软件系统的基本方法、技术、流程、工具及规范等。通过学习可以使学生了解软件工程的基本概念、基本原理、实用的开发方法和技术;了解软件工程各领域的基本内容和发展动向;学习用工程化的方法开发软件项目,初步掌握开发过程中应遵循的流程、准则、标准和规范。本门课程为将来从事软件开发学生的软件工程师之路奠定坚实的基础。 二、课程教学对象、目的和要求 本课程适用于软件工程、计算机应用等从事软件开发的本科专业。课程教学目的、要求: (一)从教学内容上,应使学生了解软件工程的基本概念,主要包括软件与软件开发的基本过程,软件危机与软件工程。掌握个人软件开发过程的基本内容和方法,了解软件开发模型及结构化软件设计方法,以及软件质量保证基本内容。(二)从能力方面,应使学生通过对软件工程基本概念和方法的学习和课后练习,培养学生养成规范化个人开发的良好习惯,培养学生按照软件工程的基本过程和方法来设计和开发软件。 (三)从教学方法上,在课堂理论教学中,采用学生可以理解的软件开发素材,通过一边实践一边讲解的方法,讲解软件过程的基本思想和方法,通过学生完成与实践结合的作业,调动学生的积极性,使软件工程的基本思想逐步植根于学生头脑中。 三、相关课程及关系 本课程的先修课程是“C语言程序设计”和“数据结构”等程序设计课程,学习应在学生具有一定的编程能力基础上进行。本课程为后续的“软件制造工程”和“软件设计工程”等课程打下了必要的理论基础。 四、课程内容及学时分配 总学时:32学时 (一)绪论1学时 1、软件工程及其重要性 2、软件开发需要软件工程 3、软件工程课程体系架构(需要什么软件工程) 、课堂的组织、学习方法、章节安排与考核4. 要求学生了解软件工程的起源,软件工程在软件开发中的作用,了解软件工程课程体系。 (二)软件与软件工程4学时 1、软件及软件分类 2、软件工程的由来及概念 3、软件生命周期 4、软件开发与软件开发方法 5、软件工程工具和环境 6、软件开发项目管理介绍

软件工程专业的课程体系设计

中国大学教学2005年第1期 32 软件工程专业的课程体系设计 ●南京大学骆斌张大良邵栋 件工程是指开发、操作和维护软件系统的系统、规 范、可度量的方法。从历史上看,软件工程学科曾 是计算机科学的一个分支,但随着软件产业不断发展的需求,传统的计算机学科逐步上升到计算学科,2001年IEEE 发布的计算学科教学规划把计算学科划分为计算机科学、计算机工程、软件工程、信息系统、信息技术和其他有待发展的学科等子学科,标志了软件工程这个名词作为与计算机理论相对应的各种软件实践技术的总称已经得到世界范围的公认。 我国在2001年底推出了示范性软件学院计划,把我国软件工程专业定位在面向软件产业培养高素质的工程型软件实用人才。围绕这一定位,软件工程教育应该围绕大型软件开发过程中的工程方法、关键技术和相关工具展开,在专业教学过程力图使得学生具备科学世界观,掌握科学方法,具有扎实的软件基础,受到良好的软件工程训练,熟悉软件应用和工具,参与实际项目,拥有较好的职业素质。 本文研究软件工程专业的课程体系设计,在研究过程中引入了科学的方法,参照IEEE CC2001的成熟做法,首先明确专业的学科定位和人才培养定位,然后建立相关的知识体系,确定课程体系,最后确定课程设置和教学计划。 1. 软件工程专业的相关知识领域简介 课程体系必须建立在对本专业知识体系的全面研究之上。作为软件工程专业人才培养的基本依据,我校编写的《复合型软件实用人才的知识体系》定义了基本素质BAS,计算机软件基础CSE,软件工程与软件管理SEM,数学、工程和职业基础MEP,软件系统与应用SSA,软件工具与产品STP6个知识体系子类,并在各子类之下细分为知识领域、知识单元和知识点三级。为方便讨论课程体系设计,现将与专业相关的5个子类的知识领域简单列举如下: (1)CSE定义了从事软件工作所应具备的软件专业基础知识,包括离散数学基础CSE.DS,程序设计与算法基础CSE.PF,计算机硬件基础CSE.CH,系统软件基础CSE.SS,数据库应用基础CSE.DB,网络通信基础CSE.NC 和软件构造技术CSE.CT等知识领域。 (2)SEM定义了软件工程与软件管理知识,包括软件模型与分析SEM.MA,软件设计SEM.DE,软件检验和有效性验证SEM.VV,软件演化SEM.EV,软件过程SEM.PR,软件质量SEM.QA和软件管理SEM.MG等知识领域。 (3)MEP定义了从事软件工作所应具备的数学、工程和职业知识,包括软件的数学基础MEP.MF,软件的工程基础MEP.EF,软件行业的职业素质MEP.PP,软件业的外国语能力MEP.FL等知识领域。 (4)SSA定义了从事某一方面软件工作应具备的专业或领域应用知识,包括网络工程与网络应用https://www.wendangku.net/doc/1113476080.html,(计算机网络进阶AN,分布式计算DC,多媒体技术MM),嵌入式与实时系统SSA.EM,图形软件系统SSA.GH,信息系统SSA.IS(组织和管理GM,系统开发理论SD,智能信息处理IP,ERP系统EP,电子商务系统EC)等领域。毕业生应该深入理解其中至少一个软件应用领域。 (5)STP定义了从事软件工作所应掌握的当前主流软件工具与软件产品,包括硬件,网络设备,PL,OS,DBMS,CASE工具等。 2.软件工程专业的课程体系设计策略 在确定软件工程专业的知识体系之后,紧接着应研究课程体系的设计策略。课程体系设计策略包括课程启动策略、课程组织策略和特色课程设置策略。 课程启动策略主要有:(1)围绕算法设计展开的算法优先策略。(2)自底向上展开的硬件优先策略。(3)从计算机导论展开的广度优先策略。(4)强调编程能力的程序设计优先策略。(5)强调系统使用的命令优先策略。(6)从面向对象展开的对象优先策略。课程组织策略包括:(1)基于主题的组织模式,把知识体系中的每个知识领域组织成一门或几门课程。(2)基于系统的组织模式,把每类计算机软硬件系统设置一门或几门课程。(3)混合模式,在课程设计时不区分前两种方法。特色课程设置策略依据本校的办学特色和研究专长确定。 软件工程专业的课程规划一方面应强调工程性、技术性、实用性、系统性、综合性和复合型,另一方面也要充分认识到强化基础在更快、更好、更有效地解决复杂软件的构造和应用方面起到的关键性作用。因此,对于课程启动策略,传统计算机科学专业的课程启动方式并不适合于本专业,但工程优先策略也不适合于那些没有任何计算机基础的本科生;对于课程组织策略,基于主题的组织模式更多地具有科学研究属性,而基于系统的组织模式又不利于强化基础知识;对于特色课程设置策略,也应避免缺乏全面综合考虑,因人设课,从而造成特色课程系统性差,教学内容重复和遗漏并存。 我院在课程体系设计时认真考虑了上述因素,采用了 软

集成电路培养方案.

西安邮电学院电子工程学院 本科集成电路设计与集成系统专业培养方案 学科:工学---电气信息专业:集成电路设计与集成系统(Engineering---Electric Information)(Integrated Circuit Design & Integrated System)专业代码:080615w 授予学位:工学学士 一、专业培养指导思想 遵循党和国家的教育方针,体现“两化融合”的时代精神,把握高等教育教学改革发展的规律与趋势,树立现代教育思想与观念,结合社会需求和学校实际,按照“打好基础、加强实践,拓宽专业、优化课程、提高能力”的原则,适应社会主义现代化建设和信息领域发展需要,德、智、体、美全面发展,具有良好的道德修养、科学文化素质、创新精神、敬业精神、社会责任感以及坚实的数理基础、外语能力和电子技术应用能力,系统地掌握专业领域的基本理论和基本知识,受到严格的科学实验训练和科学研究训练,能够在集成电路设计与集成系统领域,特别是通信专用集成电路与系统领域从事科学研究、产品开发、教学和管理等方面工作的高素质应用型人才。 二、专业培养目标 本专业学生的知识、能力、素质主要有:①较宽厚的自然科学理论基础知识、电路与系统的学科专业知识、必要的人文社会学科知识和良好的外语基础;②较强的集成电路设计和技术创新能力,具有通信、计算机、信号处理等相关学科领域的系统知识及其综合运用知识解决问题的能力;③较强的科学研究和工程实践能力,总结实践经验发现新知识的能力,掌握电子设计自动化(EDA)工具的应用;④掌握资料查询的基本方法和撰写科学论文的能力,了解本专业领域的理论前沿和发展动态;⑤良好的与人沟通和交流的能力,协同工作与组织能力;⑥良好的思想道德修养、职业素养、身心素质。毕业学生能够从事通信集成电路设计与集成系统的设计、开发、应用、教学和管理工作,成为具有奉献精神、创新意识和实践能力的高级应用型人才。 三、学制与学分 学制四年,毕业生应修最低学分198学分,其中必修课110学分,限选课36学分,任选课10学分,集中实践环节34学分,课外科技与实践活动8学分。

集成电路设计方法的发展历史

集成电路设计方法的发展历史 、发展现状、及未来主流设 计方法报告 集成电路是一种微型电子器件或部件,为杰克·基尔比发明,它采用一定的工艺,把一个电路中所需的晶体管、二极管、电阻、电容和电感等元件及布线互连一起,制作在一小块或几小块半导体晶片或介质基片上,然后封装在一个管壳内,成为具有所需电路功能的微型结构;其中所有元件在结构上已组成一个整体,使电子元件向着微小型化、低功耗和高可靠性方面迈进了一大步。集成电路具有体积小,重量轻,引出线和焊接点少,寿命长,可靠性高,性能好等优点,同时成本低,便于大规模生产。它不仅在工、民用电子设备如收录机、电视机、计算机等方面得到广泛的应用,同时在军事、通讯、遥控等方面也得到广泛的应用。用集成电路来装配电子设备,其装配密度比晶体管可提高几十倍至几千倍,设备的稳定工作时间也可大大提高。 一、集成电路的发展历史: 1947年:贝尔实验室肖克莱等人发明了晶体管,这是微电子技术发展中第一个里程碑; 1950年:结型晶体管诞生; 1950年: R Ohl和肖特莱发明了离子注入工艺; 1951

年:场效应晶体管发明; 1956年:C S Fuller发明了扩散工艺; 1958年:仙童公司Robert Noyce与德仪公司基尔比间隔数月分别发明了集成电路,开创了世界微电子学的历史; 1960年:H H Loor和E Castellani发明了光刻工艺;1962年:美国RCA公司研制出MOS场效应晶体管; 1963年:和首次提出CMOS技术,今天,95%以上的集成电路芯片都是基于CMOS工艺; 1964年:Intel摩尔提出摩尔定律,预测晶体管集成度将会每18个月增加1倍; 1966年:美国RCA公司研制出CMOS集成电路,并研制出第一块门阵列; 1967年:应用材料公司成立,现已成为全球最大的半导体设备制造公司; 1971年:Intel推出1kb动态随机存储器,标志着大规模集成电路出现; 1971年:全球第一个微处理器4004Intel公司推出,采用的是MOS工艺,这是一个里程碑式的发明; 1974年:RCA公司推出第一个CMOS微处理器1802; 1976年:16kb DRAM和4kb SRAM问世; 1978年:64kb动态随机存储器诞生,不足平方厘米的硅片上集成了14万个晶体管,标志着超大规模集成电路时

专用集成电路

实验一 EDA软件实验 一、实验目的: 1、掌握Xilinx ISE 9.2的VHDL输入方法、原理图文件输入和元件库的调用方法。 2、掌握Xilinx ISE 9.2软件元件的生成方法和调用方法、编译、功能仿真和时序仿真。 3、掌握Xilinx ISE 9.2原理图设计、管脚分配、综合与实现、数据流下载方法。 二、实验器材: 计算机、Quartus II软件或xilinx ISE 三、实验内容: 1、本实验以三线八线译码器(LS74138)为例,在Xilinx ISE 9.2软件平台上完成设计电 路的VHDL文本输入、语法检查、编译、仿真、管脚分配和编程下载等操作。下载芯片选择Xilinx公司的CoolRunner II系列XC2C256-7PQ208作为目标仿真芯片。 2、用1中所设计的的三线八线译码器(LS74138)生成一个LS74138元件,在Xilinx ISE 9.2软件原理图设计平台上完成LS74138元件的调用,用原理图的方法设计三线八线译 码器(LS74138),实现编译,仿真,管脚分配和编程下载等操作。 四、实验步骤: 1、三线八线译码器(LS 74138)VHDL电路设计 (1)三线八线译码器(LS74138)的VHDL源程序的输入 打开Xilinx ISE 6.2编程环境软件Project Navigator,执行“file”菜单中的【New Project】命令,为三线八线译码器(LS74138)建立设计项目。项目名称【Project Name】为“Shiyan”,工程建立路径为“C:\Xilinx\bin\Shiyan1”,其中“顶层模块类型(Top-Level Module Type)”为硬件描述语言(HDL),如图1所示。 图1 点击【下一步】,弹出【Select the Device and Design Flow for the Project】对话框,在该对话框内进行硬件芯片选择与工程设计工具配置过程。

软件工程专业办学现状及发展特色分析

软件工程专业办学现状及发展特色分析 摘要:针对目前软件工程专业办学从课程体系设置到教育教学模式构建上均存在不同程度的单一性和趋同性问题,提出将移动互联网作为专业建设重点,加强校企合作办学,推行CDIO工程实践教学理念,借助Moodle平台引入群体―探究类教学模式以培养企业急需的工程实践性高级人才。 关键词:软件工程;办学现状;特色;本科教育 0 引言 软件产业是信息产业发展的核心,是国民经济信息化的基础。根据工信部2013年1月25日发布的数据显示,2012年我国软件产业实现软件业务收入万亿元,同比增长%。2015年,国家对软件人才的需求超过600万人。然而,目前我国每年最多能培养20万软件人才,难以满足社会对软件人才的需求,因此,加大力度培养软件人才储备仍然是我国信息产业快速发展国家战略的迫切需要Ⅲ。 1 目前软件工程办学现状 截至2009年底,全国有普通本科院校792所,普通高职院校1 239所,经国家批准设立的独立学院316

所,经国家审定的分校办学点共68个;目前,接近80%的院校都开设有软件及软件相关专业,主要包括计算机科学与技术、软件工程、自动化、通信工程、电子信息科学与技术、微电子学、光信息科学与技术、集成电路设计与集成系统等多个专业,学历、学位层次覆盖博士、硕士、本科和专科。同时,为贯彻落实国务院《鼓励软件产业和集成电路产业发展若干政策》和《振兴软件产业行动纲要》的精神,实现我国软件产业人才培养跨越式发展,教育部以国家重点鼓励发展的软件、集成电路、信息安全等信息技术关键行业的战略性和紧缺性人才培养为突破口,实施了一系列具有战略意义的重大改革举措。从2001年起至今,国家先后批准成立37所示范性软件学院、35所示范性软件职业技术学院,建立了25个集成电路人才培养基地,成立了40个LINUX技术培训与推广中心,各地方教育主管部门紧跟发展形式,也先后批准成立超过50多所地方性示范软件学院。2008年,教育部还在高校中批准设立20个软件人才培养模式创新实验区。 以重庆市为例,全市共有57所高等院校,目前开办软件工程本科专业的院校已有15所。纵观这些高校的软件工程专业,从课程体系设置到教育教学模式构建上,均存在不同程度的单一性和趋同性。事实上,

集成电路设计方法--复习提纲

集成电路设计方法--复习提纲 2、实际约束:设计最优化约束:建立时钟,输入延时,输出延时,最大面积 设计规则约束:最大扇出,最大电容 39.静态时序分析路径的定义 静态时序分析通过检查所有可能路径上的时序冲突来验证芯片设计的时序正确性。时序路径的起点是一个时序逻辑单元的时钟端,或者是整个电路的输入端口,时序路径的终点是下一个时序逻辑单元的数据输入端,或者是整个电路的输出端口。 40.什么叫原码、反码、补码? 原码:X为正数时,原码和X一样;X为负数时,原码是在X的符号位上写“1”反码:X为正数是,反码和原码一样;X为负数时,反码为原码各位取反 补码:X为正数时,补码和原码一样;X为负数时,补码在反码的末位加“1” 41.为什么说扩展补码的符号位不影响其值? SSSS SXXX = 1111 S XXX + 1 —— 2n2n12n1例如1XXX=11XXX,即为XXX-23=XXX+23-24. 乘法器主要解决什么问题? 1.提高运算速度2.符号位的处理 43.时钟网络有哪几类?各自优缺点? 1. H树型的时钟

网络: 优点:如果时钟负载在整个芯片内部都很均衡,那么H 树型时钟网络就没有系统时钟偏斜。缺点:不同分支上的叶节点之间可能会出现较大的随机偏差、漂移和抖动。 2. 网格型的时钟网络 优点:网格中任意两个相近节点之间的电阻很小,所以时钟偏差也很小。缺点:消耗大量的金属资源,产生很大的状态转换电容,所以功耗较大。 3.混合型时钟分布网络优点:可以提供更小的时钟偏斜,同时,受负载的影响比较小。缺点:网格的规模较大,对它的建模、自动生成可能会存在一些困难。 总线的传输机制? 1. 早期:脉冲式机制和握手式机制。 脉冲式机制:master发起一个请求之后,slave在规定的t时间内返回数据。 握手式机制:master发出一个请求之后,slave在返回数据的时候伴随着一个确认信号。这样子不管外设能不能在规定的t时间内返回数据,master都能得到想要的数据。 2. 随着CPU频率的提高,总线引入了wait的概念 如果slave能在t时间内返回数据,那么这时候不能把wait信号拉高,如果slave不能在t时间内返回数据,那么必须在t时间内将wait信号拉高,直到slave将可以返回

软件工程课程安排

大一是网页制作,经典算法,c语言,军事理论,写作,高数1和高数2,离散1,中国近代史,思想道德,电子电路,英语1和2。大二是数据库原理,编译原理,离散2,数字电路,汇编语言,c++语言,mfc,计算机组成原理,英语3和4,日语1和2,马克思原理,毛邓。大三时jsp课程设计,sql server数据库,计算机体系结构,计算机网络,操作系统,计算机图形学,算法,日语3和4,人工智能,软件工程。大四我就不知道了。我刚读到大三。

《算法分析与设计》打下基础。 参考教材:《C++语言程序设计教程》谭浩强等编,高等教育出版社。 考核方式:考试。 3、04261050离散数学 《离散数学》是计算机科学与技术专业的必修课,主要学习集合论,图论,数理逻辑,形式语言等内容。本课程为学习计算机科学专业理论作好必要的准备知识,并为提高专业理论水平打下扎实的基础。 参考教材:《离散数学》朱一清编,电子工业出版社。 考核方式:考试。 4、04261060汇编语言程序设计 《汇编语言程序设计》是计算机科学与技术专业的必修课程,本课程的教学目的是:使学生掌握用汇编语言编写程序及上机运行的基本方法和技能,能用汇编语言设计实用程序,并了解与软、硬件有关课程的一些概念。 参考教材:《IBM PC汇编语言程序设计》沈美明、温科婵编,清华大学出版社。 考核方式:考试。 5、04261070数字逻辑 《数字逻辑》是计算机科学与技术专业的必修课。本课程是学习数字电路逻辑设计的理论和方法的一门课程。通过本课程的学习,使学生在深入理解理论的基础上,掌握数字电路组合网络和时序网络的分析与设计方法。前导课为《电路与电子技术》,后续课为《计算机组成原理》、《微机接口技术》、《计算机通信与网络》等课程。 参考教材:《数字逻辑与数字系统》王永军等编,电子工业出版社。 考核方式:考试。 6、04261080计算机组成原理 《计算机组成原理》是计算机科学与技术专业的必修主干课。本课程以《数字逻辑设计基础》及《汇编语言程序设计》为基础,主要讲授运算基础,运算器与运算方法;控制器与微程序设计;存储系统与辅助存储器;输入输出系统;计算机系统概述。通过本课程的学习,使学生能够较深入地理解与掌握计算机各功能部件的逻辑设计与实现,以及计算机整机各部件间的逻辑关系与连接。为后续课《微机接口技术》等奠定了理论与实验基础。

南京大学软件工程专业本科生培养方案与教学计划

南京大学软件工程专业本科生培养方案与教学计划 1

南京大学软件工程专业本科生培养方案与教学计划 ( 6月1日修订) 软件产业作为信息产业的核心是国民经济信息化的基础,已经涉足工业、农业、商业、金融、科教文卫、国防和百姓生活等各个领域。采用先进的工程化方法进行软件开发和生产是实现软件产业化的关键技术手段。因此,为积极促进中国软件产业发展,增强其国际竞争力,加速中国信息化建设,急需培养大批软件工程领域的实用型、复合型软件工程技术人才和软件工程管理人才。 为促进南京大学软件工程专业本科生在入学、培养、毕业和学位授予等环节的规范化,确保培养质量,根据教育部有关要求,依据南京大学有关本科生培养的规定,特制定本方案。 本方案作为南京大学培养软件工程专业本科生的指导性文件,规定其培养目标、方向和要求,以及培养对象、方式及学习年限,并就其课程设置、课程修读和学位论文要求等给出指导性意见。 一、培养目标、方向和要求 1、培养目标 软件工程专业本科生的培养目标是针对国民经济信息化建设和发展的需要,面向软件产业界对软件工程技术人才的需求,培养具有国际竞争能力的多层次复合型软件实用人才。 作为一名合格的软件工程专业本科毕业生,应当符合国民经济信息化建设和发展需要,以及软件企业对软件工程技术人才需求,能够

成为企业所需要的较高层次的软件工程技术和管理人才,其基本能力应当达到(具有国际水准的)程序员、高级程序员、软件工程师、以及项目质量管理人员的水平。 2、培养方向 软件工程专业本科生培养的基本思路是强化基础、注重实践。针对软件产业的人才需求,本科生阶段强调宽口径培养,不具体细分专业培养方向,但考虑专业课程模块设置,从而使得毕业生既具备扎实的基础和宽广的知识面,又较深入地认识某类软件系统和应用领域。 软件工程专业的基础课程应涵盖软件基础,软件工程基础,数学、工程与职业基础。软件工程专业的专业课程应覆盖软件设计开发、软件过程与管理、计算机网络、数字化技术、信息安全技术、嵌入式软件、信息系统、图形系统等。 3、培养要求 1、软件工程专业本科毕业生应较好地掌握马克思主义、毛泽东思想和邓小平理论;拥护党的基本路线和方针、政策;热爱祖国,遵纪守法,品行端正,身心健康,具有良好的职业道德和创业精神,积极为中国经济建设和社会发展服务。 2、软件工程专业本科毕业生应具备科学的世界观,掌握科学方法;掌握扎实的软件基础理论知识和较宽广的软件工程专业知识,具有技术创新能力;受到良好的软件工程训练,具有较强的工程实践能力和团队协作能力;熟悉软件应用和工具,具备运用先进的工程化方

集成电路设计流程

集成电路设计流程 . 集成电路设计方法 . 数字集成电路设计流程 . 模拟集成电路设计流程 . 混合信号集成电路设计流程 . SoC芯片设计流程 State Key Lab of ASIC & Systems, Fudan University 集成电路设计流程 . 集成电路设计方法 . 数字集成电路设计流程 . 模拟集成电路设计流程 . 混合信号集成电路设计流程 . SoC芯片设计流程 State Key Lab of ASIC & Systems, Fudan University 正向设计与反向设计 State Key Lab of ASIC & Systems, Fudan University 自顶向下和自底向上设计 State Key Lab of ASIC & Systems, Fudan University Top-Down设计 –Top-Down流程在EDA工具支持下逐步成为 IC主要的设计方法 –从确定电路系统的性能指标开始,自系 统级、寄存器传输级、逻辑级直到物理 级逐级细化并逐级验证其功能和性能 State Key Lab of ASIC & Systems, Fudan University Top-Down设计关键技术 . 需要开发系统级模型及建立模型库,这些行 为模型与实现工艺无关,仅用于系统级和RTL 级模拟。 . 系统级功能验证技术。验证系统功能时不必 考虑电路的实现结构和实现方法,这是对付 设计复杂性日益增加的重要技术,目前系统 级DSP模拟商品化软件有Comdisco,Cossap等, 它们的通讯库、滤波器库等都是系统级模型 库成功的例子。 . 逻辑综合--是行为设计自动转换到逻辑结构 设计的重要步骤 State Key Lab of ASIC & Systems, Fudan University

专用集成电路AD的设计

A/D转换器的设计 一.实验目的: (1)设计一个简单的LDO稳压电路 (2)掌握Cadence ic平台下进行ASIC设计的步骤; (3)了解专用集成电路及其发展,掌握其设计流程; 二.A/D转换器的原理: A/D转换器是用来通过一定的电路将模拟量转变为数字量。 模拟量可以是电压、电流等电信号,也可以是压力、温度、湿度、位移、声音等非电信号。但在A/D转换前,输入到A/D转换器的输入信号必须经各种传感器把各种物理量转换成电压信号。符号框图如下: 数字输出量 常用的几种A/D器为; (1):逐次比较型 逐次比较型AD由一个比较器和DA转换器通过逐次比较逻辑构成,从MSB 开始,顺序地对每一位将输入电压与内置DA转换器输出进行比较,经n次比较而输出数字值。其电路规模属于中等。其优点是速度较高、功耗低,在低分辩率(<12位)时价格便宜,但高精度(>12位)时价格很高。 (2): 积分型 积分型AD工作原理是将输入电压转换成时间(脉冲宽度信号)或频率(脉冲频率),然后由定时器/计数器获得数字值。其优点是用简单电路就能获得高分辨率,但缺点是由于转换精度依赖于积分时间,因此转换速率极低。初期的单片AD转换器大多采用积分型,现在逐次比较型已逐步成为主流。 (3):并行比较型/串并行比较型

并行比较型AD采用多个比较器,仅作一次比较而实行转换,又称FLash(快速)型。由于转换速率极高,n位的转换需要2n-1个比较器,因此电路规模也极大,价格也高,只适用于视频AD转换器等速度特别高的领域。 串并行比较型AD结构上介于并行型和逐次比较型之间,最典型的是由2个n/2位的并行型AD转换器配合DA转换器组成,用两次比较实行转换,所以称为Half flash(半快速)型。还有分成三步或多步实现AD转换的叫做分级型AD,而从转换时序角度又可称为流水线型AD,现代的分级型AD中还加入了对多次转换结果作数字运算而修正特性等功能。这类AD速度比逐次比较型高,电路规模比并行型小。 一.A/D转换器的技术指标: (1)分辨率,指数字量的变化,一个最小量时模拟信号的变化量,定义为满刻度与2^n的比值。分辨率又称精度,通常以数字信号的位数来表示。 (2)转换速率,是指完成一次从模拟转换到数字的AD转换所需的时间的倒数。积分型AD的转换时间是毫秒级属低速AD,逐次比较型AD是微秒级,属中速AD,全并行/串并行型AD可达到纳秒级。采样时间则是另外一个概念,是指两次转换的间隔。为了保证转换的正确完成,采样速率必须小于或等于转换速率。因此有人习惯上将转换速率在数值上等同于采样速率也是可以接受的。常用单位ksps 和Msps,表示每秒采样千/百万次。 (3)量化误差,由于AD的有限分辩率而引起的误差,即有限分辩率AD的阶梯状转移特性曲线与无限分辩率AD(理想AD)的转移特性曲线(直线)之间的最大偏差。通常是1 个或半个最小数字量的模拟变化量,表示为1LSB、1/2LSB。(4)偏移误差,输入信号为零时输出信号不为零的值,可外接电位器调至最小。(5)满刻度误差,满度输出时对应的输入信号与理想输入信号值之差。 (6)线性度,实际转换器的转移函数与理想直线的最大偏移,不包括以上三种误差。 三、实验步骤 此次实验的A/D转换器用的为逐次比较型,原理图如下:

数字集成电路知识点整理

Digital IC:数字集成电路是将元器件和连线集成于同一半导体芯片上而制成的数字逻辑电路或系统 第一章引论 1、数字IC芯片制造步骤 设计:前端设计(行为设计、体系结构设计、结构设计)、后端设计(逻辑设计、电路设计、版图设计) 制版:根据版图制作加工用的光刻版 制造:划片:将圆片切割成一个一个的管芯(划片槽) 封装:用金丝把管芯的压焊块(pad)与管壳的引脚相连 测试:测试芯片的工作情况 2、数字IC的设计方法 分层设计思想:每个层次都由下一个层次的若干个模块组成,自顶向下每个层次、每个模块分别进行建模与验证 SoC设计方法:IP模块(硬核(Hardcore)、软核(Softcore)、固核(Firmcore))与设计复用Foundry(代工)、Fabless(芯片设计)、Chipless(IP设计)“三足鼎立”——SoC发展的模式 3、数字IC的质量评价标准(重点:成本、延时、功耗,还有能量啦可靠性啦驱动能力啦之类的) NRE (Non-Recurrent Engineering) 成本 设计时间和投入,掩膜生产,样品生产 一次性成本 Recurrent 成本 工艺制造(silicon processing),封装(packaging),测试(test) 正比于产量 一阶RC网路传播延时:正比于此电路下拉电阻和负载电容所形成的时间常数 功耗:emmmm自己算 4、EDA设计流程 IP设计系统设计(SystemC)模块设计(verilog) 综合 版图设计(.ICC) 电路级设计(.v 基本不可读)综合过程中用到的文件类型(都是synopsys): 可以相互转化 .db(不可读).lib(可读) 加了功耗信息

集成电路的设计方法探讨

集成电路的设计方法探讨 摘要:21世纪,信息化社会到来,时代的进步和发展离不开电子产品的不断进步,微电子技术对于各行各业的发展起到了极大的推进作用。集成电路(integratedcircuit,IC)是一种重要的微型电子器件,在包括数码产品、互联网、交通等领域都有广泛的应用。介绍集成电路的发展背景和研究方向,并基于此初步探讨集成电路的设计方法。 关键词集成电路设计方法 1集成电路的基本概念 集成电路是将各种微电子原件如晶体管、二极管等组装在半导体晶体或介质基片上,然后封装在一个管壳内,使之具备特定的电路功能。集成电路的组成分类:划分集成电路种类的方法有很多,目前最常规的分类方法是依据电路的种类,分成模拟集成电路、数字集成电路和混合信号集成电路。模拟信号有收音机的音频信号,模拟集成电路就是产生、放大并处理这类信号。与之相类似的,数字集成电路就是产生、放大和处理各种数字信号,例如DVD重放的音视频信号。此外,集成电路还可以按导电类型(双极型集成电路和单极型集成电路)分类;按照应用领域(标准通用集成电路和专用集成电路)分类。集成电路的功能作用:集成电路具有微型化、低能耗、寿命长等特点。主要优势在于:集成电路的体积和质量小;将各种元器件集中在一起不仅减少了外界电信号的干扰,而且提高了运行

速度和产品性能;应用方便,现在已经有各种功能的集成电路。基于这些优异的特性,集成电路已经广泛运用在智能手机、电视机、电脑等数码产品,还有军事、通讯、模拟系统等众多领域。 2集成电路的发展 集成电路的起源及发展历史:众所周知,微电子技术的开端在1947年晶体管的发明,11年后,世界上第一块集成电路在美国德州仪器公司组装完成,自此之后相关的技术(如结型晶体管、场效应管、注入工艺)不断发展,逐渐形成集成电路产业。美国在这一领域一直处于世界领先地位,代表公司有英特尔公司、仙童公司、德州仪器等大家耳熟能详的企业。集成电路的发展进程:我国集成电路产业诞生于六十年代,当时主要是以计算机和军工配套为目标,发展国防力量。在上世纪90年代,我国就开始大力发展集成电路产业,但由于起步晚、国外的技术垄断以及相关配套产业也比较落后,“中国芯”始终未能达到世界先进水平。现阶段我国工业生产所需的集成电路主要还是依靠进口,从2015年起我国集成电路进口额已经连续三年比原油还多,2017年的集成电路进口额超过7200亿元。因此,在2018年政府工作报告中把推动集成电路产业发展放在了五大突出产业中的首位,并且按照国家十三五规划,我国集成电路产业产值到2020年将会达到一万亿元。中国比较大型的集成电路设计制造公司有台积电、海思、中兴等,目前已在一些技术领域取得了不错的成就。集成电路的发展方向:提到集成电路的发展,就必须要说到摩尔定律:集成度每18个月翻一番。而现今正处在

相关文档