文档库 最新最全的文档下载
当前位置:文档库 › PWM控制电机调速系统

PWM控制电机调速系统

PWM控制电机调速系统
PWM控制电机调速系统

摘要:提出一个基于PWM控制的直流电机控制系统,从硬件电路和软件设计两方面进行系统设计,介绍了调速系统的整体设计思路、硬件电路和控制算法。下位机采用MPC82G516实现硬件PWM的输出,从而控制电机的电枢电压,并显示电机调速结果。上位机采用LABVIEW软件,实现实时跟踪与显示。最后对控制系统进行实验,并对数据进行分析,结果表明该系统调速时间短,稳定性能好,具有较好的控制效果。

随着计算机控制技术的发展,微处理器已经广泛使用于直流传动系统,实现了全数字化控制。电机采用微处理器控制的电压、电流、转矩、转速、转角等,实现全数字直流调速,控制精度、可靠性、稳定性、电机的性能得到提高。目前,PWM 调速成为电机调速的新方式,并凭借开关频率高、低速运行稳定、动态

[1-6][5-6]性能优良、效率高等优点,在电机调速中被普遍运用。但很多文献提到的 PWM 信号,多采用软件 PWM调速,即通过单片机的中断实现,缺点是占系统资源,易受系统中断影响和干扰,造成系统不稳定。本文将针对这一点,设计一种基于硬件 PWM 控制,调速时间更短的电机调速系统,并具有较好的稳定性能。

一、电机控制系统的整体设计

1.1 系统整体设计原理图

系统整体设计如图1所示,主要原理框图包括:LCD显示、按盘输入、测速模块、PWM调速模块四部分。电路原理图如图2所示:

图 1

图2

1.2 PWM信号

PWM信号的产生采用硬件PWM信号,即不采用中断实现PWM信号,而是利用单片机MPC82G516的PCA模式,PCA设置成PWM模式直接产生PWM信号。频率取决于PCA定时器的时钟源,占空比取决于模块捕获寄存器CCAPNL与扩展的第9位ECAPNL的值。由于使用9位比较,输出占空比可以真正实现0%到100%可调,占空比计算公式为:

占空比=1-{ ECAPnH,[CCAPnH]}/256

在电源电压 Ud 不变的情况下,电枢端电压的平均值取决于占空比η 的大小。通过改变η 的值可以改变电枢端电压的平均值,从而达到调速的目的。

1.3 测速模块

测速模块采用自带霍尔传感器并具有整形功能的直流电机调速板 J1,该模块能实现电机正反转、测速、调速功能,并自带整形芯片,调试效果较好。通过霍尔传感器把测速脉冲信号送单片机 P3.2,由单片机 P1.0送到测速模块第 5 脚,控制电机正反转。PWM 信号由 P1.2 送到测速模块第 3 脚,实现电机的调速。

1.4 I/O接口电路

输入模块采用 4 个按键 S1、S2、S3、S4,接在单片机 P1.4、P1.5、P1.6、P1.7,分别实现启动、加速、扩展功能、减速功能。电机正反转控制由 P1.0 送到测速模块第 1 脚。输出显示模块采用 LCD1602,是一种内置 8192 个 16*16

点汉字库和 128 个 16*8 点 ASCII 字符集图形点阵液晶显示器,它主要由行驱动器/ 列驱动器及128×32 全点阵液晶显示器组成,可完成图形显示,也可以显示7.5×2 个(16×16 点阵)汉字,与外部 CPU 接口采用并行或串行方式控制。

二、电机调速系统的软件设计

2.1 程序流程图

当系统启动后,单片机进行初始化设置,单片机检测是否有键按下,再执行按键子程序,读取键值,调用中断,主单片机将传感器输入的信号进行计算,控制PWM 的输出,从而控制电机的转速,依次循环使电机趋于稳定值。系统主程序框图如图 3 所示。

图 3

2.2 上位机软件

系统由计算机控制单片机,从而控制直流电机的速度,PC 机做为上位机,单片机作为下位机。为了便于查询和保存数据以及通过 PC 机调直流电机速度。上位机采用美国 NI 公司 LabVIEW 软件。LabVIEW 是一种图形编程语言,通常称为 G 语言,具有开放的环境,能和第系统通过 PC 机与单片机串口实现三方软件轻松连接通讯,构成一个数据采集系统。 4 为 LabVIEW 软件程图序框图。

图 4

三、系统测试与分析

PWM 信号的输出,实现对直流电机转速进行控制的方法。利用上位机LabVIEW 软件,可得到电机调速结果。图 5 为电机空载情况下的调速结果,测量数据结果如表 1。

图 5

数据分析:

启动段,电机转速从零上升到 53 r/s,只需用 6 s,并很快趋于稳定;

加速段,电机转速从 53 r/s 上升到 86 r/s,只需用 5 s,并很快趋于稳定;

减速段,电机转速从 86 r/s 下降到 53 r/s,只需用 7 s,并很快趋于稳定。

从数据中看出,通过 PWM 调速,电机转速变化至稳定,若不考虑按钮灵敏度,基本保持在 5 s 左右,并能很快趋于稳定,较好地满足设计要求。

四、PWM调速程序介绍

PWM调速通过改变一定频率方波脉冲的占空比来改变电机速度,本设计脉冲周期恒定,本设计通过把方波分成160份,改变高低脉冲的份数来改变PWM的波形,单片机PWM调速的程序代码如下所示:

void control()

{

EA=1;

while(1)

{ if(a>=150)

a=150;

if(a<=10)

a=10;

P1_1=0;

delay(160-a);

P1_1=1;

delay(a);

key=GeyKey();

if(key=='-') a-=n; else

if(key=='+') a+=n; else

if(key=='=')

{ P1_0=1;

dprintf(0,72,"方向: 顺时针");

}

else

if(key=='c')

{ P1_0=0;

dprintf(0,72,"方向: 逆时针");

}

else

if(key=='*')

{ P1_1=0;

break;

}

else

if(key!=0)

break;

}

EA=0;

}

总结

本设计中,调速是系统的主要功能,通过研究直流电动机的机械特性,得出了几种常见的改变转速的方法,因调压调速可实现额定转速以下大范围平滑调速,并且在整个调速范围内机械特性硬度不变。这种方法在直流电力拖动系统中被广泛采用。为了使系统能保证稳定的前提下实现转速无静差,且能够快速起制动,重点介绍了转速、电流双闭环控制系统。转速负反馈得到的反馈电压,与给定值进行比较后,产生了频率一定,占空比可调的脉宽序列,并通过功率放大后,对主电路变换器的电力电子元件的导通和关断进行驱动控制,从而改变电动机的转速,本设计,为了实现PWM控制,介绍了PWM调制技术的原理,并对PWM变换器进行了详细介绍,为了使系统能正反转运行,主电路采用双极式桥式变换器。

最后,通过计算机仿真软件MATLAB对系统进行了仿真,通过对波形的分析验证了转速、电流双闭环脉宽调速系统的优点。

通过本次设计,加强了我对知识的掌握,使我对设计过程有了全面地了解。通过学习控制系统工作原理以及如何利用仿真软件进行仿真,我查阅了大量相关资料,学会了许多知识,培养了我独立解决问题的能力。同时在对电路设计的过程中,巩固了我的专业课知识,使自己受益匪浅。

总之,通过本次设计不仅进一步强化了专业知识,还掌握了设计系统的方法、步骤等,为今后的工作和学习打下了坚实的基础。

附录:PWM控制的直流电机自动调速系统总体硬件电路图

PWM控制的直流电动机调速系统设计

中国计量学院 课程设计设计报告书 题目:PWM控制的直流电 动机调速系统设计 二级学院现代科技学院 专业电气工程及自动化 班级电气062 姓名***** 学号********** 同组同学姓名****** ******* 同组同学学*********** ********* 2009年12月23日

设计题目:PWM控制的直流电动机调速系统设计 1、前言 近年来,随着科技的进步,电力电子技术得到了迅速的发展,直流电机得到了越来越广泛的应用。直流它具有优良的调速特性,调速平滑、方便,调速范围广; 过载能力大,能承受频繁的冲击负载,可实现频繁的无级快速起动、制动和反转;需要能满足生产过程自动化系统各种不同的特殊运行要求,从而对直流电机的调速提出了较高的要求,改变电枢回路电阻调速,改变电枢电压调速等技术已远远不能满足要求,这时通过PWM方式控制直流电机调速的方法应运而生。 采用传统的调速系统主要有以下缺陷:模拟电路容易随时间漂移,会产生一些不必要的热损耗,以及对噪声敏感等。而在用了PWM技术后,避免了以上的缺陷,实现了用数字方式来控制模拟信号,可以大幅度降低成本和功耗。另外,由于PWM调速系统的开关频率较高,仅靠电枢电感的滤波作用就可获得平稳的直流电流,低速特性好;同样,由于开关频率高,快速响应特性好,动态抗干扰能力强可以获得很宽的频带;开关器件只工作在开关状态,主电路损耗小,装置效率高。PWM具有很强的抗噪性,且有节约空间、比较经济等特点。 2、设计要求及组内分工 2.1设计要求 (1)根据电机与拖动实验室提供的直流电动机,设计基于PWM的电动机 调速方案。 (2)选用合适的功率器件,设计电动机的驱动电路。 (3)设计PWM波形发生电路,使能通过按键对电机转速进行调节,要求至少有两个速度控制按键,其中一个为加速键(每按一次,使电机转速增 加);另一个为减速键,功能与加速键相反。 (4)撰写课程设计报告。 2.2组内分工 (1)负责直流电动机调速控制硬件设计及电路焊接:主要由胡佳春和叶秋 平完成

PWM控制电机调速系统

摘要:提出一个基于PWM控制的直流电机控制系统,从硬件电路和软件设计两方面进行系统设计,介绍了调速系统的整体设计思路、硬件电路和控制算法。下位机采用MPC82G516实现硬件PWM的输出,从而控制电机的电枢电压,并显示电机调速结果。上位机采用LABVIEW软件,实现实时跟踪与显示。最后对控制系统进行实验,并对数据进行分析,结果表明该系统调速时间短,稳定性能好,具有较好的控制效果。 随着计算机控制技术的发展,微处理器已经广泛使用于直流传动系统,实现了全数字化控制。电机采用微处理器控制的电压、电流、转矩、转速、转角等,实现全数字直流调速,控制精度、可靠性、稳定性、电机的性能得到提高。目前,PWM 调速成为电机调速的新方式,并凭借开关频率高、低速运行稳定、动态 [1-6][5-6]性能优良、效率高等优点,在电机调速中被普遍运用。但很多文献提到的 PWM 信号,多采用软件 PWM调速,即通过单片机的中断实现,缺点是占系统资源,易受系统中断影响和干扰,造成系统不稳定。本文将针对这一点,设计一种基于硬件 PWM 控制,调速时间更短的电机调速系统,并具有较好的稳定性能。 一、电机控制系统的整体设计 1.1 系统整体设计原理图 系统整体设计如图1所示,主要原理框图包括:LCD显示、按盘输入、测速模块、PWM调速模块四部分。电路原理图如图2所示: 图 1

图2 1.2 PWM信号 PWM信号的产生采用硬件PWM信号,即不采用中断实现PWM信号,而是利用单片机MPC82G516的PCA模式,PCA设置成PWM模式直接产生PWM信号。频率取决于PCA定时器的时钟源,占空比取决于模块捕获寄存器CCAPNL与扩展的第9位ECAPNL的值。由于使用9位比较,输出占空比可以真正实现0%到100%可调,占空比计算公式为: 占空比=1-{ ECAPnH,[CCAPnH]}/256 在电源电压 Ud 不变的情况下,电枢端电压的平均值取决于占空比η 的大小。通过改变η 的值可以改变电枢端电压的平均值,从而达到调速的目的。 1.3 测速模块 测速模块采用自带霍尔传感器并具有整形功能的直流电机调速板 J1,该模块能实现电机正反转、测速、调速功能,并自带整形芯片,调试效果较好。通过霍尔传感器把测速脉冲信号送单片机 P3.2,由单片机 P1.0送到测速模块第 5 脚,控制电机正反转。PWM 信号由 P1.2 送到测速模块第 3 脚,实现电机的调速。 1.4 I/O接口电路 输入模块采用 4 个按键 S1、S2、S3、S4,接在单片机 P1.4、P1.5、P1.6、P1.7,分别实现启动、加速、扩展功能、减速功能。电机正反转控制由 P1.0 送到测速模块第 1 脚。输出显示模块采用 LCD1602,是一种内置 8192 个 16*16

基于STM32的直流电机PWM调速控制

电动摩托车控制器中的电机PWM调速 摘要:随着“低碳”社会理念的深入,新型的电动摩托车发展迅速,逐渐成为人们主要的代步工具之一,由于直流无刷电机的种种优点,在电动摩托车中也得到了广泛应用,因此,本文控制部分主要介绍一种基于STM32F103芯片的新型直流无刷电机调速控制系统,这里主要通过PWM技术来进行电机的调速控制,且运行稳定,安全可靠,成本低,具有深远的意义。 1.总体设计概述 1.1 直流无刷电机及工作原理 直流无刷电机(简称BLDCM),由于利用电子换向取代了传统的机械电刷和换向器,使得其电磁性能可靠,结构简单,易于维护,既保持了直流电机的优点又避免了直流电机因电刷而引起的缺陷,因此,被广泛应用。另外,由于直流无刷电机专用控制芯片价格昂贵,本文介绍了一种基于STM32的新型直流无刷电机控制系统,既可降低直流无刷电机的应用成本,又弥补了专用处理器功能单一的缺点,具有重要的现实意义和发展前景。 工作原理:直流无刷电机是同步电机的一种,其转子为永磁体,而定子则为三个按照星形连接方式连接起来的线圈,根据同步电机的原理,如果电子线圈产生一个旋转的磁场,则永磁体的转子也会随着这个磁场转动因此,驱动直流无刷电机的根本是产生旋转的磁场,而这个旋转的磁场可以通过调整A、B、C三相的电流来实现,其需要的电流如图1所示 随着我国经济和文化事业的发展,在很多场合,都要求有直流电机PWM调速系统来进行调速,诸如汽车行业中的各种风扇、刮水器、喷水泵、熄火器、反视镜、宾馆中的自动门、自动门锁、自动窗帘、自动给水系统、柔巾机、导弹、火炮、人造卫星、宇宙飞船、舰艇、飞机、坦克、火箭、雷达、战车等场合。 1.2 总体设计方案 总体设计方案的硬件部分详细框图如图1所示。

直流电机PWM调速

直流电机转速的PWM控制测速 王鹏辉 姬玉燕

摘要 本设计采用PWM的控制原理来完成对直流电机的正转、反转以及其加速、减速过程的控制,在此过程中是通过单片机的定时器加上中断的方式产生不同时长的高低电压脉冲信号来完成。并通过霍尔传感器对直流电机的转速进行测定,最后将实时测定的转速数值1602液晶屏上。 关键词: PWM控制直流电机霍尔传感器 1602液晶显示屏 L298驱动 一、设计目的: 了解直流电机工作原理,掌握用单片机来控制直流电机系统的硬件设计方法,熟悉直流电机驱动程序的设计与调试,能够熟练应用PWM方法来控制直流电机的正反转和加减速,提高单片机应用系统设计和调试水平。 1.1系统方案提出和论证 转速测量的方案选择,一般要考虑传感器的结构、安装以及测速范围与环境条件等方面的适用性;再就是二次仪表的要求,除了显示以外还有控制、通讯和远传方面的要求。本说明书中给出两种转速测量方案,经过我和伙伴查资料、构思和自己的设计,总体电路我们有两套设计方案,部分重要模块也考虑了其它设计方法,经过分析,从实现难度、熟悉程度、器件用量等方面综合考虑,我们才最终选择了一个方案。下面就看一下我们对两套设计方案的简要说明。 1.2 方案一:霍尔传感器测量方案 霍尔传感器是利用霍尔效应进行工作的?其核心元件是根据霍尔效应原理制成的霍尔元件。本文介绍一种泵驱动轴的转速采用霍尔转速传感器测量。霍尔转速传感器的结构

原理图如图3.1, 霍尔转速传感器的接线图如图3.2 。 传感器的定子上有2 个互相垂直的绕组A 和B, 在绕组的中心线上粘有霍尔片HA 和HB ,转子为永久磁钢,霍尔元件HA 和HB 的激励电机分别与绕组A 和B 相连,它们的霍尔电极串联后作为传感器的输出。 图3.1 霍尔转速传感器的结构原理图 方案霍尔转速传感器的接线图 缺点:采用霍尔传感器在信号采样的时候,会出现采样不精确,因为它是靠磁性感应才采集脉冲的,使用时间长了会出现磁性变小,影响脉冲的采样精度。 1.3方案二:光电传感器 整个测量系统的组成框图如图3.2所示。从图中可见,转子由一直流调速电机驱

PWM直流调速系统设计

PWM ft流脉宽调速系统设计 1 PWM调速系统的主要问题 1.1什么是PWM 脉冲宽度调制(PWM),是英文“ Pulse Width Modulation ”的缩写,简称脉 宽调制,是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用在从测量、通信到功率控制与变换的许多领域中。 脉冲宽度调制是一种模拟控制方式,其根据相应载荷的变化来调制晶体管栅 极或基极的偏置,来实现开关稳压电源输出晶体管或晶体管导通时间的改变, 这种方式能使电源的输出电压在工作条件变化时保持恒定,是利用微处理器的数 字输出来对模拟电路进行控制的一种非常有效的技术。 PWM控制技术以其控制简单,灵活和动态响应好的优点而成为电力电子技术最广泛应用的控制方式,也是人们研究的热点?由于当今科学技术的发展已经没有了 学科之间的界限,结合现代控制理论思想或实现无谐振软开关技术将会成为PWM 控制技术发展的主要方向之一。 1.2 PWM的优越性 自从全控型电力电子器件问世以后,就出现了采用脉冲宽度调制的高频开关 控制方式,形成了脉宽调制变换器一直流电动机调速系统,简称直流脉宽调速系 统,或直流PWM S速系统。与V-M系统相比,PWM S统在很多方面有较大的优越性:1)主电路线路简单,需用的功率器件少。 2)开怪频率咼,电流容易连续,谐波少,电机损耗及发热都较小。 3)低速性能好,稳速精度高,调速围宽,可达 1 : 10000左右。 4)若与快速响应的电动机配合,则系统频带宽,动态响应快,动态抗扰能力强。 5)功率开关器件工作在开关状态,导通损耗小,当开关频率适当的时候,开关损耗也不大,因而装置效率较高 6)直流电源采用不控整流时,电网功率因数比相控整流器高。 由于有上述优点,直流PWM S速系统的应用日益广泛,特别是在中、小容量 的高动态性能系统中,已经完全取代了V-M系统。 1.3 PWM变换器的工作状态和电压、电流波形 脉宽调制变换器的作用是:用脉冲宽度调制的方法,把恒定的直流电源电压

基于PWM的电机调速系统

基于PWM勺电机调速系统 实验目的: 1. 学会并掌握可keil软件的使用; 2. 学会并掌握protues软件的使用; 3. 通过实验巩固单片机相关知识和检验自身动手能力 实验要求: 掌握单片机相关知识,利用调PWm空比的方式来控制直流电机的转速,并且在led 数码管上显示转速。 实验设备和仪器: 单片机最小系统 2. 直流电机 3. 示波器 实验内容: 本次实验设计是由小组五个成员共同完成基于PWM勺电机调速系统并完成实物搭建和撰写实验报告。本次实验小组共提供了两个方案,方案一和方案二,两个方案各自具有优缺点,详细内容会在下面给出。 方案一实验步骤:

1.利用protues画电路图,电路图如图1所示: 图1:方案一电路图 2.根据电路图编写C语言'代码: 代码如下: #include <> sbit PWM=P2A7; sbit CS3=P2A3; sbit CS2=P2A2; sbit CS1=P2A1; sbit CS0=P2A0; sbit key1=P1A。; sbit key2=P1A1; sbit key3=P1A2; sbit key4=P1A3; unsigned char timer1; unsigned char tab[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90};

void Time1Config(); void main(void) ( Time1Config(); while(1) ( if(timer1>100) 验仿真,部分仿真结果如图2图3所示: 图2:仿真结果图(1) 图3:仿真结果图(2) 4. 实物验证结果如图4所示: 图4:方案一实物验证结果 实物验证可以明显感觉到电机转速的变化,由于每个开发板不同,相比仿真程序,对实物验证程序进行了略微的修改,最终能达到要求。

基于单片机的直流电机PWM调速控制系统的设计

基于单片机的直流电机PWM调速控制系统的设计 第一章:前言 1.1前言: 直流电机的定义:将直流电能转换成机械能(直流电动机)或将机械能转换成直流电能(直流发电机)的旋转电机。 近年来,随着科技的进步,直流电机得到了越来越广泛的应用,直流具有优良的调速特性,调速平滑,方便,调速范围广,过载能力强,能承受频繁的冲击负载,可实现频繁的无极快速起动、制动和反转,需要满足生产过程自动化系统各种不同的特殊要求,从而对直流电机提出了较高的要求,改变电枢回路电阻调速、改变电压调速等技术已远远不能满足现代科技的要求,这是通过PWM方式控制直流电机调速的方法就应运而生。 采取传统的调速系统主要有以下的缺陷:模拟电路容易随时间飘移,会产生一些不必要的热损耗,以及对噪声敏感等。而用PWM技术后,避免上述的缺点,实现了数字式控制模拟信号,可以大幅度减低成本和功耗。并且PWM调速系统开关频率较高,仅靠电枢电感的滤波作用就可以获得平滑的直流电流,低速特性好;同时,开关频率高,快响应特性好,动态抗干扰能力强,可获很宽的频带;开关元件只需工作在开关状态,主电路损耗小,装置的效率高,具有节约空间、经济好等特点。 随着我国经济和文化事业的发展,在很多场合,都要求有直流电机PWM调速系统来进行调速,诸如汽车行业中的各种风扇、刮水器、喷水泵、熄火器、反视镜、宾馆中的自动门、自动门锁、自动窗帘、自动给水系统、柔巾机、导弹、火炮、人造卫星、宇宙飞船、舰艇、飞机、坦克、火箭、雷达、战车等场合。 1.2本设计任务: 任务: 单片机为控制核心的直流电机PWM调速控制系统 设计的主要内容以及技术参数: 功能主要包括: 1)直流电机的正转; 2)直流电机的反转; 3)直流电机的加速; 4)直流电机的减速; 5)直流电机的转速在数码管上显示; 6)直流电机的启动; 7)直流电机的停止; 第二章:总体设计方案 总体设计方案的硬件部分详细框图如图一所示。

说明PWM调速系统的工作原理

说明PWM调速系统的工作原理

说明PWM调速系统的工作原理 脉冲宽度调制脉冲宽度调制(PWM)是英文“Pulse Width Modulation”的缩写,简称脉宽调制。它是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用于测量,通信,功率控制与变换等许多领域。一种模拟控制方式,根据相应载荷的变化来调制晶体管栅极或基极的偏置,来实现开关稳压电源输出晶体管或晶体管导通时间的改变,这种方式能使电源的输出电压在工作条件变化时保持恒定。 脉冲宽度调制(PWM)是一种对模拟信号电平进行数字编码的方法。通过高分辨率计数器的使用,方波的占空比被调制用来对一个具体模拟信号的电平进行编码。PWM信号仍然是数字的,因为在给定的任何时刻,满幅值的直流供电要么完全有(ON),要么完全无(OFF)。电压或电流源是以一种通(ON)或断(OFF)的重复脉冲序列被加到模拟负载上去的。通的时候即是直流供电被加到负载上的时候,断的时候即是供电被断开的时候。只要带宽足够,任何模拟值都可以使用PWM进行编码。 多数负载(无论是电感性负载还是电容性负载)

需要的调制频率高于10Hz,通常调制频率为1kHz到200kHz之间。 许多微控制器内部都包含有PWM控制器。例如,Microchip公司的PIC16C67内含两个PWM 控制器,每一个都可以选择接通时间和周期。占空比是接通时间与周期之比;调制频率为周期的倒数。执行PWM操作之前,这种微处理器要求在软件中完成以下工作: * 设置提供调制方波的片上定时器/计数器的周期 * 在PWM控制寄存器中设置接通时间 * 设置PWM输出的方向,这个输出是一个通用I/O管脚 * 启动定时器 * 使能PWM控制器 PWM的一个优点是从处理器到被控系统信号都是数字形式的,无需进行数模转换。让信号保持为数字形式可将噪声影响降到最小。噪声只有在强到足以将逻辑1改变为逻辑0或将逻辑0改变为逻辑1时,也才能对数字信号产生影响。对噪声抵抗能力的增强是PWM相对于模拟控制的另外一个优点,而且这也是在某些时候将

直流电机PWM调速系统参考论文

毕业论文 基于51单片机的直流电机PWM调速控制系统设计 所在学院 专业名称 年级 学生姓名、学号 指导教师姓名、职称 完成日期

摘要 本文主要研究了利用MCS-51系列单片机控制PWM信号从而实现对直流电机转速进行控制的方法。本文中采用了三极管组成了PWM信号的驱动系统,并且对PWM信号的原理、产生方法以及如何通过软件编程对PWM信号占空比进行调节,从而控制其输入信号波形等均作了详细的阐述。另外,本系统中使用了霍尔元件对直流电机的转速进行测量,经过处理后,将测量值送到液晶显示出来。 关键词:PWM信号,霍尔元件,液晶显示,直流电动机 I

目录 目录 ................................................................................................................................ III 1 引言 (1) 1.1 课题背景 (1) 1.1.2 开发背景 (1) 1.1.3 选题意义 (2) 1.2 研究方法及调速原理 (2) 1.2.1 直流调速系统实现方式 (4) 1.2.2 控制程序的设计 (5) 2 系统硬件电路的设计 (6) 2.1 系统总体设计框图及单片机系统的设计 (6) 2.2 STC89C51单片机简介 (6) 2.2.1 STC89C51单片机的组成 (6) 2.2.2 CPU及部分部件的作用和功能 (7) 2.2.3 STC89C51单片机引脚图 (8) 2.2.4 STC89C51引脚功能 (8) 3 PWM信号发生电路设计 (11) 3.1 PWM的基本原理 (11) 3.2 系统的硬件电路设计与分析 (11) 3.3 H桥的驱动电路设计方案 (12) 5 主电路设计 (14) 5.1 单片机最小系统 (14) 5.2 液晶电路 (14) 5.2.1 LCD 1602功能介绍 (15) 5.2.2 LCD 1602性能参数 (16) 5.2.3 LCD 1602与单片机连接 (18) 5.2.4 LCD 1602的显示与控制命令 (19) 5.3 按键电路 (20) 5.4 霍尔元件电路 (21) III

课程设计:直流PWM-M可逆调速系统的设计与仿真

直流PWM-M可逆调速系统的设计与仿真 摘要 当今,自动化控制系统已经在各行各业得到了广泛的应用和发展,而直流调速控制作为电气传动的主流在现代化生产中起着主要作用。本文主要研究直流调速系统,它主要由三部分组成,包括控制部分、功率部分、直流电动机。长期以来,直流电动机因其具有调节转速比较灵活、方法简单、易于大范围内平滑调速、控制性能好等特点,一直在传动领域占有统治地位。 微机技术的快速发展,在控制领域得到广泛应用。本文对基于微机控制的双闭环可逆直流PWM 调速系统进行了较深入的研究,从直流调速系统原理出发,逐步建立了双闭环直流PWM调速系统的数学模型,用微机硬件和软件发展的最新成果,探讨一个将微机和电力拖动控制相结合的新的控制方法,研究工作在对控制对象全面回顾的基础上,重点对控制部分展开研究,它包括对实现控制所需要的硬件和软件的探讨,控制策略和控制算法的探讨等内容。在硬件方面充分利用微机外设接口丰富,运算速度快的特点,采取软件和硬件相结合的措施,实现对转速、电流双闭环调速系统的控制。 论文分析了系统工作原理和提高调速性能的方法,研究了IGBT模块应用中驱动、吸收、保护控制等关键技术.在微机控制方面,讨论了数字触发、数字测速、数字PWM调制器、双极式H型PWM变换电路、转速与电流控制器的原理,并给出了软、硬件实现方案。 关键词:PWM调速、直流电动机、双闭环调速

目录 前言 (1) 第1章直流PWM-M调速系统 (2) 第2章UPE环节的电路波形分析 (4) 第3章电流调节器的设计 (6) 3.1 电流环结构框图的化简 (6) 3.2 电流调节器参数计算 (7) 3.3 参数校验 (8) 3.3.1 检查对电源电压的抗扰性能: (8) 3.3.2 晶闸管整流装置传递函数的近似条件 (9) 3.3.3 忽略反电动势变化对电流环动态影响的条件 (9) 3.3.4 电流环小时间常数近似处理条件 (9) 3.4 计算调节器电阻和电容 (9) 第4章转速调节器的设计 (11) 4.1 电流环的等效闭环传递函数 (11) 4.2 转速环结构的化简和转速调节器结构的选择 (11) 4.3 转速调节器的参数的计算 (14) 4.4 参数校验 (14) 4.4.1 电流环传递函数化简条件 (15) 4.4.2 转速环小时间常数近似处理条件 (15) 4.5 计算调节器电阻和电容 (15) 4.6 调速范围静差率的计算 (16) 第5章系统仿真 (17) 5.1 仿真软件Simulink介绍 (17) 5.2 Simulink仿真步骤 (17) 5.3 双闭环仿真模型 (17) 5.4 双闭环系统仿真波形图 (18) 结论 (19) 参考文献 (20)

直流电机PWM调速电路汇编

《电子技术》课程设计报告课题:直流电机PWM调速电路 班级电气1107 学号 1101205712学生姓名王海彬 专业电气信息类 学院电子与电气工程学院 指导教师电子技术课程设计指导小组 淮阴工学院 电子与电气工程学院 2012年05月

直流电机PWM调速电路 一)设计任务与要求: 1.设计电机驱动主回路,实现直流电机的正反向转动; 2.设计PWM驱动信号发生电路; 3.设计电机转速显示电路; 4.设计电机转速调节电路,可以按键或电位器调节电机转速; 5.安装调试。 二)系统原理及功能概述 1)直流电机脉宽调速电路原理 对小功率直流电机调速系统,使用单片机是极为方便的。其方法是通过改变电机电枢电压接通时间与通电周期的比值(即占空比)来控制电机速度。这种方法称为脉冲宽度调制(Pulse Width Modulation),简称 PWM。 改变占空比的方法有 3 种: (1)定宽调频法,这种方法是保持 t1 不变,只改变 t2 ,这样周期 T(或频率)也随之改变; (2)调宽调频法,保持 t1 不变,而改变 t2 ,这样也使周期 T(或频率)改变; (3)定频调宽法,这种方法是使周期 T(或频率)不变,而同时改变 t2 和 t1 由,当控制频率与系统的固有频率接近于前两种方法都改变了周期(或频率)时,将会引起振荡,用的比较少,因此本系统用的是定频调宽法。在脉冲作用下,当电机通电时,速度增加。电机断电时,速度逐渐减小。只要按一定规律,改变通断电时间,即可实现对电机的转速控制。设电机永远接通电源时,其最大转速为 Vmax,设占空比 D= t1 /T ,则电机的平均速度为 Vd,平均速度 Vd 与占空比 D 的函数曲线如图 1-2 所示,从图可以看出,VD 与占空比 D 并不是完全线性关系(图中实线),当系统允许时,可以将其近似的看成线性关系(图中虚线),本系统采用近似法。

直流电机PWM调速控制系统

直流电机PWM调速控制系统

摘要:为了验证控制策略和电机参数设计的合理性,基于matlab/simulink平台,从无刷直流电机的基本原理出发,详细介绍电机各个模块的组成,构建了无刷直流电机pwm调速控制系统的建模与仿真模型,给出仿真曲线并验证该模型的正确性。 关键词:无刷直流电机模型仿真 1、引言 随着无刷直流电机(bldcm)应用领域的不断扩大,要求控制系统设计简易、成本低廉、控制算法合理、开发周期短。本文主要研究反电势近似梯形波的永磁无刷直流电机模型的建立与仿真,根据电机的参数和实际运行状况,通过matlab软件的simulink和psb 模块,快捷地创建一些电机控制系统模型,并与simulink结合,实现电机控制算法的仿真。文章介绍了如何创建无刷直流电动机的动态数学模型和pwm调速控制系统模型,并利用该模型,进行了pwm 调速控制系统的仿真试验。 2、无刷直流电机的数学模型 以两相导通三相六状态的无刷直流电机为例。方波无刷直流电动机的主要特征是反电动势为梯形波,包含有较多的高次谐波,这意味着定子和转子的互感是非正弦的,并且无刷直流电动机的电感为非线性[1]。采用直、交变换理论己经不是有效的分析方法,因此应该利用电机本身的相变量来建立数学模型。为简化数学模型的建立,在电动机模型建立时,认为电动机气隙是均匀的。并作以下假设[2]:

(1)电动机的气隙磁感应强度在空间呈梯形(近似为方波分布); (2)定子齿槽的影响忽略不计; (3)电枢反应对气隙磁通的影响忽略不计; (4)忽略电动机中的磁滞和涡流损耗; (5)三相绕组完全对称。 无刷直流电动机在运行过程中,每相绕组通过的不是持续不变的电流,该电流和转子作用产生的转矩,以及绕组上的感应电动势也都不是持续的。因此转矩和反电动势都采用平均值的概念。由以上假设,根据无刷直流电动机的特性,可建立其电压方程、转矩方程、状态方程以及等效电路结构。 对于三相无刷直流电机,其电压平衡方程可表示为[3] 式中:为定子相绕组电压(v);为定子相绕组电流(a);为定子相绕组反电动势(v);r为每相绕组的电阻(); l为每相绕组的电感(h);m 为每相绕组间的互感(h)。 在通电期间,无刷直流电机的带电导体处于相同的磁场下,各相绕组的反电动势为理想梯形波,其幅值为 式中:为反电动势系数;为转子的机械角速度。 无刷直流电动机的电磁转矩方程为: 式中:为电磁转矩;转子的机械角速度。 无刷直流电动机的运动方程为:(4) 式中:为负载转矩;f为粘滞阻尼系数;j为转子与负载的转动惯量。

直流电动机的PWM调压调速原理

直流电动机的PWM调压调速原理 直流电动机转速N的表达式为:N=U-IR/Kφ 由上式可得,直流电动机的转速控制方法可分为两类:调节励磁磁通的励磁控制方法和调节电枢电压的电枢控制方法。其中励磁控制方法在低速时受磁极饱和的限制,在高速时受换向火花和换向器结构强度的限制,并且励磁线圈电感较大,动态响应较差,所以这种控制方法用得很少。现在,大多数应用场合都使用电枢控制方法。 对电动机的驱动离不开半导体功率器件。在对直流电动机电枢电压的控制和驱动中,对半导体器件的使用上又可分为两种方式:线性放大驱动方式和开关驱动方式。 线性放大驱动方式是使半导体功率器件工作在线性区。这种方式的优点是:控制原理简单,输出波动小,线性好,对邻近电路干扰小;但是功率器件在线性区工作时由于产生热量会消耗大部分电功率,效率和散热问题严重,因此这种方式只用于微小功率直流电动机的驱动。绝大多数直流电动机采用开关驱动方式。开关驱动方式是使半导体器件工作在开关状态,通过脉宽调制PWM 来控制电动机电枢电压,实现调速。 在PWM调速时,占空比α是一个重要参数。以下3种方法都可以改变占空比的值。 (1)定宽调频法 这种方法是保持t1不变,只改变t2,这样使周期T(或频率)也随之改变。 (2)调频调宽法 这种方法是保持t2不变,只改变t1,这样使周期T(或频率)也随之改变。 (3)定频调宽法 这种方法是使周期T(或频率)保持不变,而同时改变t1和t2。 前两种方法由于在调速时改变了控制脉冲的周期(或频率),当控制脉冲的频率与系统的固有频率接近时,将会引起振荡,因此这两种方法用得很少。目前,在直流电动机的控制中,主要使用定频调宽法。 直流电动机双极性驱动可逆PWM控制系统 双极性驱动则是指在一个PWM周期里,作为在电枢两端的脉冲电压是正负交替的。 双极性驱动电路有两种,一种称为T型,它由两个开关管组成,采用正负电源,相当于两个不可逆控制系统的组合。但由于T型双极性驱动中的开关管要承受较高的反向电压,因此只用在低压小功率直流电动机驱动。 另一种称为H型。 H型双极性驱动 一、显示接口模块 方案一:液晶显示器也是一种常用的显示器件。它的优点是功耗低,寿命长,本身无老化问题,显示信息量大(可以显示字母和数字),在显示字符上没有限制。但价格高,接口电路较为复杂。其只在一些(袖珍型)设备上作为显示之用。

PWM直流调速系统设计

目录 前言 (1) 一、设计目的 (2) 二、设计要求 (2) 三、直流调速系统整体设计 (2) 四、系统参数选取 (7) 五、各部分设计 (8) 六、双闭环系统设计 (14) 七、系统仿真 (17) 八、设计总结 (18) 参考文献 (19)

前言 由于直流电机具有良好的起动、制动和调速性能,已广泛应用于工业、航天领域等各个方面。随着电力电子技术的发展,脉宽调制(PWM)调速技术已成为直流电机常用的调速方法,具有调速精度高、响应速度快、调速范围宽和功耗低等特点。而以H桥电路作为驱动器的功率驱动电路,可方便地实现直流电机的四象限运行,包括正转、正转制动、反转、反转制动,已广泛应用于现代直流电机伺服系统中。本文从直流电动机的工作原理入手,建立了双闭环直流调速系统的数学模型,并详细分析了系统的原理及其静态和动态性能。然后按照自动控制原理,对双闭环调速系统的设计参数进行分析和计算,利用SIMULINK对系统进行了各种参数给定下的仿真,通过仿真获得了参数整定的依据。在理论分析和仿真研究的基础上,本文设计了一套实验用双闭环直流调速系统,详细介绍了系统主电路、反馈电路、触发电路及控制电路的具体实现。对系统的性能指标进行了实验测试,表明所设计的双闭环调速系统运行稳定可靠,具有较好的静态和动态性能,达到了设计要求。采用MATLAB软件中的控制工具箱对直流电动机双闭环调速系统进行计算机辅助设计,并用SIMULINK进行动态数字仿真,同时查看仿真波形,以此验证设计的调速系统是否可行。

一、设计目的 通过对一个实用控制系统的设计,综合运用科学理论知识,提高工程意识和实践技能,使学生获得控制技术工程的基本训练,培养学生理论联系实际、分析解决实际问题的初步应用能力。 二、设计要求 完成所选题目的分析与设计,进行系统总体方案的设计、论证和选择;系统单元主电路和控制电路的设计、元器件的选择和参数计算 三、直流调速系统整体设计 1、直流电机PWM调速控制原理 直流电动机转速公式为: n=(U-IR)/Kφ 其中U为电枢端电压,I为电枢电流,R为电枢电路总电阻,φ为每极磁通量,K为电动机结构参数。 直流电机转速控制可分为励磁控制法与电枢电压控制法。励磁控制法用得很少,大多数应用场合都使用电枢电压控制法。随着电力电子技术的进步,改变电枢电压可通过多种途径实现,其中脉冲宽度调制(PWM)便是常用的改变电枢电压的一种调速方法。其方法是通过改变电机电枢电压接通时间与通电周期的比值(即占空比)来调整直流电机的电枢电压U,从而控制电机速度。 PWM的核心部件是电压-脉宽变换器,其作用是根据控制指令信号对脉冲宽度进行调制,以便用宽度随指令变化的脉冲信号去控制大功率晶体管的导通时间,实现对电枢绕组两端电压的控制。在本次课程设计采用双闭环直流调速系统进行调速控制。 2、双闭环直流调速系统 A.双闭环调速系统的工作过程和原理:电动机在启动阶段,电动机的实际转速(电压)低于给定值,速度调节器的输入端存在一个偏差信号,经放大后输出的电压保持为限幅值,速度调节器工作在开环状态,速度调节器的输出电压作为电流给定值送入电流调节器, 此时则以最大电流给定值使电流调节器输出移相信号,直流电压迅速上升,电流也随即增大直到等于最大给定值, 电动机以最大电

H型pwm调速系统

学号:0 课程设计 直流双环系统(二)的设计及仿真分析题目 (六) 学院自动化学院 专业自动化卓越工程师 班级自动化zy1101 姓名周青 指导教师刘芙蓉

2014 年 7 月 2 日 课程设计任务书 学生姓名: 周青 专业班级: 自动化zy1101 指导教师: 刘芙蓉 工作单位: 自动化学院 题 目: 直流双环系统(二)的设计及仿真分析(六) 初始条件: 有一转速、电流双闭环控制的H 形双极式PWM 直流调速系统,电动机参数为: 200,48, 3.7,200/min N N N N P W U V I A n r ====,电枢电阻 6.5a R =Ω,电枢回路总电阻 8R =Ω,允许电流过载倍数2λ=,电势系数0.12min/e C V r =?,电磁时间常数 0.015l T s =,机电时间常数0.2m T s =,电流反馈滤波时间常数0.001oi T s =,转速 反馈滤波时间常数0.005on T s =,调节器输入输出电压** 10nm im cm U U U V ===,调节器输入电阻040R k =Ω,电力晶体管的开关频率1f kHz =,PWM 环节的放大倍数 4.8s K =。 要求完成的主要任务: (包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 试对该系统进行动态参数设计。设计指标:稳态无静差,电流超调量 5%i σ≤;空载起动到额定转速时的转速超调量20%n σ≤,过渡过程时间 0.1s t s ≤。画出系统结构框图并计算: (1) 电流反馈系数β和转速反馈系数α; (2) 设计电流调节器,计算电阻和电容的数值(取040R k =Ω); (3) 设计转速调节器,计算电阻和电容的数值(取040R k =Ω);

基于PWM控制的直流电机调速

基于PWM控制的直流电机调速摘要:直流电机(direct current machine)是指能将直流电能转换成机械能(直流电动机)或将机械能转换成直流电能(直流发电机)的旋转电机。它是能实现直流电能和机械能互相转换的电机。当它作电动机运行时是直流电动机,将电能转换为机械能;作发电机运行时是直流发电机,将机械能转换为电能。直流电机的结构应由定子和转子两大部分组成。直流电机运行时静止不动的部分称为定子,定子的主要作用是产生磁场,由机座、主磁极、换向极、端盖、轴承和电刷装置等组成。运行时转动的部分称为转子,其主要作用是产生电磁转矩和感应电动势,是直流电机进行能量转换的枢纽,所以通常又称为电枢,由转轴、电枢铁心、电枢绕组、换向器和风扇等组成。 本文设计了直流电机控制系统的基本方案,阐述了该系统的基本结构,工作原理,运行特性及其设计方法,主要研究直流电机的控制和测量方法。本设计系统以单片机AT80C52为核心,实现直流电机调速的系统。 关键字:直流电机 PWM 控制 AT80C52 DC motor is a rotary motor that can convert a direct current into a mechanical energy (a DC motor) or a mechanical energy into a direct current (DC generator). It is capable of achieving the conversion of DC electric energy and mechanical energy to each other. When the motor is running, it is a direct current motor, the electric energy can be converted into mechanical energy; the generator is a direct current generator, the mechanical energy can be converted to electric energy. The structure of the DC motor is composed of two parts, the stator and the rotor. Operation of the DC motor are still part of the said stator, stator's main function is produces a magnetic field, is composed of a frame, a main pole, Huan Xiangji, an end cover, a bearing and an electric brush device and composition. Said operation, the rotating part of the rotor, the main role is electromagnetic torque and induction electromotive force generated, the DC motor is the hub of energy conversion, so is often referred to as the armature and is composed of a shaft, the armature core, an armature wining and commutator and fan.

PWM控制的调速方法

设计报告书 4.1.3、采用PWM 控制的调速方法 图1为PWM 降压斩波器的原理电路及输出电压波形。在图1a 中,假定晶体 管V 1先导通T 1,秒(忽略V 1的管压降,这期间电源电压Ud 全部加到电枢上),然后关断T 2秒(这期间电枢端电压为零)。如此反复,则电枢端电压波形如图1b 中所示。电动机电枢端电压Ua 为其平均值。

图1 PWM 降压斩波器原理电路及输出电压波形 a) 原理图 b)输出电压波形 1112a d d d T T U U U U T T T α= ==+ (3) 式(3)中 1112T T T T T α= =+ (4) α为一个周期T 中,晶体管V1导通时间的比率,称为负载率或占空比。使用下面三种方法中的任何一种,都可以改变α的值,从而达到调压的目的: (1)定宽调频法:T1保持一定,使T2在0~∞范围内变化; (2)调宽调频法:T2保持一定,使T1在0~∞范围内变化 (3)定频调宽法:T1+T2=T 保持一定,使T ,在0~T 范围内变化。 不管哪种方法,α的变化范围均为0≤α≤l ,因而电枢电压平均值Ua 的调节范围为0~Ud ,均为正值,即电动机只能在某一方向调速,称为不可逆调速。当需要电动机在正、反向两个方向调速运转,即可逆调速时,就要使用图1—2a 所示的桥式(或称H 型)降压斩波电路。 在图2a 中,晶体管V 1、V 4是同时导通同时关断的,V 2、V 3也是同时导通同时关断的,但V 1与V 2、V 3与V 4都不允许同时导通,否则电源Ud 直通短路。设V 1、V 4先同时导通T1秒后同时关断,间隔一定时间(为避免电源直通短路。该间隔时间称为死区时问)之后,再使V 2、V 3同时导通T2秒后同时关断,如此反复,则电动机电枢端电压波形如图2b 所示。 图2 桥式PWM 降压斩波器原理电路及输出电压波形 a)原理图 b)输出电压波形 电动机电枢端电压的平均值为 12112(21)(21)a d d d T T T U U U U T T T α-= =-=-+ (4) 由于0≤α≤1,Ua 值的范围是 -Ud ~+Ud ,因而电动机可以在正、反两个

直流电机PWM调速电路

《电子技术》课程设计报告 课题:直流电机PWM调速电路 班级电气工程1101学号1101205304 学生姓名xxx 专业电气信息类 系别电子与电气工程学院 指导老师电子技术课程设计指导小组 xxxxx 电子与电气工程学院 2012年5月 一、设计目的 a)培养理论联系实际的正确设计思想,训练综合运用已经学过的理论和生产实际知识去分析和解决工程实际问题的能力。 b)学习较复杂的电子系统设计的一般方法,了解和掌握模拟、数字电路等知识解决电子信息方面常见实际问题的能力,由学生自行设计、自行制作和自行调试。 c)进行基本技术技能训练,如基本仪器仪表的使用,常用元器件的识别、测量、熟练运用的能力,掌握设计资料、手册、标准和规范以及使用仿真软件、实验设备进行调试和数据处理等。 d)培养学生的创新能力。 二、设计任务与要求 1.设计电机驱动主回路,实现直流电机的正反向驱动; 2.设计PWM驱动信号发生电路; 3.设计电机转速显示电路; 4. 设计电机转速调节电路;可以按键或电位器调节电机转速; 5.安装调试; 6.撰写设计报告。

三、设计思想及设计原理 1.信号可以采用数字方法给定,也可以采用电位器给定。建议采用数字方法。 2.PWM信号可以采用三角波发生器和比较器产生,也可采用数字电路及可编程器件产生。建议采用数字方法。 3.正反转主回路可以采用双极型器件实现,也可以用MOS器件实现; 4.转速测量电路可以采用增量型光电编码器,也可采用自行制作的光电编码电路、霍尔传感器以及其它近似测速方法。建议采用光电编码器。 5.显用数字方法显示电机转速。采用光电编码等方法的脉冲测速方法时,可采用计数法测量电机转速;电机转速信号为模拟信号时,可采用数字表头显示转速。建议采用数字方法。 6.(提高部分)可以采用反馈控制技术对系统进一步完善。 四、单元电路设计 4.1 LM324组成的PWM直流电机产生电路 4.1.1 它主要由U1(LM324)和Q1组成 图4.1中,由U1a、U1d组成振荡器电路,提供频率约为400Hz的方波/三角形波。U1c产生6V的参考电压作为振荡器电路的虚拟地。这是为了振荡器电路能在单电源情况下也能工作而不需要用正负双电源。U1b这里接成比较器的形式,它的反相输入端(6脚)接入电阻R6、R7和VR1,用来提供比较器的参考电压。这个电压与U1d的输出端(14脚)的三角形波电压进行比较。当该波形电压高于U1b的6脚电压.U1b的7脚输出为高电平;反之,当该波形电压低于U1b的6脚电压,U1b的7脚输出为低电平。由此我们可知,改变U1b的6脚电位使其与输入三角形波电压进行比较。就可增加或减小输出方波的宽度,实现脉宽调制(PWM)。电阻R6、R7用于控制VR1的结束点,保证在调节VR1时可以实现输出为全开(全速或全亮)或全关(停转或全灭),其实际的阻值可能会根据实际电路不同有所改变。 图4.1中,Q1为N沟道场效应管,这里用作功率开关管(电流放大),来驱动负载部分。前面电路提供的不同宽度的方波信号通过栅极(G)来控制Q1的通断。LED1的亮度变化可以用来指示电路输出的脉冲宽度。C3可以改善电路输出波形和减轻电路的射频干扰(RFI)。D1是用来防止电机的反电动势损坏Q1。 当使用24v的电源电压时,图1电路通过U2将24V转换成12V供控制电路使用。而Q1可以直接在21v电源上,对于Q1来讲这与接在12v电源上没有什么区别。参考图1,改变J1、J2的接法可使电路工作在不同电源电压(12V或24V)下。当通过Q1的电流不超过1A时,Q1可不用散热器。但如果Q1工作时电流超过1A时,需加装散热器。如果需要更大的电流(大于3A),可采用IRFZ34N

相关文档