文档库 最新最全的文档下载
当前位置:文档库 › 小麦中的淀粉酶及其研究进展

小麦中的淀粉酶及其研究进展

小麦中的淀粉酶及其研究进展
小麦中的淀粉酶及其研究进展

小麦中的淀粉酶及其研究进展

摘要:从各个方面来研究了小麦中淀粉酶的功能作用以及它的作用机理,通过研究可知,小麦中的а-淀粉酶和β-淀粉酶对食品的品质的影响起着重要的作用。并通过国内外的研究进展来进一步说明小麦中淀粉酶的研究是很有必要的。最后提到了淀粉酶的添加来弥补某些淀粉酶不足以满足食品加工的小麦。本文主要从小麦中的淀粉酶研究意义,国内外小麦中的淀粉酶的研究近况以及未来的发展方向进行了较为全面的综述。

关键词:小麦;淀粉酶;研究进展

在活细胞中进行着大量的化学反应的特点是速度很快,且能有秩序的进行,从而使得细胞同时能进行各种降解代谢及合成代谢,以满足生命活动的需要。生物细胞之所以能够在常温常压下以极高的速度和很大的专一性进行化学反应是由于其中存在一种称为“酶”的生物催化剂。而在小麦的生长,储存,加工等环节中,其中存在的酶就具有非常重要的作用,小麦中的酶会影响着小麦的储存,加工等品质。小麦粉中的淀粉酶主要有3类,即а-淀粉酶,β-淀粉酶和葡萄糖淀粉酶。其中与面包烘焙有关的主要是а-淀粉酶和β-淀粉酶,而且а-淀粉酶与小麦的储藏品质也有着极其密切的关系。所以对小麦中的淀粉酶进行研究是十分有必要的。

1.研究小麦中的淀粉酶的意义

小麦中的淀粉酶主要有а-淀粉酶,β-淀粉酶和葡萄糖淀粉酶这三类。面粉有很多用途,可以制成各种不同的成品食品。而面粉大多数都是小麦面粉,可见要研究面粉就的研究小麦,并且小麦中的а-淀粉酶,β-淀粉酶与面包烘焙有关,而且а-淀粉酶与小麦的储藏品质也有着极其密切的关系。所以研究小麦中的淀粉酶是非常有意义的。通过研究可以更好地把握不同小麦品种的淀粉酶的性质,来改善淀粉酶,从而来改进食品品质。

1.1小麦中的а-淀粉酶对面包品质的影响

大量的研究已证实,由于淀粉酶在发酵过程中对淀粉分子进行了有益的修饰,进而改善了面包的质地、体积、颜色、货架寿命等方面的性质,具体影响如下[1,2]:

1.1.1 а-淀粉酶对面包品质的影响

○1а-淀粉酶能增大面包体积。а-淀粉酶是通过适当阻止面筋的形成来使面包体积增加的,

而适度的а-淀粉酶作用可缩短面团发酵时间,来增大面包体积。

○2对面包表皮色泽和风味的影响。а-淀粉酶在提供发酵底物的情况下,适量产生的剩余还原糖可参与美拉德反应,赋予面包表皮棕黄色的色泽,同时通过脱水糖、糠醛、还原酮、芳香羰基化合物等反应产物配合发酵形成的芳香物质而赋予面包香味。

1.1.2 а-淀粉酶对面包质构的影响

○1а-淀粉酶能赋予面包良好的质地。淀粉酶对于烘焙面包质地的影响主要体现在粘度、粒度、硬度和弹性等几个方面。а-淀粉酶活性适中时可达成一定的平衡,有助于软化面包心。

,产气能力与持气能力相配合,均适中的а-淀粉酶活性能使酵母均匀地进行发酵,产生CO

2

匀扩张,相应产生均匀的面包心粒度。综合来看,合适的а-淀粉酶活性既可使面包的硬度较小,又可使弹性较大,从而通过控制а-淀粉酶活性可使这两种质地特性达到最佳水平。

○2а-淀粉酶能防止面包老化,延长货架寿命。在长期贮存后,面包皮从空气或面包心中吸水而丧失原有的疏松性,变得坚韧并出现皱折,面包心丧失其柔软和膨胀性能,变得无弹性、干燥、易掉屑、香味丧失。研究表明,若面团具有较高淀粉酶分解能力则不易老化。在烘焙的最初阶段,а-淀粉酶活性可形成较软的面包心,并在烘焙后能保持好几天。

1.2小麦中的淀粉酶在焙烤食品中的作用

用作焙烤食品面粉来源的小麦含有一些天然存在的酶,这些酶对小麦的发芽和生长是必需的。这些酶在焙烤工艺中亦十分重要,没有它们,焙烤加工便不可能。

小麦中主要有а-淀粉酶和β-淀粉酶。а-淀粉酶能水解淀粉、直链淀粉、麦芽糊精和寡糖中а-1,4糖昔键,并且а-淀粉酶是糊精化酶,随机作用于糊化淀粉,不能作用于β-糖昔键,另外由于а-淀粉酶的作用使淀粉分子变小,更有利于β-淀粉酶的作用,这样使面团中酵母可利用的糖量增加,促进酵母的代谢。这对目前采用快速发酵法生产面包来说是很重要的。同时由于а-淀粉酶的作用,产生过多的还原糖,有利于增加面包的风味、表皮色泽,并改善面包的纹理结构,增大面包体积。而β-淀粉酶有糖化作用,它从淀粉链的非还原端产生β-麦芽糖,但只能作用于凝胶化淀粉,不能作用于完好的淀粉,对碾磨破坏的淀粉作用速度较低。未发芽的小麦粉含有大量β-淀粉酶和少量а-淀粉酶,β-淀粉酶热稳定性差,只能在面团发酵时起作用 [3,4]。

2.国内外对小麦中的淀粉酶的研究进展

2.1国内对小麦中的淀粉酶的研究进展

1997年,孟庆红研究了淀粉酶的作用机理及在面包和饲料中的应用。文章中讲述了,在面包生产工艺中,面团发酵和面包焙烤两重要工序的工艺效果与淀粉酶的作用是密切相关的。

生产面包的主要原料小麦粉含有一定的а-淀粉酶和β-淀粉酶,正常小麦粉а-淀粉酶活力不足。在面团的发酵阶段,二者同时对淀粉起水解作用,产生供酵母利用的可发酵性糖,使面团起发。但在面包的焙烤阶段,因β-淀粉酶热稳定性较差,已钝化失活,不再起水解作用。而а-淀粉酶热稳定性较强,在面包焙烤至淀粉糊化(60~64℃)温度后,水解作用仍在进行。这对增大面包体积,提高面包柔软度、延缓面包老化速度具有很大作用[5]。

2000年,王若兰研究了发芽小麦а-淀粉酶活性。作者在文章中研究了发芽小麦а-淀粉酶活性与小麦的发芽温度与发芽时间之间的关系。并利用响应面分析法,通过不同发芽温度与不同发芽时间组合,可得出а-淀粉酶活性与发芽时间、发芽温度的二元二次方程。另外,降落值的高低可以间接地反映а-淀粉酶活性情况,а-淀粉酶活性越高,则降落值越低, а-淀粉酶活性越低则降落值越高。最后得出发芽小麦和发芽时间是影响芽麦粉的а-淀粉酶活性的主要因素,芽麦粉的降落值与а-淀粉酶活性有关,因此发芽温度和发芽时间也是影响降落值的主要因素[6]。

2003年,张海萍,阎长生,肖世和进行了小麦迟熟а-淀粉酶的研究进展。结果显示:迟熟а-淀粉酶,它在某些品种籽粒成熟后期的合成能够导致成熟籽粒中含有较高水平的а-淀粉酶活性以及相应较低的降落数值,从而造成穗发芽的发生[7]。

2005年,苏东民,魏雪芹研究了发芽对小麦及面粉品质的影响。文中指出,小麦发芽通常包括两种,一种是小麦遭遇雨淋导致的穗发芽,另一种是对正常小麦所进行的控制性发芽处理。无论哪种形式的发芽,都对小麦及其面粉品质产生多方面的影响。探讨发芽对小麦籽粒和制粉品质、面团及烘焙特性的影响。路茜玉指出,а-淀粉酶只有在小麦发芽时大量产生,正常情况下,小麦籽粒中缺少а-淀粉酶,а-淀粉酶的活性与发芽时的温度、发芽时间存在着密切的关系。同时发芽小麦中由于а-淀粉酶活性很高,淀粉便会在а-淀粉酶的作用下分解成小分子,再进一步水解成糖类,所以低分子糖类含量也相应较高。Lorenz.K指出,随着处理时间的延长,还原糖的量增加,这也表明,а-淀粉酶活性增加,导致淀粉被降解[8]。

2007年,李巨秀等人研究了小麦籽粒在制麦过程中胚乳降解酶活性的变化。研究结果显示,小麦籽粒在制麦过程中α-淀粉酶活力在发芽中不断增长,并在发芽第3天后快速增长;β-淀粉酶和总淀粉酶的活性变化趋势与啤酒大麦相同,均在发芽第4天达到峰值后下降,而β-淀粉酶活性水平高于α-淀粉酶小麦籽粒在发芽后其淀粉酶活力较啤酒大麦高。小麦和啤酒大麦在发芽中的酶活变化有较大的差异;发芽小麦的酶活水平可作为制定合理制麦工艺的重要依据 ,发芽至第4天的酶活都能保持较高水平[9]。

2008年,岳海凤,郜庆炉,薛香进行了小麦а-淀粉酶活性测定方法的比较。采用的是凝胶扩散法、3,5-二硝基水杨酸比色法和降落值法。这3种方法所用的材料分别是新鲜种子、萌动种子和面粉,获得的а-淀粉酶活性应该分别是延迟(内源)а-淀粉酶、萌动种子а-淀粉

酶和后熟面粉的а-淀粉酶活性。比较结果可知: DNS法与凝胶扩散法测定的α 2淀粉酶活性的结果具有曲线相关性,而直线相关不显著,说明延迟(内源)а-淀粉酶活性的高低并不与萌动种子а-淀粉酶的高低一致,仅在一定范围内存在直线相关。而DNS 法与降落值法呈极显著直线负相关,说明降落值的高低能间接的反映萌动种子中а-淀粉酶活性的大小。通过分析比较研究,认为降落值法是测定大量样品а-淀粉酶活性的最佳方法[10]。

2010年,余江,管军军研究了芽麦中酶的研究及其在饲料中的应用。文章指出,近年来研究结果表明,在小麦籽粒形成过程中伴随着营养物质的积累,а-淀粉酶也随之合成。而а-淀粉酶只有在小麦发芽时大量产生,а-淀粉酶的活性与发芽时的温度,发芽时间存在着密切的关系。同时发芽小麦中由于а-淀粉酶活性很高,淀粉便会在а-淀粉酶的作用下分解,进一步水解成低分子糖类,所以低分子糖类含量也相应较高。目前国际上公认的代表а-淀粉酶活性的指标是降落数值,它可以反映小麦面粉中淀粉酶活性高低。正常小麦的降落值一般在200~300s之间,降落值随发芽小麦含量增高而降低,当降落值小于150s时,将明显影响食用品质和储藏的稳定性。小麦发芽状况对а-淀粉酶活性影响强烈,随发芽程度加深,а-淀粉酶活性迅速增强,过高的а-淀粉酶活性对小麦的加工品质不利。降落值高的品种,а-淀粉酶活性低,反之则高降落值低的品种,其籽位内部的淀粉、半纤维素和蛋白质分解快,非常有利于籽粒胚的萌发生长。另外а-淀粉酶活性对面条品质影响很大,当降落值低于200s 时,面条韧性差,易出现大量断条。并指出了а-淀粉酶主要是应用在食品加工领域,例如将小麦芽粉添加到面粉制作面包能明显增大面包体积,改

善面包的感官质量如纹理弹性口感和表皮色泽[11]。

2.2国外对小麦中的淀粉酶的研究进展

1975年,Russell TKACHUK研究了小麦а-淀粉酶的竞争性亲和色谱法。结果显示:这一技术可以用来进行小麦а-淀粉酶的分离。在这一技术中,原始的酶类的提取物作为固定化酶作用物,然后用可溶性酶作用物来洗提а-淀粉酶。小麦а-淀粉酶可以获取纯蛋白大约为90%,而恢复84%的活性。除了а-淀粉酶在通过那亲和凝胶柱时被吸收和通过外,蛋白和其他酶却没有这一特性[12]。

2001年,Belma Ozbek, Semra Yuceer研究了在小麦淀粉水解过程中а-淀粉酶的失活。结果如下:最佳pH是6.5,在这个pH下,水解之后相对酶活为52%。在这pH下,最大水解程度为40%。随着温度的增加酶的活性也相应增加,水解之后在60℃时酶的活性达到最大即为52%。最后结果为,在60℃,pH6.5情况下,а-淀粉酶失去48%活性,而小麦淀粉水解程度为40%[13]。

2005年,A.F. Tjin Wong Joe等人研究了英国冬小麦种类即Rialto中早熟а-淀粉酶和萌发期。结果显示:Rialto已经成为一种成功小麦种类,并被列于英国推荐的冬小麦列表中

已有五年多了。它被分类为群体2冬小麦,它比起群体1的制作面包的潜力更少。Rialto能够产生低的降落数值,而这不是我们所期望,但这可能不是直接跟发芽相关。品种的降低可能得归于早熟а-淀粉酶活性。通过实验可知,在某些情况下,PMAA和萌发初期可以产生相似а-淀粉酶活性的模式[14]。

2008年,Daryl Mares, Kolumbina Mrva研究了迟熟а-淀粉酶:穗没有发芽的小麦的降落数值低。结果显示:在收获成熟时,谷物中酶的活性被维持,这会导致低的降落数值而不能满足顾客的要求和标准[15]。2009年,NeilRoder等人研究了小麦淀粉中а-淀粉酶作用的影响因素。研究结果显示:水分含量没达到30%时,а-淀粉酶的催化效率都是相对比较低的。一般,随着淀粉中的水分比例的增加,а-淀粉酶的催化效率也相应增加[16]。

3.展望

目前,很多面粉都缺少а-淀粉酶。这主要是地理因素造成,面粉中а-淀粉酶含量受成熟和收获时环境条件的影响很大。气候愈潮湿,麦粒中产生的а-淀粉酶愈多,如果天气潮湿 ,有些小麦会发芽,麦粒中的а-淀粉酶含量会太高。导致面包体发粘,面包心结构空洞多而软弱。在欧洲温带气候生长的小麦,一般都含有相当量的а-淀粉酶,在干热气候下生长的美国小麦,含а-淀粉酶量很低。а-淀粉酶对焙烤食品的影响很大,如果其含量很低,会导致产生糊精量低和产气不良,转而形成体积缩小而皮色暗淡的劣质面包。为补救这

种麦粘的缺陷。有必要添加一些糖或а-淀粉酶。补加酶比加糖更好,面粉厂可使面粉的酶含量标准化,以供应同等质量的面粉。还有,酶能提供逐步形成的糖,与酵母的需要相匹配。当面团置于烤炉中时,稳定增长的温度导致酶的反应速度增加,产糖更多[17]。

根据来源不同,а-淀粉酶有真菌淀粉酶、谷物淀粉酶(麦芽粉)、细菌淀粉酶,其性质各异。麦芽粉及细菌а-淀粉酶,热稳定性较强,尤其是细菌а-淀粉酶,其钝化温度高达95℃,当面包进入焙烤阶段后,仍对淀粉具有水解作用,虽对提高面包质量,改善表皮色泽,增大面包体积,延缓面包老化起很大作用,但若添加过量,易使面包心发粘。故应谨慎添加使用。而真菌а-淀粉酶热稳定性较差,65℃以下就已失活,即使添加量过多,也不会造成面包心发粘的质量问题,故面包生产厂商普遍喜欢使用真菌а-淀粉酶[5]。

参考文献

[1]彭艳,赵强宗,徐建祥等.а-淀粉酶对面包品质的影响[J].食品工业科技,2003(03):17-18

[2]王作琴.淀粉酶和糖化酶与焙烤工业的关系[J].加工技艺,1996,3(05):32-35

[3]叶盛权.酶在焙烤食品中的应用[J].湛江水产学院学报,1996,16:87-90

[4]刘传,海洲,侯汉学.淀粉酶和蛋白酶及其在焙烤食品中作用[J].粮食与油脂,2002(06):38-39

[5]孟庆红.淀粉酶的作用机理及在面包和饲料中的应用[J].粮食与饲料工业,1997(06):34

[6]王若兰.发芽小麦а-淀粉酶活性的研究[J].郑州工程学院学报,2000,21(04):18-21

[7]张海萍,阎长生,肖世和.小麦迟熟а-淀粉酶的研究进展[J].麦类作物学报,2003,23:81-85

[8]苏东民,魏雪芹.发芽对小麦及面粉品质的影响[J].粮食科技与经济,2005(06):39-41

[9]李巨秀,魏益民,王立柱等.小麦籽粒在制麦过程中胚乳降解酶活性变化的研究[J].中国粮油学报,2007,22(03):34-36

[10]岳海凤,郜庆炉,薛香.小麦а-淀粉酶活性测定方法比较[J].陕西农业科学,2008(06):6-7

[11]余江,管军军.芽麦中酶的研究及其在饲料中的应用[J].广东饲料,2010,19(02):28-29

[12]Russell https://www.wendangku.net/doc/132985929.html,PETITIVE AFFINITY CHROMATOGRAPHY OF WHEAT a-AMYLASE [J].FEBS LETTERS,1975,52:66-68

[13]Belma Ozbek,Semra Yuceer.а-Amylase inactivation during wheat starch hydrolysis process [J].ProcessBiochemistry,2001,37: 87–95

[14]A.F.TjinWongJoe1,R.W.Summers et al.Pre-maturity α-amylase and incipient sprouting in UK winter wheat,with special reference to the variety Rialto[J].Euphytica,2005,143:265–269

[15]Daryl Mares,Kolumbina https://www.wendangku.net/doc/132985929.html,te-maturity a-amylase:Low falling number in wheat in the absence of preharvest sprouting[J].JournalofCerealScience,2008,47:6–17

[16]Neil Roder,Catherine Gerard.Factors affecting the action of a-amylase on wheat starch: Effects of water availability.An enzymic and structural study[J].FoodChemistry,2009,113:

471–478

[17]丹麦诺和诺德公司.用于焙烤业的淀粉酶[J].配料,1996,3(10):24-25 Amylase and Its Research Progress of Wheat

Abstract:We study the function of wheat amylase and its mechanism of action from all aspects, and the study shows that the wheat а - amylase and β-amylase play an important role on the influence of food quality. We specify wheat amylase study is very necessary through the domestic and foreign research progress. Finally mentioned amylase adding is to compensate some wheat with some amylase not enough to satisfy food processing. This article makes a comprehensive review from research meaning of wheat amylase, the domestic and foreign research status of wheat amylase and the future development direction.

Key words:wheat;amylase;progress

小麦萌发前后淀粉酶活力的比较2

实验七小麦萌发前后淀粉酶活力的比较 一、目的 1.学习分光光度计的原理和使用方法。 2.学习测定淀粉酶活力的方法。 3.了解小麦萌发前后淀粉酶活力的变化。 二、原理 种子中贮藏的碳水化合物主要以淀粉的形式存在。淀粉酶能使淀粉分解为麦芽糖。 2(C6H10O5)n+H2O-------nC12H22O11 麦芽糖有还原性,能使3,5-二硝基水杨酸还原成棕色的3-氨基5-硝基水扬酸。后者可用分光光度计法测定。 休眠种子的淀粉酶活力很弱,种子吸胀萌动后,酶活力逐渐增强,并随着发芽天数的增长而增加。 本实验观察小麦种子萌发前后淀粉酶活力的变化。 三、器材 1.25毫升刻度试管。 2.吸管。 3.试管 4.离心管。 5.分光光度计。 6.离心机。 7.恒温水浴。 8.研钵 四、试剂 1. 标准麦芽糖溶液(10umol/ml):精确称量360mg麦芽糖,pH 6.9磷酸钠0.02 摩尔/L磷酸钠(内含6.7mmol/LNaCl)缓冲液 2.pH 6.9磷酸钠0.02摩尔/L磷酸钠(内含6.7mmol/LNaCl)缓冲液 3.l%淀粉溶液:1克可溶性淀粉溶于100毫升0.02摩尔/L磷酸缓冲液,其中含有0.006摩尔/L氯化钠。 4.3,5-二硝基水杨酸试剂: 1g 3,5-二硝基水杨酸溶于20毫升2摩尔/L的氢氧化钠溶液和50毫升蒸馏水中;再加人30克酒石酸钾钠,用水定容至100毫升. 5.石英砂5克 五、操作步骤 1.种子发芽:

小麦种子浸泡2.5小时后,放人25℃恒温箱内或在室温下发芽。 2.酶液提取: 取发芽第三天或第四天的幼苗15株,放人研钵内,加石英砂 200毫克,加pH 6.9磷酸钠0.02摩尔/L 磷酸钠(内含6.7mmol/LNaCl )缓冲液10毫升,用力磨碎。在室温下放置 20分钟,搅拌几次。将提取液离心(3000转/min )6-7分钟。将上清液倒人量筒,测定酶提取液的总体积。进行酶活力测定时,将酶提取液稀释10倍。 取干燥种子或浸泡2.5小时后的种子15粒作为对照(提取步骤同上)。 3.酶活力测定: (1)取25毫升刻度试管4支。编号。按下表要求加人各试剂(各试剂须25℃预热10分钟)。 将各管混匀,放在25℃,水浴中保温3分钟后,立即向各管中加人10%3,5-二硝基水杨酸溶液2毫升。 (2)取出各试管,放人沸水浴中加热5分钟。冷至室温,加水稀释至25毫升。将各管充分混匀。 (3)用空白管作对照;在540nm 处测定各管的光吸收值,将读数填人上表。 4.计算 根据溶液的浓度与光吸收值成正比的关系,即:A 标准/A 未知=C 标准/C 未知 :则C 酶=A 酶×C 标准/A 标准 总酶活力=[C 酶 –Co ]* n * V 酶 C 酶:种子酶或是幼苗酶分解淀粉产生的麦芽糖的浓度(mg/ml ) Co:表示标准管中麦芽糖浓度 n:为酶溶液稀释的倍数 V :为提取酶液的总体积(ml )

(整理)α-淀粉酶综述

α-淀粉酶综述 佚名2013-10-06 摘要:α-淀粉酶分布十分广泛,遍及微生物至高等植物。α-淀粉酶是一种十分重要的酶制剂,大量应用于粮食加工、食品工业、酿造、发酵、纺织品工业和医药行业等,是应用最为广泛的酶制剂之一。本文概述了α-淀粉酶的发现和应用发展史、分离纯化及结构的研究史、催化机制及其研究史、工业化生产和应用现状与发展趋势等。 关键词:α-淀粉酶发现应用分离纯化结构催化机制研究史发展趋势 α- 淀粉酶( α- 1,4- D- 葡萄糖- 葡萄糖苷水解酶) 普遍分布在动物、植物和微生物中, 是一种重要的淀粉水解酶。其作用于淀粉时从淀粉分子的内部随机切开α-1,4糖苷键,生成糊精和还原糖。由于产物的末端残基碳原子构型为α构型,故称α-淀粉酶。现在α-淀粉酶泛指能够从淀粉分子内部随机切开α-1,4糖苷键,起液化作用的一类酶。 1 α-淀粉酶的发现和应用史 1.1 α-淀粉酶的发现 啤酒是最古老的酒精饮料,发酵是其关键步骤,其中所包含的糖化过程就是把淀粉转化为糖。这个转化过程的机理一直都没有被弄清楚,直到淀粉的发现。 在19世纪早期,许多科学家都在研究谷物提取物中淀粉的消化机理。Nasse(1811年)发现,从生物体中提取的淀粉能过被转化为糖,而从被沸水杀死的植物细胞中提取的淀粉不能被转化为糖。Kirchhoff(1815年)做了一个巧妙的实验。他将4份的冷水加入到2份的淀粉中,并边加边搅拌。之后加入20份的沸水使其形成一层厚厚的淀粉糊。在淀粉糊还是余温的时候,加入被粉碎的麸质(或麦芽),然后在40-60°列式温度下水浴。1-2小时后发现,淀粉糊开始缓慢液化。8-10小时后,淀粉糊被转化为一种甜的溶液。之后,他将其通过过滤和蒸发浓缩得到了糖浆,品尝后发现,其和发酵液一样甜。在操作的过程中,他注明了实验过程中仅添加了非常少的麸质,并且得到的糖浆与淀粉的量成正比。此外,如果在加入麸质前加入几滴高浓度的硫磺酸,最终就没有糖生成。从这个实验中他得到结论1)麸质是一种能够使温水中的淀粉粉末转化为糖的物质。2)作为种子发芽的结果,相比种子内的物质而言,麸质能过将更多的淀粉转化为糖。至此,Kirchhoff奠定了发现谷物中一种能够将淀粉转化为糖的蛋白质的基础。

制粉工艺对小麦粉粉质特性和糊化特性的影响

制粉工艺对小麦粉粉质特性和糊化特性的影响 在我国,小麦制粉工艺主要分传统工艺和脱皮工艺两种〔两者的区别在于后者先将小麦除麦沟以外的皮层通摩擦和切削去除,然后入磨。与传统工艺的直接入磨比较,脱皮工艺的粉路缩短,出粉率和生产率提高,但能耗增加。 改变制粉工艺会导致小麦粉的损伤淀粉含量和粒度分布等特性的变化,从而对小麦粉糊化特性也产生影响,而淀粉糊化特性是反映淀粉品质的重要指标之。研究显示,小麦粉的一些主要糊化特性,比如糊化温度、峰值粘度、保持强度、回生值等,均在一定程度上影响而包、面条、馒头等食品的外观品质和食用品质。峰值粘度表示的小麦粉粘度性状能够反映不同小麦品种的面条品质,并与不同类型面条的弹性、韧性和食用特性呈显著正相关。研究还显示,快速粘度分析仪的参数与馒头品质特性有明显的相关性,特别是用峰值粘度高的小麦粉制作的馒头感官评分高。 过去有关这两种制粉工艺的比较研究,是从不同的制粉工厂取样后分析或是通过实验磨制取样品。前者,小麦的品种、出粉率等无法控制,可比性较差;而后者虽然小麦的品种和出粉率有所保障,但与实际生产差距较大。本研究选用3种小麦(高、中、低筋各一种),利用不同工艺的制粉工厂制取样品,分析小麦粉粒度和损伤淀粉含量等粉质特性的变化情况,并使用快速枯度分析仪(Rapid Visco Analyser, RVA)研究不同制粉工艺对小麦粉糊化特性的影响。 1 材料与方法 1.1 试验材朴 小麦品种:8901(高筋)、南阳白麦(中筋)和澳大利亚白麦(低筋)。 小麦粉:由天津某面粉厂(传统工艺)和北京某面粉厂(脱皮工艺)提供,加工能力均为120 t/d。分别采用以上3种原料制取特一粉和特二粉,一共得12个小麦粉样品(控制特一粉出粉率46%,特二粉出粉率28%)。 1.2 实验方法 1.2.1 水分测定 按AACC 44-16 (AACC 1983)的方法进行测定。 1.2.2 蛋自质含虽测定 按GB/T 5511-85微量凯氏定氮法进行测定。 1.2.3 小麦粉粘度参数测定 根据AACC76-21的标准方法1,同时参考谷物粘度测定和快速粘度仪法(LS/T 6101-2002),测定小麦粉峰值粘

小麦中的淀粉酶及其研究进展

小麦中的淀粉酶及其研究进展 摘要:从各个方面来研究了小麦中淀粉酶的功能作用以及它的作用机理,通过研究可知,小麦中的а-淀粉酶和β-淀粉酶对食品的品质的影响起着重要的作用。并通过国内外的研究进展来进一步说明小麦中淀粉酶的研究是很有必要的。最后提到了淀粉酶的添加来弥补某些淀粉酶不足以满足食品加工的小麦。本文主要从小麦中的淀粉酶研究意义,国内外小麦中的淀粉酶的研究近况以及未来的发展方向进行了较为全面的综述。 关键词:小麦;淀粉酶;研究进展 在活细胞中进行着大量的化学反应的特点是速度很快,且能有秩序的进行,从而使得细胞同时能进行各种降解代谢及合成代谢,以满足生命活动的需要。生物细胞之所以能够在常温常压下以极高的速度和很大的专一性进行化学反应是由于其中存在一种称为“酶”的生物催化剂。而在小麦的生长,储存,加工等环节中,其中存在的酶就具有非常重要的作用,小麦中的酶会影响着小麦的储存,加工等品质。小麦粉中的淀粉酶主要有3类,即а-淀粉酶,β-淀粉酶和葡萄糖淀粉酶。其中与面包烘焙有关的主要是а-淀粉酶和β-淀粉酶,而且а-淀粉酶与小麦的储藏品质也有着极其密切的关系。所以对小麦中的淀粉酶进行研究是十分有必要的。 1.研究小麦中的淀粉酶的意义 小麦中的淀粉酶主要有а-淀粉酶,β-淀粉酶和葡萄糖淀粉酶这三类。面粉有很多用途,可以制成各种不同的成品食品。而面粉大多数都是小麦面粉,可见要研究面粉就的研究小麦,并且小麦中的а-淀粉酶,β-淀粉酶与面包烘焙有关,而且а-淀粉酶与小麦的储藏品质也有着极其密切的关系。所以研究小麦中的淀粉酶是非常有意义的。通过研究可以更好地把握不同小麦品种的淀粉酶的性质,来改善淀粉酶,从而来改进食品品质。 1.1小麦中的а-淀粉酶对面包品质的影响 大量的研究已证实,由于淀粉酶在发酵过程中对淀粉分子进行了有益的修饰,进而改善了面包的质地、体积、颜色、货架寿命等方面的性质,具体影响如下[1,2]: 1.1.1 а-淀粉酶对面包品质的影响 ○1а-淀粉酶能增大面包体积。а-淀粉酶是通过适当阻止面筋的形成来使面包体积增加的,

探索淀粉酶对淀粉和蔗糖的作用(知识资料)

Sy-5 探索淀粉酶对淀粉和蔗糖的作用 酶:是活细胞产生的一类具有生物催化作用的有机物。酶的作用具有专一性。 一、实验原理 淀粉和蔗糖都是非还原糖。它们在酶的催化作用下都能水解成还原糖。还原糖能够与斐林试剂发生氧化还原反应,生成砖红色的氧化亚铜沉淀。 用淀粉酶分别催化淀粉和蔗糖的水解反应,再用斐林试剂鉴定溶液中有无还原糖,就可以看出淀粉酶是否只能催化特定的化学反应。 证明酶的专一性。 二、目的要求 1.初步学会探索酶催化特定化学反应的方法。 2.探索淀粉酶是否只能催化特定的化学反应。 三、重点与难点 1.重点 ①初步学会探索酶催化特定化学反应的方法--探索酶的特性之一(酶的专一性)的方法。 ②探索淀粉酶是否只能催化淀粉的反应。 2.难点 ①学会探索实验的设计方法和探索方法。 ②让学生学会探索实验的方法,培养学生独立实验能力和创新思维能力。 四、材料用具 质量分数为2%的新鲜的淀粉酶溶液。 试管,大烧杯,量筒,滴管,温度计,试管夹,三脚架,石棉网,酒精灯,火柴。 质量分数为3%的可溶性淀粉溶液,质量分数为3%的蔗糖溶液,斐林试剂,热水。 五、方法步骤(录象观察) 1.取材 2.实验过程 3.结论 序号项目试管 1 2 1 注入可溶性淀粉溶液2mL \ 2 注入蔗糖溶液\ 2mL 3 注入新鲜的淀粉酶溶液2mL 2mL

结论: 1号试管中出现砖红色沉淀,2号管无颜色变化。淀粉酶只能把淀粉水解成麦芽糖,不能水解蔗糖。验证了酶的专一性。 (1)做好本实验的关键是蔗糖的纯度和新鲜程度。这是因为蔗糖是非还原性糖,如果其中混有少量的葡萄糖或果糖,或蔗糖放置久了受细菌作用部分分解成单糖,则与斐林试剂共热时能生成砖红色沉淀,使人产生错觉。为了确保实验的成功,实验之前应先检验一下蔗糖的纯度。普通的细粒蔗糖往往由于部分水解而具有一些还原糖。可用市售大块冰糖,水洗去其表面葡萄糖得到纯净的蔗糖。 (2)实验中要将试管的下半部浸到37℃的温水中,因为淀粉酶在适宜的温度条件下催化能力最强。 (3)在实验中,质量分数为3%的蔗糖溶液要现配现用(以免被细菌污染变质),取唾液时一定要用清水漱口,以免食物残渣进入唾液中。 (4)制备的可溶性淀粉溶液,一定要完全冷却后才能使用,因为温度过高会使酶活性降低,甚至失去催化能力。 (5)实验中如果2号试管也产生了砖红色沉淀,可能的原因是: 蔗糖溶液放置的时间过长,蔗糖溶液中的微生物分解成还原性糖,从而影响实验效果。这时应临时配制蔗糖溶液。 另一个可能的原因是试管不干净,所以实验之前应将试管用清水再清洗一次,试管编号要醒目。 (6)实验步骤一定要按要求的程序进行,不可随意改变。 (7)如果实验中,自己的实验结果与理论上的预期结果不一致,应再设计实验,进行进一步的验证或找出问题所在。 Ⅲ实验理论 本实验是探索类实验。主要目的是通过研究淀粉酶对淀粉和蔗糖的水解作用是否都具有催化作用,探索酶催化化学反应的特点。本实验给我们的重要启示是:设计实验时,首先要从已知人手,确定何为实验变量(自变量),何为因变量,何为控制变量。 本实验的已知条件为题目,即“探索淀粉酶对淀粉和蔗糖的作用”。 从题目可知: ①淀粉、蔗糖水解的产物,水解的速率等变化的结果,即因变量。从因变量入手我们将推知自变量(实验变量)对其的影响程度或它们之间的关系。 ②淀粉、蔗糖在实验过程中的浓度、用量、淀粉酶的浓度、用量、水解过程的温度等都为控制变量,需遵循同时等量原则,以排除控制变量对2个水解反应的影响。 ③淀粉酶本身是实验变量。通过研究确定其分别对淀粉水解作用和蔗糖水解作用的影响。 在以上分析的基础上,再安排淀粉、蔗糖、水、淀粉酶、温度、酸碱度等各变量的“出场”顺序,想必会容易许多。 Ⅳ随堂演练 1.下列关于酶的叙述,不正确的是() A.酶的催化效率很高 B.酶是具有催化功能的蛋白质

小麦转基因研究进展

转基因小麦研究进展及前景 摘要:自第一株转基因小麦报道以来,小麦转基因育种研究发展迅速,通过转基因技术实现的小麦遗传转化弥补了经典小麦育种的不足,突破了可利用基因库的限制,取得了可喜的进展。简要介绍了基因枪法、农杆菌介导法和花粉管通道法等基因转化方法在小麦遗传转化中的应用,讨论了转基因技术在获得抗除草剂、抗病虫、抗逆、改良品质和雄性不育转基因小麦植株等方面的应用现状及其存在的主要问题与对策。 关键词:小麦;转基因;分子育种;进展 采用远缘杂交技术将小麦野生近缘物种中的有益外源基因导入小麦栽培品种,对其抗性、品质、产量的提高发挥了重要作用。但由于双亲亲缘关系较远造成杂交不结实、杂种不育、杂种后代长期分离、预见性差,使该技术在小麦遗传改良上的应用受到一定限制。 植物转基因技术被证明是进行外源基因定向转移独特而有力的手段,一定程度上补充或改进了传统的育种方法。通过植物遗传转化技术,可以按照需要,将有遗传信息的DNA 片段即目的基因进行人工重组,在离体条件下转入宿主细胞进行复制、表达,定向改造植物,可以打破基因流的界限,而且大大缩短育种周期。小麦是举世公认的最难转化的重要农作物之一,且转基因研究起步较晚,经过许多学者十几年的不懈努力,取得了长足的进展。目前,几乎所有的作物都开展了转基因研究,育种目标涉及到高产、优质、高效、兼抗性及多用途等诸多方面,一批抗逆性(如抗病、抗虫、抗除草剂)转基因作物已进入商品化生产阶段。美国研制成功的世界第一例抗草甘磷除草剂转基因小麦已经通过安全性试验;抗草胺膦转基因小麦、抗咪唑啉酮转基因小麦、高蛋白转基因小麦、抗虫和耐镇草宁除草剂转基因小麦、抗蚜虫转基因小麦、抗小麦黄花叶病毒转基因小麦,以及抗白粉病、赤霉病和黄矮病的转基因小麦正在田间释放[1,2];高分子量谷蛋白亚基转基因小麦[3]、转Trx-S 基因抗穗发芽小麦新品系已进入中试阶段[4]。近年来,中国在小麦转基因方面也取得了初步的进展,并获得了一批具有抗病虫、抗逆境及改善品质的转基因小麦新材料,部分品系已经进入环境释放阶段。本文概述了小麦转基因研究常用遗传转化技术及其在小麦遗传改良中的应用,讨论了存在的主要问题及采取的应对措施。 1 小麦转基因技术 小麦转基因技术是指用人工方法将外源基因或DNA 导入小麦细胞,使之稳定地整合、表达并遗传的综合技术。小麦转基因技术可根据转化目的基因否需要通过组织培养再生植株分为两大类,第一类需要通过组织培养,常用的方法有农杆菌介导法、基因枪介导法、花粉管通道法等;第二类不需要通过组织培养,如PEG法、电激法等。在小麦遗传改良中应用最广泛的是第一类方法。 1.1 花粉管通道法 中国学者周光宇1974 年提出的DNA 片段杂交假说是花粉管通道法的理论基础,他于1983 年建立了花粉管通道法,该技术利用植物授粉后花粉萌发形成的花粉管,将外源DNA 送入胚囊中尚不具备正常细胞壁的合子。利用该法进行基因转移的工作主要集中在中国。1992 年,周文麟等通过花粉管法将C4作物的DNA 导入小麦,获得了具有C4作物若干性状的转“基因”后代[5]。随后,曾君祉等利用该法将带有GUS基因的pBI121 质粒导入小山3号,获得 5株转基因植株,转化率为4.7%[6]。阎新甫等将抗白粉病的大麦DNA导入花76,既获得了符合遗传规律的稳定抗病后代,还明确了抗白粉病基因由一对显性基因控制[7]。Ziberstein A 等将质粒DNA 涂于授粉的柱头,提高了转化频率,并完成后代分析和分子鉴定[8]。成卓敏等将大麦黄矮病毒GPV 株系的外壳蛋白基因导入小麦品种,获得了抗黄矮病毒GPV 的转基

淀粉酶活性研究

淀粉酶活性研究 宁加彬1,王文移2 (青岛科技大学) 摘要:淀粉酶主要用作果汁加工中的淀粉分解和提高过滤速度以及蔬菜加工、糖浆制造、葡萄糖等加工制造。淀粉酶活性的研究在淀粉催化分解工程中占有 重要地位。文中综述了淀粉酶活性及其热稳定性,电场对淀粉酶活性的影响。 pH值、温度、淀粉浓度和钙的添加量以及瞬时高压处理对α-淀粉酶的热稳定 性和活性的影响 关键词:淀粉酶酶活性热稳定性 淀粉酶是水解淀粉和糖原的酶类总称,通常通过淀粉酶催化水解织物上的 淀粉浆料,由于淀粉酶的高效性及专一性,酶退浆的退浆率高,退浆快,污染少,产品比酸法、碱法更柔软,且不损伤纤维。对淀粉酶的研究,有利于我们 更好的理解其催化机理。淀粉是植物种子的主要贮存物质,淀粉酶的主要作用是催化淀粉的水解,淀粉被水解成简单有机化合物并提供细胞生长所需的能量。 1、淀粉酶的研究概况 淀粉酶研究经历了一个较长的奠定和发展时期。在中国知网依据主题—— 淀粉酶进行检索,结果显示在1979-2013年共涉及15840篇文献。其中,2005 年以前的总计5256篇,2005-2010年5256篇,也就是说2005年之前的研究篇 数仅占目前土壤酶研究总数的1/3。而从2005年开始我国对土壤酶活性研究 的论文以超百篇的速度增加,且增加趋势较为明显,仅2012年就有724篇。 针对我国淀粉酶活性研究的快速发展,该文就我国淀粉酶研究种类及研究 方法的资料进行归纳总结,旨在进一步扩宽我国淀粉酶活性研究的范围,为今 后淀粉酶的研究提供一些新的思路,同时也可促进我国淀粉酶研究方法的发展。 2、淀粉酶的分类 淀粉酶是水解淀粉和糖原酶类的统称。按水解淀粉方式不同,把淀粉酶分 为α-淀粉酶、β-淀粉酶、葡萄糖淀粉酶和异淀粉酶四类。目前淀粉酶已广泛 地应用于食品、发酵、畜牧业生产、谷物加工、纺织、造纸、轻化工业、医药 和临床分析等领域 (Ashok et al.,2000;Lili,2000;柳辉等,2007;张剑等,2009)。其中,中温淀粉酶主要应用于饴糖、啤酒、黄酒、葡萄糖、味精以及抗生素等行业,也可以用于高质量的丝绸人造棉、化学纤维的退浆。淀粉 酶广泛存在于微生物、植物和动物体中。现已有大量有关土壤微生物产淀粉酶 及酶学性质的文献报道(卢涛等,2002,四川大学学报(自然科学版),39(6):1131—1133;张应玖等。2002)。

小麦抗性淀粉的研究进展

小麦抗性淀粉的研究进展 摘要:该文主要阐述了抗性淀粉的理化性质、制备工艺和遗传特性的研究现状,最后简介其其在食品工业中应用前景。 关键词:小麦、抗性淀粉、RS3 1983 年,英国生理学家 Hans Englyst 首先将一部分在人体肠胃中不被淀粉酶消化的淀粉定义为抗性淀粉(Resistant Starch,简称 RS)[1]。近年来碳水化合物与健康关系的研究发现,抗性淀粉具有提供能量,降低食物热效应[2],调节、保护小肠, 防止糖尿病和脂肪堆积以及促进锌、钙、镁离子的吸收[3]等功能, 因此 RS 已成为近年来碳水化合物研究的热点之一。 抗性淀粉是一种无异味、持水性低、多孔性白色粉末,抗性淀粉至今尚无化学上精确分类,目前大多根据淀粉来源和人体试验结果,将抗性淀粉分为4种类型:RS1(物理包埋淀粉)、RS2(抗性淀粉颗粒)、RS3(回生淀粉)、(化学改性淀粉),其中 RS3是研究和应用最广泛一种。RS3是指糊化后的淀粉在冷却或储存过程中部分重结晶,由于结晶区的出现,阻止淀粉酶靠近结晶区域的葡萄糖苷键,并阻止淀粉酶活性基团中的结合部位与淀粉分子结合,造成不能完全被淀粉酶作用而产生抗酶解性。 小麦是当今产量最大的粮食作物之一。随着小麦深加工的发展,小麦淀粉工业在我国发展迅速,但由于小麦淀粉加工适应性差,其在实际领域中并未得到很好的应用。因此选择以小麦淀粉为原料开发抗性淀粉产品,具有理论和实际上的重大意义。 一、小麦抗性淀粉的理化性质研究 小麦抗性淀粉的数均分子量为3198,重均分子量为7291,抗性淀粉形成过程中,其分子结构特征没有变化[4]。 Behall 等[5]对 RS 的理化特性进行了分析,表明 RS 为白色无异味的多孔性粉末,平均聚合度在 30-200 之间,在 100-165℃之间直链淀粉晶体熔融,产生吸热反应;耐热性高,持水性低,含热量低。X-衍射表明, RS 在空间上形成双螺旋结构,分离的 RS 的衍射图谱显示其为 B 型晶体结构[6]。 邵秀芝等[7]采用微波—酶法制备小麦抗性淀粉,并对其物理性质惊醒了研究。发现其与原小麦淀粉相比,小麦抗性淀粉表面粗糙,形状变得不规则,结晶结构为B 型和 V 型结合体,持水性大于原淀粉,而乳化能力和乳化稳定性均低于原淀粉;在相同溶液浓度条件下,抗性淀粉粘度比原淀粉低得多。 王娟等等[8]利用压热法制备小麦抗性淀粉 RS3,并考察其部分理化性质及结构性质。结果表明,该产品含抗性淀粉 13.89%,透光率较好,持水力、溶解度和膨胀度都随水浴加热温度的升高而上升。其淀粉-碘复合物最大吸收波长为 594 nm,碘吸收曲线在 580~610 nm之间呈较宽的吸收峰。该产品颗粒形状大部分为圆形,偏光十字明显,多呈十字型,且交叉点均位于颗粒中心;起糊温度为68.7 ℃,糊化不易发生,但较易老化。淀粉颗粒结晶结构为 C 型,仍保留了小麦淀粉红外光谱的特征吸收峰。

小麦品质研究

专业文献综述 题目: 小麦优质蛋白亚基与小麦品质的研究进展 姓名: 赵娇娇 学院: 农学院 专业: 种子科学与工程 班级: 种子72班 学号: 1127219 指导教师: 王秀娥职称: 教授 2010年5 月31 日 南京农业大学教务处制

小麦优质蛋白亚基与小麦品质的研究进展 赵娇娇指导老师:王秀娥 (南京农业大学农学院种子科学与工程72班, 江苏南京 210095) 摘要:小麦籽粒蛋白质含量约为 8%-20%,主要包括谷蛋白和醇溶蛋白,是面团弹性和延伸性的物质基础。蛋白质组分与格组分的分布是影响小麦品质的重要因素,特别是高分子量麦谷蛋白(HMW-GS),因此提高蛋白质含量和改进 HMW-GS 组成一直是我国小麦加工品质改良的重要途径。目前推广的优质强筋小麦基本都携带优质亚基,然而真正适合烘焙优质面包的强筋小麦并不多,贮藏蛋白组分的含量及比例不合理是主要原因,改进贮藏蛋白亚基的质量组成是进一步提高我国小麦加工品质的有效途径。 关键词:谷蛋白、醇溶蛋白、品质、加工品质 Wheat proteins and their subunits and quality of wheat flour ZHAO Jiaojiao (Seed Science and Engineering 72, College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095) Abstract: Key words: 前言(引言):×××××(标题用小四号黑体,其它文字用小四宋体)××××××××××××××××××……… 正文:×××××(标题用小四号黑体,其它文字用小四宋体)××××××××××××××××××××××……… 结论:××××××(小四宋体)××××××××××××××××××××××××××××××××××××……… 参考文献: [1] 作者姓名,作者姓名.参考文献题目. 期刊或杂志等名称,年份,(期数). [2] 刘凡丰. 美国研究型大学本科教育改革透视[J] . 高等教育研究,2003,(1) [3] 作者姓名,作者姓名. 参考文献题目. 期刊或杂志等名称,年份,(期数).

淀粉泡沫材料研究研究进展

淀粉泡沫材料研究研究进展 作者:周江,佟金来源:吉林大学 [摘要]:在概述淀粉材料发泡原理的基础上,综述了淀粉泡沫材料研究与开发的最新进展。阐述了材料组成和发泡工艺参数等因素对淀粉泡沫材料的发泡行为和性能的影响,介绍了淀粉泡沫材料在包装领域的应用,并对未来的研发方向做了展望。 泡沫塑料(如聚苯乙烯泡沫)作为缓;中包装材料被大量使用。由于回收利用的可操作性差以及价格等方面的原因,绝大部分使用过的泡沫包装材料被作为废弃物处理掉的。这些泡沫材料质量轻、体积大而且难于腐烂降解,给环境带来了严重的冲击。采用生物降解材料是解决这一问题的有效途径之一。淀粉作为一种天然高分子,既可再生,又能完全降解。其低廉的价格和广泛的来源,使得淀粉成为制备生物降解塑料的主要原料之一[1-2]。以淀粉为原料研制开发的生物降解泡沫材料,在某些领域已经开始取代聚苯乙烯泡沫材料,它既可以抑制废弃的塑料泡沫包装材料造成的环境污染,又能节约有限的石油资源,对于解决目前全球面临的环境危机和资源危机无疑具有重要的意义。本文综述了这方面研究工作的最新进展并对淀粉泡沫材料在包装领域的应用前景进行了介绍。 1 淀粉材料的发泡 淀粉材料的发泡方法可分为2类:1)升温发泡,即在常压下迅速加热材料使得其中的水分汽化蒸发,从而在淀粉材料中形成多孔结构;2)降压发泡,即在一定的压力下加热材料,使得材料中的水成为过热液体,然后快速释放外部压力造成其中过热的水汽化蒸发,从而使淀粉材料发泡。在淀粉材料的发泡过程中,水的作用是非常特殊和重要的。在发泡前,水是淀粉材料的增塑剂,起着促进淀粉塑化的作用;在发泡过程中它又变成发泡剂,是泡体长大的动力。 淀粉材料的粘弹性是影响泡体长大的主要因素。而淀粉材料的粘弹性不但与温度有关,而且与淀粉的塑化程度及其水含量(或其它增塑剂)有关。为了使淀粉材料发泡,首先必须提供足够的热量,使淀粉材料的温度高于其玻璃化转变温度而处在橡胶态。水的存在将有效地降低淀粉材料的玻璃化转变温度。在发泡过程中,随着水的蒸发消失,材料的玻璃化转变温度不断升高,最终从橡胶态回到玻璃态,从而将体内的孔洞结构保持下来。如果材料的最终状态仍然是橡胶态,则体内的孔洞结构将逐渐塌陷萎缩。 2 淀粉材料发泡工艺 2.1 挤出发泡 挤出发泡技术是利用降压发泡的原理,通过挤出机实现的。淀粉和水以及其它添加剂进入挤出机后,在热和剪切的共同作用下,颗粒淀粉的结晶结构被破坏,并形成淀粉高分子的无序化熔体,即所谓的热塑性淀粉。由于螺杆的挤压和挤出机腔体的限制,加热的淀粉熔体中将建立起很高的压力,使得其中的水成为过热的液体(温度可高达220℃)而不汽化蒸发。当淀粉熔体从挤出机机头挤出后,物料中的压力被释放,过热的水瞬间汽化蒸发,在淀粉熔体中形成多孔结构。同时,物料温度的下降和由于水蒸发造成的材料玻璃化温度的上升,使得热塑性淀粉从高弹态回到玻璃态,从而将其中的多孔结构冻结而形成泡沫材料。用挤出发泡技术制备淀粉泡沫包装材料始于20世纪80年代末期,随后又有多项用挤出发泡技术制备淀粉泡沫材料的专利问世。该方法是目前生产缓冲包装使用的淀粉泡沫松散填充材料(loose fill)的主要方法。 2.2 烘焙发泡 Shogren等人利用食品工业中的烘焙技术,在封闭的模具中加热淀粉糊(温度范围175~235℃)制备出淀粉泡沫材料。与挤出发泡技术相比,用烘焙技术得到的淀粉泡沫材料一般在表明层有较

固定化酶的研究进展

固定化酶的研究进展 固定化酶是20世纪60年代发展起来的一项新技术。最初主要是将水溶性酶与不溶性体结合起来,成为不溶于水的酶衍生物,所以曾叫过“水不溶酶”和“固相酶”。但是,后来发现,也可以将酶包埋在凝胶内或置于超滤装置中,高分子底物与酶在超滤膜一边,而反应产物可以透过膜逸出。在这种情况下,酶本身仍是可溶的,只不过被固定在一个有限的空间内不能再自由流动。因此,用水不溶酶或固相酶的名称就不再恰当。在1971年第一届国际酶工程会议上,正式建议采用“固定化酶”的名称[1]。 一固定化酶的发展历程[1] 酶参与体内各种代谢反应,而且反应后其数量和性质不发生变换。作为一种生物催化剂,酶可以在常温常压等温和条件下高效地催化反应,一些难以进行的化学反应在酶的催化作用下也可顺利地进行反应,而且反应底物专一性强、副反应少等优点大大促进了人们对酶的应用和酶技术的研究。近年来,酶被人们广泛应用于食品生产与检测、生物传感器、医药工程、环保技术、生物技术等领域。 1916年美国科学家NELSON和GRIFFIN最先发现了酶的固定化现象;直到20世纪50年代,酶固定化技术的研究才真正有效地开展;1953年,德国科学家GRUB-HOFER 和SCHLEITH首先将聚氨基苯乙烯树脂重氮化,然后将淀粉酶、胃蛋白酶、羧肽酶和核糖核酸酶等与上述载体结合制备固定化酶;到20世纪60年代,固定化技术迅速发展;1969年日本千畑一郎利用固定化氨基酰胺酶从DL-氨基酸生产L-氨基酸,是世界上固定化酶大规模应用的首例;在1971年的第一届国际酶工程会议上,正式建议使用固定化酶(mimobilizedenzyme)这个名称。我国的固定化酶研究开始于1970年,首先是中国科学院微生物所和上海生化所的酶学工作者同时开始了固定化酶的研究工作 二固定化酶的特点[2] [3] 固定化酶具有许多优点:极易将固定化酶与底物、产物分开;可以在较长时间内进行分批反应和装柱连续反应;在大多数情况下,可以提高酶的稳定性;酶反应过程能够加以严格控制;产物溶液中没有酶的残留,简化了提取工艺;较水溶性酶更适合于多酶反应;可以增加产物的收率,提高产物的质量;酶的使用效率提高,成本降低。但是,固定化酶也有其不足之处,如固定化时,酶活力有损失;增加了固定化的成本,工厂开始投资大;只能用于水溶性底物,而且较适用于小分子。 三固定化酶固定化方法[3] [4] 由于所固定的酶或细胞的不同,或者固定的目的及固定用的载体的不同,使固定化方法大相径庭。根据固定的一般机理,可将之分为如下几种方法。酶的固定化方法有:

实验九、小麦萌发前后淀粉酶活力的比较

实验九、小麦萌发前后淀粉酶活力的比较 一、目的 1.学习分光光度计的原理和使用方法。 2.学习测定淀粉酶活力的方法。 3.了解小麦萌发前后淀粉酶活力的变化。 二、原理 种子中贮藏的碳水化合物主要以淀粉的形式存在。淀粉酶能使淀粉分解为麦芽糖。 2(C6H10O5)n+H2O-------nC12H22O11 麦芽糖有还原性,能使3,5-二硝基水杨酸还原成棕色的3-氨基5-硝基水扬 酸。后者可用分光光度计法测定。 休眠种子的淀粉酶活力很弱,种子吸胀萌动后,酶活力逐渐增强,并随着发芽天数的增长而增加。 本实验观察小麦种子萌发前后淀粉酶活力的变化。 三、器材 1.25毫升刻度试管。 2.吸管。 3.乳体。 4.离心机和离心管。 5.分光光度计。 6.恒温水浴。 7、容量瓶50ml 8、电磁炉 四、试剂 1. 0.1%标准麦芽糖溶液20毫升:精确称量100毫克麦芽糖,用少量水溶解后,移入100ml 容量瓶中,加蒸馏水至刻度。 2.pH 6.9,0.02摩尔/L磷酸缓冲液100毫升 3.l%淀粉溶液100毫升:1克可溶性淀粉溶于100毫升0.02摩尔/L磷酸缓冲液,其中含有0.006摩尔/L氯化钠。 4.l%3,5-二硝基水杨酸试剂: 1g 3,5-二硝基水杨酸溶于20毫升2摩尔/L的氢氧化钠溶液和50毫升水中;再加人30克酒石酸钾钠,定客至100毫升。若溶液混浊,可过滤。 5.l%氯化钠溶液300毫升 6.海砂5克 五、操作步骤 1.种子发芽:(如果是绿豆芽,则只需要24就可以) 小麦种子浸泡2.5小时后,放人25℃恒温箱内或在室温下发芽。 2.酶液提取: 取发芽第三天或第四天的幼苗(芽长 约1cm)15株,放人乳钵内,加海砂200 毫克,加1%氯化钠溶液10毫升,用力 磨碎。将匀浆倒入离心管中,用5mL1%氯 化钠溶液分次将残渣洗入离心管。提取液 在室温下放置提取15~20min,每隔数分 钟搅1次,使其充分提取。然后在

小麦品质研究

小麦优质蛋白亚基与小麦品质的研究进展 赵娇娇 1127219 : 王秀娥职称: 教授

小麦优质蛋白亚基与小麦品质的研究进展 摘要:小麦籽粒蛋白质含量约为 8%-20%,主要包括谷蛋白和醇溶蛋白,是面团弹性和延伸性的物质基础。蛋白质组分与格组分的分布是影响小麦品质的重要因素,特别是高分子量麦谷蛋白(HMW-GS),因此提高蛋白质含量和改进 HMW-GS 组成一直是我国小麦加工品质改良的重要途径。目前推广的优质强筋小麦基本都携带优质亚基,然而真正适合烘焙优质面包的强筋小麦并不多,贮藏蛋白组分的含量及比例不合理是主要原因,改进贮藏蛋白亚基的质量组成是进一步提高我国小麦加工品质的有效途径。 关键词:谷蛋白、醇溶蛋白、品质、加工品质 1.优质小麦品质指标 小麦是一种世界性的重要的粮食作物。小麦品质主要包括营养品质、加工品质以及形态品质[1]。小麦加工品质通常用出粉率、灰分含量、动力消耗和面粉百度等磨粉品质衡量;还包括烘焙品质、蒸煮品质及制作品质在内的食品加工品质。小麦籽粒蛋白含量及其氨基酸组成的平衡程度决定小麦的营养价值,因此小麦各种品质都与它所含蛋白质的种类与含量有关。对于小麦的一次加工品质,存在于小麦胚乳中的麦醇溶蛋白和麦谷蛋白是小麦面筋的主要成分,约占面筋总量的90%,评价小麦品质不能忽略蛋白质的质与量。目前对品质性状的评价主要是对一下三点进行分析研究。 1.1高分子量谷蛋白亚基 (HMW-GS) HMW-GS是由小麦第1组染色体长臂上基因编码形成。近年来研究表明[2],面包的烘烤品质与蛋白质的不同组分,特别是与一些HMW-GS有关,在Glu-D1位点编码的5 +10、Glu2B1位点的7OE +8﹡及17 +18、Glu-A1位点1及2﹡,对面团强度、沉降值和面包体积贡献较大。国外种质资源特别是含 5 +10的HMW-GS,在品质育种中起了重要作用。近年来新发现的亚基Glu-B1a (7OE+8﹡) 可显著提高HWM-GS总量和面团强度,7OE+8﹡可作为优质亚基用于强筋小麦育种。 但是,HMW-GS只能解释30%~79%的品质差异。HMW-GS的表达量、LMW-GS亚基以及醇溶蛋白等组成的不同,也是造成沉淀值和面筋弹性差异的重要原因。栗站稳[2]对443份国内外材料的分析结果表明,与国外品种相比优质亚基的频率明显偏低,是我国小麦加工品质差的重要原因之一;另外,中国品种醇溶蛋白谱带数目较少,且含有非优质谱带,可能是烘烤品质较差的另一个原因。目前,对小麦高分子量谷蛋白亚基(HMW-GS)的深入研究通过基因工程技术改善小麦品质已成为选育优质品种的一种方法。 1.2沉淀值(沉降值) 沉淀值即小麦面粉蛋白参加沉淀反应的沉淀体积,沉淀值测定法包括Zaleny法和微量SDS沉淀法。大量研究表明,沉淀值与面包体积、面团流变性参数、比沉淀值及高分子量麦谷蛋白亚基品质评分等都存在显著或极显著正相关,沉淀值是反应蛋白质含量和品质的综合指标,国际上已将沉降值作为鉴定小麦品质的重要标准。沉降值遗传力较高,高于蛋白质含量遗传力,比其他方法能更深刻地反映出遗传差异。所以,沉降值具有高遗传力,并与面粉品质呈显著相关,可作为品质育种的早代选择指标。 1

α淀粉酶产生菌的研究进展综述

α-淀粉酶产生菌的研究进展综述 1309030202 刘铭迪 【摘要】:α-淀粉酶广泛分布于动物、植物和微生物中,能水解淀粉产生糊精、麦芽糖、低聚糖和葡萄糖等,是工业生产中应用最为广泛的酶制剂之一。目前,α-淀粉酶已广泛应用于变性淀粉及淀粉糖、焙烤工业、啤酒酿造、酒精工业、发酵以及纺织等许多行业。本文对α-淀粉酶产生菌的研究进展进行了相关综述。 【关键词】:α淀粉酶产生菌;耐受;性质;应用 【正文】:α一淀粉酶(α一1,4一D一葡萄糖一葡萄糖苷水解酶)普遍分布在动物、植物和微生物中,是一种重要的淀粉水解酶。它以随机作用方式切断淀粉、糖原、寡聚或多聚糖分子内的α一1,4葡萄糖苷键,产生麦芽糖、低聚糖和葡萄糖等,是工业生产中应用最为广的酶制剂之一。它可以由微生物发酵制备,也可以从动植物中提取。不同来源的α淀粉酶的性质有一定的区别,工业中主要应用的是真菌和细菌α一淀粉酶。目前,α一淀粉酶已广泛应用于变性淀粉及淀粉糖、焙烤工业、啤酒酿造、酒精工业、发酵以及纺织等许多行业,是一种重要工业用酶。如在淀粉加工业中,微生物α一淀粉酶已成功取代了化学降解法;在酒精工业中能显著提高出酒率。其应用于各种工业中对缩短生产周期,提高产品得率和原料的利用率,提高产品质量和节约粮食资源,都有着极其重要的作用。 1、α一淀粉酶的性质 不同来源的α一淀粉酶的酶学和理化性质有一定的区别,它们的性质对在其工业应用中的应用影响也较大,在工业生产中要根据需要使用合适来源的酶,因此对淀粉酶性质的研究也显得比较重要。目前关于不同来源仅一淀粉酶性质的研究已经很多,但将它们进行完整归纳的比较少,本文将其性质进行总结,为以后α一淀粉酶的应用提高相关依据。 1.1 底物特异性 α一淀粉酶和其它酶类一样,具有反应底物特异性,不同来源的淀粉酶反应底物也各不相同,通常α一淀粉酶显示出对淀粉及其衍生物有最高的特异性,这些淀粉及衍生物包括支链淀粉、直链淀粉、环糊精、糖原质和麦芽三糖等。 1.2 最适pH和最适温度 反应温度和pH对酶活力影响较大,不同来源的α一淀粉酶有各自的最适作用pH和最适作用温度,通常在最适作用pH和最适作用温度条件下酶相对比较稳定,在此条件下进行反应能最大程度地发挥酶活力,提高酶反应效率。因此,在工业应用中应了解不同的酶最适pH和最适温度,确定反应的最佳条件,最大限度地提高酶的使用效率是很重要的。 通常情况下α一淀粉酶的最适作用pH一般在2到12之间变化。真菌和细菌类α一淀粉酶的最适pH在酸性和中性范围内,如芽孢杆菌仅一淀粉酶的最适pH为3,碱性α一淀粉酶的最适pH在9~12。另外,温度和钙离子对一些α一淀粉酶的最适pH有一定的影响,会改变其最适作用范围。不同微生物来源的α一淀粉酶的最适作用温度存在着较大差异,其中最适作用温度最低的只有25c~30℃,而最高的能达到100c~130c。另外,钙离子和钠离子对一些酶的最适作用温度也有一定的影响。 1. 3 金属离子对酶稳定性的影响 α一淀粉酶是金属酶,很多金属离子,特别是重金属离子对其有抑制作用;另外,巯基,N一溴琥珀酸亚胺,p一羟基汞苯甲酸,碘乙酸,BSA,EDTA和EGTA等对α一淀粉酶也有抑制作用。 2、α-淀粉酶的生产

淀粉塑料研究进展

得分:_______ 南京林业大学 研究生课程论文2013 ~2014 学年第二学期 课程号:73414 课程名称:生态环境科学 论文题目:热塑性淀粉材料的研究进展与应用 学科专业:材料学 学号:3130161 姓名:王礼建 任课教师:雷文 二○一四年五月

热塑性淀粉材料的研究进展与应用 王礼建 (南京林业大学理学院,江苏南京210037) 摘要:淀粉与其他生物降解聚合物相比,具有来源广泛,价格低廉,易生物降解的优点因而在生物降解塑料领域中具有重要的地位。本文介绍了淀粉的基本性质、塑化和塑化机理,以及增强体在热塑性淀粉中的应用现状和进展,并对市场应用现状和目前淀粉塑料存在的不足等方面进行了相关的分析。 关键字:淀粉塑料;塑化;增强;市场应用 Research progress and application of thermoplastic starch materials WANG Li-jian (College of Science, Nanjing Forestry University, Nanjing 210037, China) Abstract: Starch has an important status in the biodegradable plastics’ area compared with other biodegradable polymer, because it has a lot of advantages such as a wide range of sources, low cost and easy to be broken down. In this thesis, introduces the basic properties of starch, plastic and plasticizing mechanism, as well as reinforcement application status and progress of the thermoplastic starch, and reinforcement application status and progress of the thermoplastic starch. Aspects of the application and the current status of the market and the presence of starch plastics were insufficient correlation analysis. Key words: Starch plastics; plasticizers; enhanced; market applications 1 淀粉的基本性质 淀粉以葡萄糖为结构单元,分子链呈顺式结构,一般分为直链淀粉和支链淀粉两种。直链淀粉是以α-1,4-糖苷键连接D-吡喃葡萄糖单元所形成的直链高分子化合物,而支链淀粉是在淀粉链上以α-1,6-糖苷键连接侧链结构的高分子化合物,分子量通常要比直链淀粉的大很多。通常玉米淀粉中直链淀粉占28%,分子量大约为(0.3~3×106),占72%的支链淀粉分子量则可以达到数亿[1-2]。 淀粉是一种多羟基化合物,每个葡萄糖单元上均含有三个羟基。分子链通过羟基相互作用形成分子间和分子内氢键,因此淀粉具有很强的吸水性。淀粉与水

萌发小麦种子中淀粉酶酶学性质研究解析

萌发小麦种子中淀粉酶酶学性质研究(东北农业大学,生命科学学院,黑龙江省哈尔滨市 150030) 摘要: 酶是酶是一种生物催化剂,它具有催化剂属性,同是也具有一些无机催化剂所不具有的特性。催化特定化学反应的蛋白质、RNA或其复合体。是生物催化剂,能通过降低反应的活化能加快反应速度,但不改变反应的平衡点。本实验通过利用淀粉酶水解还原糖,还原糖能使3,5-二硝基水杨酸还原,生成棕色的3-氨基-5硝基水杨酸。淀粉酶活力与还原糖的量成正比,用比色法测定淀粉酶作用于淀粉后生成的还原糖的量,以单位质量样品在一定时间内生成还原糖的量表示酶活力。以淀粉在碘液中显蓝色性质,探究酶活性影响因素,常见的影响因素有:温度 pH 活性剂和抑制剂等。 Abstract:Enzyme is a biological catalyst is an enzyme, the catalyst having the property, the same also has some inorganic catalysts do not have the characteristics. Proteins catalyze specific chemical reactions,RNA or a composite thereof. Are biological catalysts,by reducing the activation energy of the reaction to accelerate the reaction rate, but does not change the equilibrium reaction. In this study, the use of enzymatic hydrolysis of starch sugar, sugar makes 3,5-dinitrosalicylic acid reduction ,a brown 3-amino-nitro-salicylic acid.Proportional to the amount of amylase activity and reducing sugars,measuring the amount of amylase in starch sugar produced by colorimetry ,a unit mass of the sample at the certain time. 关键词: 淀粉酶活性温度 PH 激活剂和抑制剂 引言: 新陈代谢是生命活动的基础,是生命活动最重要的特征。而构成新陈代谢的许多复杂而有规律的物质变化与能量变化,都是在酶催化下进行的。生物的生长发育、繁殖、遗传、运动、神经传导等生命活动都与酶的催化过程紧密相关,可以说,没有酶的参与,生命活动一刻也不能进行。酶是细胞产生的,受多种因素调节控制的具有催化能力的生物催化剂,与一般催化剂比较有以下不同点:酶易失活、酶具有很高的催化效率、酶具有高度专一性、酶活性受到调节和控制。而调节和控制又包括调节酶浓度、抑制剂和激活剂的调节等。[1] 按照淀粉酶水解淀粉的作用方式,可以分为α-淀粉酶、β-淀粉酶、异淀粉酶和麦芽糖酶四种类型。实验证明,当谷类种子萌发时,两类淀粉酶(α,β型)都存在,淀粉酶总酶活性随种子萌发将升高,有利于淀粉被降解为植物生长发育所需的葡萄糖。许多微生物包括

相关文档