文档库 最新最全的文档下载
当前位置:文档库 › 一、高考物理中的“八大”解题思想方法

一、高考物理中的“八大”解题思想方法

一、高考物理中的“八大”解题思想方法
一、高考物理中的“八大”解题思想方法

第二部分应考技巧指导——超常发挥,决胜高考

一、高考物理中的“八大”解题思想方法

现如今,高考物理更加注重考查考生的能力和科学素养,其命题越加明显地渗透着对物理方法、物理思想的考查。在平时的复习备考过程中,物理习题浩如烟海,千变万化,我们若能掌握一些基本的解题思想,就如同在开启各式各样的“锁”时,找到了一把“多功能的钥匙”。

.估算法

半定量计算(估算)试题在近几年各地高考题中屡见不鲜,如2018年全国卷ⅡT15结合高空坠物情境估算冲击力。此类试题是对考生生活经验的考查,要求考生在分析和解决问题时,要善于抓住事物的本质特征和影响事物发展的主要因素,忽略次要因素,从而使问题得到简捷的解决,迅速获得合理的结果。

【针对训练】

1.高空坠物极其危险。设想一个苹果从某人头部正上方45 m 高的楼上由静止落下,苹果与人头部的作用时间约为 4.5×10-4s,则头部受到的平均冲击力约为()

A.1×102 N

B.1×103 N

C.1×104 N

D.1×105 N

解析苹果做自由落体运动,则h=1

2gt

2,苹果从静止下落到与人头部作用的全

程根据动量定理有mgt-FΔt=0-0,其中Δt=4.5×10-4s,取g=10 m/s2,一个苹果的质量m≈150 g=0.15 kg,联立并代入数据解得F=1×104 N,选项C正确。

答案 C

2.如图1所示,某中学生在做引体向上运动,从双臂伸直到肩部与单杠同高度算1次,若他在1分钟内完成了10次,每次肩部上升的距离均为0.4 m,g取10 m/s2,则他在1分钟内克服重力所做的功及相应的功率约为()

图1

A.200 J ,3 W

B.2 000 J ,600 W

C.2 000 J ,33 W

D.4 000 J ,60 W

解析 中学生的质量约为50 kg ,他做引体向上运动,每次肩部上升的距离均为0.4 m ,单次引体向上克服重力所做的功约为W 1=mgh =50×10×0.4 J =200 J , 1分钟内完成了10次,则1分钟内克服重力所做的功W =10W 1=2 000 J ,相应

的功率约为P =W t =2 00060 W =33 W ,选项C 正确。

答案 C

3.(2019·山东日照模拟)2018年3月22日,一架中国国际航空CA103客机,从天津飞抵香港途中遭遇鸟击,飞机头部被撞穿一个直径约一平方米的大洞,雷达罩受损,所幸客机及时安全着陆,无人受伤。若飞机的速度为700 m/s ,小鸟在空中的飞行速度非常小,小鸟的质量为0.4 kg 。小鸟与飞机的碰撞时间为2.5× 10-4 s ,则飞机受到小鸟对它的平均作用力的大小约为( )

A.104 N

B.105 N

C.106 N

D.107 N

解析 鸟与飞机撞击时系统动量守恒,以飞机的初速度方向为正方向,由于鸟的质量远小于飞机的质量,鸟的初速度远小于飞机的速度,故鸟的初动量远小于飞机的动量,可以忽略不计,由动量守恒定律可知,碰撞后鸟与飞机的速度相等,为v ≈700 m/s ,对小鸟,由动量定理得F -

t =m v -0,解得飞机对小鸟的平均作用

力为F -=m v t =0.4×7002.5×10-4 N =1.12×106 N ,接近106 N ,由牛顿第三定律可知,飞机受到小鸟对它的平均作用力约为106 N ,选项C 正确。

答案 C

4.(2019·重庆七校联考)2018年2月7日凌晨,太空探索技术公司Space X 成功通

过猎鹰重型火箭将一辆特斯拉跑车送入绕太阳飞行的轨道。如图2所示,已知地球中心到太阳中心的距离为r D ,火星中心到太阳中心的距离为r H ,地球和火星绕太阳运行的轨迹均可看成圆,且r H =1.4r D ,若特斯拉跑车沿图中椭圆轨道转移,则其在椭圆轨道上的运行周期约为( )

图2

A.1.69年

B.1.3年

C.1.44年

D.2年

解析 设跑车在椭圆轨道上的运行周期为T ,椭圆轨道的半长轴为R ,由开普勒第三定律有r 3D T 2D

=R 3T 2,其中R =r D +r H 2,T D =1年,解得跑车在椭圆轨道上的运行周期T ≈1.3年,选项B 正确。

答案 B

【知识链接】 解决此类问题需要了解一些常见的数据,例如:

原子直径数量级为10-10 m 地球半径约为6 400 km

地球自转周期约为1天(24小时) 地球公转周期约为1年

近地卫星的运行周期约为85分钟 月球绕地球运行周期约为27天

一个鸡蛋的质量约为50 g 一个苹果的质量约为150 g

一袋牛奶的质量约为200 g 中学生的质量约为50 kg

课桌的高度约为80 cm 每层楼的高度约为3 m

自行车的速度约为5 m/s

π2≈10 .图象分析法 物理图象是将抽象物理问题直观、形象化的最佳工具,能从整体上反映出两个或两个以上物理量的定性或定量关系,利用图象纵、横坐标的物理意义,以及图线中的“点”“线”“斜率”“截距”和“面积”等方面寻找解题的突破口。利用图象解题不但快速、准确,能避免繁杂的运算,还能解决一些用一般计算方法无法解决的问题。

【针对训练】

1.如图3所示,有一内壁光滑的闭合椭圆形管道,置于竖直平面内,MN是通过椭圆中心O点的水平线。已知一小球从M点出发,初速率为v0,沿管道MPN 运动,到N点的速率为v1,所需时间为t1;若该小球仍由M点以初速率v0出发,而沿管道MQN运动,到N点的速率为v2,所需时间为t2。则()

图3

A.v1=v2,t1>t2

B.v1<v2,t1>t2

C.v1=v2,t1<t2

D.v1<v2,t1<t2

解析由于小球在运动过程中机械能守恒,小球沿管道MPN运

动到N点与沿管道MQN运动到N点的速率相等,即v1=v2。

小球沿管道MPN运动到N点与沿管道MQN运动到N点的路程相等,而沿管道MPN运动比沿管道MQN运动的平均速率小,所以沿管道MPN运动到N点比沿管道MQN运动到N点的时间长,即t1>t2,故选项A正确。

答案 A

【以题说法】在题中出现时间比较问题且又无法计算时往往利用速率随时间变化的关系图象求解。画图时一定要抓住初、末态速率关系,利用图线斜率表示加速度大小定性分析。

2.水平推力F1和F2分别作用于水平面上的同一物体,一段时间后撤去,使物体都从静止开始运动而后停下,如果物体在两种情况下的总位移相等,且F1大于F2,则()

A.F2的冲量大

B.F1的冲量大

C.F1与F2的冲量相等

D.无法比较

解析画出两种情况下物体运动的v-t图,如图所示,图线与横轴所围图形的面积表示位移,两种情况下物体运动的总位移相等,两种情况下物体运动的时间t1<t2,由动量定理,Ft′-μmgt=0,可知F2的冲量大,选项A正确。

答案 A

3.(多选)如图4甲所示,一等腰直角斜面ABC,其斜面BC是由CD和DB两段不同材料构成的面,且s CD>s DB,先将直角边AB固定于水平面上,将一滑块从C 点由静止释放,滑块能够滑到底端。再将直角边AC固定于水平面上,让同一滑块从斜面顶端由静止释放,滑块也能够滑到底端,如图乙所示。滑块两次运动中从顶端静止释放后运动到D点的时间相同。下列说法正确的是()

图4

A.滑块在两次运动中到达底端的动能相同

B.两次运动过程中滑块损失的机械能相同

C.滑块两次通过D点的速度相同

D.滑块与CD段间的动摩擦因数大于它与BD段间的动摩擦因数

解析滑块第一次从斜面顶端滑到底端,由动能定理得mgh

-mg cos θ(μ1·s CD+μ2·s DB)=1

2m v 2

1

,滑块第二次从斜面顶端滑

到底端,由动能定理得mgh-mg cos θ(μ1s CD+μ2s DB)=1

2m v 2

2

,由此可见滑块两次

到达斜面底端的速度相同,两次运动过程中损失的机械能相同,故选项A、B都正确;由于两次运动过程中滑块到达D点的时间相等,由s CD>s BD,t CD=t BD,得滑块与BD段间的动摩擦因数大于它与CD段间的动摩擦因数,故选项D错误;两次运动的位移相同,可在同一坐标系中作出滑块在两次运动中的v-t图象,如图所示,由图象可看出滑块两次通过D点的速度不相同,故选项C错误。

答案AB

.逆向思维法

正向思维法在解题中运用较多,而有时利用正向思维法解题比较烦琐,这时我们可以考虑利用逆向思维法解题。应用逆向思维法解题的基本思路:①分析确定研究问题的类型是否能用逆向思维法解决;②确定逆向思维问题的类型(由果索因、转换研究对象、过程倒推等);③通过转换运动过程、研究对象等确定求解思路。【针对训练】

1.(多选)如图5所示,完全相同的三个木块并排固定在水平地面上,一颗子弹以速度v水平射入,若子弹在木块中所受阻力恒定,且穿过第三个木块后速度恰好为零,则子弹依次射入每个木块时的速度之比和穿过每个木块所用时间之比分别为()

图5

A.v1∶v2∶v3=3∶2∶1

B.v1∶v2∶v3=3∶2∶1

C.t1∶t2∶t3=1∶2∶ 3

D.t1∶t2∶t3=(3-2)∶(2-1)∶1

解析子弹依次射入每块木块做匀减速直线运动到零,采取逆向思维,即子弹从第三个木块开始做初速度为零的匀加速直线运动,则v21=6ad,v22=4ad,v23=2ad,解得v1∶v2∶v3=3∶2∶1,A错误,B正确;子弹依次射入每块木块做匀减速直线运动到零,采取逆向思维,子弹做初速度为零的匀加速直线运动,在通过相等位移内的时间比为1∶(2-1)∶(3-2)反过来,子弹依次射入每块木块的时间之比为t1∶t2∶t3=(3-2)∶(2-1)∶1,C错误,D正确。

答案BD

2.在体育课上,某女生练习投篮,她站在罚球线处用力将篮球从手中投出,如图6所示,结果篮球以一定的速度水平撞击篮筐,已知篮球质量约为0.6 kg,篮筐离地高度约为3 m,罚球线离篮筐的水平距离约为4 m,则该女生投篮时对篮球做的功最接近()

图6

A.5 J

B.10 J

C.30 J

D.50 J

解析以篮球出手所在平面为零势能面,忽略空气阻力,篮球在上升过程中机械能守恒,该女生对篮球所做的功等于篮球出手时的机械能,也等于击中篮筐时的机械能。可把篮球的逆运动视为平抛运动处理,该女生身高约为1.6 m,篮球出

手的高度约为 1.75 m,根据h=1

2gt

2,则篮球运动的时间t=2h g=

2×(3-1.75)

10s=0.5 s,水平速度v=x

t

=8 m/s,篮球的机械能E=mgh+

1

2m v

2=26.7 J,故选项C正确。

答案 C

.极限思维法

在某些物理状态变化的过程中,可以把某个物理量或物理过程推向极端,从而作出科学的推理分析,使问题化难为易,化繁为简,达到事半功倍的效果。极限法一般适用于定性分析类选择题。例如假设速度很大(趋近于无限大)或很小(趋近于零)、假设边长很大(趋近于无限大)或很小(趋近于零)或假设电阻很大(趋近于无限大)或很小(趋近于零)等,进行快速分析。运用此方法要注意因变量随自变量单调变化。

【针对训练】

1.如图7所示,在竖直平面内有一边长为a的等边三角形区域ABC,该区域中存在垂直平面向里的匀强磁场和竖直方向的匀强电场,匀强电场的场强为E,一带正电、电荷量为q的小球以速度v沿AB边射入匀强磁场中恰好能做匀速圆周运动,欲使带电小球能从AC边射出,重力加速度为g,则下列说法正确的是()

图7

A.匀强磁场的磁感应强度B 的最小值应为E v ag

B.匀强磁场的磁感应强度B 的最小值应为2E v ag

C.匀强磁场的磁感应强度B 的最小值应为3E v ag

D.当磁感应强度取最小值时,小球在磁场内运动的时间最短

解析 小球进入磁场后恰好做匀速圆周运动,所以mg =qE ,即

m =qE g ,当圆周运动轨道半径最大时对应的磁感应强度最小,如

图所示由几何关系可得r =33a ,结合q v B =m v 2r 可得,33a =m v qB ,

所以B =3E v ag ,A 、B 错误,C 正确;小球运动时间t =θ2πT ,从AB 边射出时偏

转角相等,而周期T =2πm qB ,磁感应强度B 越小,周期越大,故运动时间越长,

D 错误。

答案 C

2.在如图8所示的电路中,R 1、R 2、R 3、R 4为定值电阻,R 5为可变电阻,电源的电动势为E 、内阻为r 。设电流表的读数为I ,电压表的读数为U 。当R 5的滑动触点向图中a 端移动时( )

图8

A.I 变大,U 变小

B.I 变大,U 变大

C.I 变小,U 变大

D.I 变小,U 变小

解析本题若运用极限思维法解答,则十分简便。由图可知,R5的滑动触点向a 端移动时,R ab减小,因为题中对可变电阻的阻值未作具体限制,我们可以这样设想,将滑动触点移动到端点a处,R ab=0,的示数为零。因此,R5的滑动触点从b向a端移动时,I变小,R总变小。由I总=E

R总

可知I总变大;再由U=E -

I总r可知U变小。显然选项D正确。

答案 D

3.如图9所示,一半径为R的绝缘环上,均匀地带电荷量为Q的电荷,在垂直于圆环平面的对称轴上有一点P,它与环心O的距离OP=L。静电力常量为k,关于P点的场强E,下列四个表达式中有一个是正确的,请你根据所学的物理知识,通过一定的分析,判断正确的表达式是()

图9

A.E=

kQ

R2+L2

B.E=

kQL

R2+L2

C.E=

kQR

(R2+L2)3

D.E=

kQL

(R2+L2)3

解析当R=0时,带电圆环等同一点电荷,由点电荷电场强度计算式可知在P

点的电场强度为E=kQ

L2

,将R=0代入四个选项,只有A、D选项满足;当L=0时,均匀带电圆环的中心处产生的电场的电场强度为0,将L=0代入选项A、D,只有选项D满足。

答案 D

.等效转换法

等效转换法是指在用常规思维方法无法求解那些有新颖情境的物理问题时,灵活地转换研究对象或采用等效转换法将陌生的情境转换成我们熟悉的情境,进而快

速求解的方法。等效转换法在高中物理中是很常用的解题方法,常常有物理模型等效转换、参考系等效转换、研究对象等效转换、物理过程等效转换、受力情况等效转换等,从而认识研究对象本质和规律的一种思想方法。广泛应用于物理问题的研究中。

【针对训练】

1.(多选)(2015·全国卷Ⅰ)1824年,法国科学家阿拉果完成了著名的“圆盘实验”。实验中将一铜圆盘水平放置,在其中心正上方用柔软细线悬挂一枚可以自由旋转的磁针,如图10所示。实验中发现,当圆盘在磁针的磁场中绕过圆盘中心的竖直轴旋转时,磁针也随着一起转动起来,但略有滞后。下列说法正确的是()

图10

A.圆盘上产生了感应电动势

B.圆盘内的涡电流产生的磁场导致磁针转动

C.在圆盘转动的过程中,磁针的磁场穿过整个圆盘的磁通量发生了变化

D.圆盘中的自由电子随圆盘一起运动形成电流,此电流产生的磁场导致磁针转动解析当圆盘转动时,圆盘的半径切割磁针产生的磁场的磁感线,产生

感应电动势,选项A正确;如图所示,铜圆盘上存在许多小的闭合回路,

当圆盘转动时,穿过小的闭合回路的磁通量发生变化,回路中产生感应电流,根据楞次定律,感应电流阻碍其相对运动,但抗拒不了相对运动,故磁针会随圆盘一起转动,但略有滞后,选项B正确;在圆盘转动过程中,磁针的磁场穿过整个圆盘的磁通量始终为零,选项C错误;圆盘中的自由电子随圆盘一起运动形成的电流的磁场方向沿圆盘轴线方向,会使磁针沿轴线方向偏转,选项D错误。答案AB

【以题说法】对于物理过程与我们熟悉的物理模型相似的题目,可尝试使用转

换分析法,如本题中将圆盘看成由沿半径方向的“辐条”组成,则圆盘在转动过程中,“辐条”会切割磁感线产生感应电动势,在圆盘中产生涡电流的模型即可快速求解。

2.如图11所示,在方向水平向左、范围足够大的匀强电场中,固定一由内表面绝缘光滑且内径很小的圆管弯制而成的圆弧BD,圆弧的圆心为O,竖直半径OD =R,B点和地面上A点的连线与地面成θ=37°角,AB=R。一质量为m、电荷量为q的小球(可视为质点)从地面上A点以某一初速度沿AB方向做直线运动,恰好无碰撞地从管口B进入管道BD中,到达管中某处C(图中未标出)时恰好与管道间无作用力。已知sin 37°=0.6,cos 37°=0.8,重力加速度大小为g。求:

图11

(1)匀强电场的场强大小E和小球到达C处时的速度大小v;

(2)小球的初速度大小v0以及到达D处时的速度大小v D。

解析(1)小球做直线运动时的受力情况如图甲所示,小球带正电,则qE=mg

tan θ,

得E=4mg

3q,小球到达C处时电场力与重力的合力恰好提供小球做圆周运动的向

心力,如图乙所示,

OC∥AB,则

mg

sin θ=m

v2

R

得v=5

3gR。

(2)小球“恰好无碰撞地从管口B进入管道BD”,说明AB⊥OB 小球从A点运动到C点的过程,根据动能定理有

-mg

sin θ·2R=1

2m v

2-12m v20

得v0=25

3gR,

小球从C处运动到D处的过程,根据动能定理有

mg

sin θ(R-R sin θ)=1

2m v

2

D

1

2m v

2,

得v D=3gR。

答案(1)4mg

3q

5

3gR(2)

25

3gR3gR

.分解思想

有些物理问题的运动过程、情景较为复杂,在运用一些物理规律或公式不奏效的情况下,将物理过程按照事物发展的顺序分成几段熟悉的子过程来分析,或者将复杂的运动分解成几个简单或特殊的分运动(如匀速直线运动、匀变速直线运动、圆周运动等)来考虑,往往能事半功倍。

【针对训练】

1.(2018·江苏单科,3)某弹射管每次弹出的小球速度相等。在沿光滑竖直轨道自由下落过程中,该弹射管保持水平,先后弹出两只小球。忽略空气阻力,两只小球落到水平地面的()

A.时刻相同,地点相同

B.时刻相同,地点不同

C.时刻不同,地点相同

D.时刻不同,地点不同

解析弹射管沿光滑竖直轨道自由下落,向下的加速度大小为g,且下落时保持

水平,故先后弹出的两只小球在竖直方向的分速度与弹射管的分速度相同,即两只小球同时落地;又两只小球先后弹出且水平分速度相等,故两只小球在空中运动的时间不同,则运动的水平位移不同,落地点不同,选项B 正确。 答案 B

2.如图12所示,匀强电场中相邻竖直等势面间距d =10 cm ,质量m =0.1 kg 、带电荷量为q =-1×10-3 C 的小球以初速度v 0=10 m/s 抛出,初速度方向与水平线的夹角为45°,已知重力加速度g =10 m/s 2,求:

图12

(1)小球加速度的大小;

(2)小球再次回到图中水平线时的速度大小以及与抛出点的距离。

解析 (1)根据题图可知,电场线方向向左,电场强度大小为

E =U d =1000.1 V/m =1 000 V/m

合力大小为F =(mg )2+(qE )2= 2 N ,

方向与初速度方向垂直;

根据牛顿第二定律可得加速度大小为a =F m =10 2 m/s 2。

(2)小球在竖直方向做竖直上抛运动,水平方向做匀加速直线运动,小球再次回到题图中水平线时的时间为

t =2×v 0sin 45°g = 2 s , 此时与抛出点的距离为

x =v 0cos 45°t +12·qE m t 2=20 m ,

在此过程中重力做功为零,根据动能定理可得

qEx =12m v 2-12m v 20

代入数据解得v =10 5 m/s 。

答案 (1)10 2 m/s 2 (2)10 5 m/s 20 m

.对称思想

物理中对称现象比比皆是,对称表现为研究对象在结构上的对称性、作用上的对称性,物理过程在时间和空间上的对称性,物理量在分布上的对称性及作用效果的对称性等。物理解题中的对称法,就是从对称性的角度去分析物理过程,利用对称性解决物理问题的方法。

【针对训练】

1.下列选项中的各14圆环大小相同,所带电荷量已在图中标出,且电荷均匀分布,

各14圆环间彼此绝缘。坐标原点O 处电场强度最大的是( )

解析 设14圆环的电荷在原点O 产生的电场强度为E 0,根据电场强度叠加原理和圆环场强的对称性,在坐标原点O 处,A 图场强为E 0,B 图场强为2E 0,C 图场强为E 0,D 图场强为0,故选项B 正确。

答案 B

【以题说法】 敏锐地看出并抓住事物在某一方面的对称性,其对称部分存在某种相同特征,运用对称思维,可以从某一部分规律推知另一部分的规律,能一眼看出答案,大大简化解题步骤,是一种重要的物理思想方法。

2.(2019·浙江杭州模拟)如图13所示,虚线框内为某种电磁缓冲车的结构示意图,其主要部件为缓冲滑块K 和质量为m 的缓冲车厢。在缓冲车的底板上,沿车的轴线固定着两个光滑水平绝缘导轨PQ 、MN 。缓冲车的底部,安装有电磁铁(图

中未画出),能产生垂直于导轨平面的匀强磁场,磁场的磁感应强度大小为B 。导轨内的缓冲滑块K 由高强度绝缘材料制成,滑块K 上绕有闭合矩形线圈abcd ,线圈的总电阻为R ,匝数为n ,ab 边长为L 。假设缓冲车以速度v 0与障碍物C 碰撞后,滑块K 立即停下,此后线圈与轨道的磁场作用力使缓冲车厢减速运动,从而实现缓冲,一切摩擦阻力不计。

图13

(1)求线圈abcd 中最大感应电动势的大小;

(2)若缓冲车厢向前移动距离L 后速度为零(缓冲车厢未与滑块K 接触),求此过程线圈abcd 中通过的电荷量q 和产生的焦耳热Q ;

(3)若缓冲车以速度v 0与障碍物C 碰撞后,滑块K 立即停下,求此后缓冲车厢的速度v 随位移x 的变化规律(缓冲车厢未与滑块K 接触)。

解析 (1)缓冲车以速度v 0与障碍物C 碰撞后,滑块K 立即停下,滑块相对磁场的速度大小为v 0 ,此时线圈中产生的感应电动势最大,则E m =nBL v 0。

(2)由法拉第电磁感应定律有E -

=n BL 2t 根据闭合电路欧姆定律有I -=E -R ,通过线圈的电荷量q =I -t , 解得q =n BL 2R

由能量守恒定律有Q =12

m v 20。 (3)位移为x 时线圈中通过的电荷量q 1=n BLx R

由动量定理有

-nB I -1Lt 1=m v -m v 0,又q 1=I -

1t 1

解得v=-n2B2L2x

mR

+v0。

答案(1)nBL v0(2)n BL2

R

1

2m v

2

(3)v=-

n2B2L2x

mR+v0

【创新解读】本题创新之处:①滑块K立即停下即线圈不动,磁场运动,即可等效为磁场不动,ab边水平向左做切割磁感线运动;②ab边有n个感应电动势串联;③ab边受到n个安培力。电荷量用平均电流计算,焦耳热根据能量守恒定律计算。

.守恒思想

物理学中最常用的一种思维方法——守恒。高中物理涉及的守恒定律有能量守恒定律、动量守恒定律、机械能守恒定律、质量守恒定律、电荷守恒定律等,它们是我们处理高中物理问题的主要工具。

【针对训练】

1.(多选)如图14所示,质量为m的小球置于半径为R的光滑竖直圆轨道最低点A 处,B为轨道最高点,C、D为水平直径的两端,轻弹簧一端与过圆心O的转动

轴连接,另一端与小球拴接,已知弹簧的劲度系数为k=mg

R,原长为L=2R,弹

簧始终处于弹性限度内,若给小球一水平初速度v0,已知重力加速度为g,则()

图14

A.当v0较小时,小球可能会离开轨道

B.若2gR<v0<5gR,小球会在B、D间脱离圆轨道

C.只要v0>2gR,小球就能做完整的圆周运动

D.只要小球能做完整的圆周运动,则小球与轨道间最大压力与最小压力之差与v0无关

解析因弹簧的劲度系数为k=mg

R

,原长为L=2R,所以小球始终会受到弹簧的

弹力作用,大小为F=k(L-R)=kR=mg,方向始终背离圆心,无论小球在CD 以上的哪个位置速度为零,重力在沿半径方向上的分量都小于等于弹簧的弹力(在CD以下,轨道对小球一定有指向圆心的支持力),所以无论v0多大,小球均不会离开轨道,A、B错误;小球在运动过程中只有重力做功,弹簧的弹力和轨道的支持力不做功,机械能守恒,当运动到最高点速度为零,在最低点的速度最小,由1

2m v

2=2mgR解得v=2gR,所以只要v0>2gR,小球就能做完整的圆周运动,C正确;在最低点时,设小球受到的支持力为F N,则有F N-kR-mg

=m v20

R ,解得F N=2mg+m v20

R①

运动到最高点时受到轨道的支持力最小,设为F N′,并设此时的速度为v,由机

械能守恒有1

2m v 2

0=2mgR+

1

2m v

2②

此时合外力提供向心力,有F N′-kR+mg=m v2

R③

联立解得F N′=m v20

R

-4mg④

联立①、④式解得压力差为ΔF N=6mg,与初速度无关,D正确。

答案CD

2.如图15甲所示,半径R=0.45 m的光滑圆弧轨道固定在竖直平面内,B为轨道的最低点,在光滑水平面上紧挨B点有一静止的平板车,其质量M=5 kg,长度L=0.5 m,车的上表面与B点等高。可视为质点的物块从圆弧轨道最高点A由静止释放,其质量m=1 kg,g取10 m/s2。

图15

(1)求物块滑到B点时对轨道压力的大小;

(2)若平板车上表面粗糙,物块最终没有滑离平板车,求物块最终速度的大小;

(3)若将平板车固定且在上表面铺上一种动摩擦因数逐渐增大的特殊材料,物块在平板车上向右滑动时,所受摩擦力f随它距B点位移x的变化关系如图乙所示,物块最终滑离了平板车,求物块滑离平板车时的速度大小v。

解析(1)设物块滑到B点时速度为v B,物块从圆弧轨道A点滑到B点的过程中

机械能守恒,则有mgR=1

2m v 2 B

解得v B=3 m/s

在B点,由牛顿第二定律得F N-mg=m v2B

R

解得F N=30 N

由牛顿第三定律可知,物块滑到B点时对轨道的压力大小

F N′=F N=30 N。

(2)物块滑上平板车后,系统的动量守恒,设物块与平板车的最终速度为v共,则m v B=(m+M)v共

解得v共=0.5 m/s,即物块最终速度的大小为0.5 m/s。

(3)物块在平板车上滑行时克服摩擦力做的功为f-x图线与横轴所围图形的面积,故物块克服摩擦力做的功

W f=(2+6)×0.5

2J=2 J

物块在平板车上滑动过程中,由动能定理得

-W f=1

2m v

2-12m v2B

解得v= 5 m/s。

答案(1)30 N(2)0.5 m/s(3) 5 m/s

高考物理解题模型

高考物理解题模型 目录 第一章运动和力 (1) 一、追及、相遇模型 (1) 二、先加速后减速模型 (4) 三、斜面模型 (6) 四、挂件模型 (11) 五、弹簧模型(动力学) (18)

第二章圆周运动 (20) 一、水平方向的圆盘模型 (20) 二、行星模型 (23) 第三章功和能 (1) 一、水平方向的弹性碰撞 (1) 二、水平方向的非弹性碰撞 (6) 三、人船模型 (9) 四、爆炸反冲模型 (11) 第四章力学综合 (13) 一、解题模型: (13) 二、滑轮模型 (19) 三、渡河模型 (23) 第五章电路 (1) 一、电路的动态变化 (1) 二、交变电流 (6) 第六章电磁场 (1) 一、电磁场中的单杆模型 (1) 二、电磁流量计模型 (7) 三、回旋加速模型 (10) 四、磁偏转模型 (15)

第一章 运动和力 一、追及、相遇模型 模型讲解: 1. 火车甲正以速度v 1向前行驶,司机突然发现前方距甲d 处有火车乙正以较小速度v 2同向匀速行 驶,于是他立即刹车,使火车做匀减速运动。为了使两车不相撞,加速度a 应满足什么条件? 解析:设以火车乙为参照物,则甲相对乙做初速为)(21v v -、加速度为a 的匀减速运动。若甲相对乙的速度为零时两车不相撞,则此后就不会相撞。因此,不相撞的临界条件是:甲车减速到与乙车车速相同时,甲相对乙的位移为d 。 即:d v v a ad v v 2)(2)(02 212 21-=-=--,, 故不相撞的条件为d v v a 2)(2 21-≥ 2. 甲、乙两物体相距s ,在同一直线上同方向做匀减速运动,速度减为零后就保持静止不动。甲物 体在前,初速度为v 1,加速度大小为a 1。乙物体在后,初速度为v 2,加速度大小为a 2且知v 1,说明乙物体先停止运动那么两物体在运动过程中总存在速度相等的时刻,此时两物体相距最近,根据t a v t a v v 2211-=-=共,求得 1 21 2a a v v t --= 在t 时间内

高中物理答题技巧归纳大全

高中物理答题技巧归纳大全 一,考场中心态的保持 心态“安静”:心静自然“凉”,脑子自然清醒,精力自然集中,思路自然清晰。心静如水,超然物外,成为时间的主人、学习的主人。情绪稳定,效率提高。心不静,则心乱如麻,心神不定,心不在焉,如坐针毡,眼在此而心在彼,貌似用功,实则骗人。 二,高中物理选择题的答题技巧 选择题一般考查学生对基本知识和基本规律的理解及应用这些知识进行一些定性推理和定量计算。解答选择题时,要注意以下几个问题: 每一选项都要认真研究,选出最佳答案,当某一选项不敢确定时,宁可少选也不错选。 注意题干要求,让你选择的是“不正确的”、“可能的”还是“一定的”。 相信第一判断:凡已做出判断的题目,要做改动时,请十二分小心,只有当你检查时发现第一次判断肯定错了,另一个百分之百是正确答案时,才能做出改动,而当你拿不定主意时千万不要改。特别是对中等程度及偏下的同学这一点尤为重要。 做选择题的常用方法: 筛选(排除)法:根据题目中的信息和自身掌握的知识,从易到难,逐步排除不合理选项,最后逼近正确答案。

特值(特例)法:让某些物理量取特殊值,通过简单的分析、计算进行判断。它仅适用于以特殊值代入各选项后能将其余错误选项均排除的选择题。 极限分析法:将某些物理量取极限,从而得出结论的方法。 直接推断法:运用所学的物理概念和规律,抓住各因素之间的联系,进行分析、推理、判断,甚至要用到数学工具进行计算,得出结果,确定选项。 观察、凭感觉选择:面对选择题,当你感到确实无从下手时,可以通过观察选项的异同、长短、语言的肯定程度、表达式的差别、相应或相近的物理规律和物理体验等,大胆的做出猜测,当顺利的完成试卷后,可回头再分析该题,也许此时又有思路了。 物理实验题的做题技巧 实验题一般采用填空题或作图题的形式出现。作为填空题,数值、单位、方向或正负号都应填全面;作为作图题:对函数图像应注明纵、横轴表示的物理量、单位、标度及坐标原点。对电学实物图,则电表量程、正负极性,电流表内、外接法,变阻器接法,滑动触头位置都应考虑周全。对光路图不能漏箭头,要正确使用虚、实线,各种仪器、仪表的读数一定要注意有效数字和单位;实物连接图一定要先画出电路图(仪器位置要对应);各种作图及连线要先用铅笔(有利于修改),最后用黑色签字笔涂黑。 常规实验题:主要考查课本实验,几年来考查比较多的是试验器材、原理、步骤、读数、注意问题、数据处理和误差分析,解答常

一、高考物理中的“八大”解题思想方法

第二部分应考技巧指导——超常发挥,决胜高考 一、高考物理中的“八大”解题思想方法 现如今,高考物理更加注重考查考生的能力和科学素养,其命题越加明显地渗透着对物理方法、物理思想的考查。在平时的复习备考过程中,物理习题浩如烟海,千变万化,我们若能掌握一些基本的解题思想,就如同在开启各式各样的“锁”时,找到了一把“多功能的钥匙”。 .估算法 半定量计算(估算)试题在近几年各地高考题中屡见不鲜,如2018年全国卷ⅡT15结合高空坠物情境估算冲击力。此类试题是对考生生活经验的考查,要求考生在分析和解决问题时,要善于抓住事物的本质特征和影响事物发展的主要因素,忽略次要因素,从而使问题得到简捷的解决,迅速获得合理的结果。 【针对训练】 1.高空坠物极其危险。设想一个苹果从某人头部正上方45 m 高的楼上由静止落下,苹果与人头部的作用时间约为 4.5×10-4s,则头部受到的平均冲击力约为() A.1×102 N B.1×103 N C.1×104 N D.1×105 N 解析苹果做自由落体运动,则h=1 2gt 2,苹果从静止下落到与人头部作用的全 程根据动量定理有mgt-FΔt=0-0,其中Δt=4.5×10-4s,取g=10 m/s2,一个苹果的质量m≈150 g=0.15 kg,联立并代入数据解得F=1×104 N,选项C正确。 答案 C 2.如图1所示,某中学生在做引体向上运动,从双臂伸直到肩部与单杠同高度算1次,若他在1分钟内完成了10次,每次肩部上升的距离均为0.4 m,g取10 m/s2,则他在1分钟内克服重力所做的功及相应的功率约为()

图1 A.200 J ,3 W B.2 000 J ,600 W C.2 000 J ,33 W D.4 000 J ,60 W 解析 中学生的质量约为50 kg ,他做引体向上运动,每次肩部上升的距离均为0.4 m ,单次引体向上克服重力所做的功约为W 1=mgh =50×10×0.4 J =200 J , 1分钟内完成了10次,则1分钟内克服重力所做的功W =10W 1=2 000 J ,相应 的功率约为P =W t =2 00060 W =33 W ,选项C 正确。 答案 C 3.(2019·山东日照模拟)2018年3月22日,一架中国国际航空CA103客机,从天津飞抵香港途中遭遇鸟击,飞机头部被撞穿一个直径约一平方米的大洞,雷达罩受损,所幸客机及时安全着陆,无人受伤。若飞机的速度为700 m/s ,小鸟在空中的飞行速度非常小,小鸟的质量为0.4 kg 。小鸟与飞机的碰撞时间为2.5× 10-4 s ,则飞机受到小鸟对它的平均作用力的大小约为( ) A.104 N B.105 N C.106 N D.107 N 解析 鸟与飞机撞击时系统动量守恒,以飞机的初速度方向为正方向,由于鸟的质量远小于飞机的质量,鸟的初速度远小于飞机的速度,故鸟的初动量远小于飞机的动量,可以忽略不计,由动量守恒定律可知,碰撞后鸟与飞机的速度相等,为v ≈700 m/s ,对小鸟,由动量定理得F - t =m v -0,解得飞机对小鸟的平均作用 力为F -=m v t =0.4×7002.5×10-4 N =1.12×106 N ,接近106 N ,由牛顿第三定律可知,飞机受到小鸟对它的平均作用力约为106 N ,选项C 正确。 答案 C 4.(2019·重庆七校联考)2018年2月7日凌晨,太空探索技术公司Space X 成功通

高考物理数学物理法解题技巧讲解及练习题

高考物理数学物理法解题技巧讲解及练习题 一、数学物理法 1.如右图所示,一位重600N 的演员,悬挂在绳上.若AO 绳与水平方向的夹角为 37?,BO 绳水平,则AO 、BO 两绳受到的力各为多大?若B 点位置往上移动,则BO 绳的 拉力如何变化?(孩子:你可能需要用到的三角函数有: 3375 sin ?=,4cos375?=,3374tan ?=,4 373cot ?=) 【答案】AO 绳的拉力为1000N ,BO 绳的拉力为800N ,OB 绳的拉力先减小后增大. 【解析】 试题分析:把人的拉力F 沿AO 方向和BO 方向分解成两个分力,AO 绳上受到的拉力等于沿着AO 绳方向的分力,BO 绳上受到的拉力等于沿着BO 绳方向的分力.根据平衡条件进行分析即可求解. 把人的拉力F 沿AO 方向和BO 方向分解成两个分力.如图甲所示 由平衡条件得:AO 绳上受到的拉力为21000sin 37 OA G F F N == = BO 绳上受到的拉力为1cot 37800OB F F G N === 若B 点上移,人的拉力大小和方向一定不变,利用力的分解方法作出力的平行四边形,如图乙所示: 由上图可判断出AO 绳上的拉力一直在减小、BO 绳上的拉力先减小后增大.

2.[选修模块3-5]如图所示,玻璃砖的折射率2 3 n = ,一细光束从玻璃砖左端以入射角i 射入,光线进入玻璃砖后在上表面恰好发生全反射.求光速在玻璃砖中传播的速度v 及入射角i .(已知光在真空中传播速度c =3.0×108 m/s ,计算结果可用三角函数表示). 【答案】83310/v m s =?;3 sin i = 【解析】 【分析】 【详解】 根据c n v = ,83310/v m s =? 全反射条件1 sin C n =,解得C=600,r =300, 根据sin sin i n r = ,3 sin 3 i = 3.质量为M 的木楔倾角为θ (θ < 45°),在水平面上保持静止,当将一质量为m 的木块放在木楔斜面上时,它正好匀速下滑.当用与木楔斜面成α角的力F 拉木块,木块匀速上升,如图所示(已知木楔在整个过程中始终静止). (1)当α=θ时,拉力F 有最小值,求此最小值; (2)求在(1)的情况下木楔对水平面的摩擦力是多少? 【答案】(1)min sin 2F mg θ= (2)1 sin 42 mg θ 【解析】 【分析】 (1)对物块进行受力分析,根据共点力的平衡,利用正交分解,在沿斜面和垂直斜面两方向列方程,进行求解. (2)采用整体法,对整体受力分析,根据共点力的平衡,利用正交分解,分解为水平和竖直两方向列方程,进行求解. 【详解】 木块在木楔斜面上匀速向下运动时,有mgsin mgcos θμθ=,即tan μθ= (1)木块在力F 的作用下沿斜面向上匀速运动,则:

高考物理易错题解题方法大全 (3)

高考物理易错题解题方法大全(6) 碰撞与动量守恒 例76:在光滑水平面上停放着两木块A和B,A的质量大,现同时施加大小相等的恒力F 使它们相向运动,然后又同时撤去外力F,结果A和B迎面相碰后合在一起,问A和B合在一起后的运动情况将是() A.停止运动 B.因A的质量大而向右运动 C.因B的速度大而向左运动 D.运动方向不能确定 【错解分析】错解:因为A的质量大,所以它的惯性大,所以它不容停下来,因此应该选B;或者因为B的速度大,所以它肯定比A后停下来,所以应该选C。 产生上述错误的原因是没有能够全面分析题目条件,只是从一个单一的角度去思考问题,失之偏颇。 【解题指导】碰撞问题应该从动量的角度去思考,而不能仅看质量或者速度,因为在相互作用过程中,这两个因素是一起起作用的。 【答案】本题的正确选项为A。 由动量定理知,A和B两物体在碰撞之前的动量等大反向,碰撞过程中动量守恒,因此碰撞之后合在一起的总动量为零,故选A。 练习76:A、B两球在光滑水平面上相向运动,两球相碰后有一球停止运动,则下述说法中正确的是() A.若碰后,A球速度为0,则碰前A的动量一定大于B的动量 B.若碰后,A球速度为0,则碰前A的动量一定小于B的动量 C.若碰后,B球速度为0,则碰前A的动量一定大于B的动量 D.若碰后,B球速度为0,则碰前A的动量一定小于B的动量 例77:质量为M的小车在水平地面上以速度v0匀速向右运动。当车中的砂子从底部的漏斗中不断流下时,车子的速度将() A. 减小 B. 不变 C. 增大 D. 无法确定 【错解分析】错解:因为随着砂子的不断流下,车子的总质量减小,根据动量守恒定律总动量不变,所以车速增大,故选C。 产生上述错误的原因,是在利用动量守恒定律处理问题时,研究对象的选取出了问题。因为,此时,应保持初、末状态研究对象的是同一系统,质量不变。 【解题指导】利用动量守恒定律解决问题的时候,在所研究的过程中,研究对象的系统一定不能发生变化,抓住研究对象,分析组成该系统的各个部分的动量变化情况,达到解决问题的目的。 【答案】本题的正确选项为B。

高中物理解题方法---整体法和隔离法

高中物理解题方法---整体法和隔离法 选择研究对象是解决物理问题的首要环节.在很多物理问题中,研究对象的选择方案是多样的,研究对象的选取方法不同会影响求解的繁简程度。合理选择研究对象会使问题简化,反之,会使问题复杂化,甚至使问题无法解决。隔离法与整体法都是物理解题的基本方法。 隔离法就是将研究对象从其周围的环境中隔离出来单独进行研究,这个研究对象可以是一个物体,也可以是物体的一个部分,广义的隔离法还包括将一个物理过程从其全过程中隔离出来。 整体法是将几个物体看作一个整体,或将看上去具有明显不同性质和特点的几个物理过程作为一个整体过程来处理。隔离法和整体法看上去相互对立,但两者在本质上是统一的,因为将几个物体看作一个整体之后,还是要将它们与周围的环境隔离开来的。 这两种方法广泛地应用在受力分析、动量定理、动量守恒、动能定理、机械能守恒等问题中。 对于连结体问题,通常用隔离法,但有时也可采用整体法。如果能够运用整体法,我们应该优先采用整体法,这样涉及的研究对象少,未知量少,方程少,求解简便;不计物体间相互作用的内力,或物体系内的物体的运动状态相同,一般首先考虑整体法。对于大多数动力学问题,单纯采用整体法并不一定能解决,通常采用整体法与隔离法相结合的方法。 一、静力学中的整体与隔离 通常在分析外力对系统的作用时,用整体法;在分析系统内各物体(各部分)间相互作用时,用隔离法.解题中应遵循“先整体、后隔离”的原则。 【例1】 在粗糙水平面上有一个三角形木块a ,在它的两个粗糙斜面上分别放有质量为m1和m2的两个木块b 和c ,如图所示,已知m1>m2,三木块均处于静止,则粗糙地面对于三角形木块( ) A .有摩擦力作用,摩擦力的方向水平向右 B .有摩擦力作用,摩擦力的方向水平向左 C .有摩擦力作用,但摩擦力的方向不能确定 D .没有摩擦力的作用 【解析】由于三物体均静止,故可将三物体视为一个物体,它静止于水平面上,必无摩擦力作用,故选D . 【点评】本题若以三角形木块a 为研究对象,分析b 和c 对它的弹力和摩擦力,再求其合力来求解,则把问题复杂化了.此题可扩展为b 、c 两个物体均匀速下滑,想一想,应选什么? 【例2】有一个直角支架 AOB ,AO 水平放置,表面粗糙,OB 竖直向下,表面光滑,AO 上套有小环P ,OB 上套有小环 Q ,两环 质量均为m ,两环间由一根质量可忽略、不可伸展的细绳相连, 并在某一位置平衡,如图。现将P 环向左移一小段距离,两环再 A O B P Q

专题导数法-高中物理八大解题方法含解析

高中物理解题方法之导数法 在物理解题中用导数法,首先要把物理问题化归为数学问题。在分析物理状态和物理过程的基础上,找到合适的物理规律,即函数,再求函数的导数,从而求解极值问题或其他问题,然后再把数学问题回归到物理问题,明确其物理意义。 例1、两等量同种电荷在两点电荷连线的中垂线上电场的分布 图1.两等量正点电荷的电场强度在y 坐标轴上的点的合成 以两点电荷的连线的中点为原点,以两点电荷的连线的中垂线为y 轴,则各点的电场强度可表示为: θcos )( 222?+=y l Q k E =2222)(2y l y y l Q k +?+ 因为原点的电场强度00=E ,往上或往下的无穷远处的电场强度也为0,所以,从O 点向上或向下都是先增大后减小,这是定性的分析。那么,在哪儿达到最大呢,需要定量的计算。 方法1.用三角函数法求导数 θcos )( 222?+=y l Q k E 中把θtan l y =代入得θθcos sin 222 ?=l kQ E 。 令=z θθcos sin 2,求导数θθθ32sin cos sin 2'-=z =)sin cos 2sin 22θθθ-(,欲使 0'=z ,需0sin =θ(舍去)或0sin cos 222=-θθ即2tan =θ,此处,2 2l y = ,将其代入得2max 934l kQ E ?= 。

方法2. 用代数法求导数 E =2 22 2 )(2y l y y l Q k +?+,令23 2 2)(-+?=y l y z ,对z 求导数得2 52 222 3 2 2) (3) ('- - +-+=y l y y l z ,令其分子为0,得2 2l y = ,代入得2max 934l kQ E ?= 。 3.图象 用Excel 作图,得到关于等量同种电荷的电场在其中垂线上的分布的图象,图象的横轴y 表示各点到原点的距离(以两点电荷的连线的中点为原点),纵轴表示中垂线上各点的电场强度。 图2.两等量正点电荷的电场强度在y 坐标轴上的分布 此图象也验证了以上所得的结果:图象中令5=l ,则当5.32 5 222=?==l y 处电场强度最大。

高考物理解题技巧集锦

高中物理解题方法之隔离法和整体法 江苏省特级教师戴儒京 隔离法和整体法是解决物理问题特别是力学问题的基本而又重要的方法。 隔离法是把一个物体从物体系中隔离出来,只研究他的受力情况和运动情况,不研究他的施力情况。 整体法是把物体系看做一个整体,分析物体系的受力情况和运动情况,而不分析物体系内的物体的相互作用力。 整体法一般是在物体系内各物体的加速度相同的情况下应用。并且不求物体系内各物体的相互作用力。 下面的例题中的物体系只包含2个物体,3个以上的物体,方法与此类似。一、一个外力 例1.光滑水平面上的两个物体 在光滑水平面上有两个彼此接触的物体A和B,它们的质量分别为m1、m2。若用水平推力F作用于A物体,使A、B一起向前运动,如图1所示,则两物体间的相互作用力为多大?若将F作用于B物体,则A、B间的相互作用力为多大? 图1

【解析】对A 、B 两个物体组成的系统用整体法,根据牛顿第二定律,有 a m m F )(21+=,所以2 1m m F a += ① 对B 物体用隔离法,根据牛顿第二定律,有 a m F AB 2= ② 将①代入②得 2 12 m m m F F AB +? = ③ 若将F 作用于B 物体,则对A 物体用隔离法,根据牛顿第二定律,有 a m F BA 1= ④ 所以A 、B 间的相互作用力为2 11 m m m F F BA +? = ⑤ 实际上,在同一个时刻,根据牛顿第三定律,A 、B 之间的作用力和反作用力大小是相等的。此处,③式和⑤式所表示的AB F 和BA F 不是作用力和反作用力,而是两种情况下的A 、B 之间的作用力,这样表示,以示区别,不要误会。 ③式和⑤式,可以看做“力的分配规律”,正如串联电路中电压的分配规律一样。因为大家知道,电阻R 1、R 2串联,总电压为U ,则R 1和R 2上的电压分别为 2111R R R U U +=,2 12 2R R R U U +=。这两个式子与③式和⑤式何其相似乃尔。 例2.粗糙水平面上的两个物体 在水平面上有两个彼此接触的物体A 和B ,它们的质量分别为m 1、m 2,与水平面间的动摩擦因数皆为为μ。若用水平推力F 作用于A 物体,使A 、B 一起向前运动,如图1所示,则两物体间的相互作用力为多大?若将F 作用于B 物体,则A 、

高中物理-常考题型与解题方法全汇总

高中物理-常考题型与解题方法全汇总 题型1 直线运动问题 题型概述:直线运动问题是高考的热点,可以单独考查,也可以与其他知识综合考查。单独考查若出现在选择题中,则重在考查基本概念,且常与图像结合;在计算题中常出现在第一个小题,难度为中等,常见形式为单体多过程问题和追及相遇问题。 思维模板:解图像类问题关键在于将图像与物理过程对应起来,通过图像的坐标轴、关键点、斜率、面积等信息,对运动过程进行分析,从而解决问题;对单体多过程问题和追及相遇问题应按顺序逐步分析,再根据前后过程之间、两个物体之间的联系列出相应的方程,从而分析求解,前后过程的联系主要是速度关系,两个物体间的联系主要是位移关系. 题型2 物体的动态平衡问题 题型概述:物体的动态平衡问题是指物体始终处于平衡状态,但受力不断发生变化的问题。物体的动态平衡问题一般是三个力作用下的平衡问题,但有时也可将分析三力平衡的方法推广到四个力作用下的动态平衡问题. 思维模板:常用的思维方法有两种. (1)解析法:解决此类问题可以根据平衡条件列出方程,由所列方程分析受力变化;(2)图解法:根据平衡条件画出力的合成或分解图,根据图像分析力的变化。 题型3 运动的合成与分解问题 题型概述:运动的合成与分解问题常见的模型有两类,一是绳(杆)末端速度分解的问题,二是小船过河的问题,两类问题的关键都在于速度的合成与分解。 思维模板: (1)在绳(杆)末端速度分解问题中,要注意物体的实际速度一定是合速度,分解时两个分速度的方向应取绳(杆)的方向和垂直绳(杆)的方向;如果有两个物体通过绳(杆)相连,则两个物体沿绳(杆)方向速度相等。 (2)小船过河时,同时参与两个运动,一是小船相对于水的运动,二是小船随着水一起运动,分析时可以用平行四边形定则,也可以用正交分解法,有些问题可以用解析法分析,有些问题则需要用图解法分析。 题型4 抛体运动问题 题型概述:抛体运动包括平抛运动和斜抛运动,不管是平抛运动还是斜抛运动,研究方法都

高中物理八大解题方法之七:逆向思维法

高中物理解题方法之逆向思维法 江苏省特级教师 戴儒京 内容提要:本文通过几道物理题的解法分析,阐述逆向思维解题方法的几种应用:一、在解题程序上逆向思维;二、在因果关系上逆向思维;三、在迁移规律上逆向思维。 所谓“逆向思维”,简单说来就是“倒过来想一想”。这种方法用于解物理题,特别是某些难题,很有好处。下面通过高考物理试卷中的几道题的解法分析,谈谈逆向思维解题法的应用的几种情况。 一、 在解题程序上逆向思维 解题程序,一般是从已知到未知,一步步求解,通常称为正向思维。但有些题目反过来思考,从未知到已知逐步推理,反而方便些。 例1.如图1所示, 图1 一理想变压器的原副线圈分别由双线圈ab 和cd (匝数都为n 1)、ef 和gh (匝数都为n 2)组成。用I 1和U 1表示输入电流和电压,用I 2和U 2表示输出电流和电压。在下列四种接法中,符合关系1 2212121,n n I I n n U U ==的有: (A ) b 与c 相连,以a 、d 为输入端;f 与g 相连,以e 、h 为输入端。 (B ) b 与c 相连,以a 、d 为输入端;e 与g 相连、f 与h 相连作为输入端。 (C ) a 与c 相连,b 与d 相连作为输入端;f 与g 相连,以e 、h 为输出端。 (D ) a 与c 相连,b 与d 相连作为输入端;e 与g 相连、f 与h 相连作为输出端。 析与解:一般的选择题,是从题干所给的已知条件去求解,解出结果与选项比较,哪个正确选哪个。但本题我们不能根据两个公式去求解法,而只能逐一选项讨论哪种解法能得出题干给出的公式。 对(A ),初级ab 和cd 两线圈串联,总匝数为2 n 1,次级ef 和gh 两线圈亦串联,总

最新高考物理常用解题方法汇总

最新高考物理常用解题方法汇总 高考物理常用解题方法 一、观察的几种方法 1.顺序观察法:按一定的顺序进行观察。 2.特征观察法:根据现象的特征进行观察。 3.对比观察法:对前后几次实验现象或实验数据的观察进行比较。 4.全面观察法:对现象进行全面的观察,了解观察对象的全貌。 二、过程的分析方法 1.化解过程层次:一般说来,复杂的物理过程都是由若干个简单的"子过程"构成的。因此,分析物理过程的最基本方法,就是把复杂的问题层次化,把它化解为多个相互关联的"子过程"来研究。 2.探明中间状态:有时阶段的划分并非易事,还必需探明决定物理现象从量变到质变的中间状态(或过程)正确分析物理过程的关键

环节。 3.理顺制约关系:有些综合题所述物理现象的发生、发展和变化过程,是诸多因素互相依存,互相制约的"综合效应"。要正确分析,就要全方位、多角度的进行观察和分析,从内在联系上把握规律、理顺关系,寻求解决方法。 4.区分变化条件:物理现象都是在一定条件下发生发展的。条件变化了,物理过程也会随之而发生变化。在分析问题时,要特别注意区分由于条件变化而引起的物理过程的变化,避免把形同质异的问题混为一谈。 三、因果分析法 1.分清因果地位:物理学中有许多物理量是通过比值来定义的。如R=U/R、E=F/q等。在这种定义方法中,物理量之间并非都互为比例关系的。 但学生在运用物理公式处理物理习题和问题时,常常不理解公式中物理量本身意义,分不清哪些量之间有因果联系,哪些量之间没有因果联系。

2.注意因果对应:任何结果由一定的原因引起,一定的原因产生一定的结果。因果常是一一对应的,不能混淆。 3.循因导果,执果索因:在物理习题的训练中,从不同的方向用不同的思维方式去进行因果分析,有利于发展多向性思维。 四、原型启发法 原型启发就是通过与假设的事物具有相似性的东西,来启发人们解决新问题的途径。能够起到启发作用的事物叫做原型。原型可来源于生活、生产和实验。 如鱼的体型是创造船体的原型。原型启发能否实现取决于头脑中是否存在原型,原型又与头脑中的表象储备有关,增加原型主要有以下三种途径: 1.注意观察生活中的各种现象,并争取用学到的知识予以初步解释; 2.通过课外书、电视、科教电影的观看来得到; 3.要重视实验。

高考物理 解题的策略与方法

2012高考物理解题的策略与方法 在高三的最后复习阶段,学生常会遇到这样的场景:高考物理也就是“12道选择题、l道选作题、2道实验题和4道计算题”,总分150分.学生对于一般的物理基础题基本上没有问题,其错误大多是在不定项选择题上发生;另外,做计算题的能力还有些差,有时候没有一点解题的思路和程序,有时候理解题意有些偏差,有时候把问题搞得很复杂,有时候又把问题想得过于简单;而对于实验题,简直是摸不着头脑,常考常新,基本上得不到分数.“老师?我该怎么办呢?” 上述“物理场景”具有广泛性与普遍性,是高三学生学习过程中常会出现的一种现象.同学们要正视问题,调整心态,充满信心,更要注重解题方法与应试技巧的积累,把自己头脑中储存的物理知识有效地转化成分数.高考——分数是硬道理,学物理不能“一看就懂,一听就会,一作就错”,而要把自己的知识与能力转化成分数.在这里我想从“物理场景”的角度谈谈物理解题的策略与方法,望能对同学们有所帮助. 一、关于12道物理选择题 1.选择题失分的原因剖析 物理考试中,选择题有12题共48分,分数非常可观,故考试成败的关键在于选择题,这个问题应该引起同学们的高度重视.选择题失分较多的关键是处理题目时过于草率,这和平时的练习有直接联系.无论单选多选,处理选择题时建议把它当做稍大些的题处理.在处理大题的时候,同学们会自觉地画图、审题、弄清物理情境中出现的系统、状态与过程,挖出隐含条件,同学们格外重视这些因素,也做得比较到位.但在处理选择题的过程中,画图、审题程序往往被忽略,这样就埋下了隐患,导致丢分.所以,选择题失分不要总是归结为马虎、粗心!一定要注重审题及其他程序,不能凭一种单纯的物理感觉去解题. 2.选择题的求解技巧

高中物理解题方法整体法和隔离法

高中物理解题方法---整体法和隔离法 选择研究对象是解决物理问题的首要环节.在很多物理问题中,研究对象的选择方案是多样的,研究对象的选取方法不同会影响求解的繁简程度。合理选择研究对象会使问题简化,反之,会使问题复杂化,甚至使问题无法解决。隔离法与整体法都是物理解题的基本方法。 隔离法就是将研究对象从其周围的环境中隔离出来单独进行研究,这个研究对象可以是一个物体,也可以是物体的一个部分,广义的隔离法还包括将一个物理过程从其全过程中隔离出来。 整体法是将几个物体看作一个整体,或将看上去具有明显不同性质和特点的几个物理过程作为一个整体过程来处理。隔离法和整体法看上去相互对立,但两者在本质上是统一的,因为将几个物体看作一个整体之后,还是要将它们与周围的环境隔离开来的。 这两种方法广泛地应用在受力分析、动量定理、动量守恒、动能定理、机械能守恒等问题中。 对于连结体问题,通常用隔离法,但有时也可采用整体法。如果能够运用整体法,我们应该优先采用整体法,这样涉及的研究对象少,未知量少,方程少,求解简便;不计物体间相互作用的内力,或物体系内的物体的运动状态相同,一般首先考虑整体法。对于大多数动力学问题,单纯采用整体法并不一定能解决,通常采用整体法与隔离法相结合的方法。 一、静力学中的整体与隔离 通常在分析外力对系统的作用时,用整体法;在分析系统内各物体(各部分)间相互作用时,用隔离法.解题中应遵循“先整体、后隔离”的原则。 【例1】在粗糙水平面上有一个三角形木块a ,在它的两个粗糙斜面上分别放有质量为m1和m2的两个木块b 和c ,如图所示,已知m1>m2,三木块均处于静止,则粗糙地面对于三角形木块( ) A .有摩擦力作用,摩擦力的方向水平向右 B .有摩擦力作用,摩擦力的方向水平向左 C .有摩擦力作用,但摩擦力的方向不能确定 D .没有摩擦力的作用 【解析】由于三物体均静止,故可将三物体视为一个物体,它静止于水平面上,必无摩擦力作用,故选D . 【点评】本题若以三角形木块a 为研究对象,分析b 和c 对它的弹力和摩擦力,再求其合力来求解,则把问题复杂化了.此题可扩展为b 、c 两个物体均匀速下滑,想一想,应选什么? 【例2】有一个直角支架AOB ,AO 水平放置,表面粗糙,OB 竖直向下,表面光滑,AO 上套有小环P ,OB 上套有小环Q ,两环质量均为m ,两环间由一根质量可忽略、不可伸展的细绳相连,并在某一位置平衡,如图。现将P 环向左移一小段距离,两 环再次 A O B P Q

高考物理:常考题型与解题方法全汇总

高考物理:常考题型与解题方法全汇总 2019年5月20日 很多高中生都会抱怨,物理太难学了。学习起来毫无头绪,不知从何下手,总是找不到方法,题目做了很多,但是成绩总是上不去。今天特意汇总了物理中16个常见题型以及5种通用的解题方法,供大家参考学习。 16大常见题型 题型1 直线运动问题 题型概述:直线运动问题是高考的热点,可以单独考查,也可以与其他知识综合考查。单独考查若出现在选择题中,则重在考查基本概念,且常与图像结合;在计算题中常出现在第一个小题,难度为中等,常见形式为单体多过程问题和追及相遇问题。 思维模板:解图像类问题关键在于将图像与物理过程对应起来,通过图像的坐标轴、关键点、斜率、面积等信息,对运动过程进行分析,从而解决问题。对单体多过程问题和追及相遇问题应按顺序逐步分析,再根据前后过程之间、两个物体之间的联系列出相应的方程,从而分析求解,前后过程的联系主要是速度关系,两个物体间的联系主要是位移关系。 题型2 物体的动态平衡问题 题型概述:物体的动态平衡问题是指物体始终处于平衡状态,但受力不断发生变化的问题。物体的动态平衡问题一般是三个力作用下的平衡问题,但有时也可将分析三力平衡的方法推广到四个力作用下的动态平衡问题。 思维模板: (1)解析法:解决此类问题可以根据平衡条件列出方程,由所列方程分析受力变化。 (2)图解法:根据平衡条件画出力的合成或分解图,根据图像分析力的变化。 题型3 运动的合成与分解问题

题型概述:运动的合成与分解问题常见的模型有两类。一是绳(杆)末端速度分解的问题,二是小船过河的问题,两类问题的关键都在于速度的合成与分解。 思维模板: (1)在绳(杆)末端速度分解问题中,要注意物体的实际速度一定是合速度,分解时两个分速度的方向应取绳(杆)的方向和垂直绳(杆)的方向。如果有两个物体通过绳(杆)相连,则两个物体沿绳(杆)方向速度相等。 (2)小船过河时,同时参与两个运动,一是小船相对于水的运动,二是小船随着水一起运动,分析时可以用平行四边形定则,也可以用正交分解法,有些问题可以用解析法分析,有些问题则需要用图解法分析。 题型4 抛体运动问题 题型概述:抛体运动包括平抛运动和斜抛运动,不管是平抛运动还是斜抛运动,研究方法都是采用正交分解法,一般是将速度分解到水平和竖直两个方向上。 思维模板: (1)平抛运动物体在水平方向做匀速直线运动,在竖直方向做匀加速直线运动,其位移满 足x=v 0t,y=gt2/2,速度满足v x =v ,v y =g。 (2)斜抛运动物体在竖直方向上做上抛(或下抛)运动,在水平方向做匀速直线运动,在两个方向上分别列相应的运动方程求解。 题型5 圆周运动问题 题型概述:圆周运动问题按照受力情况可分为水平面内的圆周运动和竖直面内的圆周运动,按其运动性质可分为匀速圆周运动和变速圆周运动。水平面内的圆周运动多为匀速圆周运动,竖直面内的圆周运动一般为变速圆周运动。对水平面内的圆周运动重在考查向心力的供求关系及临界问题,而竖直面内的圆周运动则重在考查最高点的受力情况。

高中物理八大解题方法之五:极值法

- 1 - 高中物理解题方法之极值法 江苏省特级教师 戴儒京 高中物理中的极值问题,是物理教学研究中的活跃话题。本文通过例题归纳综合出极值问题的四种主要解法。 一、 二次函数求极值 二次函数a ac b a b x a c bx ax y 44)2(222 --+=++=,当a b x 2-=时,y 有极值 a b a c y m 442 -=,若a>0,为极小值,若a<0,为极大值。 例1试证明在非弹性碰撞中,完全非弹性碰撞(碰撞后两物体粘合在一起)动能损失最大。 设第一个物体的质量为1m ,速度为1V 。第二个物体的质量为2m ,速度为2V 。碰撞以后的速度分别为'1V 和' 2V 。假使这四个速度都在一条直线上。 根据动量守恒定律有:' +'=+22112211V m V m V m V m (1) 如果是完全非弹性碰撞,两物体粘合在一起,(1)则变为 V m m V m V m '+=+)(212211,即2 12 211m m V m V m V ++= ' (2) 现在就是要证明,在满足(1)式的碰撞中,动能损失最大的情况是(2)式。 碰撞中动能损失为 ΔE k =( )2 2 ()222 2 22 112 22211'+ '-+v m v m v m v m (3) 转变为数学问题:ΔE k 为v 的二次函数: 由(1)得:v 2ˊ=2 112211) (m v m v m v m ' -+ (4) 将(4)代入(3)得: k =++++-'12221112'1211)(2)(v m v m v m m v m m m m [2 222112 222112)(22m v m v m v m v m +- +] 二次函数求极值,

高考物理数学物理法常见题型及答题技巧及练习题

高考物理数学物理法常见题型及答题技巧及练习题 一、数学物理法 1.如图所示,ABCD是柱体玻璃棱镜的横截面,其中AE⊥BD,DB⊥CB,∠DAE=30°, ∠BAE=45°,∠DCB=60°,一束单色细光束从AD面入射,在棱镜中的折射光线如图中ab所示,ab与AD面的夹角α=60°.已知玻璃的折射率n=1.5,求:(结果可用反三角函数表示) (1)这束入射光线的入射角多大? (2)该束光线第一次从棱镜出射时的折射角. 【答案】(1)这束入射光线的入射角为48.6°; (2)该束光线第一次从棱镜出射时的折射角为48.6° 【解析】 试题分析:(1)设光在AD面的入射角、折射角分别为i、r,其中r=30°, 根据n=,得: sini=nsinr=1.5×sin30°=0.75 故i=arcsin0.75=48.6° (2)光路如图所示: ab光线在AB面的入射角为45°,设玻璃的临界角为C,则: sinC===0.67 sin45°>0.67,因此光线ab在AB面会发生全反射 光线在CD面的入射角r′=r=30° 根据n=,光线在CD面的出射光线与法线的夹角: i′="i=arcsin" 0.75=48.6° 2.质量为M的木楔倾角为θ,在水平面上保持静止,质量为m的木块刚好可以在木楔上表面上匀速下滑.现在用与木楔上表面成α角的力F拉着木块匀速上滑,如图所示,求:

(1)当α=θ时,拉力F 有最小值,求此最小值; (2)拉力F 最小时,木楔对水平面的摩擦力. 【答案】(1)mg sin 2θ (2)1 2 mg sin 4θ 【解析】 【分析】 对物块进行受力分析,根据共点力平衡,利用正交分解,在沿斜面方向和垂直于斜面方向都平衡,进行求解采用整体法,对m 、M 构成的整体列平衡方程求解. 【详解】 (1)木块刚好可以沿木楔上表面匀速下滑时,mg sin θ=μmg cos θ,则μ=tan θ,用力F 拉着木块匀速上滑,受力分析如图甲所示,则有:F cos α=mg sin θ+F f ,F N +F sin α=mg cos θ, F f =μF N 联立以上各式解得:() sin 2cos mg F θ θα= -. 当α=θ时,F 有最小值,F min =mg sin 2θ. (2)对木块和木楔整体受力分析如图乙所示,由平衡条件得,F f ′=F cos(θ+α),当拉力F 最小时,F f ′=F min ·cos 2θ=1 2 mg sin 4θ. 【点睛】 木块放在斜面上时正好匀速下滑隐含摩擦系数的数值恰好等于斜面倾角的正切值,当有外力作用在物体上时,列平行于斜面方向的平衡方程,结合数学知识即可解题. 3.图示为直角三角形棱镜的截面,90?∠=C ,30A ?∠=,AB 边长为20cm ,D 点到A 点的距离为7cm ,一束细单色光平行AC 边从D 点射入棱镜中,经AC 边反射后从BC 边上的F 点射出,出射光线与BC 边的夹角为30?,求: (1)棱镜的折射率; (2)F 点到C 点的距离。

高考物理常考题型+解题方法汇总·

高中物理考试常见的类型无非包括以下16种,今天为同学们总结整理了这16种常见题型的解题方法和思维模板,同时介绍给大家高考物理各类试题的解题方法和技巧,提供各类试题的答题模版,飞速提升你的解题能力,力求做到让你一看就会,一想就通,一做就对! 1题型1 直线运动问题 题型概述:直线运动问题是高考的热点,可以单独考查,也可以与其他知识综合考查.单独考查若出现在选择题中,则重在考查基本概念,且常与图像结合;在计算题中常出现在第一个小题,难度为中等,常见形式为单体多过程问题和追及相遇问题. 思维模板: 解图像类问题关键在于将图像与物理过程对应起来,通过图像的坐标轴、关键点、斜率、面积等信息,对运动过程进行分析,从而解决问题;对单体多过程问题和追及相遇问题应按顺序逐步分析,再根据前后过程之间、两个物体之间的联系列出相应的方程,从而分析求解,前后过程的联系主要是速度关系,两个物体间的联系主要是位移关系. 2 题型2 物体的动态平衡问题

题型概述:物体的动态平衡问题是指物体始终处于平衡状态,但受力不断发生变化的问题.物体的动态平衡问题一般是三个力作用下的平衡问题,但有时也可将分析三力平衡的方法推广到四个力作用下的动态平衡问题. 思维模板: 常用的思维方法有两种. (1)解析法:解决此类问题可以根据平衡条件列出方程,由所列方程分析受力变化; (2)图解法:根据平衡条件画出力的合成或分解图,根据图像分析力的变化. 3 题型3 运动的合成与分解问题 题型概述:运动的合成与分解问题常见的模型有两类.一是绳(杆)末端速度分解的问题,二是小船过河的问题,两类问题的关键都在于速度的合成与分解. 思维模板: (1)在绳(杆)末端速度分解问题中,要注意物体的实际速度一定是合速度,分解时两个分速度的方向应取绳(杆)的方向和垂直绳(杆)的方向;如果有两个物体通过绳(杆)相连,则两个物体沿绳(杆)方向速度相等. (2)小船过河时,同时参与两个运动,一是小船相对于水的运动,二是小船随着水一起运动,分析时可以用平行四边形定则,也可以用正交分解法,有些问题可以用解析法分析,有些问题则需要用图解法分析. 4 题型4 抛体运动问题

高中物理知识点总结和常用解题方法(带例题)

一、静力学: 1.几个力平衡,则一个力是与其它力合力平衡的力。 2.两个力的合力:F(max)-F(min)≤F合≤F(max)+F(min)。三个大小相等的共面共点力平衡,力之间的夹角为120°。 3.力的合成和分解是一种等效代换,分力与合力都不是真实的力,求合力和分力是处理力学问题时的一种方法、手段。 4.三力共点且平衡,则:F1/sinα1=F2/sinα2=F3/sinα3(拉密定理,对比一下正弦定理) 文字表述:三个力作用于物体上达到平衡时,则三个力应在同一平面内,其作用线必交于一点,且每一个力必和其它两力间夹角之正弦成正比5.物体沿斜面匀速下滑,则u=tanα6.两个一起运动的物体“刚好脱离”时:貌合神离,弹力为零。此时速度、加速度相等,此后不等。 7.轻绳不可伸长,其两端拉力大小相等,线上各点张力大小相等。因其形变被忽略,其拉力可以发生突变,“没有记忆力”。 8.轻弹簧两端弹力大小相等,弹簧的弹力不能发生突变。 9.轻杆能承受纵向拉力、压力,还能承受横向力。力可以发生突变,“没有记忆力”。 10、轻杆一端连绞链,另一端受合力方向:沿杆方向。 11、“二力杆”(轻质硬杆)平衡时二力必沿杆方向。 12、绳上的张力一定沿着绳子指向绳子收缩的方向。13、支持力(压力)一定垂直支持面指向被支持(被压)的物体,压力N不一定等于重力G。14、两个分力F1和F2的合力为F,若已知合力(或一个分力)的大小和方向,又知另一个分力(或合力)的方向,则第三个力与已知方向不知大小的那个力垂直时有最小值。 15、已知合力不变,其中一分力F1大小不变,分析其大小,以及另一分力F2。

高考物理,新考纲下不同题型的解题技巧

2019高考物理,新考纲下不同题型的解题技 巧 高考物理必考知识点在复习过程中一定要复习到位,在2019高考大纲下,针对不同题型的有不同的解题技巧。学习物理要善于归纳总结分析,这样才能在高考中取得好成绩。 选择题 分时间 以课标卷高考为例,高考物理一共8个选择题,按照高考选择题总时间在35-45 分钟的安排,物理选择题时间安排在15-25 分钟为宜,大约占所有选择题的一半时间(由于生物选择题和化学选择题的计算量不大,很多题目可以直接进行判断,所以物理选择题所占的时间比例应稍大些).在物理的8个选择题中,时间也不能平均分配,一般情况下,选择题的难度会逐渐增加,物理选择题也不会例外,难度大的题目大约需要3 分钟甚至更长一点的时间,而难度较小的选择题一般1 分钟就能够解决了,8个选择题中,按照2 :5 :1 的关系,一般有2 个简单题目,5个中档题目和1 个难度较大的题目(开始时难题较小)。 析本质 选择题一般考查的是考生对基本知识和基本规律的理 解及应用这些知识进行一些定性推理,很少有较复杂的计

算。解题时一定要注意一些,例如“不正确的”“可能”与“一定”的区别,要讨论多种可能性。不要挑题做,应按题号顺序做,而且开始应适当慢一点,这样刚上场的紧张心情会逐渐平静下来,做题思维会逐渐活跃,不知不觉中能全身心进入状态。一般地讲,如遇熟题,题图似曾相识,应陈题新解;如遇陌生题,题图陌生、物理情景陌生,应新题常规解,如较长时间分析仍无思路,则应暂时跳过去,先做下边的试题,待全部能做的题目做好后,再来慢慢解决(此时解题的心情已经会相对放松,状态更易发挥)。确实做不出来时,千万不要放弃猜答案的机会,先用排除法排除能确认的干扰项,如果能排除两个,其余两项肯定有一个是正确答案,再随意选其中一项,即使一个干扰项也不能排除仍不要放弃,四个选项中随便选一个。尤其要注意的是,选择题做完后一定要立即涂卡。 巧应对 高考物理选择题是所有学科中选择题难度最大的,主要难点有以下几种情况:一是物理本身在各个学科中就属于比较难的学科;二是物理选择题是不定项选择,题目答案个数不确定,造成在选择的时候瞻前顾后,不得要领;三是大部分选择题综合性很高,涉及的知识点比计算题和填空题还要多,稍有不慎,就会顾此失彼;四是有些选择题本身就是小型的计算题,计算量并不比简单的计算题小。

相关文档
相关文档 最新文档