文档库 最新最全的文档下载
当前位置:文档库 › 喷淋塔计算.

喷淋塔计算.

喷淋塔计算.
喷淋塔计算.

既定参数

温度=323K标准温度273

压力=101325Pa标准大气压101325废气流量=20000m3/h 废气分子量=28.94kg/kmol M空气=29

M废气1=17

M废气2=

M废气3=

M废气4=

M废气5=填料因子Φ=

泛点填料因子ΦF=

填料比表面积a t=

填料直径d=

填料临界表面张力σc=

填料的名义尺寸d p=

填料θ系数θ=

填料形状修正系数φ=

液相黏度μL=

气相黏度μG=

重力加速度g=

水的密度20?C ρ水= 液相密度ρL=

液相分子量M L=

液体密度校正系数Ψ= 液体表面张力σ=

液相中扩散系数D L= 气相中扩散系数D G= 空塔速度u=

摩尔气体常数R=

亨利系数E=

相平衡常数m=

K

Pa

V空气=0.995

V废气1=0.005

V废气2=0

V废气3=0

V废气4=0

V废气5=0

除臭设备设计计算书

8、除臭设备设计计算书 8.1、生物除臭塔的容量计算 1#生物除臭系统 参数招标要求计算过程 序 号太仓市港城组团污水处理厂改扩建工程设备采购、安装项目 1 2 设备尺寸 处理能力 2.5×2.0× 3.0m 2000m3/h Q=2000m3/h V=处理能力Q/(滤床接触面积m2)/S=2000/ (2.5×2)/3600=0.1111m/s 3 空塔流速<0.2 m/s 臭气停留 时间4 5 ≥12s S=填料高度H/空塔流速 V(s)=1.6/0.1111=14.4S 炭质填料风阻220Pa/m×填料高度 1.6m=352Pa 设备风阻<600Pa 2#生物除臭系统 参数 序 招标要求计算过程 号太仓市港城组团污水处理厂改扩建工程设备采购、安装项目 1 2 设备尺寸 处理能力 4.0×2.0×3.0m 3000m3/h Q=3000m3/h V=处理能力Q/(滤床接触面积m2)/S=3000/ (4×2)/3600=0.1041m/s 3 空塔流速<0.2 m/s 臭气停留 时间4 5 ≥12s S=填料高度H/空塔流速 V(s)=1.6/0.1041=15.36S 炭质填料风阻220Pa/m×填料高度 1.6m=352Pa 设备风阻<600Pa

3#生物除臭系统 参数招标要求计算过程 序 号太仓市港城组团污水处理厂改扩建工程设备采购、安装项目 1 2 设备尺寸 处理能力 7.5×3.0×3.3m(两台) 20000m3/h Q=20000m3/h V=处理能力Q/2(滤床接触面积m2)/S=10000/ (7.5×3.0)/3600=0.1234m/s 3 空塔流速<0.2 m/s 臭气停留 时间4 5 ≥12s S=填料高度H/空塔流速 V(s)=1.7/0.1234=13.77S 炭质填料风阻220Pa/m×填料高度 1.7m=374Pa 设备风阻<600Pa 4#生物除臭系统 参数 序 招标要求计算过程 号太仓市港城组团污水处理厂改扩建工程设备采购、安装项目 1 2 设备尺寸 处理能力 7.5×3.0×3.0m(两台) 18000m3/h Q=18000m3/h V=处理能力Q/2(滤床接触面积m2)/S=18000/ (7.5×3)/3600=0.1111m/s 3 空塔流速<0.2 m/s 臭气停留 时间4 5 ≥12s S=填料高度H/空塔流速 V(s)=1.6/0.1111=14.4S 炭质填料风阻220Pa/m×填料高度 1.6m=352Pa 设备风阻<600Pa 8.2、喷淋散水量(加湿)的计算 生物除臭设备采用生物滤池除臭形式,池体上部设有检修窗,进卸料口,侧面设有观察窗等,其具体计算如下:

吸收塔的相关设计计算

烟气脱硫工艺主要设备吸收塔设计和选型 (2) 喷淋塔吸收区高度设计(二) 对于喷淋塔,液气比范围在8L/m 3-25 L/m 3之间[5],根据相关文献资料可知液气比选择12.2 L/m 3是最佳的数值。 逆流式吸收塔的烟气速度一般在 2.5-5m/s 范围内[5][6],本设计方案选择烟气速度为3.5m/s 。 湿法脱硫反应是在气体、液体、固体三相中进行的,反应条件比较理想,在脱硫效率为90%以上时(本设计反案尾5%),钠硫比(Na/S)一般略微大于1,本次选择的钠硫比(Na/S)为1.02。 (3)喷淋塔吸收区高度的计算 含有二氧化硫的烟气通过喷淋塔将此过程中塔内总的二氧化硫吸收量平均到吸收区高度内的塔内容积中,即为吸收塔的平均容积负荷――平均容积吸收率,以ζ表示。 首先给出定义,喷淋塔内总的二氧化硫吸收量除于吸收容积,得到单位时间单位体积内的二氧化硫吸收量 ζ= h C K V Q η = (3) 其中 C 为标准状态下进口烟气的质量浓度,kg/m 3 η为给定的二氧化硫吸收率,%;本设计方案为95% h 为吸收塔内吸收区高度,m K 0为常数,其数值取决于烟气流速u(m/s)和操作温度(℃) ; K 0=3600u ×273/(273+t) 按照排放标准,要求脱硫效率至少95%。二氧化硫质量浓度应该低于580mg/m 3 (标状态) ζ的单位换算成kg/( m 2.s),可以写成 ζ=3600× h y u t /*273273 *4.22641η+ (7) 在喷淋塔操作温度 10050 752 C ?+=下、烟气流速为 u=3.5m/s 、脱硫效率η=0.95 前面已经求得原来烟气二氧化硫SO 2质量浓度为 a (mg/3m )且 a=0.650×

烟气脱硫设计计算

烟气脱硫设计计算 1?130t/h循环流化床锅炉烟气脱硫方案 主要参数:燃煤含S量% 工况满负荷烟气量 285000m3/h 引风机量 1台,压力满足FGD系统需求 要求:采用氧化镁湿法脱硫工艺(在方案中列出计算过程) 出口SO2含量?200mg/Nm3 第一章方案选择 1、氧化镁法脱硫法的原理 锅炉烟气由引风机送入吸收塔预冷段,冷却至适合的温度后进入吸收塔,往上与逆向流下的吸收浆液反应, 氧化镁法脱硫法 脱去烟气中的硫份。吸收塔顶部安装有除雾器,用以除去净烟气中携带的细小雾滴。净烟气经过除雾器降低烟气中的水分后排入烟囱。粉尘与脏东西附着在除雾器上,会导致除雾器堵塞、系统压损增大,需由除雾器冲洗水泵提供工业水对除雾器进行喷雾清洗。 吸收过程 吸收过程发生的主要反应如下: Mg(OH)2 + SO2 → MgSO3 + H2O MgSO3 + SO2 + H2O → Mg(HSO3)2 Mg(HSO3)2 + Mg(OH)2 → 2MgSO3 + 2H2O 吸收了硫分的吸收液落入吸收塔底,吸收塔底部主要为氧化、循环过程。 氧化过程 由曝气鼓风机向塔底浆液内强制提供大量压缩空气,使得造成化学需氧量的MgSO3氧化成MgSO4。这个阶段化学反应如下: MgSO3 + 1/2O2 → MgSO4

Mg(HSO3)2 + 1/2O2 → MgSO4 + H2SO3 H2SO3 + Mg(OH)2 → MgSO3 + 2H2O MgSO3 + 1/2O2 → MgSO4 循环过程 是将落入塔底的吸收液经浆液循环泵重新输送至吸收塔上部吸收区。塔底吸收液pH由自动喷注的20 %氢氧化镁浆液调整,而且与酸碱计连锁控制。当塔底浆液pH低于设定值时,氢氧化镁浆液通过输送泵自动补充到吸收塔底,在塔底搅拌器的作用下使浆液混合均匀,至pH达到设定值时停止补充氢氧化镁浆液。20 %氢氧化镁溶液由氧化镁粉加热水熟化产生,或直接使用氢氧化镁,因为氧化镁粉不纯,而且氢氧化镁溶解度很低,就使得熟化后的浆液非常易于沉积,因此搅拌机与氢氧化镁溶液输送泵必须连续运转,避免管线与吸收塔底部产生沉淀。 镁法脱硫优点 技术成熟 氧化镁脱硫技术是一种成熟度仅次于钙法的脱硫工艺,氧化镁脱硫工艺在世界各地都有非常多的应用业绩,其中在日本已经应用了100多个项目,台湾的电站95%是用氧化镁法,另外在美国、德国等地都已经应用,并且目前在我国部分地区已经有了应用的业绩。 原料来源充足 在我国氧化镁的储量十分可观,目前已探明的氧化镁储藏量约为160亿吨,占全世界的80%左右。其资源主要分布在辽宁、山东、四川、河北等省,其中辽宁占总量的%,其次是山东莱州,占总量的10%,其它主要是在河北邢台大河,四川干洛岩岱、汉源,甘肃肃北、别盖等地。因此氧化镁完全能够作为脱硫剂应用于电厂的脱硫系统中去。 脱硫效率高 在化学反应活性方面氧化镁要远远大于钙基脱硫剂,并且由于氧化镁的分子量较碳酸钙和氧化钙都比较小。因此其它条件相同的情况下氧化镁的脱硫效率要高于钙法的脱硫效率。一般情况下氧化镁的脱硫效率可达到95-98%以上,而石灰石/石膏法的脱硫效率仅达到90-95%左右。

喷淋塔自动加药装置设计使用说明

喷淋塔自动加药装置设计说明书 一、高锰酸钾几个重要特性 1、高锰酸钾粉末放置时间太长会吸潮板结; 高锰酸钾粉末本身不吸收水分,但其中的少量杂质会吸收水分而结成饼块。 2、高锰酸钾在水中的溶解度为6.4g/100ml; 3、高锰酸钾溶液具有一定的腐蚀性; 4、高锰酸钾溶液具有强氧化性,其作为氧化剂的反应产物是锰的氧化物,是土 壤成分之一,不会造成环境污染; 5、高锰酸钾能破坏部分有机化合物中的碳碳双键(C=C),将这部分有机化合 物降解; 6、高锰酸钾溶液在空气中的保存时间不长。 医学上用于口腔消炎的高锰酸钾溶液浓度为0.002%,其在空气中的存放时间仅有2小时。浓度越高其保存时间会越长。 二、在喷淋塔循环冷却水中投放高锰酸钾的作用 1、利用高锰酸钾的强氧化性杀灭部分细菌、微生物; 2、除去部分有机污染物。 三、原有方案 原有方案采用的是干粉投料的方式,依靠“插板阀+翻板阀”的装置进行投料,在投料的过程中计量不准确。 四、新方案 新方案采用溶液加药的方式。具体做法是:将高锰酸钾粉末投进搅拌罐中配置成一定浓度的高锰酸钾溶液,再用水泵定量抽取到喷淋塔中。采用新方案主要

是为了使投药量更加准确、高效。 1、新方案目标参数 ①喷淋塔内高锰酸钾浓度控制在0.05%~0.2%范围内; ②搅拌罐内高锰酸钾的浓度控制在5g/100ml左右; ③喷淋塔每周换水量大于50%,每月清空一次; ④每季度(或半年)人工加高锰酸钾粉料1次(配套料位计,能发出少料 警报)。 (③喷淋塔每天运行8小时,每隔4小时更换部分循环水,每天2次。 ④搅拌罐每天自动加高锰酸钾并且自动补水1次; ⑤每周(5天)人工加高锰酸钾粉料1次(配套料位计,能发出少料警报)。) 2、新方案中需要解决的几个问题: ①搅拌罐中的高锰酸钾溶液如何保证浓度? 解决方法:用小型螺旋机来投放高锰酸钾粉末,通过控制螺旋输送机的运转时间来控制每次的投放量,而且螺旋机自带破拱机构,可以防止粉末板结,保证粉末的输送连续、均匀;另外,用液位传感器来控制每次的补水量。 ②从搅拌罐到喷淋塔的高锰酸钾溶液投放量如何保证? 解决方法:用计量泵定量加药。 ③如何避免设备被高锰酸钾溶液腐蚀? 解决方法:搅拌罐采用SUS321不锈钢材料,喷淋塔采用SUS304不锈钢材料,输送管道采用SUS321不锈钢管。 3、新方案所需的设备 新方案所需的设备主要有:搅拌罐、小型螺旋输送机、搅拌器、液位计、液

脱硫吸收塔的直径和喷淋塔高度设计

吸收塔的直径和喷淋塔高度设计 脱硫工艺选用的吸收塔为喷淋塔,喷淋塔的尺寸设计包括喷淋塔的高度设计、喷淋塔的直径设计 1.1 喷淋塔的高度设计 喷淋塔的高度由三大部分组成,即喷淋塔吸收区高度、喷淋塔浆液池高度和喷淋塔除雾区高度。但是吸收区高度是最主要的,计算过程也最复杂,次部分高度设计需将许多的影响因素考虑在内。而计算喷淋塔吸收区高度主要有两种方法: (1) 喷淋塔吸收区高度设计(一) 达到一定的吸收目标需要一定的塔高。通常烟气中的二氧化硫浓度比较低。吸收区高度的理论计算式为 h=H0×NTU (1) 其中:H0为传质单元高度:H 0=G m /(k y a)(k a 为污染物气相摩尔差推动力的总传质系数,a 为塔内单位体积中有效的传质面积。) NTU 为传质单元数,近似数值为NTU=(y 1-y 2)/ △y m ,即气相总的浓度变化除于平均推动力△y m =(△y 1-△y 2)/ln(△y 1/△y 2)(NTU 是表征吸收困难程度的量,NTU 越大,则达到吸收目标所需要的塔高随之增大。 根据(1)可知:h=H0×NTU=)ln() ()(***2 2*11*22*112121y y y y y y y y y y a k G y y y a k G y m m y m ------=?- a k y =a k Y =9.81×1025.07.04W G -]4[ 82.0W a k L ?=]4[ (2) 其中:y 1,y 2为脱硫塔内烟气进塔出塔气体中SO 2组分的摩尔比,kmol(A)/kmol(B) *1y ,*2y 为与喷淋塔进塔和出塔液体平衡的气相浓度,kmol(A)/kmol(B) k y a 为气相总体积吸收系数,kmol/(m 3.h ﹒kp a ) x 2,x 1为喷淋塔石灰石浆液进出塔时的SO 2组分摩尔比,kmol(A)/kmol(B) G 气相空塔质量流速,kg/(m 2﹒h) W 液相空塔质量流速,kg/(m 2﹒h) y 1×=mx 1, y 2×=mx 2 (m 为相平衡常数,或称分配系数,无量纲) k Y a 为气体膜体积吸收系数,kg/(m 2﹒h ﹒kPa) k L a 为液体膜体积吸收系数,kg/(m 2﹒h ﹒kmol/m 3)

吸收塔的设计和选型

烟气脱硫工艺主要设备吸收塔设计和选型 4.1吸收塔的设计 吸收塔是脱硫装置的核心,是利用石灰石和亚硫酸钙来脱去烟气中二氧化硫气体的主要设备,要保证较高的脱硫效率,必须对吸收塔系统进行详细的计算,包括吸收塔的尺寸设计,塔内喷嘴的配置,吸收塔底部搅拌装置的形式的选择、吸收塔材料的选择以及配套结构的选择(包括法兰、人孔等)。 4.1.1 吸收塔的直径和喷淋塔高度设计 本脱硫工艺选用的吸收塔为喷淋塔,喷淋塔的尺寸设计包括喷淋塔的高度设 计、喷淋塔的直径设计 4.1.1.1 喷淋塔的高度设计 喷淋塔的高度由三大部分组成,即喷淋塔吸收区高度、喷淋塔浆液池高度和喷淋塔除雾区高度。但是吸收区高度是最主要的,计算过程也最复杂,次部分高度设计需将许多的影响因素考虑在内。而计算喷淋塔吸收区高度主要有两种方法: (1) 喷淋塔吸收区高度设计(一) 达到一定的吸收目标需要一定的塔高。通常烟气中的二氧化硫浓度比较低。吸收区高度的理论计算式为 h=H0×NTU (1) 其中:H0为传质单元高度:H 0=G m /(k y a)(k a 为污染物气相摩尔差推动力的总传质系数,a 为塔内单位体积中有效的传质面积。) NTU 为传质单元数,近似数值为NTU=(y 1-y 2)/ △y m ,即气相总的浓度变化除于平均推动力△y m =(△y 1-△y 2)/ln(△y 1/△y 2)(NTU 是表征吸收困难程度的量,NTU 越大,则达到吸收目标所需要的塔高随之增大。 根据(1)可知:h=H0×NTU= )ln() ()(*** 2 2* 11* 22*112 121y y y y y y y y y y a k G y y y a k G y m m y m ------=?- a k y =a k Y =9.81×1025.07.04W G -]4[ 82 .0W a k L ?=] 4[ (2) 其中:y 1,y 2为脱硫塔内烟气进塔出塔气体中SO 2组分的摩尔比,kmol(A)/kmol(B) *1y ,*2y 为与喷淋塔进塔和出塔液体平衡的气相浓度,kmol(A)/kmol(B) k y a 为气相总体积吸收系数,kmol/(m 3.h ﹒kp a )

{Z}喷淋塔计算公式0324

喷淋塔计算公式 1、流量Q(m3/h) 150002、流量Q(m3/s) 4.1666666673、流速(m/s) 18>84、管径(m)0.481125224圆管######### 5、液气比(L/m3)32~3 6、用水量(m3/h)45 7、用水量(m3/s)0.012540分钟水量22.5 8、水管流速(m/s)260分钟水量45 9、水管管径(mm)0.089228826 10、空塔流速(m/s)20.1~2 11、塔径(m) 1.62867504塔截面积 2.082277172 12、停留时间(s)22~3 13、塔高4 14、除尘效率0 15、压力损失8000.1~0.5KPa 16、通风机分压效率0.70.5~0.7 17、风机联动方式1直联 0.98联轴器 0.95三角皮带 18、电动机备用系数 1.22~5KW 通风机 1.3〉5KW 1.3引风机 19、风机功率Ne 6.516290727 系统压力损失计算 a 、沿程压力损失计算:11、流量Q(m3/h)2400 空气密度ρ 1.22、流量Q(m3/s)0.666666667管道直径D 0.2264554073、流速(m/s)13 >8 管内风速v 134、管径(m)0.226455407直管段长度L 10 阻力损失:ΔPl 447.7702759 沿程压力损失合计 b、局部阻力损失计算 局部阻力损失系数ζ1查局部系数表 局部阻力ΔPm 101.4 --摩擦压损系数

局部阻力损失合计 喷淋塔压力损失: 活性炭塔压力损失 设备管道压力损失 总压力损失:0 19、风机功率Ne0

式 压力损失(Pa) 除尘效率(%)〉90 粒径大于10微米 分割粒径(微米)3 除尘效率(%)

相关文档