文档库 最新最全的文档下载
当前位置:文档库 › 盾构关键参数计算.

盾构关键参数计算.

盾构关键参数计算.
盾构关键参数计算.

盾构主要参数的计算和确定

盾构主要参数的计算和确定 1、盾构外径: 盾构外径D=管片外径D S+2(盾尾间隙δ+盾尾壳体厚度t) 盾尾间隙δ--为保证管片安装和修复蛇行,以及其他因素的最小富余量,一般取25—40mm; 结合五标地质取多少? 2、刀盘开挖直径: 软土地层,一般大于前盾0—10mm,砂卵石地层或硬岩地层,一般大于前顿外径30mm,五标刀盘开挖直径如何确定的? 3、盾壳长度 盾壳长度L=盾构灵敏度ξx盾构外径D 小型盾构D≤3.5M,ξ=1.2—1.5;中型3.5M<D≤9M,ξ=0.8—1.2; 大型盾构D>9M;ξ=0.7—0.8; 4、盾构重量 泥水盾构重量=(45---65)D2,由于本线路存在线下溶土洞的可能,再掘进中能否通过此核算,盾构主机是否沉陷? 5、盾构推力 盾构总推力F e=安全储备系数AX盾构推进总阻力F d 安全储备系数A---一般取1.5---2.0。 盾构推进总阻力F d=盾壳与周边地层间阻力F1+刀盘面板推进阻力F2+管片与盾尾间摩擦力F3+ 切口环贯入地层阻力F4+转向阻力F5+牵引后配套拖车阻力F6 盾壳与周边地层间阻力F1计算中,静止土压力系数或土的粘聚力取盾体范围内的何点的? 刀盘面板推进阻力F2,对于泥水盾构或土压盾构土仓压力如何确定的? 管片与盾尾间摩擦力F3中,盾尾刷与管片的摩擦系数取偏大好吗?盾尾刷内的油脂压力如何定? 计算中土压力计算是按郎肯土压公式或库仑土压计算? 6、刀盘扭矩 刀盘设计扭矩T=刀盘切削扭矩T1+刀盘自重形成的轴承旋转反力矩T2+刀盘轴向推力形成的旋 转反力矩T3+主轴承密封装置摩擦力矩T4+刀盘前面摩擦扭矩T5+刀盘圆周摩擦反力矩T6+刀盘 背面摩擦力矩T7+刀盘开口槽的剪切力矩T8 刀盘切削扭矩T1中的切削土的抗压强度q u如何确定? 刀盘轴向推力形成的旋转反力矩T3 计算中土压力计算是按郎肯土压公式或库仑土压计算? , 刀盘圆周摩擦反力矩T6计算中,土压力计算是按郎肯土压公式或库仑土压计算? 刀盘背面摩擦力矩T7中土仓压力P W如何确定? 7、主驱动功率 主驱动工率储备系数一般为1.2---1.5,主驱动系统的效率η如何确定? 8、推进系统功率 推进系统功率W f=功率储备系数A W X最大推力FX最大推进速度VX推进系统功率ηW 功率储备系数A W一般取1.2---1.5, 最大推力F、最大推进速度V如何定? 推进系统功率ηW=推进泵的机械效率X推进泵的容积率X连轴器的效率 9、同步注浆能力 每环管片理论注浆量Q=0.25X(刀盘开挖直径D2—管片外径D S2)X管片长度L 推进一环的最短时间t=管片长度L/最大推进速度v 理论注浆能力q=每环管片理论注浆量Q/推进一环的最短时间t 额定注浆能力q p=地层的注浆系数λX理论注浆能力q/注浆泵效率η 地层的注浆系数λ因地层而变一般取1.5---1.8。

计算盾构施工过程中衬砌内力的两种方法比较

计算盾构施工过程中衬砌内力的两种方法比较 【摘要】盾构隧道的建造是一个多步骤施工的过程,为了更好地分析衬砌的受力状况,采用地层—结构法和荷鞍—结构法从不同角度对施工过程加以模拟,并各有侧重。地层—结构法引进应力释放系数概念,依据结构与土相互作用的观点,对施工过程中影响隧道内力的因素进行分析,奉文还针对施工过程中注浆压力、注浆影响范围对衬砌内力产生的影响进行了讨论;同时,采用荷载—结构法,考虑施工过程中荷载的变化,特别是注浆压力的变化米计算衬砌结构内力。最后,结合工程实例,比较了两种计算方法给出计算结果的差别,这为设计方法的改进提供了依据。【关键词】盾构隧道施工过程地层—结构法荷载—结构法1前言 盾构机械施工时,首先依靠盾构机本身的刚性支护和开挖面土压力的平衡装置而开挖前方土体,随着盾构的推进,不断拼装管片,同时在盾尾向衬砌环外围进行注浆。由于注浆材料的逐渐凝固以及土体的固结,整个隧道的隧道受力状态趋于稳定,投入运营使用。在运营阶段,又会受到列车的振动荷载和人群荷载。从以上过程可以看出:盾构隧道的建造是一个复杂的多步骤施工过程。在进行衬砌内力分析中为

了模拟施工过程,地层—结构法与荷载—结构法分别采用了不同的假设条件和设计理论,以期全面的反映盾构衬砌的受力状况。荷载—结构法首先把一切影响因素转化为荷载作用在结构上,这样需要引进诸多假设,如假设水土压力分布形式,地基抗力等。然后利用按最不利工况荷载组合的原则来进行内力分析,寻求盾构隧道内力包络图。地层一结构法分析中引进应力系数释放的概念,将土与隧道作为一个整体宋分析计算,建立模拟盾构隧道衬砌施工全过程的有限元分析模型,这就回避了荷载结构法中引进的假设,从最大限度上模拟了各个施工因素对衬砌受力的影响。本文依据自行研制的同济曙光软件,采用地层—结构法和荷载—结构法对盾构隧道的施工过程做出模拟,并比较分析结果。 2盾构衬砌的结构分析模型 2.1管片的离散化 盾构隧道衬砌结构通常属管片—接缝构造体系,其在隧道横断面上为若干管片通过螺栓连接成管片环,在隧道纵向上为管片环通过纵向螺栓连接,呈通缝或错缝拼装而成。在地层一结构法和荷载—结构法中,都可以将衬砌离散为二结点六自由度的梁单元如图1所示,假定隧道管片材料处于弹

盾构掘进主要参数计算方式

目录 1、纵坡 (1) 2、土压平衡盾构施工土压力的设置方法 (1) 2.1深埋隧道土压计算 (3) 2.2浅埋隧道的土压计算 (3) 2.2.1主动土压力与被动土压力 (3) 2.2.2主动土压力与被动土压力计算: (4) 2.3地下水压力计算 (4) 2.4案例题 (5) 2.4.1施工实例1 (5) 2.4.2施工实例2 (7) 3、盾构推力计算 (9) 4、盾构的扭矩计算 (9) 1、纵坡 隧道纵坡:隧道底板两点间数值距离除以水平距离 如图所示:隧道纵坡=(200-100)/500=2‰ 注:规范要求长达隧道最小纵坡>=0.3%,最大纵坡=<3.0% 2、土压平衡盾构施工土压力的设置方法 根据上述对地层土压力、水压力的计算原理分析,笔者总结出在土压平衡盾构的施工过程中,土仓内的土压力设置方法为:

a、根据隧道所处的位置以及隧道的埋深情况,对隧道进行分类,判断出隧道是属于深埋隧道还是浅埋隧道(一般来说埋深在2倍洞径以下时,算作是浅埋段,2倍以上算深埋); b、根据判断的隧道类型初步计算出地层的竖向压力; c、根据隧道所处的地层以及隧道周边地地表环境状况的复杂程度,计算水平侧向力; d、根据隧道所处的地层以及施工状态,确定地层水压力; e、根据不同的施工环境、施工条件及施工经验,考虑0.010~0.020Mpa 的压力值作为调整值来修正施工土压力; f、根据确定的水平侧向力、地层的水压力以及施工土压力调整值得出初步的盾构施工土仓压力设定值为: σ初步设定=σ水平侧向力+σ水压力+σ调整 式中, σ初步设定-初步确定的盾构土仓土压力; σ水平侧向力-水平侧向力; σ水压力-地层水压力; σ调整--修正施工土压力。 g、根据经验值和半经验公式进一步对初步设定的土压进行验证比较,无误时应用施工之中; h、根据地表的沉降监测结果,对施工土压力进行及时调整,得出比较合理的施工土压力值。

盾构机结构详解

盾构机技术讲座 一.盾构机结构(EPB总体结构图) 盾构是一个具备多种功能于一体的综合性隧洞开挖设备,它集和了盾构施工过程中的开挖、出土、支护、注浆、导向等全部的功能,目前,盾构机已成为地下交通工程及隧道建设施工的首选设备被广泛使用。其优点如下: 1. 不受地面交通、河道、航运、季节、气候等条件的影响。 2. 能够经济合理地保证隧道安全施工。 3. 盾构的掘进、出土、衬砌、拼装等可实行自动化、智能化和施工运输控制信息化。 4. 掘进速度较快,效率较高,施工劳动强度较低。 5. 地面环境不受盾构施工的干扰。 其缺点为: 1. 盾构机械造价较高。 2. 在饱和含水的松软地层中施工地表沉陷风险大。 3. 隧道曲线半径过小或埋深较浅时难度较大。 4. 设备的转移、运输、安装及场地布置等较复杂。 盾构作为一种保护人体和设备的护体,其外形(断面形状)随所建的工程要求不同有圆形、双圆形、三圆形、矩形、马蹄形、半圆形等。(如:人行道方形能最大限度的利用空间、过水洞马蹄形符合流体力学、公路隧道半圆形利用下玄跑车)。而因圆形断面受力好、圆形盾构设备制造相对简单及成本相对低廉,绝大部分盾构还是采用传统的圆形。 为适应各种不同类型土质及盾构机工作方式的不同,盾构机可分为三种类型、四种模式:

三种类型: (1)软土盾构机; (2)硬岩盾构机; (3)混合型盾构机。 四种模式: (4)开胸式; (5)半开胸式(半闭胸式、欠土压平衡式); (6)闭胸式(土压平衡式); (7)气压式。 软土盾构机适应于未固结成岩的软土、某些半固结成岩及全风化和强风化围岩。刀盘只安装刮刀,无需滚刀。 硬岩盾构机适应于硬岩且围岩层较致密完整,只安装滚刀,不需要刮刀。 混合盾构机适应于以上两种情况,适应更为复杂多变的复合地层。可同时安装滚刀和刮刀。 气压盾构是在加气压状态下的施工模式,即可用于泥水加压式盾构机,也可用于土压平衡式盾构机。

软土地区地铁盾构隧道课程设计计算书(1)

软土地区地铁盾构隧道课程设计说明书 (共00页) 姓名杨均 学号 070849 导师丁文琪 土木工程学院地下建筑与工程系 2010年7月

1. 设计荷载计算 1.1 结构尺寸及地层示意图 ?=7.2 ?=8.9 2 q=20kN/m 图1-1 结构尺寸及地层示意图 如图,按照要求,对灰色淤泥质粉质粘土上层厚度进行调整: mm 43800 50*849+1350h ==灰。 按照课程设计题目,以下只进行基本使用阶段的荷载计算。 1.2 隧道外围荷载标准值计算 (1) 自重 2 /75.835.025m kN g h =?==δγ (2)竖向土压 若按一般公式:

2 1 /95.44688.485.37.80.11.90.185.018q m KN h n i i i =?+?+?+?+?==∑=γ 由于h=1.5+1.0+3.5+43.8=48.8m>D=6.55m ,属深埋隧道。应按照太沙基公式或普氏公式计算竖向土压: a 太沙基公式: )tan ()tan (0010 ]1[tan )/(p ??? γB h B h e q e B c B --?+--= 其中: m R B c 83.6)4/7.75.22tan(/1.3)4/5.22tan(/0000=+=+=? (加权平均值0007.785 .5205 .42.7645.19.8=?+?= ?) 则: 2 )9.8tan 83 .68 .48()9.8tan 83.68 .48(11/02.18920]1[9 .8tan )83.6/2.128(83.6p m KN e e =?+--=-- b 普氏公式: 2 012/73.2699.8tan 92.7832tan 32p m KN B =??== ?γ 取竖向土压为太沙基公式计算值,即: 2 1/02.189p m KN e =。 (3) 拱背土压 m kN R c /72.286.7925.2)4 1(2)4 1(2G 22=??- ?=?- =π γπ 。 其中: 3/6.728 .1645.11 .728.10.8645.1m KN =+?+?= γ。 (4) 侧向主动土压 )2 45tan(2)245(tan )(q 0021? ?γ-?--?+=c h p e e 其中: 21/02.189p m KN e =, 3/4.785 .5205 .41.7645.18m KN =?+?= γ 0007.785 .5205.42.7645.19.8=?+?=?

盾构关键参数计算

第七节 关键参数的计算 1.地质力学参数选取 MCZ3-HG-063A 7-7-1,作为该标段盾32.5m ,盾构机壳体计算38.75m ,地下稳定水位2.5m 。 地质要素表 表7-7-1 隧道基本上在<4-1>、<5Z-2>和<6Z-2>地层中穿过,为相对的隔水地层。按上述条件对选用盾构的推力、扭矩校核计算如下: 2.盾构机的总推力校核计算: 土压平衡式盾构机的掘进总推力F ,由盾构与地层之间的摩擦阻力F 1、刀盘正面推进阻力F 2、盾尾内部与管片之间的摩擦阻力F 3组成,即按公式 F=( F 1+F 2+F 3).K c 式中:K c ——安全系数, 2.1 盾构地层之间的摩擦阻力F1 计算可按公式 F1= *D*L*C C —凝聚力,单位kN/m 2 ,查表7-7-1,

取C= 30.6kN/m2 L—盾壳长度,9.150m D—盾体外径,D=6.25m 得: F 1 =π*D*L*?C=3.14159?6.25?9.15?30.6 = 5498 kN 2.2 水土压力计算 D——盾构壳体计算外径,取6.25m; L——盾构壳体长度,9.15m; p e1 ——盾构顶部的垂直土压。按全覆土柱计算,为校核计算安全,采用岩土的天然密度ρ值计算。 qf e1——盾构机拱顶受的水平土压;qf e1 =λ×p e1 p e2 ——盾构底部的垂直土压。按全覆土柱计算,为校核计算安全,采用岩土的天然密度ρ值计算。 qf e2——盾构底部的水平土压。qf e2 =λ×p e2 qf w1 ——盾构顶部的水压 qf w2 ——盾构底部的水压λ——侧压系数,取0.37; 计算qf e1 qf e2 qf w1 qf w2 p e1 =12×1.95×9.8+13×1.88×9.8+(32.5-12-13)×1.91×9.8 =609.2kN/m2 p e2 =609.2 +6.25×1.91×9.8 =726.2 kN/m2 qfe1=0.37×609.2 =225.4 kN/m2 qfe2=0.37×726.2 =268.7 kN/m2 qf W1 =(32.5-2.5) ×9.8 =294 kN/m2 qf W2 =294+6.25×9.8 =355.3 kN/m2

盾构关键参数计算

第七节关键参数的计算 1.地质力学参数选取 根据广州市轨道交通三号线详勘阶段汉溪~市桥 盾构段Ⅱ段的岩土工程勘察报告,汉溪站南~市桥站北 区间隧道中,左线及右线的工程地质纵断面图,选择右 线里程YCK21+037.233处地质钻孔编号为MCZ3-HG-063A 的相关地层数据,见地质剖面图7-7-1,作为该标段盾 构机选型关键参数设计和校核计算的依据。该段面地表 标高为27.41m,隧道拱顶埋深32.5m,盾构机壳体计算 外径6.25m,盾壳底部埋深38.75m,地下稳定水位2.5m。 其它地质要素如表7-7-1所示。 地质要素表表7-7-1 代号地层厚度S (m) 天然密度 ρ(g/cm3) 凝聚力 C(KPa) 底层深度 H(m) <4-1> 粉质粘性土12.0 1.95 20.3 12.0 <5Z-2> 硬塑状残积土13.0 1.88 26.0 25.0 <6Z-2> 全风化混合岩、块石土14.0 1.91 30.6 39.0 隧道基本上在<4-1>、<5Z-2>和<6Z-2>地层中穿过,为相对的隔水地层。按上述条件对选用盾构的推力、扭矩校核计算如下: 2.盾构机的总推力校核计算: 土压平衡式盾构机的掘进总推力F,由盾构与地层之间的摩擦阻力F 1 、刀盘正面推 进阻力F 2、盾尾内部与管片之间的摩擦阻力F 3 组成,即按公式 F=( F 1 +F 2 +F 3 ).K c 式中:K c ——安全系数, 2.1 盾构地层之间的摩擦阻力F1 计算可按公式 F1= *D*L*C C—凝聚力,单位kN/m2,查表7-7-1,

取C= 30.6kN/m2 L—盾壳长度,9.150m D—盾体外径,D=6.25m 得: F 1 =π*D*L*?C=3.14159?6.25?9.15?30.6 = 5498 kN 2.2 水土压力计算 D——盾构壳体计算外径,取6.25m; L——盾构壳体长度,9.15m; p e1 ——盾构顶部的垂直土压。按全覆土柱计算,为校核计算安全,采用岩土的天然密度ρ值计算。 qf e1——盾构机拱顶受的水平土压;qf e1 =λ×p e1 p e2 ——盾构底部的垂直土压。按全覆土柱计算,为校核计算安全,采用岩土的天然密度ρ值计算。 qf e2——盾构底部的水平土压。qf e2 =λ×p e2 qf w1 ——盾构顶部的水压 qf w2 ——盾构底部的水压λ——侧压系数,取0.37; 计算qf e1 qf e2 qf w1 qf w2 p e1 =12×1.95×9.8+13×1.88×9.8+(32.5-12-13)×1.91×9.8 =609.2kN/m2 p e2 =609.2 +6.25×1.91×9.8 =726.2 kN/m2 qfe1=0.37×609.2 =225.4 kN/m2 qfe2=0.37×726.2 =268.7 kN/m2 qf W1 =(32.5-2.5) ×9.8 =294 kN/m2 qf W2 =294+6.25×9.8 =355.3 kN/m2

盾构隧道管片内力计算及配筋优化分析

盾构隧道管片内力计算及配筋优化分析 摘要:以北京某在建工程地铁盾构隧道衬砌管片为研究对象,采用修正惯用法(公式法、地基弹簧法)、三维梁~弹簧法分别对衬砌管片在不同地层条件下的 受力进行分析(匀质软地层、匀质硬地层、中软下硬地层、中硬下软地层),提 出了各种算法和地层条件下,衬砌管片内力的分布和变化规律,经对比分析,结 合盾构管片环结构的实际受力环境和特点,得出了指导和优化衬砌管片结构配筋 设计的相关结论和建议,提升了结构的安全性和经济性。 关键词:盾构隧道;管片配筋;修正惯用法;三维梁~弹簧法; 1 前言 在城市轨道交通工程中,单层装配式混凝土管片是盾构隧道常用的衬砌结构 型式,衬砌管片设计是盾构隧道结构设计的核心内容,与工程的安全性、经济性 和耐久性密切相关。常用的盾构管片内力计算方法有惯用法、修正惯用法、多铰 环法及梁-弹簧模型法[1-3],这些计算方法主要以二维分析为主,大致地模拟了盾 构管片的受力状态,并选取计算结果最大包络进行配筋。这些算法简便、易于实现,但却未能充分精细地揭示管片的实际内力状态,因此管片配筋针对性较弱, 影响工程的经济性。 本次研究以北京某在建工程地铁盾构隧道衬砌管片为研究对象,考虑地层条 件和衬砌构造的三维空间特征,充分考虑管片环内接头所引起的刚度下降以及错 缝拼装导致的环间传力效应,分别采用修正惯用法(公式法、地基弹簧法)、三 维梁~弹簧法对衬砌管片在不同地层条件下的受力进行分析(匀质软地层、匀质 硬地层、中软下硬地层、中硬下软地层),通过对分析结论的整理、归纳,总结 了各种算法的适用性和不同地质条件下衬砌管片内力的分布和变化规律,以期指 导和优化衬砌管片结构设计,提升结构的安全性和经济性。 2 工程概况 盾构隧道埋深10.5m~30m,穿越地层分为全断面卵石(匀质硬地层)、全 断面粉土、粉质粘土交互(匀质软地层)、仰拱卵石、中部粉土(中软下硬地层)以及中部卵石、下部粉质粘土(中硬下软地层)等四种典型的地层结构(详见图1)。 盾构隧道衬砌采用外径6.0m、幅宽1.2m、厚0.3 m的单层装配式钢筋混凝土管片,衬砌环由6块管片组成(详见图2),错缝拼装,标准封顶块位置偏离正 上方±22.5°,相邻环左右交替布置。 图2 盾构区间衬砌结构示意图 3 计算模型概述 3.1 惯用法及修正惯用法 惯用法与修正惯用法在隧道衬砌管片内力计算中是被普遍采用的算法,通过 使用公式或平面直梁(曲梁)单元建模,操作简便结论可靠,但惯用法与修正惯 用法不能准确地反应环内各管片之间以及管片环间的内力分布状态,特别是修正 惯用法中环内弯曲刚度折减系数η和环间弯矩传递系数ζ的选取对计算结果影响 较大,并且ζ的取值受地层影响较大,不易把握,不能满足精细化设计的要求。 本次研究,为体现惯用法与修正惯用法具体应用时,采用公式计算和建立平 面直梁(曲梁)单元模型计算的差异,分别按经典公式(简称公式法)和建立管

内力图-地铁盾构计算书

1. 设计荷载计算 1.1 结构尺寸及地层示意图 ?=7.2 ?=8.9 2 q=20kN/m 图1-1 结构尺寸及地层示意图 如图,按照要求,对灰色淤泥质粉质粘土上层厚度进行调整: mm 43800 50*849+1350h ==灰。按照课程设计题目,以下只进行基本使用阶段的荷载计算。 1.2 隧道外围荷载标准值计算 (1) 自重 2 /75.835.025m kN g h =?==δγ (2)竖向土压 若按一般公式: 2 1 /95.44688.485.37.80.11.90.185.018q m KN h n i i i =?+?+?+?+?==∑=γ 由于 h=1.5+1.0+3.5+43.8=48.8m>D=6.55m ,属深埋隧道。应按照太沙基公式或普氏公式计算竖向土压: a 太沙基公式: )tan ()tan (0010 ]1[tan )/(p ??? γB h B h e q e B c B --?+--= 其中: m R B c 83.6)4/7.75.22tan(/1.3)4/5.22tan(/0000=+=+=?

(加权平均值0007.785 .5205 .42.7645.19.8=?+?= ?) 则:2 )9.8tan 83 .68 .48()9.8tan 83.68 .48(11/02.18920]1[9 .8tan )83.6/2.128(83.6p m KN e e =?+--=-- b 普氏公式: 2 0012/73.2699 .8tan 92 .7832tan 32p m KN B =??== ?γ 取竖向土压为太沙基公式计算值,即:2 1/02.189p m KN e =。 (3) 拱背土压 m kN R c /72.286.7925.2)4 1(2)4 1(2G 22=??- ?=?- =π γπ 。 其中:3/6.728 .1645.11 .728.10.8645.1m KN =+?+?= γ。 (4) 侧向主动土压 )2 45tan(2)245(tan )(q 0021? ? γ-?-- ?+=c h p e e 其中:2 1/02.189p m KN e =, 3/4.785 .5205 .41.7645.18m KN =?+?= γ 0007.785.5205.42.7645.19.8=?+?=? kPa c 1.1285 .5205 .41.12645.12.12=?+?= 则:200 00 2 1/00.121)27.745tan(1.122)27.745(tan 02.189q m KN e =-??--?= 2 00 00 2 2 /06.154)27.745tan(1.122)27.745(tan )85.54.702.189(q m KN e =-??--??+= (5) 水压力按静水压考虑: a 竖向水压:2 w1w w1/478.24=48.8×9.8=H =p m KN γ b 侧向水压:2 w1w w1/478.24=48.8×9.8=H =q m KN γ 2w2w w2/532.14=5.5)(48.8×9.8=H =q m KN +γ (6) 侧向土壤抗力 衬砌圆环侧向地层(弹性) 压缩量:) R 0.0454k EI 24()]R q (q -)q (q -)p [2(p =4c 4 c w2e2w1e1w1e1?+?+++ηδ 其中:衬砌圆环抗弯刚度取2 37 6.12326512 0.35×0.1103.45EI m KN ?=??= 衬砌圆环抗弯刚度折减系数取7.0=η;

盾构选型及参数计算方法

盾构选型及参数计算方法 1.1、序言 盾构是一种专门用于隧道工程的大型高科技综合施工设备,它具有一个可以移动的钢结构外壳(盾壳),盾构内装有开挖、排土、拼装和推进等机械装置,进行土层开挖、碴土排运、衬砌拼装和盾构推进等系列操作,使隧道结构施工一次完成。它具有开挖快、优质、安全、经济、有利于环境保护和降低劳动强度的优点,从松散软土、淤泥到硬岩都可应用,在相同条件下,其掘进速度为常规钻爆法的4~10倍。较长地下工程的工期对经济效益和生态环境等方面有着重大影响,而且隧道工程掘进工作面又常常受到很多限制,面对进度、安全、环保、效益等这些问题,使用盾构机无疑是最好的选择。些外,对修建穿越江、湖、海底和沼泽地域隧道,采用盾构法施工,也具有十分明显的技术和经济优势。 采用盾构法施工,盾构的选型及配置是隧道施工中关键环节之一,盾构选型应根据工程地质水文情况、工期、经济性、环境保护、安全等综合考虑。盾构的选型及配置是一种综合性技术,涉及地质、工程、机械、电气及控制等方面。 1.2盾构机选型主要原则 1.2.1盾构的选型依据 盾构选型主要应考虑以下几个因素: 1)工程地质、水文条件及施工场地大小。 2)业主招标文件中的要求。

3)管片设计尺寸与分块角度。 4)盾构的先进性、适应性与经济性。 5)盾构机厂家的信誉与业绩。 6)盾构机能否按期到达现场。 1.2.2 盾构的型式 1)敞开式型盾构 敞开式型盾构是指盾构内施工人员可以直接和开挖面土层接触,对开挖面工况进行观察,直接排除开挖面发生的故障。这种盾构适用于能自立和较稳定的土层施工,对不稳定的土层一般要辅以气压或降水,使土层保持稳定,以防止开挖面坍塌。有人工开挖盾构、半机械开挖盾构、机械开挖盾构。 2)部分敞开式型盾构 部分敞开式型盾构是在盾构切口环在正面安装挤压胸板或网格切削装置,支护开挖面土层,即形成挤压盾构或网格盾构,施工人员可以直接观察开挖面土层工况,开挖土体通过网格孔或挤压胸板闸门进入盾构。根据以往大量工程经验,通常都将挤压胸板和网格切削装置组合在一起安装在盾构上,形成网格挤压盾构。这种盾构适用于不能自立、流动性在的松软粘性土层、尤其是对隧道沿线地面变形无严格要求的工程。当盾构采用网格开挖时,应将安装在网格后面的挤压胸板部分或大部分拆除,利用网格孔对土层的摩擦力或粘结力对开挖面土层进行支护,当盾构向前推进时(一般是盾构穿越江湖、海底或沼泽地区),应将挤压胸板装上,盾构向前推进时,可将土体全部

海瑞克盾构机基本参数

海瑞克土压6.3m盾构基本参数 名称技术参数备注 管片设计 外径6米 内径5.4米 管片宽度1.5米 数量5+1 盾体 前体 6.25x6.25x2.9米86.5吨 中体 6.24x6.24x2.58米80吨 前盾数量1个 中盾数量1个 直径6.25米不计耐磨堆焊层 长度(前体和中体) 4.68米螺栓连接并带密封盾构类型土压平衡 300米 盾构最小水平转弯 半径 最大工作压力3BAR 土压传感器(数量) 5个 气闸连接法兰1个 1个 螺旋输送机连接法 兰 盾尾 6.23x6.23x3.61米30吨 盾尾数量1个 型式绞接 长度3.61米 密封3排钢丝刷 注浆口4个DN50,单管 推进油缸液压 数量30个10组双缸+10组单缸分组数量4组 推力34 210KN 最大300BAR 行程2米 工作压力300BAR 伸出速度80mm/min 所有油缸 绞接油缸 类型被动式 数量14个 行程150 mm 刀盘 6.28x6.25x2.6米65吨 数量1个 形式装配有滚刀式 直径6.28米

旋转方向左/右 刀具配置4把17寸中心双刃滚刀,32把17寸单刃滚刀,28把齿刀(250 mm 宽),8组边刮刀(1组两把)。 8个 刀盘上泡沫喷嘴数 量 中心回转体1个 刀盘驱动 数量1个 形式液压驱动 液压马达数量9个 额定转矩6000KNm 最大脱困扭矩7150KNm 转速0~4.5转/分 功率945KW 3x315KW 主轴承形式固定式 人闸 数量1个 形式双仓 直径1.6米 工作压力3BAR 测试压力4.5BAR 额定人数(容纳)3+2 主仓/副仓 管片安装器 管片安装器及行走 5.0x4.0x3.8米22吨 梁 数量1个 形式中心回转式 抓紧系统机械式 自由度6个 旋转角度+/—200度比例控制 管片宽度1.2/1.5米 纵向移动行程2米比例控制 控制装置无线、有线控制 螺旋输送机 形式双螺旋转、有轴式 1号螺旋输送机13.4x1.2x1.4米23吨 长度13.4米 直径800mm 功率160KW 最大扭矩198 KNm 拖困扭矩225 KNm 转速1~22转/分无级调速 285方/时100%充满时 最大出土量(理论 值)

盾构机操作及参数控制

盾构机操作及参数控制 目前,住总集团大多采用德国海瑞克盾构机、日本小松及日立盾构机,现就其小松盾构机操作情况及参数控制作如下总结: 1 开机前准备 1) 检查延伸水管、电缆连接是否正常; 2) 检查供电是否正常; 3) 检查循环水压力是否正常; 4) 检查滤清器是否正常; 5) 检查皮带输送机、皮带是否正常; 6) 检查空压机运行是否正常; 7) 检查油箱油位是否正常; 8) 检查脂系统油位是否正常; 9) 检查泡沫原液液位是否正常; 10)检查注浆系统是否已准备好并运行正常; 11)检查后配套轨道是否正常; 12)检查出碴系统是否已准备就绪; 13)检查盾构操作面板状态:开机前应使螺旋输送机前门应处于开启状态,螺旋输送机的螺杆应伸出,管片安装模式应无效,无其它报警指示; 14)检查测量导向系统是否工作正常; 若以上检查存在问题,首先处理或解决问题,然后再准备开机。 15)请示技术负责人并记录有关盾构掘进所需要的相关参数,如掘进模式,土仓保持压力,线路数据,注浆压力等; 16)请示设备机修负责人并记录有关盾构掘进的设备参数; 17)若需要则根据技术负责人和设备机修负责人的指令修改盾构参数; 2 开机 1)确认外循环水已供应,启动内循环水泵; 2)确认空压机冷却水阀门处于打开状态,启动空压机; 3)根据工程要求选择盾尾油脂密封的控制模式,即选择采用行程控制还是采用压力控制模式;

4)在“报警系统”界面,检查是否存在当前错误报警,若有,首先处理; 5)将面版的螺旋输送机转速调节旋扭、刀盘转速调节旋扭、推进油缸压力调节旋扭、盾构推进速度旋扭等调至最小位; 6)启动前后液压泵站冷却循环泵,并注意泵启动是否正常,包括其启动声音及振动情况等。以下每一个泵启动情况均需注意其启动情况; 7)依次启动润滑脂泵(EP2)、齿轮油泵、HBW 泵、内循环水泵; 8)依次启动推进泵及辅助泵; 9)选择手动或半自动或自动方式启动泡沫系统; 10)启动盾尾油脂密封泵,并选择自动位;至此,盾构的动力部分已启动完毕,下面根据不同的工序进一步进行说明。 3掘进 1)启动皮带输送机 2)启动刀盘 根据测量系统面版上显示的盾构目前旋转状态选择盾构旋向按钮,一般选择能够纠正盾构转向的旋转方向; 选择刀盘启动按扭,当启动绿色按钮常亮后。并慢慢右旋刀盘转速控制旋钮,使刀盘转速逐渐稳定在 2rpm 左右。严禁旋转旋钮过快,以免造成过大机械冲击,损机械设备。此时注意主驱动扭矩变化,若因扭矩过高而使刀盘启动停止,则先把电位器旋钮左旋至最小再重新启动; 3)启动螺旋输送机 慢慢开启螺旋输送机的后门; 启动螺旋输送机按钮,并逐渐增大螺旋输送机的转速; 4)按下推进按钮,并根据 ZED 屏幕上指示的盾构姿态调整四组油缸的压力至适当的值,并逐渐增大推进系统的整体推进速度; 5)至此盾构开始掘进; 4土仓压力调整 1)如果开挖地层自稳定性较好采用敞开式掘进,则不用调正压力,以较大开挖速度为原则; 2) 如果开挖地层有一定的自稳性而采用半敞开式掘进,则注意调节螺旋输送机的转速,使土仓内保持一定的渣土量,一般约保持 2/3左右的渣土。

盾构衬砌计算方法

水事频道●技术频道 ●国际频道 ●视频中心 ●重磅专题●法律频道 ●文化频道 ● 商务频道 所在位置:首页->水信息网->技术频道->科技前沿 盾构隧道衬砌结构内力计算方法的对比浅析(邵岩 孟旭 央王卿) https://www.wendangku.net/doc/187343030.html, 时间: 2009-11-05 09:17:00 来源:《黄河规划设计》2009年第3期 放大 缩小打印 [摘要]简要介绍了盾构衬砌常用的荷载-结构计算方法,并通过算例计算分析,揭示了不同模型简化计算盾构衬砌内力的大小、分布规律,并提出了自己的见解,为以后的设计计算提供了有益的参考和提示。 [关键词]盾构衬砌内力计算荷载-结构法 1 引言 盾构法隧道的衬砌结构在施工阶段作为隧道施工的支护结构,用于保护开挖面以防止土体变形、坍塌及泥水渗入,并承受盾构推进时千斤顶顶力及其他施工荷载;在隧道竣工后作为永久性支撑结构,并防止泥水渗入,同时支撑衬砌周围的水、土压力以及使用阶段和某些特殊需要的荷载,以满足结构的预期使用要求。 盾构法隧道的设计内容基本上包括三个阶段:第一阶段为隧道的方案设计,以确定隧道的线路、线形、埋置深度以及隧道的横断面形状和尺寸等;第二阶段为衬砌结构与构造设计,其中包括管片的分类、厚度、分块、接头形式、管片孔洞、螺孔等;第三阶段为管片的内力计算,衬砌断面设计。管片厚度、配筋率、混凝土强度等设计参数的合理与否, 对体现盾构法的优越性、降低工程造价及提高工程经济性影响甚大,其设计的合理性与管片采用的计算模型密切相关。因此,选择合理的管片计算模型至关重要。 2 盾构衬砌计算方法介绍 目前关于盾构管片的设计还没有统一的设计计算方法,很多时候是用经验类比的方法进行设计。对于装配式盾构衬砌结构,常采用如图1 所示的计算方法。 2.1 有限单元法 搜索 查询

盾构管片修正惯用法内力计算 ansys命令流

!匀质圆环,在原程序上加了静水压力,故本命令流适合水土分算 fini /cle *dim,wxn,array,2000 !!定义名为wxn的数组,2000行1列,下同 *dim,wyn,array,2000 *dim,xn,array,2000 *dim,yn,array,2000 *dim,fxn,array,2000 *dim,fyn,array,2000 *dim,aa1,array,2000 *dim,bb1,array,2000 *dim,aa2,array,2000 *dim,bb2,array,2000 *dim,jx1,array,2000 *dim,jy1,array,2000 *dim,jx2,array,2000 *dim,jy2,array,2000 !!!!!!!!!!定义参数并赋值 nodesum=120 !!!!!!!!!!单元数 pi=3.1415927 height=0.35 !!!!!!环厚0.35米 width=1.0 !!!!!!环宽 area=height*width !!!!!!面积 inertia=width*height*height*height/12 !!!!!!惯性矩 emod=34500*1000000 !!!!!!弹性模量,按C50混凝土计 radius=2.925 !!!!!!计算半径 density=25*1000/10 !!!!!!材料密度 wradius=radius+0.5 !!!!!!弹簧节点所处半径 tankang=12*1000000*width !!!!!!弹簧刚度,MPa/m !!!!!!!!!!赋荷载值 ptop=200*1000*width !!!!!!顶板压力,单位按KN计 pltop=80*1000*width !!!!侧向压力 plbot=50*1000*width !!!!侧向沿竖向增加的侧压,即墙底水平压力为pltop+plbot pbot=140*1000*width !!!!底板压力 water=8.0*1000*width !!!!顶板处水位埋深 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! /prep7 et,1,beam3 !!!!!!定义单元类型,弹模,密度,实常数 mp,ex,1,emod mp,dens,1,density

地铁盾构管片计算

某地铁区间盾构管片计算 2017-04-15

目录1 设计信息 1.1 软件说明 1.2 隧道信息 1.3 荷载信息 1.4 控制参数 2 分析结果 2.1荷载计算结果 2.2抗浮验算 2.3内力位移计算结果 2.4管片验算

1 设计信息 1.1 软件说明 计算采用的软件是sap系列 1.2 隧道信息 1.2.1 断面信息 说明:角度按逆时针旋转,0°表示水平直径右端点处。以下除特别说明外均相同,不再赘述。 隧道断面基本几何参数: 管片总数:6片 衬砌外直径D1:6.200m 衬砌内直径D2:5.500m 第一管片块的右侧与Y轴的夹角θs:7.500° 螺栓总数:10 相邻螺栓(组)间夹角:36.000° 顶部螺栓偏角β:18.000° 断面圆心坐标: (0.000,0.000,0.000) 具体几何参数: 管片环接头几何参数:

管片几何参数: 隧道位置: 地表至隧道顶部的距离H(m): 16.93 地下水面至隧道顶部的距离Hw(m): 10.00 1.2.2 土层参数 土层参数表: 1.2.3 材料参数 管片材料: 管片混凝土标号:C50 管片实际宽度:1.000 m 管片容重:25.000 kN/m^3 管片接头: 管片环接头: 注:正负号由接头的局部坐标系而定,在局部坐标系下,拉正压负。 1.3 荷载信息 设计工况数目: 1

工况1自重 + 水土压力 + 地基抗力--弹簧,共3种荷载。 荷载组合系数: 永久荷载:1.35 可变荷载:1.40 偶然荷载:1.00 1.3.1 水土压力 计算参数表: 1.3.2 地层弹簧 地层弹簧数值种类:单一地层弹簧 地层弹簧的剪切刚度ks: 1.000 kN/m^2 弹性抗力系数法向kn: 20000.000 kN/m^2

盾构关键参数计算

第七节关键参数的计算 1. 地质力学参数选取 根据广州市轨道交通三号线详勘阶段汉溪~市桥 盾构段Ⅱ段的岩土工程勘察报告,汉溪站南~市桥站北 区间隧道中,左线及右线的工程地质纵断面图,选择右 线里程YCK21+037.233 处地质钻孔编号为 MCZ3-HG-063A 的相关地层数据,见地质剖面图7-7-1 , 作为该标段盾构机选型关键参数设计和校核计算的依 据。该段面地表标高为27.41m ,隧道拱顶埋深32.5m ,图7-7-1 计算断面地质剖面图盾构机壳体计算外径 6.25m ,盾壳底部埋深38.75m ,地下稳定水位 2.5m 。其它地质要素如表7-7-1 所示。 代号地层地质要素表 厚度S 天然密度凝聚力C 表7-7-1 底层深度(m)ρ(g/cm 3)(KPa )H(m) <4 -粉质粘性土 12.0 1.95 20.3 12.0 1> <5Z-2> 硬塑状残积土13.0 1.88 26.0 25.0 <6Z-2> 全风化混合岩、块石土14.0 1.91 30.6 39.0 隧道基本上在<4-1>、<5Z-2> 和<6Z-2> 地层中穿过,为相对的隔水地层。按上述条件对选用盾构的推力、扭矩校核计算如下:

2. 盾构机的总推力校核计算: 土压平衡式盾构机的掘进总推力F,由盾构与地层之间的摩擦阻力F1、刀盘正面推进阻力F2 、盾尾内部与管片之间的摩擦阻力F3 组成,即按公式 F=( F 1 +F 2+F 3).K c 式中:K c——安全系数, 2.1 盾构地层之间的摩擦阻力F1 计算可按公式 F1= *D*L*C C—凝聚力,单位kN/m 2 ,查表7-7-1 , 取C= 30.6kN/m 2 L—盾壳长度,9.150m D—盾体外径,D=6.25m 得:F1= *D*L* C=3.14159 6.25 9.15 30.6 =5498 kN 2.2 水土压力计算D— —盾构壳体计算外径,取 6.25m ; L——盾构壳体长度,9.15m ; p e1——盾构顶部的垂直土压。按全覆土柱计算,为校核计算安全,采用岩土的天 然密度ρ值计算。 qf e1——盾构机拱顶受的水平土压;qf e1 =λ×p e1 p e2——盾构底部的垂直土压。按全覆土柱计算,为校核计算安全,采用岩土的天 然密度ρ值计算。

盾构机参数

随着地下空间的开发,盾构技术已广泛地应用于地铁、隧道、市政管道等工程领域。在我国的各项施工中,盾构机的种类越来越多,其中土压平衡式盾构机在上海、南京、广州等地铁施工中有着较为出色的表现,笔者以日本小松公司Φ6340盾构机为例,结合施工中的一点经验与理解,对其控制原理和参数设置等做简要总结。 控制原理 土压平衡式盾构机的土压控制是PID自动调节控制,切削刀盘切下的弃土进入土仓,形成土压,土压超过预先设定值时,土仓门打开,部分弃土通过螺旋机排出土仓,从而保持土仓内土压平衡,土仓内的土压反作用于挖掘面,防止地层的坍塌。 土压的平衡控制是通过装在盾构机土仓隔壁上的土压计对掘进中的土压进行实时监视,土压计监测到的数值传送到PLC,PLC计算出测量值与设定值之间的差值E,通过PID 控制,自动调整螺旋机转速,使E值趋向于零,当E值大于零时,PLC发出指令,增加螺旋机转速,提高出土量直至土仓内土压重新达到新的平衡状态,反之当E值小于零时,PLC 会降低螺旋机转速,以减少偏差。以保持土仓内土压平衡,使盾构机正常掘进。 主要参数 抽样周期:PID 演算处理的时间间隔,周期越短,动作越连续,但增加了单位时间的处理次数,因此PID以外的控制变慢,不需要细微变动时,可延长周期。 过滤系数:用来除去输入模拟值上的高频成分,数值越大,则过滤效果越强,系统反应也就越迟钝。 比例常数P:为了提高系统灵敏度,使土压保持在一定范围,把计测值与设定值的差值E 乘以一个系数,所得结果再与目标值相比较,这个系数就是比例常数P,P 值越大,调控效果越好。 积分时间I:系统引入比例常数后,PLC调控螺旋机的输出操作量mv=P*E, 也就是偏差被放大了P倍,这样当系统产生偏差时,可能会使螺旋机转速突然增大或减小了许多,形成超调现象,于是又反过来调整,这就引起螺旋机转速忽大忽小,形成振荡。为了消除振荡,引入积分环节,使操作量mv 在积分时间内逐渐完成,即螺旋机转速平稳变化,直到消除偏差。积分时间越小,调控效果越好。 微分时间:根据偏差变化率de/dt 的大小,提前给出一个相应的调节动作,从而缩短了调节时间,可以克服因积分时间太长而使恢复滞后的缺点。 参数设定 参数设置分为两步,第一步是在设备组装完毕,无负荷的状态下进行的一次调试,第二步是在掘进开始,土层稳定后,根据土层状况和操作习惯进行的微调。 1、无负荷调试 (1)比例系数P,首先不执行 I和D,I调至数值上限,D设定为 0,这样系统只执行比例动作P,变动土压目标值,制造约0.01 - 0.03Mpa 的系统偏差,接下来逐渐增大 P 值,使螺旋机转速逐渐增大,当 P 值上升到一定值时,螺旋机的旋转速度会出现大幅度地反复升降,即系统形成振荡,我们把出现振荡时P 值的 85% - 90% 设定为系统的比例系数。 (2)积分时间I,比例系数确定后,调节积分时间I,变动土压目标值,制造一个系统偏差,观察螺旋机回转速度以怎样的速度变化,继续加一定的偏差时,系统向偏差减小的方向增加或减小操作量,操作量的变化程度随积分时间I的变化而变化,此时可以根据操作人员的操作习惯来确定积分时间,一般来说,I在数值上为P值的70% 左右。 (3)微分时间D,在盾构机PID 控制中,管理对象是土仓内的土压,如果掘进速度一定,则土压与切削土量减排土量之差的时间累积成正比,另一方面,系统的控制对象是螺旋机转速,而螺旋机转速同单位时间的排土量成正比,这样从系统输入来看,系统的输出是

相关文档