文档库 最新最全的文档下载
当前位置:文档库 › 通原第一次实验

通原第一次实验

通原第一次实验
通原第一次实验

实验5 FSK(ASK)调制解调实验

一、实验目的

1.掌握FSK(ASK)调制器的工作原理及性能测试;

2.掌握FSK(ASK)锁相解调器工作原理及性能测试;

3. 学习FSK(ASK)调制、解调硬件实现,掌握电路调整测试方法。

二、实验仪器

1.FSK调制模块,位号A(实物图片如下)

2.FSK解调模块,位号C(实物图片如下)

3.时钟与基带数据发生模块,位号:G(实物图片见第3页)

4.噪声模块,位号B

5.20M双踪示波器1台

6.小平口螺丝刀1只

7.频率计1台(选用)

8.信号连接线3根

三、实验原理

数字频率调制是数据通信中使用较早的一种通信方式。由于这种调制解调方式容易实现,抗噪声和抗群时延性能较强,因此在无线中低速数据传输通信系统中得到了较为广泛的应用。

(一) FSK调制电路工作原理

FSK调制电路是由两个ASK调制电路组合而成,它的电原理图,如图5-1所示。16K02为两ASK已调信号叠加控制跳线。用短路块仅将1-2脚相连,输出“1”码对应的ASK已调信号;用短路块仅将3-4脚相连,输出“0”码对应的ASK已调信号。用短路块将1-2脚及3-4脚都相连,则输出FSK已调信号。因此,本实验箱没有专门设置ASK实验单元电路。

图5-1 FSK调制解调电原理框图

图5-1中,输入的数字基带信号分成两路,一路控制f1=32KHz的载频,另一路经反相器去控制f2=16KHz的载频。当基带信号为“1”时,模拟开关B打开,模拟开关A关闭,此时输出f1=32KHz;当基带信号为“0”时,模拟开关B关闭,模拟开关A打开,此时输出f2=16KHz;在输出端经开关16K02叠加,即可得到已调的FSK信号。

电路中的两路载频(f1、f2)由时钟与基带数据发生模块产生的方波,经射随、选频滤波变为正弦波,再送至模拟开关4066。载频f1的幅度调节电位器16W01,载频f2的幅度调节电位器16W02。

(二) FSK解调电路工作原理

FSK解调采用锁相解调,锁相解调的工作原理是十分简单的,只要在设计锁相环时,使它锁定在FSK的一个载频上,此时对应的环路滤波器输出电压为零,而对另一载频失锁,

则对应的环路滤波器输出电压不为零,那末在锁相环路滤波器输出端就可以获得原基带信号的信息。FSK锁相环解调器原理图如图5-2所示。FSK锁相解调器采用集成锁相环芯片

图5-2 FSK锁相环解调器原理示意图

MC4046。其中,压控振荡器的频率是由17C02、17R09、17W01等元件参数确定,中心频率设计在32KHz左右,并可通过17W01电位器进行微调。当输入信号为32KHz时,调节17W01电位器,使环路锁定,经形成电路后,输出高电平;当输入信号为16KHz时,环路失锁,经形成电路后,输出低电平,则在解调器输出端就得到解调的基带信号序列。

四、各测量点和可调元件的作用

1. FSK调制模块

16K02:两ASK已调信号叠加控制跳线。用短路块将1-2脚及3-4脚都相连,则输出FSK 已调信号。仅1-2脚连通,则输出ASK已调信号。

16TP01:32KHz方波信号输入测试点,由4U01芯片(EPM240)编程产生。

16TP02:16KHz方波信号输入测试点,由4U01芯片(EPM240)编程产生。

16TP03:32KHz载波信号测试点,可调节电位器16W01改变幅度。

16TP04:16KHz载波信号测试点,可调节电位器16W02改变幅度。

16P01:数字基带信码信号输入铆孔。

16P02:FSK已调信号输出铆孔,此测量点需与16P01点波形对比测量。

2.FSK解调模块

17W01:解调模块压控振荡器的中心频率调整电位器。

17P01:FSK解调信号输入铆孔。

17TP02:FSK解调电路中压控振荡器输出时钟的中心频率,正常工作时应为32KHz左右,频偏不应大于2KHz,若有偏差,可调节电位器17W01。

17P02:FSK解调信号输出,即数字基带信码信号输出,波形同16P01。

3.噪声模块

3W01:噪声电平调节。

3W02:加噪后信号幅度调节。

3TP01:噪声信号测试点,电平由3W01调节。

3P01:外加信号输入铆孔。

3P02:加噪后信号输出铆孔。

五、实验内容及步骤

1.插入有关实验模块:

在关闭系统电源的条件下,将“时钟与基带数据发生模块”、“ FSK调制模块” 、“噪声模块”、“FSK解调模块”,插到底板“G、A、B、C”号的位置插座上(具体位置可见底板右下角的“实验模块位置分布表”)。注意模块插头与底板插座的防呆口一致,模块位号与底板位号的一致。

2.信号线连接:

用专用导线将4P01、16P01;16P02、3P01;3P02、17P01连接(注意连接铆孔的箭头指向,将输出铆孔连接输入铆孔)。

3.加电:

打开系统电源开关,底板的电源指示灯正常显示。若电源指示灯显示不正常,请立即关闭电源,查找异常原因。

4.设置好跳线及开关:

用短路块将16K02的1-2、3-4相连。

拨码器4SW02:设置为“00000”,4P01产生2K的 15位m序列输出。

5.载波幅度调节:

16W01:调节32KHz载波幅度大小,调节峰峰值4V。

16W02:调节16KHz载波幅度大小,调节峰峰值4V。

用示波器对比测量16TP03、16TP04两波形。

6.FSK调制信号和巳调信号波形观察:

双踪示波器触发测量探头接16P01,另一测量探头接16P02,调节示波器使两波形同步,观察FSK调制信号和巳调信号波形,记录实验数据。

7.噪声模块调节:

调节3W01,将3TP01噪声电平调为0;调节3W02,调整3P02信号幅度为4V。

8.FSK解调参数调节:

调节17W01电位器,使压控振荡器即17TP02测量点为32KHz左右。

9.无噪声FSK解调输出波形观察:

调节3W01,将3TP01噪声电平调为0;双踪示波器触发测量探头接16P01,另一测量探头接17P02。同时观察FSK调制和解调输出信号波形,并作记录,并比较两者波形,正常情况,两者波形一致。如果不一致,可微调17W01电位器,使之达到一致。

10.加噪声FSK解调输出波形观察:

调节3W01逐步增加调制信号的噪声电平大小,看是否还能正确解调出基带信号。11.ASK实验与上相似,这儿不再赘述。

12.关机拆线:

实验结束,关闭电源,拆除信号连线,并按要求放置好实验模块。

注:由于本实验中载波频率为16KHz、32KHz,所以被调制基带信号的码元速率不要超过4KHz。

六、实验报告要求

1.根据实验步骤2的连线关系,画出实验结构示意图。

2.画出FSK、ASK各主要测试点波形。

3.分析其输出数字基带信号序列与发送数字基带信号序列相比有否产生延迟,这种解调方式在什么情况下会出现解调输出的数字基带信号序列反向的问题?

实验6 PSK QPSK调制解调实验

一、实验目的

1. 掌握PSK QPS调制解调的工作原理及性能要求;

2. 进行PSK QPS调制、解调实验,掌握电路调整测试方法;

3. 掌握二相绝对码与相对码的码变换方法。

二、实验仪器

1.PSK QPSK调制模块,位号A (实物图片如下)

2.PSK QPSK解调模块,位号C (实物图片如下)

3.时钟与基带数据发生模块,位号:G(实物图片见第3页)4.噪声模块,位号B

5.复接/解复接、同步技术模块,位号I(实物图片见第144页)6.20M双踪示波器1台

7.小平口螺丝刀1只

8.频率计1台(选用)

9.信号连接线4根

三、实验原理

PSK QPSK调制/解调模块,除能完成上述PSK(DPSK)调制/解调全部实验外还能进行QPSK、ASK调制/解调等实验。不同调制方式的转換是通过开关4SW02及插塞37K01、37K02、38K01、38K02位置设置实现。不同调制相应开关设置如下表。

调制方式4SW02 37K01、37K02 38K01、38K02

PSK(DPSK)00001 ①和②位挿入挿塞1,2相连(挿左边)QPSK 01101 ③和④位挿入挿塞3,2相连(挿右边)

ASK 00001 ①和③位挿入挿塞1,2相连(挿左边)

(一)PSK(DPSK)调制/解调实验

进行PSK(DPSK)调制时,工作状态预置开关4SW02置于00001, 37K01、37K02①和②位挿入挿塞,38K01、38K02均处于1,2位相连(挿塞挿左边)。

相位键控调制在数字通信系统中是一种极重要的调制方式,它具有优良的抗干扰噪声性能及较高的频带利用率。在相同的信噪比条件下,可获得比其他调制方式(例如:ASK、FSK)更低的误码率,因而广泛应用在实际通信系统中。

本实验箱采用相位选择法实现二进制相位调制,绝对移相键控(CPSK或简称PSK)是用输入的基带信号(绝对码)直接控制选择开关通断,从而选择不同相位的载波来实现。相对移相键控(DPSK)采用绝对码与相对码变换后,用相对码控制选择开关通断来实现。

1. PSK调制电路工作原理

二相相位键控的载波为1.024MHz,数字基带信号有32Kb/s伪随机码、及其相对码、32KHz 方波、外加数字信号等。

相位键控调制电原理框图,如图6-1所示。

图6-1 相位键控调制电原理框图

1)滤波器、同相放大器和反相放大器

从图6-1看出,1024KHZ的方波经37R29加到由运放37UO4A及周边元件组成的低通滤波器,其输出变为l024KHZ正弦波,它通过37U05A同相放大和37U05B反相放大,从而得到l024KHZ的同相和反相正弦载波,电位器37W01可调节反相放大器的增益,从而使同相载波与反相载波的幅度相等,然后同相和反相正弦载波被送到模拟开关乘法器。

2)模拟开关相乘器

对载波的相移键控是用模拟开关电路实现的。同相载波与反相载波分别加到模拟开关A:CD4066的输入端(1脚)、模拟开关B:CD4066的输入端(11脚),数字基带信号一路直接加到模拟开关A的输入控制端(13脚),并且另一路经反相后加到模拟开关B的输入控制端(12脚),用来控制两个同频反相载波的通断。当信码为“1”码时,模拟开关A的输入控制端为高电平,模拟开关A导通,输出同相载波,而模拟开关B的输入控制端为低电平,模拟开关B截止。反之,当信码为“0”码时,模拟开关A的输入控制端为低电平,模拟开关A截止。而模拟开关B的输入控制端却为高电平,模拟开关B导通。输出反相载波,两个模拟开关输出信号通过输出开关37K01合路叠加后得到二相PSK调制信号。

DPSK调制是采用码型变换加绝对调相来实现,即把数据信息源(伪随机码序列)作为绝对码序列{a n},通过码型变换器变成相对码序列{b n},然后再用相对码序列{b n},进行绝对移相键控,这样就获得DPSK已调信号。本模块对应的操作是这样的(详细见图6-1),37P01为PSK调制模块的基带信号输入铆孔,可以送入4P01 点的绝对码信号(PSK),也可以送入相对码基带信号(相对4P01点的数字信号来说,此调制即为DPSK调制)。

2.相位键控解调电路工作原理

二相PSK(DPSK)解调器电路采用科斯塔斯环(Constas环)解调,其原理如图6-2所示。

图6-2 解调器原理方框图

1)解调信号输入电路

输入电路由晶体三极管跟随器和运算放大器38U01组成的整形放大器构成,采用跟随器是为了发送(调制器)和接收(解调器)电路之间的隔离,从而使它们工作互不影响。放大整形电路输出的信号将送到科斯塔斯特环。由于跟随器电源电压为5V,因此输入的PSK已调波信号幅度不能太大,一般控制在1.8V左右,否则会产生波形失真。

2)科斯塔斯环提取载波原理

PSK采用科斯塔斯特环解调,科斯塔斯特环方框原理如图6-3所示。

图6-3 科斯塔斯特环电路方框原理如图

科斯塔斯特环解调电路的一般工作原理在《现代通信原理》第三版(电子工业出版社2009年)等教科书中有详细分析,这儿不多讲述。下面我们把实验平台具体电路与科斯塔斯特环方框原理图作一对比,讲述实验平台PSK解调电路的工作原理。

解调输入电路的输出信号被加到模拟门38U02C和38U02D构成的乘法器,前者为正交载波乘法器,相当于图6-3中的乘法器2,后者为同相载波乘法器,相当于框图中乘法器1。

38U03A,38U03D 及周边电路为低通滤波器。38U04,38U05为判决器,它的作用是将低通滤波后的信号整形,变成方波信号。PSK 解调信号从38U05的7脚经38U07A.D 两非门后输出。异或门38U06A 起模2加的作用,38U07E 为非门,若38U06A3两输入信号分别为A 和B ,因

(A 、B 同为0除外,因A 与B 正交,不会同时为0)因此异或门与非门合在

A B A B ⊕=?一起,起乘法器作用,它相当于图6-3框图中的乘法器3。38U710为压控振荡器(VCO ),74LS124为双VCO ,本电路仅使用了其中一个VCO ,环路滤波器是由38R20、38R21、38C17组成的比例低通滤波器,VCO 控制电压经环路低通滤波器加到芯片的2脚,38CA01为外接电容,它确定VCO 自然谐振频率。38W01用于频率微调,38D01,38E03用来稳压,以便提高VCO 的频率稳定度。VCO 信号从7脚经38C19输出至移相90o电路。

科斯塔斯特环中的90o移相电路若用模拟电路实现。则很难准确移相90o,并且相移随频率改变而变化。图6-2电路中采用数字电路实现。非门38U07F ,D 触发器38U08A.B 及周围电路组成数字90o移相器。由于D 触发器有二分频作用。所以VCO 的锁定频率应为2f c ,即VCO 输出2048KHZ 方波,其中一路直接加到38U08A D 触发器,另一路经38U07F 反相再加到38U08B D 触发器,两触发器均为时钟脉冲正沿触发,由于38U08A 的 与两D 触发器θ的D 端连接。而

D 触发器Q 端输出总是为触发时钟到来前

D 端状态,根据触发器工作原理和电路连接关系,数字90o移相电路的相位波形图如6-4所示。

VCO

输出38U08A 38U08B

频率为2048 KHz

频率为1024 KHz

_

θ

θθ

图6-4 90度数字移相器的波形图

从图看出,38U08B 的端输出波形超前38U08A 的端90度,并且频率为1024KHZ ,因θθ此38U08B 的端输出为同相载波,38U08A 的端输出为正交载波。

θθ由于科斯塔斯特环存在相位模糊,解调器可能会出现反向工作。

在PSK 解调时38K01、38K02置于的l 、2位(挿在左边),分别把科斯塔斯特环提取的正交载波及同相载波接到两正交解调器;从而实现科斯塔斯特环的闭环控制。

当38K01、38K02置于的2、3位(挿在右边),将用于四相解调,将在下节讲述。

若38K01、38K02的挿塞均拔掉,则科斯塔斯特环处于开环状态,可用于开环检查,便于环路各部件故障压缩和分析。

(二)QPSK 调制/解调实验

当进行QPSK 调制时,工作状态予置开关4SW02置于01101,此时由CPLD 产生的四相调相信号直接被加到37TP01,经滤波放大和插塞37K01、37K02后从37TP02输出。从而实现QPSK 调制信号的发送。此时I 路和Q 路的基带调制信号也由CPLD 产生并直接加到37P04和37P05,以供实验时测量。

QPSK信号解调仅利用二相科斯塔斯特环解调电路中的同相和正交乘法器、低通滤波器及整形等电路,实现四相信号的正交解调。此时同相和正交两个载波不是从环路提取,而是由CPLD直接提供。

QPSK解调时开关38K01、38K02置于的2、3位(挿在右边),此时科斯塔斯特环开环,并通过开关分别把四相解调的正交载波F0及同相载波F90直接加到两正交乘法器,这样简化了实现电路。四相解调时,38U05的7脚经38U07A.D两非门后输出为I路的解调信号,可从38P02测量;38U04的7脚经非门38U07B.C输出为Q路的解调信号,可从38P03测量。(三)ASK调制/解调实验

ASK调制其实现电路与PSK相同,此时仅在调制电路中把反相载波信号通过挿塞

37K02将其切断,这样PSK调制就变成了ASK调制。

四、各测量点及可调元件的作用

1.PSK QPS调制模块

37K01:PSK、ASK已调信号连接揷塞。当进行PSK实验时,因PSK是两ASK已调信号叠加。①位揷塞揷入,输出“1”码的已调信号;②位揷塞揷入,输出“0” 码的已调信号。当进行ASK实验时仅需①位揷塞揷入。

37K02:QPSK已调信号连接揷塞。当进行QPSK实验时,④位揷塞揷入,输出QPSK已调信号,此时37K01两挿塞必须断开。

③位揷座接点为空头,用以放置暂不用的挿塞,以免挿塞丢失。

跳线开关37KO1、37K02挿塞位置,请参见下表。

调制方式跳线开关37KO1、37K02位置

PSK ①、②

ASK ①、③

QPSK ③、④

37W01:调节反相载波幅度大小。

37P01:外加数字基带信号输入铆孔。

37TP01:频率为1.024MHz方波信号,由4U01芯片(EPM240)编程产生。

37TP02:同相1.024MHZ载波(正弦波)信号,

37TP03:反相1.024MHZ载波(正弦波)信号,调节电位器37W01使它与37TP02测量点的0相载波幅度大小相等。

37TP04:QPSK调制I路调制信号,它来自CPLD电路。

37TP05:QPSK调制Q路调制信号,它来自CPLD电路。

37P02:PSK、QPSK已调信号输出铆孔。

输出什么信号由开关37K01、37K02状态决定:

①位揷塞揷入,其它均断开时,37P02输出为同相载波ASK信号;

②位揷塞揷入,其它均断开时,37P02输出为反相载波ASK信号;

①和②位揷塞都揷入,37P02输出为两ASK已调信号叠加,即PSK已调信号。

(注意:两种相位载波幅度需调整相同,否则调制信号在相位跳变处易失真)

④位揷塞揷入,其它均断开时,37P02输出为QPSK已调信号。

2.PSK QPS解调模块

38W01:载波提取电路中锁相环压控振荡器频率调节电位器。

38P01:PSK、QPSK待解调信号输入铆孔。

38K01:解调载波选择开关:揷在左边为PSK正交载波,挿在右边为QPSK正交载波(F9O)

38K02:解调载波选择开关:揷在左边为PSK同相载波,挿在右边为QPSK同相载波(FO)

38TP01:锁相环压控振荡器2.048MHz载波信号输出。建议用频率计监视该测量点上的信号频率,有偏差时可调节38W01,PSK解调时,当其准确而稳定地锁定

在2.048MHz,则可解调输出数字基带信号。

38TP02:频率为1.024MHz的正交载波(方波)输出信号。

38TP03:频率为1.024MHz的同相载波(方波)输出信号。

38P02:PSK解调输出/Q PSK解调I路输出铆孔。

PSK方式的科斯塔斯环解调时存在相位模糊问题,解调出的基带信号可能会

出现倒相情况;DPSK方式解调后基带信号为相对码,相绝转换由下面的“复

接/解复接、同步技术模块”完成。

38P03:Q PSK解调Q路输出铆孔。

3.复接/解复接、同步技术模块

39SW01:功能设置开关。设置“0010”,为32K相对码、绝对码转换。

39P01:外加基带信号输入铆孔。

39P07:相绝码转换输出铆孔。

五、实验内容及步骤

(一)PSK(DPSK)调制/解调实验

1.插入有关实验模块:

在关闭系统电源的条件下,将“时钟与基带数据发生模块”、“ PSK调制模块”、“噪声模块”、“PSK解调模块”、“同步提取模块”,插到底板“G、A、B、C、I”号的位置插座上(具体位置可见底板右下角的“实验模块位置分布表”)。注意模块插头与底板插座的防呆口一致,模块位号与底板位号的一致。

2.PSK、DPSK信号线连接:

绝对码调制(PSK)时的连接:用专用导线将4P01、37P01;37P02、3P01;3P02、38P01连接。

相对码调制(DPSK)时的连接:用专用导线将4P03、37P01;37P02、3P01;3P02、38P01;38P02、39P01连接。

注意连接铆孔的箭头指向,将输出铆孔连接输入铆孔。

3.加电:

打开系统电源开关,底板的电源指示灯正常显示。若电源指示灯显示不正常,请立即关闭电源,查找异常原因。

4.基带输入信号码型设置:

拨码器4SW02设置为“00001 “,4P01产生32K的 15位m序列输出;

4P03输出为4P01波形的相对码。

5. 跳线开关设置:

37K01①位和②位都揷入挿塞。

6.载波幅度调节:

双踪示波器分别接在37P01和37P02,观测调制信号和己调波,调节电位器37W01

使正交载波幅度和同相载波幅度大小相等。

7.相位调制信号观察:

(1)PSK调制信号观察:双踪示波器,触发测量探头测试4P01点,另一测量探头测试37P02,调节示波器使两波形同步,观察BPSK调制输出波形,记录实验数据。

(2)DPSK调制信号观察:双踪示波器,触发测量探头测试4P03点,另一测量探头测试37P02,调节示波器使两波形同步,观察DPSK调制输出波形,记录实验数据。

8.噪声模块调节:

调节3W01,将3TP01噪声电平调为0;调节3W02,使3P02信号峰峰值2~3.6V。

9.PSK解调参数调节:

调节38W01电位器,使压控振荡器工作在2048KHZ,同时可用频率计鉴测38TP01点。注意观察38TP02和38TP03两测量点波形的相位关系。

10.相位解调信号观测:

(1)PSK调制方式

观察38P02点PSK解调输出波形,并作记录,并同时观察PSK调制端37P01的基带信号,比较两者波形相近为准(可能反向,如果波形不一致,可微调38W01)。

(2)DPSK调制方式

“同步提取模块”的拨码器39SW01设置为“0010”。

观察38P02和37P01的两测试点,比较两相对码波形,观察是否存在反向问题;观察39P07和4P01的两测试点,比较两绝对码波形,观察是否还存在反向问题。作记录。

11.加入噪声相位解调信号观测:

调节3W01逐步增加调制信号的噪声电平大小,看是否还能正确解调出基带信号。观看完噪声影响,再调节3W01,使噪声为0,以方便后面实验。

12. 关机拆线:

实验结束,关闭电源,拆除信号连线,并按要求放置好实验模块。

(二)QPSK调制/解调实验

进行QPSK调制/解调实验时揷入有关模块、加电等步骤同PSK实验,不同之処如下:

1.工作状态予置开关4SW02置于01101,此时由CPLD产生的四相调相信号直接被加到37TP01上。

2. 37K01、37K02的两个揷塞揷在③、④位,四相调相信号经滤波放大和插塞37K02

连接后从37TP02输出。从而实现QPSK调制信号的发送。

3.示波器接在37TP04,37TP05可以观察来自CPLD产生的I路和Q路的基带调制信号(两信号的基本波形为方波伪码)。

4.示波器接在37T02,可以观察四相调相信号,它是四种相位的正弦波。

5.示波器1、2通道分别接于37TP04和38P02可以同时观察I路基带调制信号和I路解调信号;示波器1、2通道分别接于37TP05和38P03可以同时观察Q路基带调制信号和Q 路解调信号。

6.示波器1、2通道分别接于38P02和38P03可以同时观察I路和Q路两路的解调信号。

7.示波器X、Y输人端分别接于38P02和38P03可以观察到四相调制方型相位星座图。

(说明:部分产品F0和F90位置颠倒,故38P03为I路解调信号输出,38P02为Q路解调信号输出。)

(三)ASK调制/解调实验

由于ASK调制/解调,仅在调制电路中把反相载波信号通过挿塞37K01将其②揷塞拔掉(拨下的揷塞亦可揷在37K02的③位,以免揷塞丢失),这样PSK调制就变成了ASK调制,因此其它实验步骤与PSK完全相同。我们可以重点观察它的调制信号和己调波的波形;观察解调信号;观察解调载波等。

六、实验报告要求

1.根据连线关系,画出CPSK、QPSK实验方框图。

2.简述CPSK、DPSK调制解调电路的差异及工作原理。

3.根据实验测试记录画出调制解调器各测量点的信号波形,并给以必要的说明(波形、频率、相位、幅度以及时间对应关系等)。

4.运用MAX+PLUS II或quartusII软件,VDHL语言或图形法设计产生绝相转换、相绝转换电路。写出你设计过程和仿真结果。

北邮scilab_通信原理软件实验报告

信息与通信工程学院通信原理软件实验报告

实验二时域仿真精度分析 一、实验目的 1. 了解时域取样对仿真精度的影响 2. 学会提高仿真精度的方法 二、实验原理 一般来说,任意信号s(t)是定义在时间区间(-无穷,+无穷)上的连续函数,但所有计算机的CPU 都只能按指令周期离散运行,同时计算机也不能处理这样一个时间段。为此将把s(t)按区间[-T/2 ,+T/2 ]截短为按时间间隔dert T均匀取样,得到的取样点数为N=T/dert T. 仿真时用这个样值集合来表示信号s(t)。Dert T反映了仿真系统对信号波形的分辨率,越小则仿真的精确度越高。据通信原理所学,信号被取样以后,对应的频谱是频率的周期函数,其重复周期是1/t; 。如果信号的最高频率为 那么必须有 才能保证不发生频域混叠失真,这是奈奎斯特抽样定理。设 则称为仿真系统的系统带宽。如果在仿真程序中设定的采样间隔是,那么不能用 此仿真程序来研究带宽大于这的信号或系统。换句话说,就是当系统带宽一定的情况下,信号的采样频率最小不得小于2*Bs,如此便可以保证信号的不失真,在此基础上时域采样频率越高,其时域波形对原信号的还原度也越高,信号波形越平滑。也就是说,要保证信号的通信成功,必须要满足奈奎斯特抽样定理,如果需要观察时域波形的某些特性,那么采样点数越多,可得到越真实的时域信号。 三、实验步骤 1.将正弦波发生器模块、示波器模块、时钟模块按下图连接:

时钟设置0.01,得到的结果如下: 时钟设置0.3,以后得到的结果如下:

五、思考题 (1)观察分析两图的区别,解释其原因。 答:因为信号周期是1,而第一个图的采样周期是0.01,所以一个周期内能采样100个点,仿真出来的波形能较精确地显示成完整波形,而第二个图采样周期是0.3,所以一个周期内只有三个采样点,故信号失真了。 (2)将示波器的控制时钟的period的参数改为0.5,观察仿真结果,分析其原因。 结果如下:

北邮通原软件实验

实验一 实验目的:假设基带信号为m(t)=sin(2000πt)+2cos(1000πt),载波频率为20kHz,请仿真出AM,DSB-SC,SSB信号,观察已调信号的波形和频谱。 1.AM信号: (1)信号的表达式 (3)流程图 AM信号 s= (1+0.3*m).*cos(2*pi*fc*t); 绘制时域波形及频谱 傅氏变换S= t2f(s,fs) (2)源代码 %AM信号的产生 fs= 800; %采样频率KHz T= 200; %截短时间ms N= T*fs; %采样点数 dt= 1/fs; t= [-T/2:dt:T/2-dt]; df= 1/T; f=[-fs/2:df:fs/2-df]; fm= 1; % kHz fc= 20; % kHz m= sin(2*pi*fm*t)+2*cos(1*fm*pi*t); s= (1+0.3*m).*cos(2*pi*fc*t); %AM 信号 S= t2f(s,fs); figure(1) plot(f,abs(S1)) title('AM信号频谱') xlabel('f') ylabel('S(f)') axis([-25,25,0,max(abs(S1))]); %xset('window',2)figure(2) plot(t,s1) title('AM信号波形') xlabel('t') ylabel('s(t)') axis([-3,3,-3,3]); (4)实验结果

精选文库 -3 -2-1 0123 -3-2 -1 1 2 3 AM 信号波形 t(ms) s (t ) -25 -20 -15 -10 -5 05 10 15 20 25 0102030405060708090 100AM 信号频谱 f(kHz) S (f )

北邮通原硬件实验报告(DOC)

2013年通信原理硬件实验报告 学院:信息与通信工程学院 班级:2011211104 姓名: 学号: 班内序号: 组号: 同组人:

目录 实验一:双边带抑制载波调幅(DSB-SC AM) (3) 实验二:具有离散大载波的双边带调幅波(AM) (14) 实验三:调频(FM) (21) 实验六:眼图 (28) 实验七:采样,判决 (31) 实验八:二进制通断键控(OOK) (34) 实验十一:信号星座(选作) (41) 实验十二:低通信号的采样与重建 (45)

实验一双边带抑制载波调幅(DSB-SC AM) 一.实验目的 (1)了解DSB-SC AM信号的产生及相干解调的原理和实现方法。 (2)了解DSB-SC AM的信号波形及振幅频谱的特点,并掌握其测量方法。 (3)了解在发送DSB-SC AM信号加导频分量的条件下,收端用锁相环提取载波的原理及其实现方法。 (4)掌握锁相环的同步带和捕捉带的测量方法,掌握锁相环提取载波的测试方法。 二.实验器材 PC机一台、TIMS实验平台、示波器、导线等。 三.实验原理 1.双边带抑制载波调幅(DSB-SC AM)信号的产生和表达式 图1.1 2.双边带抑制载波调幅信号的解调 基本思路:利用恢复的载波与信号相乘,将频谱搬移到基带,还原出原基带信号。 图1.2 3.DSB-SC AM信号的产生及相干解调原理框图 ()()()()() cos c c c s t m t c t m t A t ω? ==+

图1.3 四.实验内容及结果 1.DSB-SC AM信号的产生 (1)实验步骤: 图1.4 1.按照上图,将音频振荡器输出的模拟音频信号及主振荡器输出的100KHz模

北京邮电大学通信原理软件实验报告

北京邮电大学实验报告 题目:基于SYSTEMVIEW通信原理实验报告

实验一:验证抽样定理 一、实验目的 1、掌握抽样定理 2. 通过时域频域波形分析系统性能 二、实验原理 低通滤波器频率与m(t)相同 三、实验步骤 1. 要求三个基带信号相加后抽样,然后通过低通滤波器恢复出原信号。 2. 连接各模块完成系统,同时在必要输出端设置观察窗。 3. 设置各模块参数。 三个基带信号的频率从上到下分别设置为10hz、12hz、14hz。 抽样信号频率设置为28hz,即2*14hz。(由抽样定理知,) 将低通滤波器频率设置为14hz,则将恢复第三个信号(其频率为14hz)进行系统定时设置,起始时间设为0,终止时间设为1s.抽样率设为1khz。 3.观察基带信号、抽样后的信号、最终恢复的信号波形

四、实验结果 最上面的图为原基带信号波形,中间图为最终恢复的信号波形,最下面的图为抽样后的信号波形。 五、实验讨论 从实验结果可以看出,正如前面实验原理所述,满足抽样定理的理想抽样应该使抽样后的波形图如同冲激信号,且其包络图形为原基带信号波形图。抽样后的信号通过低通滤波器后,恢复出的信号波形与原基带信号相同。 由此可知,如果每秒对基带模拟信号均匀抽样不少于2次,则所得样值序列含有原基带信号的全部信息,从该样值序列可以无失真地恢复成原来的基带信号。 讨论:若抽样速率少于每秒2次,会出现什么情况? 答:会产生失真,这种失真被称为混叠失真。 六、实验建议、意见 增加改变抽样率的步骤,观察是否产生失真。

实验二:奈奎斯特第一准则 一、实验目的 (1)理解无码间干扰数字基带信号的传输; (2)掌握升余弦滚降滤波器的特性; (3)通过时域、频域波形分析系统性能。 二、实验原理 在现代通信系统中,码元是按照一定的间隔发送的,接收端只要能够正确地恢复出幅度序列,就能够无误地恢复传送的信号。因此,只需要研究如何使波形在特定的时刻无失真,而不必追求整个波形不变。 奈奎斯特准则提出:只要信号经过整形后能够在抽样点保持不变,即使其波形已经发生了变化,也能够在抽样判决后恢复原始的信号,因为信息完全恢复携带在抽样点幅度上。 奈奎斯特准则要求在波形成形输入到接收端的滤波器输出的整个传送过程传递函数满足:,其充分必要条件是x(t)的傅氏变换X ( f )必须满足 奈奎斯特准则还指出了信道带宽与码速率的基本关系。即R B =1/T B =2? N =2B N。 式中R b 为传码率,单位为比特/每秒(bps)。f N 和B N 分别为理想信道的低通截止 频率和奈奎斯特带宽。上式说明了理想信道的频带利用率为R B /B N =2。 在实际应用中,理想低通滤波器是不可能实现的,升余弦滤波器是在实际中满足无码间干扰传输的充要条件,已获得广泛应用的滤波器。 升余弦滤波器的带宽为:。其中,α为滚降系数,0 ≤α≤1, 三、实验步骤 1.根据奈奎斯特准则,设计实现验证奈奎斯特第一准则的仿真系统,同时在必 要输出端设置观察窗。设计图如下

通原实验数字基带系统

成绩 西安邮电大学 《通信原理》软件仿真实验报告 实验名称:数字基带系统 院系:通信与信息工程学院 专业班级:通工1005班 学生姓名:郑灏 学号:03101150 (班内序号)04 指导教师:张明远 报告日期:2012年9月8日

●实验目的: 1、熟悉仿真环境; 2、掌握数字基带信号的常用波形与功率谱密度; 3*、掌握奈奎斯特第一准则与码间干扰的消除; 4*、掌握眼图及其性能参数。 ●仿真设计电路及系统参数设置: 1、模拟图一 时间参数:No. of Samples = 4096;Sample Rate = 2000Hz Rate = 100Hz; 双极性码Amp = 10V;单极性码Amp = 10V,Offset = 10V; 功率谱密度选择(dBm/Hz 1 ohm); 用于采样的矩形脉冲序列幅度1V,频率100Hz;脉宽0.005s(占空比50%); 2、模拟图二 图符0为Rate = 100Hz,Amp = 10V的双极性不归零码 通带增益0dB,阻带增益-40dB;

归一化最低截止频率10Hz/2000Hz = 0.005; 归一化最高截止频率190Hz/2000Hz = 0.095; 分别记录信源与信宿的眼图,时间参数如下: Start = 0.02s,Length = 0.05s; 仿真波形及实验分析: 1、记录单、双极性不归零码的波形与功率谱密度 (1)单极性不归零码的波形:矩形波不归零,幅度10V,频率100Hz,Offset=10V (2)单极性不归零码的功率谱密度:第一零点带宽100H z,可看到明显的直流分量和谐波分量

计算机组成原理实验报告

重庆理工大学 《计算机组成原理》 实验报告 学号 __11503080109____ 姓名 __张致远_________ 专业 __软件工程_______ 学院 _计算机科学与工程 二0一六年四月二十三实验一基本运算器实验报告

一、实验名称 基本运算器实验 二、完成学生:张致远班级115030801 学号11503080109 三、实验目的 1.了解运算器的组成结构。 2.掌握运算器的工作原理。 四、实验原理: 两片74LS181 芯片以并/串形式构成的8位字长的运算器。右方为低4位运算芯片,左方为高4位运算芯片。低位芯片的进位输出端Cn+4与高位芯片的进位输入端Cn相连,使低4位运算产生的进位送进高4位。低位芯片的进位输入端Cn可与外来进位相连,高位芯片的进位输出到外部。 两个芯片的控制端S0~S3 和M 各自相连,其控制电平按表2.6-1。为进行双操作数运算,运算器的两个数据输入端分别由两个数据暂存器DR1、DR2(用锁存器74LS273 实现)来锁存数据。要将内总线上的数据锁存到DR1 或DR2 中,则锁存器74LS273 的控制端LDDR1 或LDDR2 须为高电平。当T4 脉冲来到的时候,总线上的数据就被锁存进DR1 或DR2 中了。 为控制运算器向内总线上输出运算结果,在其输出端连接了一个三态门(用74LS245 实现)。若要将运算结果输出到总线上,则要将三态门74LS245 的控制端ALU-B 置低电平。否则输出高阻态。数据输入单元(实验板上印有INPUT DEVICE)用以给出参与运算的数据。其中,输入开关经过一个三态门(74LS245)和内总线相连,该三态门的控制信号为SW-B,取低电平时,开关上的数据则通过三态门而送入内总线中。 总线数据显示灯(在BUS UNIT 单元中)已与内总线相连,用来显示内总线上的数据。控制信号中除T4 为脉冲信号,其它均为电平信号。 由于实验电路中的时序信号均已连至“W/R UNIT”单元中的相应时序信号引出端,因此,需要将“W/R UNIT”单元中的T4 接至“STATE UNIT”单元中的微动开关KK2 的输出端。在进行实验时,按动微动开关,即可获得实验所需的单脉冲。 S3、S2、 S1、S0 、Cn、M、LDDR1、LDDR2、ALU-B、SW-B 各电平控制信号则使用“SWITCHUNIT”单元中的二进制数据开关来模拟,其中Cn、ALU-B、SW-B 为低电平有效,LDDR1、LDDR2 为高电平有效。 对于单总线数据通路,作实验时就要分时控制总线,即当向DR1、DR2 工作暂存器打入数据时,数据开关三态门打开,这时应保证运算器输出三态门关闭;同样,当运算器输出结果至总线时也应保证数据输入三态门是在关闭状态。 运算结果表

通原实验报告

振幅调制(Amplitude Modulation)与解调实验目的: 了解TIMS 实验的软硬件环境和基本的软件调试方式; 掌握AM 信号的调制方法; 掌握AM 信号的解调方法; 掌握调制系数的含义; 实验原理: 具有离散大载波(AM)调制的基本原理,原理框图如下: AM 信号调制原理框图 包络检波器的基本构成和原理,原理框图如下: AM 信号解调原理框图 AM信号输出 AM信号产生实验连接图

AM信号的非相干解调实验连接图 实验器件: 音频振荡器(Audio Oscillator),可变直流电压(Variable DC), 主振荡器(Master Signals),加法器(Adder),乘法器(Multiplier),移相器(Phase Shifer),共享模块(Utilities Module)和音频放大器(Headphone Amplifier) 实验步骤: 按照设计图设计AM 调制与解调系统,模拟基带信号频率为1KHz,电压振幅为1V;载波为一高频信号,电压振幅为1V; 实现AM 调制与解调系统,分别观察基带信号、调制信号和解调信号的波形; 调制系统参数,观察调制系数为a>1,a=1,a<1 时调制信号和解调信号的波形变化。实验波形: a>1

a=1 a<1 思考题: 1、若用同步检波,如何完成实验?比较同步检波和包络检波的有缺点。 用同步检波则在接受AM调制信号端乘一个恢复载波信号,再经过低通滤波器就完成同步解调了。同步检波要求恢复载波于接受信号载波同频同相,一般要在发端加一离散的载频分量即导频,则在发端要分配一部分功率给导频,或者在收端提取载波分量,复杂且不经济。线形良好,增益高,对调制系数没要求。包络检波不需要提取载波分量,比较简单经济,但要求调制系数小于等于1,抗干扰差。 2、若调制系数大于1,是否可以用包络检波来还原信号。 不可以,这时已经出现失真现象。 3、调制系数分别”<1”,”>1”,”=1”时,如何计算已调信号的调制系数? A B分别表示波形垂直方向上的最大和最小长度,代入下述公式即可求出 调幅系数ma = [(A-B)/(A+B)] ? 100 %

北京交通大学 通原实验-调制AM,FM

基于LabVIEW和USRP的调频 一、实验目标 本实验的目的是实现一个基于LabVIEW和NI-USRP平台的调频收音机,并正确接收空中的调频广播电台信号。让学生可以直观深入的理解调频收音机的工作原理,感受真实信号。并通过实验内容熟悉图形化编程方式,了解软件LabVIEW和USRP硬件基本模块的使用和调试方法,为后续实验奠定基础。 二、实验环境与准备 软件LabVIEW 2012(或以上版本); 硬件NI USRP(1台)及配件。 三、实验原理 1. 频率调制 FM(Frequency Modulation)代表频率调制,常用于无线电和电视广播。世界各地的FM调频广播电台使用从87.5MHz到108MHz为中心频率的信号进行传输,其中每个电台的带宽通常为200kHz。本实验重新温习FM的理论知识,并介绍其基本的实现方法。 m调节载波的数学过程分为两步。首先,信源信号经过通过一个基带信号)(t ,再将该函数当作载波信号的相位,从而实现根据积分得到关于时间的函数)(t 信源信号变化对载波频率进行控制的频率调制过程。FM发射机频率调制的框图如图1所示。

图 1 频率调制示意图 在图1的框图中,将信源信号的积分得到一个相位和时间的方程,即: ?+=t f c d m k t f t 0)(22)(ττππθ (1.1) 式中,c f 代表载波频率,f k 代表调制指数,)(τm 代表信源信号。调制结果是相位的调制,与在时域上载波相位的变化有关。此过程需要一个正交调制器如下图2所示: 图 2 相位调制 在此次实验中,NI USRP-2920通过天线接收FM 信号,经模拟下变频后,再使用两个高速模拟/数字转化器和数字下变频后将信号下变频至基带I/Q 采样点,采样点通过千兆以太网接口发送至PC ,并在LabVIEW 中进行信号处理。 假设已知调频信号的数学表达式: ??????+=?∞-t )(cos )(ττωd m k t A t s f c c FM (1.2) 式中,c A 代表载波幅度,f k 代表调制指数,()m τ代表信源信号。由于在软件无线电中,各种调制都是在数字域实现的,所以首先要对式1.2进行数字化。若将调频信号以t 为采样间隔离散化,则式1.2中的积分运算应转化为适合用软件处理的数值积分,可采用复化求积法实现FM 连续数学表达式的离散化。 即把

通原实验报告

实验一:双边带抑制载波调幅(DSB-SC AM) 一、实验目的: *了解DSB-SC AM信号的产生及相干解调的原理和实现方法。 *了解DSB-SC AM信号波形及振幅频谱特点,并掌握其测量方法。 *了解在发送DSB-SC AM信号加导频分量的条件下,收端用锁相环提取载波的原理及其实现方法。 *掌握锁相环的同步带和捕捉带的测量方法,掌握锁相环提取载波的测试方法。 二、实验原理: DSB-SC AM信号的产生及相干解调原理: 增益G 将均值为零的模拟基带信号m(t)与正弦载波相乘得到DSB-SC AM信号,其频谱不包含载波分量。 DSB-SC AM信号的解调只能采用相干解调。为了能在接收端获取载波,在发端加导频。收端用窄带锁相环来提取导频信号作为恢复载波。锁定后的VCO输出信号与导频同频且几乎同相。 相干解调是将发来的信号s(t)与恢复载波相乘,再经过低通滤波后输出模拟基带号。 三、实验步骤 (A) DSB-SC AM信号的产生 1、实验步骤: (1)调整音频振荡器输出的模拟信号频率为10KHZ,作为均值为零的调制信号m(t)。主振荡器输出100KHZ的模拟载波信号。如下图:

主振荡器输出音频振荡器输出 将两路信号连接到乘法器的两个输入端。 (2)乘法器输出波形如下图,波形在调制信号半周期的整数倍处的过零点存在相位翻转。 (3)已调信号的振幅频谱如下图: 该频谱具有以下特点:没有单独的载波分量,在载波频率的两侧有相互对称的两个冲击信号,分别称为上、下边带。该频谱是将基带信号线性搬移到载波频率上得到的。 (4)将DSB-SC AM信号和导频分别连接到加法器的输入端,调整加法器的增益G和g (a)调整G=1

北邮-通原软件实验报告-16QAM

实验一: 16QAM调制与解调 一、实验目的 1、熟悉16QAM信号的调制与解调,掌握SYSTEMVIEW软件中,观察眼图与星座图的方 法。 2、强化SYSTEMVIEW软件的使用,增强对通信系统的理解。 二、实验原理 1、16QAM 16QAM是指包含16种符号的QAM调制方式。 16QAM 调制原理方框图: 图一16QAM调制框图 16QAM解调原理方框图: 图二16QAM解调框图 16QAM 是用两路独立的正交 4ASK 信号叠加而成,4ASK 是用多电平信号去键控载波而得到的信号。它是 2ASK 体制的推广,和 2ASK 相比,这种体制的优点在于信息传

输速率高。 正交幅度调制是利用多进制振幅键控(MASK)和正交载波调制相结合产生的。 16 进制的正交振幅调制是一种振幅相位联合键控信号。16QAM 的产生有 2 种方法: (1)正交调幅法,它是有 2 路正交的四电平振幅键控信号叠加而成; (2)复合相移法:它是用 2 路独立的四相位移相键控信号叠加而成。 在这里我们使用第一种方法。 16QAM信号的星座图: 图三16QAM星座图 上图是16QAM的星座图,图中f1(t)和f2(t)是归一化的正交基函数。各星座点等概出现。 星座图中最近的距离与解调误码率有很密切的关系。上图中的最小距离是dmin=2。 16QAM的每个星座点对应4个比特。哪个星座点代表哪4比特,叫做星座的比特映射。通常采用格雷映射,其规则是:相邻的星座点只差一个比特。 实验所需模块连接图如下所示: 图四模块连接图 各个模块参数设置:

三、实验步骤 (1)按照实验所需模块连接图,连接各个模块 (2)设置各个模块的参数: ①信号源部分:PN序列发生器产生双极性NRZ序列,频率10HZ 图五信号源设置示意图 ②载频:频率设置为100Hz。

通信原理2DPSK调制与解调实验报告

通信原理课程设计报告

一. 2DPSK基本原理 1.2DPSK信号原理 2DPSK方式即是利用前后相邻码元的相对相位值去表示数字信息的一种方式。现假设用Φ表示本码元初相与前一码元初相之差,并规定:Φ=0表示0码,Φ=π表示1码。则数字信息序列与2DPSK信号的码元相位关系可举例表示如2PSK信号是用载波的不同相位直接去表示相应的数字信号而得出的,在接收端只能采用相干解调,它的时域波形图如图2.1所示。 图1.1 2DPSK信号 在这种绝对移相方式中,发送端是采用某一个相位作为基准,所以在系统接收端也必须采用相同的基准相位。如果基准相位发生变化,则在接收端回复的信号将与发送的数字信息完全相反。所以在实际过程中一般不采用绝对移相方式,而采用相对移相方式。 定义?Φ为本码元初相与前一码元初相之差,假设: ?Φ=0→数字信息“0”; ?Φ=π→数字信息“1”。 则数字信息序列与2DPSK信号的码元相位关系可举例表示如下: 数字信息: 1 0 1 1 0 1 1 1 0 1

DPSK信号相位:0 π π 0 π π 0 π 0 0 π 或:π 0 0 π 0 0 π 0 π π 0 2. 2DPSK信号的调制原理 一般来说,2DPSK信号有两种调试方法,即模拟调制法和键控法。2DPSK 信号的的模拟调制法框图如图1.2.1所示,其中码变换的过程为将输入的单极性不归零码转换为双极性不归零码。 图1.2.1 模拟调制法 2DPSK信号的的键控调制法框图如图1.2.2所示,其中码变换的过程为将输入的基带信号差分,即变为它的相对码。选相开关作用为当输入为数字信息“0”时接相位0,当输入数字信息为“1”时接pi。 图1.2.2 键控法调制原理图 码变换相乘 载波 s(t)e o(t)

北邮通原软件实验报告

北京邮电大学实验报告题目:基于SYSTEMVIEW通信原理实验报告 班级: 专业: 姓名: 成绩: 实验1:抽样定理 一.实验目的 (1)掌握抽样定理 (2)通过时域频域波形分析系统性能

二.实验原理 抽样定理:设时间连续信号m(t),其最高截止频率为fm ,如果用时间间隔为T<=1/2fm 的采样序列对m(t)进行抽样时,则m(t)就可被样值信号唯一地表示。 抽样过程原理图(时域)重建过程原理图(频域) 具体而言:在一个频带限制在(0,f h)内的时间连续信号f(t),如果以小于等于1/(2 f h)的时间间隔对它进行抽样,那么根据这些抽样值就能完全恢复原信号。或者说,如果一个连续信号f(t)的频谱中最高频率不超过f h,这种信号必定是个周期性的信号,当抽样频率f S≥2 f h时,抽样后的信号就包含原连续信号的全部信息,而不会有信息丢失,当需要时,可以根据这些抽样信号的样本来还原原来的连续信号。根据这一特性,可以完成信号的模-数转换和数-模转换过程。 三.实验步骤 1.将三个基带信号相加后抽样,然后通过低通滤波器恢复出原信号。实现验证抽样定理的仿真系统,同时在必要的输出端设置观察窗。如下图所示 2.设置各模块参数 三个基带信号频率从上至下依次为10hz、20hz、40hz。 抽样信号频率fs设置为80hz,即2*40z。(由抽样定理知,fs≥2fH)。低通滤波器频率设置为40hz 。设置系统时钟,起始时间为0,终止时间设为1s.抽样率为1khz。 3.改变抽样速率观察信号波形的变化。

五.实验建议、意见 将抽样率fs设置为小于两倍fh的值,观察是否会产生混叠失真。 实验2:验证奈奎斯特第一准则 一.实验目的 (1)理解无码间干扰数字基带信号的传输; (2)掌握升余弦滚降滤波器的特性; (3)通过时域、频域波形分析系统性能。 二.实验原理 基带传输系统模型 奈奎斯特准则提出:只要信号经过整形后能够在抽样点保持不变,即使其波形已经发生了变化,也能够在抽样判决后恢复原始的信号,因为信息完全恢复携带在抽样点幅度上。 无码间干扰基带传输时,系统冲击响应必须满足x(nTs)=1(n=0); x(nTs)=0(n=!0)。相应的推导出满足x(t)的傅里叶变换X(f)应满足的充分必要条件: 该充要条件被称为无码间干扰基带传输的奈奎斯特准则。 奈奎斯特准则还指出了信道带宽与码速率的基本关系。即Rb=1/Tb=2?N=2BN。说明了理想信道的频带利用率为Rb/BN=2。 在实际应用中,理想低通滤波器是不可能实现的,升余弦滤波器是在实际中满足无码间干扰传输的充要条件,已获得广泛应用。 三.实验步骤 1.根据奈奎斯特准则,设计实现验证奈奎斯特第一准则的仿真系统,同时在必要输出端设置观察窗。如下图所示

北邮通信原理软件实验报告XXXX27页

通信原理软件实验报告 学院:信息与通信工程学院 班级: 一、通信原理Matlab仿真实验 实验八 一、实验内容 假设基带信号为m(t)=sin(2000*pi*t)+2cos(1000*pi*t),载波频率为20kHz,请仿真出AM、DSB-SC、SSB信号,观察已调信号的波形和频谱。 二、实验原理 1、具有离散大载波的双边带幅度调制信号AM 该幅度调制是由DSB-SC AM信号加上离散的大载波分量得到,其表达式及时间波形图为: 应当注意的是,m(t)的绝对值必须小于等于1,否则会出现下图的过调制: AM信号的频谱特性如下图所示: 由图可以发现,AM信号的频谱是双边带抑制载波调幅信号的频谱加上离散的大载波分量。 2、双边带抑制载波调幅(DSB—SC AM)信号的产生 双边带抑制载波调幅信号s(t)是利用均值为0的模拟基带信号m(t)和正弦载波 c(t)相乘得到,如图所示: m(t)和正弦载波s(t)的信号波形如图所示:

若调制信号m(t)是确定的,其相应的傅立叶频谱为M(f),载波信号c(t)的傅立叶频谱是C(f),调制信号s(t)的傅立叶频谱S(f)由M(f)和C(f)相卷积得到,因此经过调制之后,基带信号的频谱被搬移到了载频fc处,若模拟基带信号带宽为W,则调制信号带宽为2W,并且频谱中不含有离散的载频分量,只是由于模拟基带信号的频谱成分中不含离散的直流分量。 3、单边带条幅SSB信号 双边带抑制载波调幅信号要求信道带宽B=2W, 其中W是模拟基带信号带宽。从信息论关点开看,此双边带是有剩余度的,因而只要利用双边带中的任一边带来传输,仍能在接收机解调出原基带信号,这样可减少传送已调信号的信道带宽。 单边带条幅SSB AM信号的其表达式: 或 其频谱图为: 三、仿真设计 1、流程图:

通原软件实验二:16QAM调制与解调

北京邮电大学通原软件实验实验二:16QAM调制与解调 专业:信息工程 学生姓名:××× 指导教师:×× 完成时间:××××

一、实验目的 在全面理解16QAM 调制解调原理的基础上,强化信号星座图、眼图所表明的信号本质。 二、实验原理 由于信道资源越来越紧张,许多数据传输场合二进制数字调制已无法满足需要。为了在有限信道带宽中高速率地传输数据,可以采用多进制(M 进制,M>2)调制方式,MPSK 则是经常使用的调制方式,由于MPSK 的信号点分布在圆周上,没有最充分地利用信号平面,随着M 值的增大,信号最小距离急剧减小,影响了信号的抗干扰能力。MQAM 称为多进制正交幅度调制,它是一种信号幅度与相位结合的数字调制方式,信号点不是限制在圆周上,而是均匀地分布在信号平面上,是一种最小信号距离最大化原则的典型运用,从而使得在同样M 值和信号功率条件下,具有比MPSK 更高的抗干扰能力。 图1:16QAM调制与解调原理图 三、实验内容 设计并实现16QAM调制与解调系统,观察各信号时域、频域波形,体会眼图、星座图的意义。

四、实验结果 1、电路框图 图2:系统电路框图 2、元件参数 编号属性类型参数设置 0 Source PN Seg Amplitude=3V,Rate=50Hz,No.Levels=4 1 Source PN Seg Amplitude=3V,Rate=50Hz,No.Levels=4 2 Source Sinusoid Amplitude=1V,Frequency=500Hz 3 Multiplier ———— 4 Multiplier ———— 5 Adder ———— 6 Sink Analysis —— 7 Sink Analysis —— 8 Source Gauss Noise Std Deviation=0.1V 9 Sink Analysis —— 10 Source Sinusoid Amplitude=1V,Frequency=500Hz 11 Multiplier ———— 12 Multiplier ————

《通信原理》实验设计报告

中南大学《通信原理》 实验设计报告 学院: 专业班级: 姓名: 学号: 指导老师: 设计时间:

目录 第一部分硬件部分实验报告 实验一:模拟锁相环与载波同步 (1) 实验五:数字锁相环与位同步 (6) 实验六:帧同步 (13) 实验七:时分复用数字基带通信系统 (17) 第二部分实验设计部分 设计任务与要求 (22) 方案设计与论证 (22) 源程序与仿真结果 (24) 系统性能分析 (29) 程序调试 (29) 结论与心得 (30) 参考文献 (31)

第一部分硬件部分实验报告 实验一:模拟锁相环与载波同步 一、实验目的 1. 掌握模拟锁相环的工作原理,以及环路的锁定状态、失锁状态、同步带、捕捉带等基本概念。 2. 掌握用平方环法从2DPSK信号中提取相干载波的原理及模拟锁相环的设计方法。 3. 了解相干载波相位模糊现象产生的原因。 二、实验内容 1. 观察模拟锁相环的锁定状态、失锁状态及捕捉过程。 2. 观察环路的捕捉带和同步带。 3. 用平方环法从2DPSK信号中提取载波同步信号,观察相位模糊现象。 三、基本原理 通信系统中常用平方环或同相正交环(科斯塔斯环)从2DPSK信号中提取相干载波。本实验系统的载波同步提取模块用平方环,原理方框图如图3-1所示,电原理图如图3-2所示(见附录)。模块内部使用+5V、+12V、-12V电压,所需的2DPSK输入信号已在实验电路板上与数字调制单元2DPSK输出信号连在一起。 图3-1 载波同步方框图 本模块上有以下测试点及输入输出点: ? MU平方器输出测试点,VP-P>1V ? VCO VCO输出信号测试点,VP-P>0.2V ? Ud鉴相器输出信号测试点 ? CAR-OUT 相干载波信号输出点/测试点 图3-1中各单元与电路板上主要元器件的对应关系如下: ? 平方器 U25:模拟乘法器MC1496

电子科技大学通信原理实验实验报告2

电子科技大学通信学院 最佳接收机(匹配滤波器) 实验报告 班级 学生 学号 教师任通菊

最佳接收机(匹配滤波器)实验 一、实验目的 1、运用MATLAB软件工具,仿真随机数字信号在经过高斯白噪声污染后最佳的恢复的方法。 2、熟悉匹配滤波器的工作原理。 3、研究相关解调的原理与过程。 4、理解高斯白噪声对系统的影响。 5、了解如何衡量接收机的性能及匹配滤波器参数设置方法。 二、实验原理 对于二进制数字信号,根据它们的时域表达式及波形可以直接得到相应的解调方法。在加性白高斯噪声的干扰下,这些解调方法是否是最佳的,这是我们要讨论的问题。 数字传输系统的传输对象是二进制信息。分析数字信号的接收过程可知,在接收端对波形的检测并不重要,重要的是在背景噪声下正确的判断所携带的信息是哪一种。因此,最有利于作出正确判断的接收一定是最佳接收。 从最佳接收的意义上来说,一个数字通信系统的接收设备可以看作一个判决装置,该装置由一个线性滤波器和一个判决电路构成,如图1所示。线性滤波器对接收信号进行相应的处理,输出某个物理量提供给判决电路,以便判决电路对接收信号中所包含的发送信息作出尽可能正确的判决,或者说作出错误尽可能小的判决。 图1 简化的接收设备 假设有这样一种滤波器,当不为零的信号通过它时,滤波器的输出能在某瞬间形成信号的峰值,而同时噪声受到抑制,也就是能在某瞬间得到最大的峰值信号功率与平均噪声功率之比。在相应的时刻去判决这种滤波器的输出,一定能得到最小的差错率。 匹配滤波器是一种在最大化信号的同时使噪声的影响最小的线性滤波器设计技术。注意:该滤波器并不保持输入信号波形,其目的在于使输入信号波形失 t输出信号值相对于均方根(输出)噪声值达到真并滤除噪声,使得在采样时刻 最大。

北京邮电大学通信原理软件实验报告-28页文档资料

《通信原理软件》实验报告专业通信工程 班级 2011211118 姓名朱博文 学号 2011210511 报告日期 2013.12.20

基础实验: 第一次实验 实验二时域仿真精度分析 一、实验目的 1. 了解时域取样对仿真精度的影响 2. 学会提高仿真精度的方法 二、实验原理 一般来说,任意信号s(t)是定义在时间区间上的连续函数,但所有计算机的CPU 都只能按指令周期离散运行,同时计算机也不能处理这样一个时间段。为此将把s(t)截短,按时间间隔均匀取样,仿真时用这个样值集合来表示信号 s(t)。△t反映了仿真系统对信号波形的分辨率,△t越小则仿真的精确度越高。据通信原理所学,信号被取样以后,对应的频谱是频率的周期函数,才能保证不发生频域混叠失真,这是奈奎斯特抽样定理。设为仿真系统的系统带宽。如果在仿真程序中设定的采样间隔是,那么不能用此仿真程序来研究带宽大于的信号或系统。换句话说,就是当系统带宽一定的情况下,信号的采样频率最小不得小于2*f,如此便可以保证信号的不失真,在此基础上时域采样频率越高,其时域波形对原信号的还原度也越高,信号波形越平滑。也就是说,要保证信号的通信成功,必须要满足奈奎斯特抽样定理,如果需要观察时域波形的某些特性,那么采样点数越多,可得到越真实的时域信

号。 三、实验内容 1、方案思路: 通过改变取点频率观察示波器显示信号的变化 2、程序及其注释说明: 3、仿真波形及频谱图: Period=0.01 Period=0.3 4、实验结果分析: 以上两图区别在于示波器取点频率不同,第二幅图取点频率低于第一幅图,导致示波器在画图时第二幅图不如第一幅图平滑。 四、思考题 1.两幅图中第一幅图比第二幅图更加平滑,因为第一幅图中取样点数更 多 2.改为0.5后显示为一条直线,因为取点处函数值均为0 实验三频域仿真精度分析 一、实验目的

通信原理硬件实验报告(-哈工程)

必爾牘N理2普实验报告 工程大学教务处制

实验一、数字基带信号实验 一、实验目的 1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点 2、掌握AMI、HDB2的编码规则 3、了解HDB3(AMI)编译码集成电路CD22103. 二、实验仪器 双踪示波器、通信原理VI实验箱一台、M6信源模块 三、实验容 1、用示波器观察单极性非归零码(NRZ)、传号交替反转码(AMI)、三阶高密度双极性码(HDB3)、整流后的AMI码及整流后的HDB3码。 2、用示波器观察从HDB3码中和从AMI码中提取位同步信号的电路中有关波形。 3、用示波器观察HDB3、AMI译码输出波形。 四、基本原理 1、单极性码、双极性码、归零码、不归零码 对于传输数字信号来说,最常用的方法是用不同的电压电平来表示两个二进制数字,即 数字信号由矩形脉冲组成。 a)单极性不归零码,无电压表示"0",恒定正电压表示"1",每个码元时间的中间点是采样时间,判决门限为半幅电平。 b)双极性不归零码,"1"码和"0"码都有电流,"1"为正电流,"0"为负电流,正和负的幅度相等,判决门限为零电平。 c)单极性归零码,当发"1"码时,发出正电流,但持续时间短于一个码元的时间宽度,即发出一个窄脉冲;当发"0"码时,仍然不发送电流。

d)双极性归零码,其中"1"码发正的窄脉冲,"0"码发负的窄脉冲,两个码元的时间间隔可以大于每一个窄脉冲的宽度,取样时间是对准脉冲的中心。 归零码和不归零码、单极性码和双极性码的特点: 不归零码在传输中难以确定一位的结束和另一位的开始,需要用某种方法使发送器和接 收器之间进行定时或同步;归零码的脉冲较窄,根据脉冲宽度与传输频带宽度成反比的关系,因而归零码在信道上占用的频带较宽。 单极性码会积累直流分量,这样就不能使变压器在数据通信设备和所处环境之间提供良好绝缘的交流耦合,直流分量还会损坏连接点的表面电镀层; 双极性码的直流分量大大减少,这对数据传输是很有利的 2、AMI、HDB3 码特点 (1)AMI 码 我们用“ 0”和“ 1 ”代表传号和空号。AMI码的编码规则是“ 0”码不变,“ 1”码则交替地转换为+ 1和—1。当码序列是1时,AMI码就变为:+ 100 —1000 + 1 — 1 + 10 —1。这种码型交替出现正、负极脉冲,所以没直流分量,低频分量也很少,它的频谱如图5-1 所示,AMI码的能量集中于f0/2处(f0为码速率)。 信息代码:1 0 0 1 1 0 0 0 1 1 1 …… AMI 码:+1 0 0-1 + 1 0 0 0-1 + 1-1 …… 由于AMI码的传号交替反转,故由于它决定的基带信号将出现正负脉冲交替,而0电 位保持不变的规律。这种基带信号无直流成分,且只有很小的低频成分,因而它特别适宜在不允许这些成分通过的信道中传输。

北邮微原软件实验报告

2013年微机原理软件实验报告 学院:信息与通信工程学院 班级:2011211104 姓名:

实验二分支,循环程序设计 一.实验目的: 1.开始独立进行汇编语言程序设计; 2.掌握基本分支,循环程序设计; 3.掌握最简单的DOS 功能调用 二.实验内容: 1.安排一个数据区,内存有若干个正数,负数和零.每类数的个数都不超过9. 2.编写一个程序统计数据区中正数,负数和零的个数. 3.将统计结果在屏幕上显示. 三.预习题 1.十进制数0 -- 9 所对应的ASCII 码是什么? 如何将十进制数0 -- 9 在屏幕上显示出来? 0-9的ACSII码为,30h,31h,32h,34h,35h,36h,37h,38h,39h, 将要显示的数加上30h,得到该数的ACSII码,再利用DOS功能调用显示单个字符 2.如何检验一个数为正,为负或为零? 你能举出多少种不同的方法? 利用cmp指令,利用TEST指令,将该数与0相与,将该数与0相减,观察标志位。

四.程序流程图

五.源程序 DATA SEGMENT ;数据段 NUM DB 1,2,-2,3,-3,5,2,4,-6,-11,100,0,0,34,-55,-33,0 ;待处理数据COUNT EQU $-NUM ;数据个数 MINUS DB 0 ;小于零的个数 ZERO DB 0 ;等于零的个数 PLUS DB 0 ;大于零的个数 RESULT DB 'NEGNUM=',?,0AH,0DH,'ZERONUM=',?,0AH,0DH,'POSNUM=',?,0AH,0DH,'$' ;结果显示字符串 DATA ENDS STACK SEGMENT STACK 'STACK' ;堆栈段 DW 50 DUP(?) STACK ENDS CODE SEGMENT ;代码段 ASSUME CS:CODE,DS:DATA,SS:STACK START: MOV AX,DATA MOV DS,AX MOV CX,COUNT MOV SI,OFFSET NUM AGAIN: MOV AL,[SI] ;循环比较 CMP AL,0 JGE NEXT1 INC MINUS JMP DONE NEXT1: JZ NEXT2 INC PLUS JMP DONE NEXT2: INC ZERO DONE: INC SI LOOP AGAIN ;返回结果 MOV DI,OFFSET RESULT MOV AL,MINUS ADD AL,30H MOV BYTE PTR[DI+7],AL MOV AL,ZERO ADD AL,30H MOV BYTE PTR[DI+18],AL MOV AL,PLUS ADD AL,30H MOV BYTE PTR[DI+28],AL

北邮微机原理与接口技术硬件实验报告

微原硬件实验报告 班级:07118 班 学号:070547 班内序号:26 姓名:杨帆

实验一熟悉实验环境及IO的使用 一,实验目的 1. 通过实验了解和熟悉实验台的结构,功能及使用方法。 2. 通过实验掌握直接使用Debug 的I、O 命令来读写IO 端口。 3. 学会Debug 的使用及编写汇编程序 二,实验内容 1. 学习使用Debug 命令,并用I、O 命令直接对端口进行读写操作, 2.用汇编语言编写跑马灯程序。(使用EDIT 编辑工具)实现功能 A.通过读入端口状态(ON 为低电平),选择工作模式(灯的闪烁方式、速度 等)。 B.通过输出端口控制灯的工作状态(低电平灯亮) 三,实验步骤 1.实验板的IO 端口地址为EEE0H 在Debug 下, I 是读命令。(即读输入端口的状态---拨码开关的状态) O 是写命令。(即向端口输出数据---通过发光管来查看) 进入Debug 后, 读端口拨动实验台上八位拨码开关 输入I 端口地址回车 屏幕显示xx 表示从端口读出的内容,即八位开关的状态ON 是0,OFF 是 1 写端口 输入O 端口地址xx (xx 表示要向端口输出的内容)回车 查看实验台上的发光二极管状态,0 是灯亮,1 是灯灭。 2. 在Debug 环境下,用a 命令录入程序,用g 命令运行 C>Debug -a mov dx, 端口地址 mov al,输出内容 out dx, al

mov ah, 0bh int 21h or al, al jz 0100 int 20h -g 运行查看结果,修改输出内容 再运行查看结果 分析 mov ah, 0bh int 21h or al, al jz 0100 int 20h 该段程序的作用 3.利用EDIT 工具编写汇编写跑马灯程序程序 实现功能 A.通过读入端口状态(ON 为低电平),选择工作模式(灯的闪烁方式、速度等)。 B.通过输出端口控制灯的工作状态(低电平灯亮) C>EDIT 文件名.asm 录入程序 按Alt 键打开菜单进行存盘或退出 编译文件 C>MASM 文件名.asm 连接文件 C>LINK 文件名.obj 运行文件或用Debug 进行调试。 四,程序流程图

相关文档