文档库 最新最全的文档下载
当前位置:文档库 › 概率论期末复习题

概率论期末复习题

概率论期末复习题
概率论期末复习题

期末复习题 一、填空题

1、设A 、B 为随机事件,且P(A)=0.5,P(B)=0.6,P(B |A)=0.8,则P(A+B)=__ 0.7 __。

2、某射手对目标独立射击四次,此射手的命中率32,则至少命中一次的概率为8180

3、设随机变量X 服从[0,2]上均匀分布,则=2

)]([)

(X E X D 1/3 。

4、设随机变量X 服从参数为λ的泊松(Poisson )分布,且已知)]2)(1[(--X X E =1,则=λ___1____。

5、随机变量X 的数学期望μ=EX ,方差2

σ=DX ,k 、b 为常数,则有

)(b kX E +=,k b μ+;)(b kX D +=22k σ。

6、若随机变量X ~N (-2,4),Y ~N (3,9),且X 与Y 相互独立。设Z =2X -Y +3,则Z ~ N() 。

二、选择题

1、设随机事件A 与B 互斥,,则正确的是( D )。

2、将两封信随机地投入四个邮筒中,则未向前面两个邮筒投信的概率为( A )。

A. 22

42 B. 241

2C C C. 24!2P D. !4!2

3、已知随机变量X 的概率密度为)(x f X ,令X Y 2-=,则Y 的概率密度)(y f Y 为( D )。

A. )2(2y f X -

B.

)2(y f X - C. )2(21y f X -- D. )

2(21y

f X - 4、设)(x Φ为标准正态分布函数,

100,

,2, 1, 0A

,1 =???=i X i 否则;,发生;事件且8.0)(=A P ,10021

X X X ,,, 相互独立。令

∑==100

1

i i

X Y ,则由中心极限定理知Y 的分布函数)(y F 近似于( B )。

A. )(y Φ B .

)480

(

-Φy C .)8016(+Φy D .)804(+Φy

三(1)、已知5%的男性和0.25%的女性是色盲,假设男性女性各占一半。现随机地挑

选一人,求此人恰好是色盲者的概率。

设A :表示此人是男性; B :表示此人是色盲。 (书本p13)

则所求的概率为()()(|)()(|)P B P A P B A P A P B A =+ (用呢个公式)

0.50.050.50.00250.02625=?+?=

答:此人恰好是色盲的概率为0.02625。

三(2)、一袋中装有10个球,其中3个白球,7个红球。现从中采用不放回方式摸球两次,每次一个,求第二次取得白球的概率。

解 设

i A 表示表示第i 次取得白球,i=1,2。 则所求事件的概率为

2121121()()(|)()(|)P A P A P A A P A P A A =+

3273931091093010=

?+?==

答:第二次取得白球的概率为3/10。 三(3)、一袋中装有10个球,其中3个白球,7个红球。现从中采用不放回方式摸球两次,每次一个,若第二次取得白球,则第一次也是白球的概率。

解 设

i A 表示表示第i 次取得白球,i=1,2 。

则所求事件的概率为

12121122121121()()(|)

(|) = ()()(|)()(|)P A A P A P A A P A A P A P A P A A P A P A A =+32210939

10?==

答:第二次摸得白球,第一次取得也是白球的概率为2/9。

四(1)设随机变量X 的概率密度函数为

, 01()0 Ax x f x ≤≤?=?

?,

其它 (改为kx+1) 求(1)A ; (2)X 的分布函数F (x); (3) P (0.5 < X <2 )。 (范围改左)

解: 1

21001 ()| 1

22

2 A A

f x dx Axdx x A +∞

-∞==

===?

?()

2020 ()()0 01 ()()2

1 ()()x

x

x

x

x F x f t dt x F x f t dt tdt x x F x f t dt -∞-∞

-∞

<==≤<===≥==?

???

()当时,当时,当时,1

22 1

0, 0

(), 0 1

1, 1tdt x F x x x x =

=≤

(3) P (1/2

四(2)、已知连续型随机变量X 的分布函数为

???

??>+=-其它 ,00

,)(22

x Be A x F x (1-A/x 的平方)

求(1)A ,B ; (2)密度函数f (x);(3)P (1

解:0

(1) lim () 1 ,lim ()0, 1 .x x F x A F x A B B +

→+∞

→===+==- 2

/22, 0

() ()

0, 0x xe x f x F x x -?>?'==?≤??()

(3) P (1

/1---e e

(3).假定电源电压

2~(220,25)X N ,试求:电源电压不超过200,200~240和超过240伏d 的概率(提示:(0.8)0.788Φ=)

解:设

1A :“电源电压不超过200伏”;2A :“电源电压在200~240伏”;3A :

“电源

电压超过240伏”;B :“电子元件被埙坏”。

由于

2

~(220,25)X N ,所以

1200220

(){200}(200)(

)25P A P X F -=≤==Φ

(0.8)1(0.8)10.7880.212=Φ-=-Φ=-=

2240220200220(){200240}(

)()2525P A P X --=<≤=Φ-Φ

(0.8)(0.8)2(0.8)10.576=Φ--Φ=Φ-=

3240220(){240}1(

)25P A P X -=>=-Φ

(0.8)(0.8)2(0.8)10.576=Φ--Φ=Φ-= 1(0.8)10.7880.212=-Φ=-=

五、.设盒中有2个红球3个白球,从中每次任取一球,连续取两次,记X ,Y 分别表

示第一次与第二次取出的红球个数,分别对有放回摸球与不放回摸球两种情况求出(X ,Y )的分布律与边缘分布律。

解 (1)有放回摸球情况:

由于事件{X=i}与事件{Y=j}相互独立(i ,j=0,1),所以

P{X=0,Y=0}=P{X=0}·P{Y=0}=339

5525?= P{X=0,Y=1}=P{X=0}·P{Y=1}=3265525?=

P{X=1,Y=0}=P{X=1}·P{Y=0}=326

5525?= P{X=1,Y=1}=P{X=1}·P{Y=1}=2245525?=

则(X ,Y )的分布律与边缘分布律为

p ?

3525

(2)不放回摸球情况:

P{X=0,Y=0}=P{X=0}·P{Y=0|X=0}=

3235410?= 类似地有

P{X=0,Y=1}=323

5410?=,P{X=1,Y=0}=2335410?=,P{X=1,Y=1}=211

5410?=。

则(X ,Y )的分布律与边缘分布律为

p ?

35

25

六.设随机变量~X 110()10

0x x f x A x x +≤≤??

=-≤≤???当-当-其他,求:

(2) 常数 A ;(2)()E X ;(3)()D X 。

解:(1)由归一性

01

1

()(1)()1

f x dx x dx A x dx A +∞-∞

-=++-==?

??,从而得,

1A =;

(2)()E X =()xf x dx +∞-∞?01

10

(1)(1)0x x dx x x dx -=++-=??

(3)由于

2

()E X =2

()x f x dx +∞

-∞

?0

1

22

101(1)(1)6x x dx x x dx -=++-=

??

于是

()D X =2

()E X -2

[()]E X

=1

6

七.已知随机变量X 的分布列如下,

试求:(1)、()D X ;(2)2

(1)E X -;(3)X 的分布函数。

解: (1)()

E X 3

1

00.310.220.5 1.2

k k k x p ===?+?+?=∑

2222

()00.310.220.5 2.2E X =?+?+?= ()D X =2()E X -2[()]E X =2.2-1.22=0.76

(2)经计算得

2

(1)

X Y

-=的概率分布列

() E Y

2

1

00.210.80.8

k k

k

y p

=

==?+?=∑

七.某地区一个月内发生交通事故的次数X服从λ的泊松分布,即~()

X Pλ。根据统计资料知,一个月发生8次交通事故的概率是发生10次事故的2.5倍。

(1)求1个月内发生8次、10次交通事故的概率;

(2)求1个月内至少发生1次交通事故的概率;

(3)求1个月内最多发生2次交通事故的概率.

解这是泊松分布的应用问题

~()

X Pλ,

{}

!

k

P X k e

k

λ

λ

-

==

,k=0,1,2,…

这里的λ未知,关键是求出λ。

由题意有

{8} 2.5{10} P X P X

===

810

2.5

8!10!

e e

λλ

λλ

--

=?

,解得λ=6.

(1)

86

6

{8}0.1033

8!

e

P X

-

==≈

106

6

{10}0.0413

10!

e

P X

-

==≈

(2)

10

{0}0.00248

P X e e

λ

--

===≈,

{1}1{1}10.002480 P X P X

≥=-<≈-=。

(3)

6

{1}60.01487

P X e-

==≈,

26

6

{2}0.04462

2!

e

P X

-

==≈

{2}{0}{1}{

P X P X P X P X ≤==+=+=

0.002480.014870.044620.0620

≈++≈

八.一个盒子中有三只乒乓球,分别标有数字1,2,2。现从袋中任意取球二次,每次取一只(有放回),以X、Y分别表示第一次、第二次取得球上标有的数字。求:(1)X和Y的联合概率分布;

(2)关于X和Y边缘分布;

(3)X和Y是否相互独立?为什么?

解:(1)(X、Y)的所有可能取值为(1,1)、(1,2)、(2,1)、(2,2)。

11

111 {1,1}

339

p P X Y

====?=

12

122 {1,2}

339

p P X Y

====?=

21

212 {2,1}

339

p P X Y

====?=

22

224 {2,2}

339

p P X Y

====?=

于是(X、Y)的概率分布表为

(2)关于X和Y的边缘概率分布分别为

p

?

(3)X和Y相互独立。因为任意i,j有

i

p

??j

p

?=ij

p

十.公共汽车车门的高度是按男子与车门碰头的机会在0.01以下来设计的,设男子的

身高

2

(168,7)

X N,问车门的高度应如何确定?

提示:

{}0.01{}0.99

P X h P X h

≥≤<≥

或,

168168

{}0.99

77

X h

P

--

<≥

(查表(2.33)0.9901?=),168

2.33

7h -=,求得31.184=h

概率论期末试卷

填空题(每小题4分,共32分). 1.设 A 、B 为随机事件, P (A ) = 0.3, P (B ) = 0.4, 若 P (A |B ) =0.5, 则 P (A B ) = _______; 若 A 与 B 相互独立, 则 P (A B ) = _________. 2.设随机变量 X 在区间 [0, 10] 上服从均匀分布, 则 P { 1 < X < 6} = ______________. 2014-2015学年《概率论与数理统计》期末考试试卷 (B) 一、填空题(每小题4分,共32分). 1.设 A 、B 为随机事件, P (A ) = 0.3, P (B ) = 0.4, 若 P (A |B ) =0.5, 则 P (A B ) = _______; 若 A 与 B 相互独立, 则 P (A B ) = _________. 2.设随机变量 X 在区间 [0, 10] 上服从均匀分布, 则 P { 1 < X < 6} = ______________. 3.设随机变量 X 的分布函数为,4 ,1 42 ,7.021 ,2.01 ,0 )(???? ?? ?≥<≤<≤--<=x x x x x F 则 X 的分布律为 ___________________________ . 4.若离散型随机变量 X 的分布律为 X 1 2 3 p k 0.5 0.3 a 则常数 a = _________; 又 Y = 2X + 3, 则 P {Y > 5} = _________ . 5.设随机变量 X 服从二项分布 b (100, 0.2), 则 E (X ) = ________, D (X ) = ___________. 6.设随机变量 X ~ N (0, 1), Y ~ N (1, 3), 且X 和 Y 相互独立, 则D (3X +2Y ) = _________.

概率论与数理统计期末考试题及答案

创作编号: GB8878185555334563BT9125XW 创作者: 凤呜大王* 模拟试题一 一、 填空题(每空3分,共45分) 1、已知P(A) = 0.92, P(B) = 0.93, P(B|A ) = 0.85, 则P(A|B ) = 。 P( A ∪B) = 。 3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率: ;没有任何人的生日在同一个月份的概率 ; 4、已知随机变量X 的密度函数为:, ()1/4, 020,2 x Ae x x x x ??

8、设总体~(0,)0X U θθ>为未知参数,12,,,n X X X 为其样本, 1 1n i i X X n ==∑为样本均值,则θ的矩估计量为: 。 9、设样本129,, ,X X X 来自正态总体(,1.44)N a ,计算得样本观察值10x =, 求参数a 的置信度为95%的置信区间: ; 二、 计算题(35分) 1、 (12分)设连续型随机变量X 的密度函数为: 1, 02()2 0, x x x ??≤≤?=???其它 求:1){|21|2}P X -<;2)2 Y X =的密度函数()Y y ?;3)(21)E X -; 2、(12分)设随机变量(X,Y)的密度函数为 1/4, ||,02,(,)0, y x x x y ?<<??

《概率论与数理统计》期末考试试题及解答

一、填空题(每小题3分,共15分) 1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发 生的概率为__________. 答案:0.3 解: 3.0)(=+B A B A P 即 )(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+= 所以 1.0)(=AB P 9.0)(1)()(=-==AB P AB P B A P . 2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______. 答案: 161-e 解答: λλ λ λλ---= =+==+==≤e X P e e X P X P X P 2 )2(, )1()0()1(2 由 )2(4)1(==≤X P X P 知 λλλ λλ---=+e e e 22 即 0122 =--λλ 解得 1=λ,故 16 1)3(-= =e X P 3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2 X Y =在区间)4,0(内的概率 密度为=)(y f Y _________. 答案: 04,()()0,. Y Y X y f y F y f <<'===? 其它 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 2 ()()())))Y X X F y P Y y P X y y y y y =≤=≤ =≤- - 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故

北京邮电大学概率论期末考试试卷及答案

第1章 概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ; B :两次出现同一面,则= ; C :至少有一次出现正面,则C= . §1 .2 随机事件的运算 1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: (1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则 (1)=?B A ,(2)=AB ,(3)=B A , (4)B A ?= ,(5)B A = 。 §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则=?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个 签,说明两人抽“中‘的概率相同。 2. 第一盒中有4个红球6个白球,第二盒中有5个红球5个白球,随机地取一盒,从中随 机地取一个球,求取到红球的概率。 §1 .7 贝叶斯公式 1. 某厂产品有70%不需要调试即可出厂,另30%需经过调试,调试后有80%能出厂,求(1) 该厂产品能出厂的概率,(2)任取一出厂产品, 求未经调试的概率。 2. 将两信息分别编码为A 和B 传递出去,接收站收到时,A 被误收作B 的概率为,

概率论期末试题A

A. 一.填空题(每题3分,共15分) 1.三人随机进入五层楼的任一层,则至少有两人在同一层的概率为: 。 。 ,则,若 )( 6.0)|(2.0)( .2=-==A B P A B P A P 3. 3只红球,2只白球,每次从中任取一件,取后放回。则第5次取到第2次白球的概率为 。 4.。 ,则,且泊松分布~,指数分布~若随机变量= =DX DY Y e X 2)()()()(λπλ 。的矩估计为:参数的样本,则二项分布为取自总体若____________ )(),10(~),,(.51p p b X X X n 二、选择题(每题3分,共15分) ) ()()() ()()()|()|()()()()()()(1)()() (0 1ABC A C C B B A P C B A P D A BC P C AB P C B C P A B P A P ABC P B C P B P A P C B A P A C B A =-=-=-=,则以下一定成立的为的概率均大于,,,设有事件 15 9) (158)(157)(156)() ( 32012D C B A 的概率为:件,则至少有一件次品件次品,从中任取件产品中有, 5 1) (41)(31)(21)() ()(),3,2,1(21)( 3D C B A X P k k X P X k =====偶数,则的概率分布为:,若随机变量 4,若随机变量X,Y,Z 相互独立,且DX = 2,DY = 3,DZ = 1。则D (3X - Y - 2Z ) =( ) (A) 1 (B) 11 (C) 18 (D) 25 5. 若(321X X X ,,)为取自总体X 的样本,且EX = p ,则关于p 的无偏估计为( ) (A ) 321636261X X X ++ (B )321616263X X X +- (C )321616263X X X -+ (D )321616263X X X -- 三、计算题(每题10分,共70分) 1,三门炮同时向一飞机射击,彼此互不影响,设击中飞机的概率分别为:0.2、0.3、0.4, 若其中只有一门炮击中飞机,则飞机被击落的概率为0.1;

概率论期末考试试题

1.全概率公式 贝叶斯公式 1.某保险公司把被保险人分成三类:“谨慎的”、“一般的”和“冒失的”。统计资料表明,上述三种人在一年内发生事故的概率依次为0.05,0.15和0.3。并且它们分别占投保总人数的20%,50%和30%。现已知某保险人在一年内出了事故,则他是“谨慎的”保险户的概率是多少? 解:设A i 、A 2、A 3分别表示“谨慎的” “一般的”和“冒失的”保险户,B 表示“发生事故”,由贝叶斯公式知 057 .030 .03.015.05.005.02.005 .02.0) |()()|()()|()() |()()|(332211111≈?+?+??= ++=A B P A P A B P A P A B P A P A B P A P B A P 2.老师在出考题时, 平时练习过的题目占60%. 学生答卷时, 平时练习过的题目在考试时答对的概率为90% , 平时没练习过的题目在考试时答对的概率为30%, 求: (1) 考生在考试中答对第一道题的概率; (2) 若考生将第一题答对了, 那么这题是平时没有练习过的概率. 3. 在蔬菜运输中,某汽车运输公司可能到甲、乙、丙三地去拉菜的概率依次为0.2,0.5,0.3。在三地拉到一级菜的概率分别为10%,30%,70%。 1)求能拉到一级菜的概率;2)已知拉到一级菜,求是从乙地拉来的概率。 解:1、 解:设事件A 表示拉到一级菜,1B 表示从甲地拉到,2B 表示从乙地拉到, 3B 表示从丙地拉到 则1()0.2P B =,2()0.5P B =;3()0.3P B = 1()0.1P A B =,2()0.3P A B =, 3()0.7P A B = 则由全概率公式得 3 1 ()()(/)i i i P A P B P A B ==?∑=0.20.10.50.30.30.70.38?+?+?=—(7分) (2)拉的一级菜是从乙地拉得的概率为 222()()0.50.3 ()0.3947()0.38 P B P A B P B A P A ??= ==—————————(10分) 2.一维随机变量 5.设随机变量X 在区间[0,1]上服从均匀分布,求随机变量 2X Y=e 的密度函数. 6. ).1,0(~-X Y ),,N(~X 2N σμ = σμ用分布函数法证明:已知 证明: 设 b aX Y x f X x +=),(~, 则0≠a 时,Y~ )(y f Y =a 1)(a b y Y f - {}{}) 1,0(~21 2)()()()()()(2 2)(22 2 N Y e e y f y F y F y f y F y X P y X y Y P y F y y X X Y Y X Y ∴π = σ πσ =σμ+σ=μ+σ'='=μ+σ=μ+σ≤=? ?? ???≤ σ μ -=≤=- σμ-μ+σ- 7.设随机 7.变量X 的密度函数

四川大学概率统计往年期末试题

四川大学期末考试试题 (2008-2009学年第二学期) 一、单项选择题(每空2分,共10分) 1.设事件A 和B 独立,且,5.0)(,3.0)(==B P A P 则=)(B A P Y ( ) (A)0.8 (B)0.5 (C)0.65 (D)0.95 2.设随机变量X 的密度函数为+∞<<-∞=---x e x f x x ,61 )(625102π则 E(X)=( ) (A)5 (B)3 (C)-3 (D)-5 3.设X 有分布函数),(x F 令53-=X Y ,则Y 的分布函数为( ) (A)??? ??+3531y F (B))53(+y F (C) )353(-y F (D) ?? ? ??+35y F 4.设总体n X X X ,,,21Λ是独立同分布的随机变量序列,均服从参数为1的指数分布,令∑==n i i X n X 122 1,则?→?P X 2( ) (A)1 (B)2 (C)3 (D)4 5.设总体3212 ,,),,(~X X X N X σμ是来自X 的样本,记 32114 14121X X X Z ++=,3212313131X X X Z ++=,2125253X X Z += 这三个对μ的无偏估计量中,( )最有效 (A)1Z (B)2Z (C)3Z (D)无法判断 二、填空题(每空2分,共10分) 1.一个袋子中有3个红球,2个白球,从中任取3个球,则至少取得一个白球的概率是______; 2.设), 3.0,100(~B X 由切比雪夫不等式,≥<-)10|30(|X P _______; 3.设)4 3;914,1,1(~),(-N Y X 的二维正态分布,记Y X Z 32-=,则~Z _________分布; 4.设)(~λP X ,已知1)]2)(1[(=--X X E ,则=λ__________; 5.设总体)1,0(~N X ,321,,X X X 分别是来自X 的样本,

【期末复习】大学概率论与数理统计期末考试试卷 答案

20**~20**学年第一学期概率论与数理统计期末考试试卷(A 卷)答案 一.(本题满分8分) 某城市有汽车100000辆,牌照编号从00000到99999.一人进城,偶然遇到一辆车,求该车牌照号中含有数字8的概率. 解: 设事件{}8汽车牌照号中含有数字=A ,所求概率为()A P .…………….2分 ()()40951.010 91155 =-=-=A P A P .…………….6分 二.(本题满分8分) 设随机事件,,满足:()()()41===C P B P A P ,()0=AB P ,()()16 1==BC P AC P .求随机事件,,都不发生的概率. 解: 由于AB ABC ?,所以由概率的非负性以及题设,得()()00=≤≤AB P ABC P ,因此有 ()0=ABC P .…………….2分 所求概率为() C B A P .注意到C B A C B A ??=,因此有…………….2分 ()()C B A P C B A P ??-=1…………….2分 ()()()()()()()ABC P BC P AC P AB P C P B P A P -+++---=1 8 3 016116104141411=-+++--- =.…………….2分 三.(本题满分8分) 某人向同一目标进行独立重复射击,每次射击时命中目标的概率均为,()10<

概率统计期末考试试题附答案

中国计量学院2011 ~ 2012 学年第 1 学期 《 概率论与数理统计(A) 》课程考试试卷B 开课二级学院: 理学院 ,考试时间: 2011 年 12_月26 日 14 时 考试形式:闭卷√、开卷□,允许带 计算器 入场 考生姓名: 学号: 专业: 班级: 1.某人射击时,中靶的概率为4 3 ,若射击直到中靶为止,则射击次数为3的概率为( ). (A) 43412?)( (B) 343)( (C) 41432?)( (D) 34 1)( 2.n 个随机变量),,3,2,1(n i X i =相互独立且具有相同的分布并且a X E i =)(,b X Var i =)(,则这些随机变量的算术平均值∑= =n i i X n X 1 1的数学期望和方差分别为( ). (A ) a ,2n b (B )a ,n b (C)a ,n b 2 (D )n a ,b 3.若100张奖券中有5张中奖,100个人分别抽取1张,则第100个人能中奖的概率为( ). (A) 01.0 (B) 03.0 (C) 05.0 (D) 0 4. 设 )(),(21x F x F 为两个分布函数,其相应的概率密度)(),(21x f x f 是连续函数,则必为概率密度的是( ). (A) )()(21x f x f (B))()(212x F x f (C))()(21x F x f (D) )()()()(1221x F x f x F x f + 5.已知随机变量X 的概率密度函数为?????≤>=-0,00 ,)(22 22x x e a x x f a x ,则随机变量X Y 1 = 的期望 =)(Y E ( ).

最新版概率统计简明教程期末复习题(含答案)

考试的形式、试卷结构 1. 考试形式为闭卷、笔试。满分100分,考试时间为120分钟。 2. 试卷内容比例:第一、二、三章约占27%,第四章约占29%,第六章约占14%,第七章约 占16%,第八、九、十章约占14%。 3. 试卷题型比例:填空题占15%,选择题占15%,计算题占49%,综合题占21%. 题型示例与答案 一、填空题(本大题共5小题,每小题3分,共15分。) 1.在随机事件A ,B ,C 中至多有一个发生的事件可表示为_________________; 2.设随机事件A 与B 互斥,则P(AB)等于___________; 3.设随机变量X 的数学期望E(X)=a ,则E(2X+5)等于______________________; 4.设随机变量X 的方差D(X)=b, 则D(2X+5)等于______________________; 5.设随机变量X 服从正态分布N(μ,σ2), 则其密度函数f(x)=_______ __________。 二、单选题(本大题共5小题,每小题3分,共15分。) 1. A 与B 是两个随机事件,若AB ≠φ,则A 与B 关系是( )。 (A) 对立; (B) 独立; (C)互斥; (D) 相容 2. 进行一系列独立的试验,每次试验成功的概率为p ,则在成功2次之前已经失败3 次的概率为: A .32)1(4p p - B .3)1(4p p - C .32)1(10p p - D .3 2)1(p p - 3. 设F(x)是随机变量X 的分布函数,则F(x)具有性质( )。 x x x x A F x 1B F x 1C F x 0D F x →+∞ →-∞ →+∞ →+∞ ====+∞()lim (),()lim (),()lim (),()lim (). 4. 设随机变量X 服从分布N(μ,σ2),其数学期望和标准差分别是( )。 (A) μ,σ; (B) μ,σ 2; (C) σ, μ; (D)σ2,μ 5. 设?θ 是总体参数θ的无偏估计量,则有( )。 (A)D θ =θ?(); (B)E θ=θ?(); (C)θ=θ?; (D)2D θ =θ?() 三、计算题(本大题共7小题,每小题7分,共49分。要求解题有过程) 1.设两事件A 与B 互斥,且()()0.3,0.8P A P A B ==,求()P B 。 2.袋内装有4个白球,5个黑球,今从中任取两个球,求两个球均为白球的概率;

北京邮电大学概率论期末考试试卷及答案

北京邮电大学概率论期末考试试卷及答案

第1章概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A:出现奇数点,则 A= ;B:数点大于2,则B= . (2) 一枚硬币连丢2次, A:第一次出现正面,则A= ; B:两次出现同一面,则= ; C:至少有一次出现正面,则C= . §1 .2 随机事件的运算 1. 设A、B、C为三事件,用A、B、C的运算关 系表示下列各事件: (1)A、B、C都不发生表示为: .(2)A 与B都发生,而C不发生表示为: . (3)A与B都不发生,而C发生表示为: .(4)A、B、C中最多二个发生表示为: . (5)A、B、C中至少二个发生表示为: .(6)A、B、C中不多于一个发生表示为: .

2. 设}4 B =x ≤ x ≤ A S:则 x x = x < 3 1: }, { 2: { }, ≤ = {≤< 5 0: (1)= A,(2) ?B = AB,(3)=B A, (4)B A?= ,(5)B A= 。 §1 .3 概率的定义和性质 1.已知6.0 A P ?B = P A B P,则 ( ,5.0 ( ) ) ,8.0 (= ) = (1) =) (AB P, (2)() P)= , (B A (3)) P?= . (B A 2. 已知, 3.0 P A P则 =AB ( (= ) ,7.0 ) P= . A ) (B §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是。 2. 已知,2/1 A P =B A P则 = A P B | ( | ) ,3/1 ) ) ,4/1 ( (=

《概率统计》期末考试题(有答案)

《概率论》期末 A 卷考试题(免费) 一 填空题(每小题 2分,共20 分) 1.甲、乙两人同时向一目标射击,已知甲命中的概率为0.7,乙命中的概率为0.8,则目标被击中的概率为( ). 2.设()0.3,()0.6P A P A B == ,则()P A B =( ). 3.设随机变量X 的分布函数为??? ? ? ????> ≤≤<=2,120,sin 0,0)(ππx x x a x x F ,则=a ( ), ()6 P X π > =( ). 4.设随机变量X 服从参数为2=λ的泊松分布,则=-)1(2 X E ( ). 5.若随机变量X 的概率密度为2 36 ()x X p x -= ,则(2)D X -=( ) 6.设Y X 与相互独立同服从区间 (1,6)上的均匀分布,=≥)3),(max(Y X P ( ). 7.设二维随机变量(X,Y )的联合分布律为 X Y 1 2 ?i p 0 a 12 1 6 1 1 3 1 b 则 ( ), ( ).a b == 8.设二维随机变量(X,Y )的联合密度函数为? ? ?>>=--其它 00,0),(2y x ae y x f y x ,则 =a ( ) 9.若随机变量X 与Y 满足关系23X Y =-,则X 与Y 的相关系数X Y ρ=( ). 10.设二维随机变量)0,4,3,2,1(~),(N Y X ,则=-)52(Y X D ( ). 二.选择题(每小题 2分,共10 分) 1.设当事件C B 和同时发生时事件A 也发生,则有( ).

) ()()(1 )()()()(1)()()()() ()()(C B P A P d C P B P A P c C P B P A P b BC P A P a =-+≤-+≥= 2.假设事件B A 和满足1)|(=B A P ,则( ). (a ) B 是必然事件 (b )0)(=-A B P (c) B A ? (d ) 0)|(=B A P 3.下列函数不是随机变量密度函数的是( ). (a )sin 0()20 x x p x π? <=( ). 1 11() 1 () () ()4 28 a b c d 三、解答题(1-6小题每题9分,7-8小题每题8分,共70分) 1.某工厂有甲、乙、丙三车间,它们生产同一种产品,其产量之比为5:3:2, 已知三 车间的正品率分别为0.95, 0.96, 0.98. 现从全厂三个车间生产的产品中任取一件,求取到一件次品的概率。 2.设10件产品中有3件次品,从中不放回逐一取件,取到合格品为止.(1)求所需取件次数X 的概率分布 ;(2)求X 的分布函数()F x . 3.设随机变量X 的密度函数为(1) 01()0 A x x f x -<. 4.设随机变量X 的密度函数为sin 0()20 x x f x π? <

应用概率统计期末复习题及答案

第七章课后习题答案 7.2 设总体12~(12,4),,,,n X N X X X L 为简单随机样本,求样本均值与总体均值之 差的绝对值大于1的概率. 解:由于~(12,4)X N , ~(0,1)X N 7.3 设总体~(0,0.09),X N 从中抽取10n =的简单随机样本,求1021 1.44i i P X =?? >???? ∑. 解:由于~(0,0.09),X N 所以~(0,0.09),i X N 故 ~(0,1)0.3 i i X X N σ --= 所以 10 2 21 () ~(10)0.3i i X χ=∑ 所以{}1010222 11 1.441.44()160.10.3 0.09i i i i X P X P P χ==????>=>=>=????????∑∑ 7.4 设总体2 ~(,),X N μσ12,,,n X X X L 为简单随机样本, X 为样本均值,2 S 为样 本方差,问2 X U n μσ?? -= ??? 服从什么分布? 解: 2 22X X X U n μσ????-=== ???,由于2 ~(,)X N μσ, ~(0,1)X N ,故2 2 ~(1)X U χ??=。 7.6 设总体2~(,),X N μσ2 ~(,)Y N μσ且相互独立,从,X Y 中分别抽取 1210,15n n ==的简单随机样本,它们的样本方差分别为22 12,S S ,求2212(40)P S S ->。 解: 22 22211 2 1 2 22(40)(4)4S P S S P S S P S ?? ->=>=> ??? 由于2~(,),X N μσ2 ~(,)Y N μσ且相互独立

深圳大学的概率论与数理统计试题(含答案)

期末考试试卷参考解答及评分标准 开/闭卷 闭卷 A/B 卷 A 2219002801- 课程编号 2219002811 课程名称 概率论与数理统计 _______________ 学分 J ________ 第一部分基本题 一、选择题(共6小题,每小题5分,满分30分。在每小题给出的四个选项中,只有一 个是符合题目要求的,把所选项前的字母填在题后的括号内) (每道选择题选对满分,选 错0分) 2?假设事件A 与事件B 互为对立,则事件A B( ) (A)是不可能事件 (B)是可能事件 (C) 发生的概率为1 (D)是必然事件 答:选A ,这是因为对立事件的积事件是不可能事件。 3. 已知随机变量X,Y 相互独立,且都服从标准正态分布,则 X 2 + Y 2服从( ) (A)自由度为1的2分布 (B)自由度为2的2分布 (C)自由度为1的F 分布 (D)自由度为2的F 分布 答:选B ,因为n 个相互独立的服从标准正态分布的随机变量的平方和服从自由度为 2分布。 4. 已知随机变量X,Y 相互独立,X~N(2,4),Y~N(-2,1),则( (A) X+Y~P ⑷ (B) X+Y~U(2,4) (C) X+Y~N(0,5) 答:选C ,因为相互独立的正态变量相加仍然服从正态分布, D(X+Y)=D(X)+D(Y)=4+1=5,所以有 X+Y~N(0,5)。 5. 样本(X 1,X 2,X 3)取自总体 X ,E(X)= < D(X)=-2,则有( ) 答:选B ,因为样本均值是总体期望的无偏估计,其它三项都不成立。 6. 随机变量 X 服从在区间(2,5)上的均匀分布,贝U X 的数学期望E(X)的值为( ) (A) 2 (B) 3 (C) 3.5 (D) 4 答:选C ,因为在(a,b)区间上的均匀分布的数学期望为(a+b)/2。 二、填空题(共6小题,每小题5分,满分30分。把答案填在题中横线上) 1. 事件表达式A B 的意思是( ) (A) 事件A 与事件B 同时发生 (C)事件B 发生但事件A 不发生 答:选D , (B) 事件A 发生但事件B 不发生 (D)事件A 与事件B 至少有一件发生 ) (D) X+Y~N(0,3) 而 E(X+Y)=E(X)+E(Y)=2-2=0, (A) X 1+X 2+X 3是」的无偏估计 Y + V + V (B) X1 X2 入3 是邛勺无偏估计 3 (C) X ;是二2 的无偏估计 (D) .宁严2 是■-2的无偏估计

《概率论》期末考试试题(B卷答案)

《概率论》期末考试试题(B卷答案) 考试时间:120分钟(2005年07月) 班级姓名成绩 1.设甲、乙两人在同样条件下各生产100天,在一天中出现废品的概率分布分别如下: 求甲、乙两人生产废品的数学期望,比较甲、乙两人谁的技术高?() A甲好B乙好C一样好D无法确定 2.某厂产品的合格率为96%,合格品中一级品率为75%。从产品中任取一件为一级品的概率是多少?() A 0.72 B 0.24 C 0.03 D 0.01 3. 任一随机事件A的概率P(A)的取值在() A (0,1) B [0,1] C [-1,0] D (0,∞) 4.已知P(A)=1,P(B)=0,则() A. A为必然事件,B为不可能事件 B. A为必然事件,B不是不可能事件 C. A不必为必然事件,B为不可能事件 D. A不一定是必然事件,B不一定是不可能事件 5. 设A、B两个任意随机事件,则= A P () (B ) A. P(A)+ P(B) B. P(A)-P(B)+ P(AB) C. P(A)+ P(B)-P(AB) D. P(AB)-P(A)-P(B) 6.若已知φ A ,且已知P(A)=0,则() B = A.A与B独立 B. A与B不独立

C.不一定 D.只有当φ=A ,φ=B 时,A 、B 才独立 7.已知X ~B (n ,p ),则D (X )=( ) A.np B.p (1-p ) C.n (1-p ) D.np (1-p ) 8.设),(~2σμN X ,将X 转化为标准正态分布,转化公式Z =( ) A. 2 σ μ -x B. σ μ -x C. σ μ +x D. μ σ -x 9. 设),(~2 σμN X ,P (a ≤x ≤b )=( ) A.()()a b φφ- B.?? ? ??--??? ??-σμφσμφa b C.??? ??-+??? ??-σμφσμφa b D.?? ? ??--??? ??-σμφσμφb a 10. )1,0(~N X ,P (X ≤2)=( ) A.0.6826 B.0.9545 C.0.9973 D.0.5 二、 多项选择题(3*8=24分) 1. 设A 、B 是两个独立随机事件,则( ) A.)()()(B P A P B A P ?= B. )()|(A P B A P = C. )()|(B P A B P = D. )()()(B P A P B A P += E. )()|()(B P B A P B A P ?= 2. 离散型随机变量的概率分布具有性质( )

概率论与数理统计期末复习题1-3

概率与数理统计期末复习题一一、填空题 1.设随机变量X的概率密度为 ? ? ? ? ? ≤ > = - .0 ,0 , 3 1 ) ( 3 1 x x e x f x ,则数学期 = +-) (X e X E 。 2.设随机变量X,Y相互独立,且服从正态分布N(-1,1),则Z=2X-Y的概率密度。 3.进行三次独立试验,在每次试验中事件A出现的概率相等,已知A至少出现一次的概率等于64 37 ,则事件A在一次试验 中出现的概率P(A)= . 4.设X,Y是随机变量,D(X)=9,D(Y)=16,相关系数 2 1 = XY ρ ,则D(X+Y)= . 5. 口袋中装有2个白球,3个红球,从中随机地一次取出3个球,则取出的3个球中至多有2个红球的概率为 . 6. 已知随机变量X服从参数为λ的泊松分布,且 2 1 }0 {= = X P , = <}2 {X P . 二、已知随机变量X的概率密度为 ? ? ?< < = 其他 ,0 1 , 2 ) ( x x x f .求Y= 3lnX的分布函数. 三、玻璃杯成箱出售,每箱装有10只玻璃杯.假设各箱含0只,1只和2只次品的概率分别为0.9,0.06,0.04.一顾客要买一箱玻璃杯,售货员随意取出一箱,顾客开箱随机取出3只,若这3只都不是次品,则买下该箱杯子,否则退回.求(1)该顾客买下该箱玻璃杯的概率;(2)在顾客已买下的一箱中,确实没有次品的概率. 四、设随机变量(X,Y)的概率密度为 ?? ? ? ? - ≤ ≤ ≤ ≤ = 其他 ,0 6 6 0,1 , 3 1 ) , ( x y x y x f , 求 ( 1)边缘密度 ) ( ), (y f x f Y X; (2)协方差cov(X,Y),并问X 与Y 是否不相关? 五、已知一批产品的某一数量指标X服从正态分布 ) 6.0, (2 μ N ,问样本容量n为多少,才能使样本均值与总体均值的差的 绝对值小于0.1的概率达到0.95. [ 96 .1 ) 975 .0(Φ= , 6456 .1 ) 95 .0(Φ= , 29 .1 ) 90 .0(Φ= ]。 六、使用归工艺生产的机械零件,从中抽查25个,测量其直径,计算得直径的样本方差为6.27.现改用新工艺生产, 从中抽查25个零件,测量其直径,计算得直径的样本方差为 4.40. 设两种工艺条件下生产的零件直径都服从正态分布,问新工艺生产的零 件直径的方差是否比旧工艺生产的零件直径的方差显著地小( 05 .0 =α)? 七、设总体X的的概率密度为 ?? ? ? ? < < - =- - 其它 ,0 1 0, 1 1 ) ; (1 2 x x x fθ θ θ θ 其中 1 > θ,是未知参数,) , , , ( 2 1n x x x 是总体X的样本观察值. 求(1) θ的矩估计量; (2) θ的极大似然估计量Lθ ,并问L θ 是 θ的无偏估计吗? 八、设随机向量(X,Y)的概率密度为 ? ? ?≤ ≤ ≤ ≤ = 其它 ,0 1 0,1 , 8 ) ; ( y x y xy y x f

《概率论》期末考试试题及答案

07级《概率论》期末考试试题B 卷及答案 一、 填空题(满分15分): 1.一部五卷的文集,按任意次序放到书架上,则(1)“第一卷出现在旁边”的概率为 5 2 。 5 2 !5!422=?= p 2.设,)(,)(,)(r AB P q B P p A P ===则=)(B A P r p - 。性质 r p AB P A P AB A P B A P B A P -=-=-=-=)()()][)()( 3.设随机变量ξ的密度函数为() 0 3,其它 ?? ?>=-x ce x x ?则c= 3 . 33 )(130 =?= ==-+∞ +∞ ∞ -? ? c c dx e c dx x x ? 4. 设ξ、η为随机变量,且D (ξ+η)=7,D (ξ)=4,D (η)=1, 则Cov(ξ,η)= 1 . 1 21 472)(),cov() ,cov(2)(=--=--+=++=+ηξηξηξηξηξηξD D D D D D 5.设随机变量ξ服从两点分布) 1 ,1(B ,其分布律为 则ξ的特征函数为= )(t f ξit e 3 132+。 二、 单项选择题(满分15分): 1.设.A 、B 、C 为三个事件,用A 、B 、C 的运算关系表示“三个事件恰好一个发生”为( ②. ). ① C B A ??. ② C B A C B A C B A ++ ③ ABC -Ω. ④ C B A C B A C B A C B A +++ 2.设随机变量ξ的分布函数为

00)(2 2 <≥?? ???+=-x x B Ae x F x 则其中常数为(① )。 ①A=-1,B=1 ②A=1,B=-1 ③ A=1,B=1 ④ A=-1,B =-1 B A B e A x F B B e A x F x x x x x x +=+===+==-→→- +∞ →+∞ →++2 2 22lim )(lim 0lim )(lim 1 解得1,1=-=B A 3设随机变量ξ的分布列为.,2,1,2 1 )2)1(( ==-=k k P k k k ξ则ξE ( ④ ) ①等于1. ② 等于2ln ③等于2ln - ④ 不存在 445111 =?==∑ ∞ =C C C i i ∑∑+∞=+∞ =+=?-11 1 1 4545) 1(i i i i i i i ,由调和级数是发散的知,EX 不存在 4.对于任意两个随机变量ξ与η,下面(④ )说法与0),cov(=ηξ不等价。 ①相关系数0,=Y X ρ ② )()()(ηξηξD D D +=+ ③ ηξξηE E E ?=)( ④ ξ 与η相互独立 5.设随机变量ξ服从二项分布)2 1 ,4(B ,由车贝晓夫不等式有 ( ② ). ①.31 )32(≤ ≥-ξP ②.91 )32(≤≥-ξP ③ 3 1 )32(≥<-ξP . ④ 9 1)32(≥ <-ξP 因为9 1 )32(,1,2≤≥-==ξξξP D E 三、(满分20分) (1)两人相约7点到8点在某地会面,试求一人要等另一人半小时以上的概率。 解:

概率统计期末复习题

期末模拟题 一. 填空 1.一个产品须经过两道工序,每道工序产生次品的概率分别为3.0和 2.0,则一个产品出厂后是次品的概率为 。 2.设随机变量的密度函数为???=-0 )(3x e x f λ 00<≥x x ,则=λ 。 3. 已知)9,1(~N X ,则X 的标准差为 。 4. 设随机变量X 服从参数为λ的泊松分布,且3 1}0{==X P ,则=λ 。 5. 设),2(~2σN X ,且2.0}42{=<

4. 掷一颗骰子600次,求“一点” 出现次数的均值为 。 (A )50 (B )100 (C )120 (D )150 5. 有γ个球,随机地放在n 个盒子中(γ≤n),则某指定的γ个盒子中各有一球的概率为 。 (A ) γγn ! (B )γγn C r n ! (C )n n γ! (D) n n n C γ γ! 三. 计算 1. 某商店拥有某产品共计12件,其中4件次品,已经售出2件,现从剩下的10件产品中任取一件,求这件是正品的概率。 2. 甲乙丙三个同学同时独立参加考试,不及格的概率分别为: 0.2 ,0.3,0.4, (1) 求恰有2位同学不及格的概率; (2) 若已知3位同学中有2位不及格,求其中1位是同学乙的概率. 3已知连续型随机变量X 的分布函数为2 20,0(),0x x F x A Be x -≤??=??+>?, 求: (1) 常数,A B 的值; (2) 随机变量X 的密度函数()f x ;(3) ) 2P X << 4. 已知X 服从]4,0[U ,且13+=X Y ,试求Y 的密度函数。 5.一种电子管的使用寿命X 的分布密度为:? ??=0/100)(2x x f 100100<≥x x , 设某种仪器内装有三个上述电子管,求:

相关文档
相关文档 最新文档