文档库 最新最全的文档下载
当前位置:文档库 › (完整版)质粒DNA的提取、纯化与鉴定

(完整版)质粒DNA的提取、纯化与鉴定

(完整版)质粒DNA的提取、纯化与鉴定
(完整版)质粒DNA的提取、纯化与鉴定

分子生物学实验报告

题目:质粒DNA的提取、纯化与鉴定

姓名:学号:班级:时间:

一、实验目的:

1.学习并掌握凝胶电泳进行DNA的分离纯化的实验原理。

2.学习并掌握凝胶的制备及电泳方法。

3.学习并掌握凝胶中DNA的分离纯化方法。

4.掌握碱变性提取发的原理及各种试剂的作用。

5.掌握碱变性法提取质粒DNA的方法。

二、实验原理:

1.质粒DNA的提取——碱变性提取法:

提取和纯化质粒DNA的方法很多,目前常用的有:碱变性提取法、煮沸法、羟基磷灰石柱层析法、EB-氯化铯密度梯度离心法和Wizard法等。其中,碱变性提取法最为经典和常用,适于不同量质粒DNA的提取。该方法操作简单,易于操作,一般实验室均可进行。提取质粒DNA纯度高,可直接用于酶切、序列测定及分析。EB-氯化铯密度梯度离心法,主要适合于相对分子质量与染色体DNA相近的质粒,具有纯度高、步骤少、方法稳定,且得到的质粒DNA多为超螺旋构型等优点,但提取成本高,需要超速离心设备。少量提取质粒DNA还可用沸水浴法、Wizard法等,沸水浴法提取的质粒DNA中常含有RNA,但不影响限制性核酸内切酶的消化、亚克隆及连接反应等。

碱变性法提取质粒DNA一般包括三个基本步骤:培养细菌细胞以扩增质粒;收集和裂解细胞;分离和纯化质粒DNA。

在细菌细胞中,染色体DNA以双螺旋结构存在,质粒DNA以共价闭合环状形式存在。细胞破碎后,染色体DNA和质粒DNA均被释放出来,但两者变性与复性所依赖的溶液pH值不同。在pH值高达12.0的碱性溶液中,染色体DNA氢键断裂,双螺旋结构解开而变性;共价闭合环状质粒DNA的大部分氢键断裂,但两条互补链不完全分离。当用pH值4.6的KAc(或NaAc)高盐溶液调节碱性溶液至中性时,变性的质粒DNA可恢复原来的共价闭合环状超螺旋结构而溶解于溶液中;但染色体DNA不能复性,而是与不稳定的大分子RNA、蛋白质-SDS复合物等一起形成缠连的、可见的白色絮状沉淀。这种沉淀通过离心,与复性的溶于溶液的质粒DNA分离。溶于上清的质粒DNA,可用无水乙醇和盐溶液,减少DNA分子之间的同性电荷相斥力,使之凝聚而形成沉淀。由于DNA与RNA性质类似,乙醇沉淀DNA的同时,也伴随着RNA沉淀,可利用RNase A将RNA降解。质粒DNA溶液中的RNase A以及一些可溶性蛋白,可通过酚/氯仿抽提除去,最后获得纯度较高的质粒DNA。

2.凝胶电泳进行DNA分离纯化:

电泳(electrophoresis)是带电物质在电场中向着与其电荷相反的电极方向移动的现象。各种生物大分子在一定pH条件下,可以解离成带电荷的离子,在电场中会向相反的电极移动。凝胶是支持电泳介质,它具有分子筛效应。含有电解液的凝胶在电场中,其中的电离子会发生移动,移动的速度可因电离子的大小形态及电荷量的不同而有差异。利用移动速度差异,就可

以区别各种大小不同的分子。因而,凝胶电泳可用于分离、鉴定和纯化DNA 片段,是分子生物学的核心技术之一。

凝胶电泳技术操作简单而迅速,分辨率高,分辨范围广。此外,凝胶中DNA的位置可以用低浓度荧光插入染料如溴化乙锭(ethidium bromide,EB)或SYBR Gold染色直接观察到,甚至含量少至20pg的双链DNA在紫外激发下也能直接检测到。需要的话,这些分离的DNA条带可以从凝胶中回收,用于各种各样目的的实验。

分子生物学中,常用的两种凝胶为琼脂糖(agarose)和聚丙烯酰胺凝胶。

这两种凝胶能灌制成各种形状、大小和孔径,也能以许多不同的构型和方位进行电泳。聚丙烯酰胺凝胶分辨率高,使用于较小分子核酸(5—500bp)的分离和蛋白质电泳。它的分辨率非常高,长度上相差1bp或质量上相差0.1%的DNA都可以彼此分离,这也是采用聚丙烯酰胺凝胶电泳进行DNA序列分析的分子基础。虽然它能很快地进行电泳,并能容纳较大的DNA上样量,但是与琼脂糖凝胶相比,在制备和操作上繁琐。琼脂糖是从海藻中提取的长链状多聚物,由β-D-吡喃半乳糖与3,6-脱水-L-吡喃半乳糖组成,相对分子质量为104-105。琼脂糖加热至90℃左右,即可溶化形成清亮、透明的液体,浇在模版上冷却后形成凝胶,其凝固点为40-45℃。琼脂糖凝胶相对于聚丙烯酰胺凝胶分辨率低,但它的分离范围更大(50至百万bp),小片段DNA(50-20000bp)最适合在恒定轻度和方向的电场中水平方向的琼脂糖凝胶内电泳分离。琼脂糖凝胶电泳易于操作,适用于核酸电泳,测定DNA的相对分子质量,分离经限制酶水解的DNA片段,进一步纯化DNA等。

琼脂糖凝胶电泳是一种常用的方法。在溶液中,由于核酸有磷酸基而带有负电荷,在电场中向正极移动。DNA在琼脂糖凝胶中的电泳迁移率主要取决于6个因素:样品DNA分子的大小、DNA分子的构象、琼脂糖浓度、电泳所用电场、缓冲液和温度。

三、主要仪器和材料试剂:

1.仪器和材料:

恒温振荡培养箱,高速冷冻离心机,旋涡振荡器,水浴锅,1.5mL离心管,

50mL离心管,不同型号的吸头,微量移液器,微波炉,电泳仪,制胶槽,

电泳槽,梳子,锥形瓶,电子天平,手套,紫外灯,Eppendorf管等。

菌体:E.coli DH5α受体菌,具有Amp r标记的质粒pUC19。

2.实验试剂:

LB培养基,抗生素(氨苄青霉素),溶液Ⅰ,溶液Ⅱ,溶液Ⅲ,RNase A

母液,TE缓冲液,饱和酚,氯仿/异戊醇混合液,酚/氯仿/异戊醇(PCI)

混合液,预冷无水乙醇,TAE电泳缓冲液(10×),上样缓冲液(6×),

琼脂糖,溴化乙锭(EB),DNA相对分子质量标准物DNA Marker λ/Hind Ⅲ,5mol/L pH 5.2的醋酸钠。

四、实验步骤:

1.菌体培养:

(1)配制40mL液体LB培养基(加入5%葡萄糖)、100mL固体LB 培养基、并准备足量的移液管、200μl微量移液器头、1000μl

微量移液器头、50mL离心管、1.5mL离心管,灭菌备用。

(2)向液体LB培养基移取32μl氨苄青霉素,混合均匀。

(3)将提前活化的E.coli DH5α受体菌,接种于液体LB培养基中。

将锥形瓶放入恒温震荡培养箱中,37℃,200r/min 培养12-16h 。

2. 质粒DNA 的提取:

(1) 称量50mL 离心管重量W1,取30mL 菌液于已称重的50mL 离心

管中,配平后6000r/min 离心5min 。

(2) 弃上清,向离心管中加入5mL 溶液Ⅰ,涡旋振荡,6000r/min

离心5min 。

(3) 弃上清并称重W 2,求W=W 2-W 1。

(4) 按照1.0mL/100mg 菌体的量加入溶液Ⅰ,充分涡旋振荡,冰浴

5min ,再按照2.0mL/100mg 菌体的量加入溶液Ⅱ,温和颠倒混

匀,冰浴2min ,然后再按照1.5mL/100mg 菌体的量加入溶液

Ⅲ,温和颠倒混匀,冰浴10min ,平衡后12000r/min 离心15min 。

(5) 取上清至新50mL 离心管内,记录体积,加入两倍体积的冰乙

醇,混匀后在-20℃环境下保存30min 。取出后12000r/min 离

心15min ,弃上清,加入5mL70%乙醇,12000r/min 离心5min ,

弃上清,加入5mL70%乙醇,12000r/min 离心5min ,弃上清,

37℃放置5-10min 。

(6) 取出离心管,加入1mLTE 溶液得到粗提物,加入RNase A 液,

使溶液浓度为150μg/mL ,37℃保存60-120min 。

3. 质粒DNA 的纯化:

(1) 取500μl 粗提物于1.5mL 离心管中,加入等体积的Tris 饱和酚,

混匀,12000r/min 离心10min 。

(2) 转移上清(体积V 1)至新管,加入等V 1的酚:氯仿:异戊醇溶液,

混匀,12000r/min 离心5min 。

(3) 转移上清(体积V 2)至新管,加入等V 2的氯仿:异戊醇溶液,混

匀,12000r/min 离心5min 。

(4) 转移上清(体积V 3)至新管,加入110

V 3的3M NaAc 溶液(pH5.2),再加入2V 4(V 4=V 3+110

V 3)的冰乙醇,混匀,-20℃保存30-60min ,取出后12000r/min 离心15min 。

(5) 弃上清,加入500μl 70%乙醇,10000r/min 离心2min ,再加入

500μl 70%乙醇,10000r/min 离心2min ,37℃保存5-10min 。

(6) 取出离心管,向一只离心管中加入25μl TE 溶液,溶解沉淀后,

转移入另一只离心管中,再取25μl TE 溶液加入第一只离心管中,

溶解后再移入另一只离心管中,得到50μl 纯化质粒DNA 。

4. DNA 纯度检测:

(1) 取40mLTAE (1×)于300mL 锥形瓶中,加入0.4g 琼脂糖,放入微

波炉内使其熔化,60℃时倒入准备好的制胶槽中。

(2) 取5.0μl 纯化DNA 加入1.0μl 上样缓冲液,混合,进行点样。

(3) 点样完毕后,100V ,200mA 条件下电泳30min 。

(4) 电泳完毕后,进行EB 染色,用凝胶成像仪拍照,得到实验结

果。

五、实验结果:

凝胶成像仪拍照如下:

1 2 3 4 5 6 7 8 9 10

图1 DNA纯度检测凝胶成像结果(1号泳道:DNA marker λ/HindⅢ;2号泳道:超螺旋状态的pUC19质粒DNA;3号泳道:线性的pUC19质粒DNA;4号泳道:空泳道;5至9泳道:7至11组pUC19质粒DNA样品;10号泳道:λDNA)

本组点样在第9泳道,照片显示各种杂质去除得较为彻底,得到了较高纯度的超螺旋状态的pUC19质粒DNA。

六、讨论:

1.为获得高纯度的质粒DNA,必须彻底去除杂蛋白、染色体DNA和RNA。在

整个质粒提取过程中出去染色体DNA的关键步骤是加入溶液Ⅱ、溶液Ⅲ的变性和复性环节,应控制好变性和复性的时机。加入溶液Ⅰ时,可剧烈震荡,使菌体沉淀转变成均匀的菌悬液,此时细胞尚未破裂,染色体不会断裂;加入溶液Ⅱ时,菌液变粘稠、透明,无菌块残留;加入溶液Ⅲ时,会立即出现白色沉淀。加入溶液Ⅱ和溶液Ⅲ后,应缓慢上下颠倒离心管数次,切忌在旋涡振荡器上剧烈振荡,否则染色体DNA会断裂成小片段,不形成沉淀,而溶解在溶液中,与质粒DNA混合在一起,不利于质粒DNA提纯。因此,操作时一定要缓慢柔和,采用上下颠倒的方法,既要使试剂与染色体DNA充分作用,又不破坏染色体的结构。

2.酚具有腐蚀性,能损伤皮肤和衣物,使用时应小心。皮肤如不小心沾到

酚,应立即用碱性溶液、肥皂或大量清水冲洗。

3.为最大限度去除上清,可在倒掉部分上清后,再将离心管放入离心机稍

作离心,使残留在管壁的液体集中到离心管底部,再用移液器移除液体。

4.注意上样时要小心操作,避免损坏凝胶或将样品槽底部的凝胶刺穿。也

不要快速按出吸头内的样品,避免挤出的空气将样品冲出样品孔。

5.本次实验中,原应灭菌之前加入培养基内的葡萄糖由于操作疏忽而忘记

加入,随后按照老师指示配制100mL 10%的葡萄糖溶液一起灭菌,待灭菌

后再将葡萄糖溶液加入培养基中。

6.培养菌体所用的14个锥形瓶有2个锥形瓶中没有菌体生长迹象,另外有

2个锥形瓶内菌体生长较少。原因可能是接种时操作失误,例如可能是接

种环挑取菌种后离酒精灯火焰太近或者挑取菌种前没有充分冷却,也有

可能是接种时接入的菌量过少等。

7.在纯化DNA加入冰乙醇的步骤中,2只离心管在加入的DNA样品量相同的

情况下,出现了从-20℃环境下取出后2只离心管内液体体积相差较多的

情况,分析后发现量较少的1只离心管内加入的各种试剂的量是合适的。

可能的原因:①在用移液器移取冰乙醇时下按力度太大,吸入过多液体;

②2只离心管分别由2名组员加液,操作上可能出现个人之间的误差。

8.本次实验得到的质粒DNA较少,最主要原因是选择了菌体生长较少的培

养基,仅得到较少的粗提物,导致最终纯化得到的质粒DNA也较少。

七、附注:

培养基及实验试剂配方:

1.LB(Luria Broth)培养基

LB液体培养基:1%蛋白胨(typtone),0.5%酵母粉(yeast extract),1%NaCl。用NaOH调pH至7.2, 121℃灭菌20min备用。

LB固体培养基:除以上LB培养基成分外,还需要添加1.5%~2%琼脂,121℃灭菌20min备用。

LB半固体培养基:在LB液体培养基中加入0.75%琼脂,121℃灭菌20min备用。

2.氨苄青霉素:母液浓度为100μg/μl,工作浓度为50~100μg/mL。

3.TE缓冲液:10mmol/L Tris-HCl(pH 8.0),1mmol/L EDTA。

4.氯仿/异戊醇混合液:按氯仿:异戊醇为24:1(V/V)的比例在氯仿中加

入异戊醇。

5.酚/氯仿/异戊醇(PCI)混合液:

饱和酚:分析纯的酚溶化后经160℃重蒸后,加入0.1%(V/V)的抗氧化

8-羟基喹啉,再加入等体积的0.1mol/L Tris-HCl(pH 8.0)缓冲液反复抽

提,使之饱和,并使其pH为8.0,亦可购买商品化的饱和酚。

按酚与氯仿/异戊醇为1:1的比例混合饱和酚与氯仿/异戊醇混合液,即

得酚/氯仿/异戊醇(PCI)(25:24:1)混合液。

6.6×上样缓冲液:30%甘油,0.25%溴酚蓝(bromophenol blue, BPB),0.25%

二甲苯氰FF。

7.溶液Ⅰ:50mmol/L葡萄糖,25mmol/L Tris-HCl(pH 8.0),10mmol/L

EDTA。

8.溶液Ⅱ:0.2mol/L NaOH,1%SDS(临用前用10mol/L NaOH和20%SDS

母液配制)。

9.溶液Ⅲ:5mol/L KAc 60mL,冰醋酸11.5mL,重蒸水28.5mL;溶液

终浓度为:K+ 3mol/L,Ac- 5mol/L;

10.RNase A 母液:将RNase A溶于含10mmol/L Tris-HCl(pH 7.5)和

15mmol/L NaCl的溶液中,配成10mg/mL溶液,于100℃加热15min,

使污染的DNase失活。冷却后用1.5mL无菌离心管分装,保存于-20℃。

质粒DNA的提取和纯化实验报告

质粒DNA的提取和纯化实验报告

实验一、质粒DNA的提取和纯化 一、实验目的: 1、学习并掌握碱裂解法小量制备质粒DNA的方法。 2、初步了解DNA纯化的原理。 二、实验原理 1、细菌质粒是一类双链、闭环的DNA,大小范围从1kb至200kb以上不等。各种质粒都是存在于细胞质中、独立于细胞染色体之外的自主复制的遗传成份,通常情况下可持续稳定地处于染色体外的游离状态,但在一定条件下也会可逆地整合到寄主染色体上,随着染色体的复制而复制,并通过细胞分裂传递到后代。 2、质粒已成为目前最常用的基因克隆的载体分子,重要的条件是可获得大量纯化的质粒DNA分子。目前已有许多方法可用于质粒DNA的提取,本实验采用碱裂解法提取质粒DNA。 3、碱裂解法是一种应用最为广泛的制备质粒DNA的方法,其基本原理为:当菌体在NaOH和SDS溶液中裂解时,蛋白质与DNA发生变性,当加入中和液后,质粒DNA分子能够迅速复性,呈溶解状态,离心时留在上清中;蛋白质与染色体DNA不变性而呈絮状,离心时可沉淀下来。 4、纯化质粒DNA的方法通常是利用了质粒DNA相对较小及共价闭环两个性质。例如,氯化铯-溴化乙锭梯度平衡离心、离子交换层析、凝胶过滤层析、聚乙二醇分级沉淀等方法,但这些方法相对昂贵或费时。对于小量制备的质粒DNA,经过苯酚、氯仿抽提,RNA酶消化和乙醇沉淀等简单步骤去除残余蛋白质和RNA,所得纯化的质粒DNA已可满足细菌转化、DNA片段的分离和酶切、常规亚克隆及探针标记等要求,故在分子生物学实验室中常用。 三、实验步骤 1、挑取单菌落接种到含Amp的LB液体培养基试管内(3.5ml/管) 2、将试管放入恒温震荡培养箱中,37℃,200r/min培养12-16h。 3、将菌落转入1.5ml离心管中(尽量倒满)1200r/min,离心30s(沉淀菌体) 4、重复一次第三步的过程 5、弃掉上清液并扣干,加入预冷的Solution1 100微升,剧烈震荡打散菌体

《分子生物学》质粒DNA的提取与鉴定实验报告

质粒DNA的提取与鉴定 实验日期2020年5月14日室温25°C 成绩 一、实验报告摘要 【实验题目】 质粒DNA的提取与琼脂凝胶电泳鉴定 【实验目的】 1、掌握质粒提取原理和各种试剂的作用。 2、掌握琼脂糖凝胶电泳原理和操作。 二、实验原理 1、质粒: 质粒是独立存在于染色体外,能自主复制并能稳定遗传的一种环装双链DNA,分布于细菌、放线菌、真菌以及一些动植物细胞中。细菌质粒是应用最多的质粒类群,在细菌细胞内利用宿主细胞的复制机构复制质粒自身的DNA 2、琼脂糖凝胶电泳: 琼脂糖凝胶电泳是分离、鉴定和纯化DNA片段的标准方法之一,该技术操作简便,快速。用各种浓度的琼脂糖凝胶可以分离长度为200bp至近50kb的DNA。此外,直接用低浓度的核酸染料进行染色,可确定DNA在凝胶中的位置。琼脂糖凝胶通常采用水平装置在强度和方向恒定的电场下电泳。 三、操作要点:

(1)质粒DNA的提取 1、收取细菌:将4mL细菌培养液分为2次加入2mL的塑料离心管(子弹头)内,每次以12000r/min离心1min(注意平衡)弃去上清液。 2、加入100uL用冰预冷的溶液I,用移液枪将细菌沉淀打散成为悬浮液。(溶液I放置冰中) 3、加入200uL溶液II,盖紧盖口,翻转离心管5次,充分混合内容物,避免振荡,将离心管置于冰上。 4、加入150uL用冰预冷的溶液III,盖紧盖口,翻转离心管,温和摇匀直至粘稠状的细菌裂解物出现,置于冰上5分钟。(溶液放置冰中) 5、用微量离心机12000r/min离心5分钟。取上清液移到另一离心管。 6、加入等量的酚:氯仿(1:1)混合液,轻轻混匀,12000r/min离心7分钟,将上清液收集到新的离心管中。 7、加入2倍体积100%乙醇沉淀DNA,轻轻混匀,1200 0r/min离心5分钟,弃去上清液,倒置在滤纸上干燥,漓尽液体。 8、用1m170%乙醇洗涤DNA沉淀,按照步骤7去除上清液,空气干燥10min。 9、用50uL的无菌水溶解质粒DNA 。 (2)琼脂凝胶电泳分离鉴定 1,制胶。将电泳缓冲液和琼脂糖在微波炉中熔化,混匀,冷却至55°C,加入EB染料,倒入已封好的凝胶灌制平台上,插上样品梳。 2.加入10u1的6x加样缓冲液到DNA样品,混匀,然后用移液器取50u1样品加入样品孔中。(不要漫出加样孔) 3.接通电极,在120V电压下进行电泳20min-30min 。 4.当加样缓冲液中的溴酚兰迁移至足够分离DNA片段 的距离时,关闭电源。 5.已染色的凝胶可以直接在紫外透射仪上观察或照相 四、实验结果: 成功分离DNA片段,能看到超螺旋质粒和单缺口质粒的条带。

(完整版)质粒DNA的提取、纯化与鉴定

分子生物学实验报告 题目:质粒DNA的提取、纯化与鉴定 姓名:学号:班级:时间: 一、实验目的: 1.学习并掌握凝胶电泳进行DNA的分离纯化的实验原理。 2.学习并掌握凝胶的制备及电泳方法。 3.学习并掌握凝胶中DNA的分离纯化方法。 4.掌握碱变性提取发的原理及各种试剂的作用。 5.掌握碱变性法提取质粒DNA的方法。 二、实验原理: 1.质粒DNA的提取——碱变性提取法: 提取和纯化质粒DNA的方法很多,目前常用的有:碱变性提取法、煮沸法、羟基磷灰石柱层析法、EB-氯化铯密度梯度离心法和Wizard法等。其中,碱变性提取法最为经典和常用,适于不同量质粒DNA的提取。该方法操作简单,易于操作,一般实验室均可进行。提取质粒DNA纯度高,可直接用于酶切、序列测定及分析。EB-氯化铯密度梯度离心法,主要适合于相对分子质量与染色体DNA相近的质粒,具有纯度高、步骤少、方法稳定,且得到的质粒DNA多为超螺旋构型等优点,但提取成本高,需要超速离心设备。少量提取质粒DNA还可用沸水浴法、Wizard法等,沸水浴法提取的质粒DNA中常含有RNA,但不影响限制性核酸内切酶的消化、亚克隆及连接反应等。 碱变性法提取质粒DNA一般包括三个基本步骤:培养细菌细胞以扩增质粒;收集和裂解细胞;分离和纯化质粒DNA。 在细菌细胞中,染色体DNA以双螺旋结构存在,质粒DNA以共价闭合环状形式存在。细胞破碎后,染色体DNA和质粒DNA均被释放出来,但两者变性与复性所依赖的溶液pH值不同。在pH值高达12.0的碱性溶液中,染色体DNA氢键断裂,双螺旋结构解开而变性;共价闭合环状质粒DNA的大部分氢键断裂,但两条互补链不完全分离。当用pH值4.6的KAc(或NaAc)高盐溶液调节碱性溶液至中性时,变性的质粒DNA可恢复原来的共价闭合环状超螺旋结构而溶解于溶液中;但染色体DNA不能复性,而是与不稳定的大分子RNA、蛋白质-SDS复合物等一起形成缠连的、可见的白色絮状沉淀。这种沉淀通过离心,与复性的溶于溶液的质粒DNA分离。溶于上清的质粒DNA,可用无水乙醇和盐溶液,减少DNA分子之间的同性电荷相斥力,使之凝聚而形成沉淀。由于DNA与RNA性质类似,乙醇沉淀DNA的同时,也伴随着RNA沉淀,可利用RNase A将RNA降解。质粒DNA溶液中的RNase A以及一些可溶性蛋白,可通过酚/氯仿抽提除去,最后获得纯度较高的质粒DNA。 2.凝胶电泳进行DNA分离纯化: 电泳(electrophoresis)是带电物质在电场中向着与其电荷相反的电极方向移动的现象。各种生物大分子在一定pH条件下,可以解离成带电荷的离子,在电场中会向相反的电极移动。凝胶是支持电泳介质,它具有分子筛效应。含有电解液的凝胶在电场中,其中的电离子会发生移动,移动的速度可因电离子的大小形态及电荷量的不同而有差异。利用移动速度差异,就可

质粒DNA提取方法与原理

质粒提取的原理、操作步骤、各溶液的作用 细菌质粒是一类双链、闭环的DNA,大小范围从1kb至200kb以上不等。各种质粒都是存在于细胞质中、独立于细胞染色体之外的自主复制的遗传成份,通常情况下可持续稳定地处于染色体外的游离状态,但在一定条件下也会可逆地整合到寄主染色体上,随着染色体的复制而复制,并通过细胞分裂传递到后代。 质粒已成为目前最常用的基因克隆的载体分子,重要的条件是可获得大量纯化的质粒DNA分子。目前已有许多方法可用于质粒DNA的提取,本实验采用碱裂解法提取质粒DNA。 碱裂解法是一种应用最为广泛的制备质粒DNA的方法,其基本原理为:当菌体在NaOH和 SDS溶液中裂解时,蛋白质与DNA 发生变性,当加入中和液后,质粒DNA分子能够迅速复性,呈溶解状态,离心时留在上清中;蛋白质与染色体DNA不变性而呈絮状,离心时可沉淀下来。 纯化质粒DNA的方法通常是利用了质粒DNA相对较小及共价闭环两个性质。例如,氯化铯-溴化乙锭梯度平衡离心、离子交换层析、凝胶过滤层析、聚乙二醇分级沉淀等方法,但这些方法相对昂贵或费时。对于小量制备的质粒DNA,经过苯酚、氯仿抽提,RNA酶消化和乙醇沉淀等简单步骤去除残余蛋白质和RNA,所得纯化的质粒DNA已可满足细菌转化、DNA片段的分离和酶切、常规亚克隆及探针标记等要求,故在分子生物学实验室中常用。 一、试剂准备 1. 溶液Ⅰ: 50mM葡萄糖,25mM Tris-HCl(pH 8.0),10mM EDTA(pH 8.0)。1M Tris-HCl (pH 8.0)1 2.5ml,0.5M EDTA(pH 8.0)10ml,葡萄糖4.730g,加ddH2O至500ml。在10 lbf/in2高压灭菌15min ,贮存于4℃。 任何生物化学反应,首先要控制好溶液的pH,因此用适当浓度的和适当pH值的Tris-Cl溶液。50 mM葡萄糖最大的好处只是悬浮后的大肠杆菌不会快速沉积到管子的底部。因此,如果溶液I中缺了葡萄糖其实对质粒的抽提本身而言,几乎没有任何影响。所以说溶液I中葡萄糖是可缺的。EDTA呢?大家知道EDTA是Ca2+和Mg2+等二价金属离子的螯合剂,配在分子生物学试剂中的主要作用是:抑制DNase的活性,和抑制微生物生长。在溶液I中加入高达 10 mM 的EDTA,无非就是要把大肠杆菌细胞中的所有二价金属离子都螯合掉。如果不加EDTA,其实也没什么大不了的,只要不磨洋工,只要是在不太长的时间里完成质粒抽提,就不用怕DNA会迅速被降解,因为最终溶解质粒的TE缓冲液中有EDTA。如果哪天你手上正好缺了溶液I,可不可以抽提质粒呢?实话告诉你,只要用等体积的水,或LB培养基来悬浮菌体就可以了。 NaOH也使DNA变性,但只是个副产物,在溶液3加入后其中的醋酸和NaOH中和,质粒DNA恢复活性 2. 溶液Ⅱ:0.2N NaOH,1% SDS。2N NaOH 1ml,10%SDS 1ml,加ddH2O至10ml。使用前临时配置。 这是用新鲜的0.4 N的NaOH和2%的SDS等体积混合后使用的。要新从浓NaOH稀释制备0.4N的NaOH,无非是为了保证NaOH没有吸收空气中的CO2而减弱了碱性。很多人不知道其实破细胞的主要是碱,而不是SDS,所以才叫碱法抽提。事实上NaOH是最佳的溶解细胞的试剂,不管是大肠杆菌还是哺乳动物细胞,碰到了碱都会几乎在瞬间就溶解,这是由于细胞膜发生了从bilayer(双层膜)结构向 micelle(微囊)结构的相变化所导致。用了不新鲜的0.4 N NaOH,即便是有SDS 也无法有效溶解大肠杆菌(不妨可以自己试一下),自然就难高效率抽提得到质粒。如果只用SDS当然也能抽提得到少量质粒,因为 SDS也是碱性的,只是弱了点而已。很多人对NaOH的作用误以为是为了让基因组DNA变性,以便沉淀,这是由于没有正确理解一些书上的有关DNA变性复性的描述所导致。有人不禁要问,既然是NaOH溶解的细胞,那为什么要加SDS 呢?那是为下一步操作做的铺垫。这一步要记住两点:第一,时间不能过长,千万不要这时候去接电话,因为在这样的碱性条件下基因组DNA片断会慢慢断裂;第二,必须温柔混合(象对待女孩子一样),不然基因组DNA也会断裂。基因组 DNA 的断裂会带来麻烦。 3.溶液Ⅲ:醋酸钾(KAc)缓冲液,pH 4.8。5M KAc 300ml,冰醋酸 57.5ml,加ddH2O至500ml。4℃保存备用。 溶液III加入后就会有大量的沉淀,但大部分人却不明白这沉淀的本质。最容易产生的误解是,当SDS碰到酸性后发生的沉淀。如果你这样怀疑,往1%的 SDS溶液中加如2M的醋酸溶液看看就知道不是这么回事了。大量沉淀的出现,显然与SDS的加入有关系。如果在溶液II中不加SDS会怎样呢,也会有少量的沉淀,但量上要少得多,显然是盐析和酸变性沉淀出来的蛋白质。既然SDS不是遇酸发生的沉淀,那会不会是遇盐发生的沉淀呢?在1%的SDS溶液中慢慢加入5 N的NaCl,你会发现SDS在高盐浓度下是会产生沉淀的。因此高浓度的盐导致了SDS的沉淀。但如果你加入的不是NaCl而是KCl,你会发现沉淀的量要多的多。这其实是十二烷基硫酸钠(sodium dodecylsulfate)遇到钾离子后变成了十二烷基硫酸钾(potassium dodecylsulfate, PDS),而PDS是水不溶的,因此发生了沉淀。如此看来,溶液III加入后的沉淀实际上是钾离子置换了SDS中的钠离子形成了不溶性的PDS,而高浓度的盐,使得沉淀更完全。大家知道SDS专门喜欢和蛋白质结合,平均两个氨基酸上结合一个SDS分子,钾钠离子置换所产生的大量沉淀自然就将绝大部分蛋白质沉淀了,让人高兴的是大肠杆菌的基因组DNA也一起被共沉淀了。这个过程不难想象,因为基因组DNA太长了,长长的DNA自然容易被

质粒DNA的提取及其琼脂糖凝胶电泳实验报告

一、实验名称:质粒DNA的提取与纯化,DNA琼脂糖凝胶电泳 二、实验原理: 1.质粒DNA的提取: 质粒是一类存在于几乎所有细菌等微生物中染色体之外(细胞质中)呈游离状态的双链、闭环的DNA分子,能够自主复制和稳定遗传,以超螺旋形式存在,是最常用的基因克隆载体。除质粒外,大肠杆菌中还含有基因组DNA、各种RNA、蛋白质和脂质等物质,因此需要裂解细胞并除去蛋白质和染色体DNA等物质才能分离纯化出质粒DNA。分离制备质粒DNA的方法很多,其中常用的方法有碱裂解法、煮沸法、SDS法、羟基磷灰石层析法等。在实际操作中可以根据宿主菌株类型、质粒分子大小、碱基组成和结构等特点以及质粒DNA的用途进行选择。本实验使用碱裂解法,即利用SolutionⅠ、Ⅱ、Ⅲ三种溶液分离提取质粒DNA.其原理如下。 (1)碱裂解法提取大肠杆菌质粒DNA的原理: 碱裂解法提取质粒DNA是根据共价闭合环状质粒DNA和线性染色体DNA之间变性与复性的差异来分离质粒DNA,达到分离提纯质粒DNA的目的。在pH值高达12.6的碱性条件下,线性的DNA因氢键断裂,双螺旋结构解开而变性,尽管在这样的条件下,共价闭环质粒DNA的大部分氢键会被断裂,但超螺旋共价闭合环状的两条互补链相互缠绕,不会完全分离。当加入pH4.8乙酸钾高盐缓冲液恢复pH至中性时,共价闭合环状的质粒DNA复性,恢复其天然构象,以可溶状态存在于液相中;而线性的染色体DNA由于两条互补链彼此已完全分开、分子量大、结构复杂而相互缠绕形成不溶性网状结构。与不稳定的大分子RNA、变形的蛋白质以及细菌碎片等一起沉淀而被除去。进一步用酚、氯仿使蛋白质变性去除蛋白质杂质,然后用无水乙醇沉淀,即可获得纯化的质粒DNA。SolutionⅠ、Ⅱ、Ⅲ三种溶液以及无水乙醇沉淀DNA的具体作用和原理如下。 (2)四种溶液作用及原理: ①Solution I的作用:悬浮大肠杆菌菌体,增加溶液的粘度,维持渗透压及防止DNA受机械剪切力作用而降解。EDTA是Ca2+和Mg2+等二价金属离子的螯合剂,在溶液I中加入EDTA,是要把大肠杆菌细胞中的二价金属离子都螯合掉,从而起到抑制DNA酶对DNA的降解和抑制微生物生长的作用。另外也可保证溶菌酶活性。 ②Solution II的作用:提供碱性条件,pH高达12.6,使大肠杆菌瞬间裂解,促使染色体DNA和质粒DNA变性。所含离子型表面活性剂十二烷基酸钠(SDS)可使细胞膜、核膜发生破裂,充分溶解膜蛋白。同时,磺酸基与蛋白质形成复合物而变形沉淀。 ③Solution III的作用:为KAc-HAc缓冲液。该溶液所含有的高浓度钾离子与溶液体系中的十二烷基磺酸钠发生反应形成十二烷基磺酸钾,从而将与之结合的绝大部分大肠杆菌蛋白质以及很长的基因组DNA一起沉淀,与质粒分离开来;另外溶液III所含有的醋酸中和溶液Ⅱ的强碱性,使pH降至中性,因为长时间的碱性条件会打断DNA;基因组DNA一旦发生断裂,只要是50-100kb大小的片段,就没有办法再被PDS共沉淀,这样就跟质粒DNA共存了。而且在整个质粒DNA 的提取过程中,沉淀DNA时用无水乙醇及在高盐、低温条件下进行都是为了用化学或物理手段将基因组DNA分子和蛋白质发生变性、在体系中的溶解度降低,较充分的分离提纯出实验所需的质粒DNA

质粒DNA的提取、纯化与鉴定

姓名宿智新学院生命科学学院班级 11级生工2班科目分子生物学实验学号 201100140155 第 8 组 质粒DNA的提取、纯化与鉴定 摘要:本实验利用碱变法从大肠杆菌DH5α(E.coli DH5α)中提取pUC19质粒,旨在学习并掌握质粒DNA提取的原理、纯化和检测方法及琼脂糖凝胶电泳技术。同时通过对质粒DNA的提取、纯化过程及电泳图谱的分析,探讨碱变法提取高质量质粒DNA的关键步骤及影响所提质粒纯度和量的相关因子。 关键词:碱变法质粒电泳 实验目的: 1.学习并掌握凝胶电泳进行DNA的分离纯化的实验原理。 2.学习并掌握凝胶的制备及电泳方法。 3.学习并掌握凝胶中DNA的分离纯化方法。 4.掌握碱变性提取发的原理及各种试剂的作用。 5.掌握碱变性法提取质粒DNA的方法。 实验原理: 1.质粒DNA的提取——碱变性提取法: 提取和纯化质粒DNA的方法很多,目前常用的有:碱变性提取法、煮沸法、羟基磷灰石柱层析法、EB-氯化铯密度梯度离心法和Wizard法等。其中,碱变性提取法最为经典和常用,适于不同量质粒DNA的提取。该方法操作简单,易于操作,一般实验室均可进行。提取质粒DNA纯度高,可直接用于酶切、序列测定及分析。EB-氯化铯密度梯度离心法,主要适合于相对分子质量与染色体DNA相近的质粒,具有纯度高、步骤少、方法稳定,且得到的质粒DNA多为超螺旋构型等优点,但提取成本高,需要超速离心设备。少量提取质粒DNA还可用沸水浴法、Wizard法等,沸水浴法提取的质粒DNA中常含有RNA,但不影响限制性核酸内切酶的消化、亚克隆及连接反应等。 碱变性法提取质粒DNA一般包括三个基本步骤:培养细菌细胞以扩增质粒;收集和裂解细胞;分离和纯化质粒DNA。 在细菌细胞中,染色体DNA以双螺旋结构存在,质粒DNA以共价闭合环状形式存在。细胞破碎后,染色体DNA和质粒DNA均被释放出来,但两者变性与复性所依赖的溶液pH值不同。在pH值高达12.0的碱性溶液中,染色体DNA氢键断裂,双螺旋结构解开而变性;共价闭合环状质粒DNA的大部分氢键断裂,但两条互补链不完全分离。当用pH值4.6的KAc(或NaAc)高盐溶液调节碱性溶液至中性时,变性的质粒DNA可恢复原来的共价闭合环状超螺旋结构而溶解于溶液中;但染色体DNA不能复性,而是与不稳定的大分子RNA、蛋白质-SDS复合物等一起形成缠连的、可见的白色絮状沉淀。这种沉淀通过离心,与复性的溶于溶液的质粒DNA分离。溶于上清的质粒DNA,可用无水乙醇和盐溶液,减少DNA分子之间的同性电荷相斥力,使之凝聚而形成沉淀。由于DNA与RNA性质类似,乙醇沉淀DNA的同时,也伴随着RNA沉淀,可利用RNase A将RNA降解。质粒DNA溶液中的RNase A以及一些可溶性蛋白,可通过酚/氯仿抽提除去,最后获得纯度较高的质粒DNA。

质粒DNA的提取、酶切与鉴定

实验二十一质粒DNA的提取、酶切与鉴定 一、质粒DNA的提取 [原理]分离质粒DNA的方法包括三个基本步骤:培养细菌使质粒扩增;收集和裂解细菌;分离和纯化质粒DNA。 本实验采用碱变性法抽提质粒DNA,是基于染色体DNA与质粒DNA的变性与复性的差异而达到分离目的。在pH高达12.6的碱性条件下,染色体DNA 的氢键断裂,双螺旋结构解开而变性。质粒DNA的大部分氢键也断裂,但超螺旋共价闭合环状的两条互补链不会完全分离。当以pH4.8的醋酸钾高盐缓冲液去调节其pH至中性时,变性的质粒DNA又恢复原来的构型,保存在溶液中,而染色体DNA不能复性而形成缠连的网状结构,通过离心,染色体DNA与不稳定的大分子RNA、蛋白质-SDS复合物等一起沉淀下来而被除去。 [试剂] 1.溶液I: 50mmol/L葡萄糖、10mmol/L EDTA、25mmol/L Tris-HCl pH8.0;用前加溶菌酶4mg/ml。 2.溶液II: 200mmol/L NaOH 、1% SDS。 3.溶液III: pH4.8醋酸钾缓冲液(60 ml 5mol/L 醋酸钾、11.5ml冰醋酸、28.5ml 蒸馏水) 4.TE缓冲液pH8.0 5.含RNaseA的TE缓冲液:TE缓冲液含20μg/ml RNaseA。 6.苯酚:氯仿(1:1,v/v):酚需在160℃重蒸,加入抗氧化剂8-羟基喹啉,使体积分数为0.1%,并用Tris-HCl缓冲液平衡两次。氯仿中加入异戊醇,氯仿/异戊醇为24:1(v/v)。 7.1×LB溶液 8.100μg/ml氨苄青霉素 [器材] 1.TGL-16型台式高速离心机

2.1.5ml塑料离心管 3.离心管架 4.微量移液器 5.常用玻璃器皿 [操作步骤] 1.培养细菌将带有质粒pUC19的大肠杆菌接种于5ml含100μg/ml氨苄青霉素的1×LB中,37℃培养过夜。 2.取液体培养菌液1.5ml置塑料离心管中,10 000r/min离心lmin,去掉上清液。加入150μl溶液I,充分混匀,在室温下放置10min。 3.加入200μl新配制的溶液II,加盖后温和颠倒5~10次,使之混匀,冰上放置2min。 4.加入150μl冰冷的溶液III,加盖后温和颠倒5~10次,使之混匀,冰上放置10min。 5.用台式高速离心机,10 000r/min离心5min,将上清液移入干净的离心管中。 6.向上清液中加入等体积酚/氯仿(1:1,v/v),振荡混匀,转速10 000r/min,离心2min,将上清液转移至新的离心管中。 7.向上清液加5mol/LNaCl至终浓度为0.3mol/L,混匀,再加入2倍体积无水乙醇,混匀,室温放置2min,离心5min,倒去上清乙醇溶液,把离心管倒扣在吸水纸上,吸干液体。 8.加0.5ml 70%乙醇,振荡并离心,倒去上清液,真空抽干或室温自然干燥。 9.加入50μl含RNase A 20μg/ml的TE缓冲液溶解提取物,室温放置30min以上,使DNA充分溶解待用或置-20℃备用。 二、质粒DNA 的限制性内切酶酶切及琼脂糖凝胶电泳分离、鉴定 [原理]限制性内切核酸酶(也可称限制性内切酶)是在细菌对噬菌体的限制和修饰现象中发现的。细菌内同时存在一对酶,分别为限制性内切酶(限制作用)和DNA甲基化酶(修饰作用)。它们对DNA底物有相同的识别顺序,但生物功能却相反。 Ⅱ型限制性内切酶,具有能够识别双链DNA分子上的特异核苷酸顺序的

质粒DNA的提取、定量、酶切与PCR鉴定实验报告

质粒 DNA 的提取、定量、酶切与PCR 鉴定 一、实验目的 1.学习并掌握用碱裂解法提取质粒 DNA 的方法; 2.学习并掌握了解质粒酶切鉴定的方法; 3.学习并掌握紫外吸收检测 DNA 浓度和纯度的原理和方法; 4.学习并掌握 PCR 基因扩增的实验原理和操作方法; 5.学习并掌握水平式琼脂糖凝胶电泳的原理和使用方法。 二、实验原理 1.PCR(多聚酶链式反应 ) 在 DNA 聚合酶催化下,可以 DNA 为模板,以特定引物为延伸起点,以 dNTP 为原料,通过变性、退火、延伸等步骤,在体外(缓冲液中)复制DNA ,使目的 DNA 按 2n方式呈指数形式扩增。 PCR一次循环的具体反应步骤为: A. 变性:加热反应系统至95℃,使模板 DNA 在高温下完全变性,双链解链。 B. 退火:逐渐降低溶液温度,使合成引物在低温( 35-70℃, 一般低于模板 Tm 值的 5℃ 左右),与模板DNA 互补退火形成部分双链。 C. 延伸:溶液反应温度升至中温72℃,在Taq 酶作用下,以dNTP 为原料,引物为复 制起点,模板 DNA 的一条单链在解链和退火之后延伸为一条双链。 2.质粒 DNA 的提取与制备 (1). 碱裂解法: 染色体 DNA 与质粒 DNA 的变性与复性存在差异: A. 高碱性条件下,染色体DNA 和质粒 DNA 均变性;

B. 当以高盐缓冲液调节其pH 值至中性时,变性的质粒DNA 复性并保存在溶液中,染色体 DNA 不能复性而形成缠连的网状结构,可通过离心形成沉沉淀去除。 (2). 离心层析柱: A. 硅基质膜在高盐、低 pH 值状态下可选择性地结合溶液中的质粒DNA ,而不吸附溶液中的蛋白质和多糖等物质; B.通过去蛋白液和漂洗液将杂质和其它细菌成分去除; C.低盐,高 pH 值的洗脱缓冲液将纯净质粒 DNA 从硅基质膜上洗脱。 3.质粒 DNA 的定量分析(紫外分光光度法): A.物质在光的照射下会产生对光的吸收效应,且其对光的吸收是具有选择性; B.各种不同的物质都具有其各自的吸收光谱 : DNA 分对波长 260nm 的紫外光有特异的吸收峰 蛋白质对波长 280nm 的紫外光有特异的吸收峰 碳水化合物对 230nm 的紫外光有特异的吸收峰 C. A260/A280 及 A260/A230 的比值可以反应DNA 的纯度; A260/A280=1.8DNA 纯净 A260/A280<1.8表示样品中含蛋白质(芳香族)或酚类物质 A260/A280>1.8含 RNA 杂质,用 RNA 酶去除。 4.质粒 DNA 的酶切鉴定: 限制性内切酶是DNA 重组操作过程中所使用的基本工具。限制性内切酶能特异性地与 一段被称为限制酶识别序列的特殊DNA 序列结合,或是与其附近的特异位点结合,并 在结合位点切割双链DNA 。

相关文档
相关文档 最新文档