文档库 最新最全的文档下载
当前位置:文档库 › 高速数据采集卡250MSPS

高速数据采集卡250MSPS

高速数据采集卡250MSPS
高速数据采集卡250MSPS

高速数据采集卡250MSPS 14bit 250MSPS 14bit 8通道高速数据采集卡主要应用于雷达、通信、电子对抗、高能物理、质谱分析、超声等高科技领域。西安慕雷电子在高速数据采集卡研发及系统应用领域拥有十多年经验,2013年底发布了250MSPS 14bit 8通道高速数据采集卡MR-HA-250M,采集记录存储带宽高达3000MB/S。高速数据采集卡MR-HA-250M及记录存储系统的成功发布使得西安慕雷电子在高速数据采集卡及相关记录存储回放领域为国防及科研领域又提供了一套高性能解决方案。

图一高速数据采集卡MR-HA-250M

高速数据采集卡MR-HA-250M模块参数:

●输入接口:

连接器:SSMC;

输入方式:AC或DC耦合;

通道数量:8通道,可同步32通道

●AFE模块:

高速数据采集卡中的信号调理模块一般采用衰减、滤波及程控增益放大器等对信号进行处理,高速数据采集卡MR-HA-250M采用信号直通AD模式,减少前端调理对高速数据采集卡动态性能影响。

图二高速数据采集卡MR-HA-250M

●ADC模块:

高速数据采集卡的ADC芯片采用Linear Tech LTC2157-14 (250 MSPS)

图三高速数据采集卡MR-HA-250M动态性能

●时钟管理模块:

高速数据采集卡MR-HA-250M可选择外时钟、内时钟或参考时钟

●FPGA模块:

XILINX或ALTERA的FPGA芯片广泛用于高速数据采集卡中。FPGA模块开放编程是高速数据采集卡的必备能力。高速数据采集卡MR-HA-250M采用XILINX V6系列高性能FPGA。

●DDR模块:

高速数据采集卡一般都会配有DDR缓存,存储采集过程中的数据。高速数据采集卡MR-HA-250M配置有4GB DDR2。

●FIFO模式

高速数据采集卡将板载内存虚拟为FIFO,允许采集数据由缓冲后连续不断地通过总线传输到主机内存或硬盘中。该模式特点就是高速、大容量,使得高速数据采集卡记录时间达数小时。记录时间取决于存储介质的容量。

图四高速数据采集卡MR-HA-250M

存储记录:

高速数据采集卡MR-HA-250M输出采用PCIe GEN2.0 8LANE,传输带宽高达3000MB/S,配以西安慕雷电子为高速数据采集记录系统定制的顶级高速固态磁盘阵列,可长达数小时持续不间断采集记录信号。高速数据采集卡高速数据存储技术及记录系统已广泛应用于复杂环境电磁信号采集记录存储、电子侦察、卫星导航、雷达信号高速数据记录存储等国防科研领域。

图五高速数据采集卡MR-HA-250M及记录存储系统

西安慕雷电子发布全球顶级高速数据采集卡及超宽带高速采集记录回放系统。作为顶尖的高速数据采集卡生产商及系统研发集成商,同时也是多家国际一流高速数据采集卡厂商的合作伙伴,我们提供国际顶级高速数据采集卡、任意波形发生回放卡及相关超宽带高速采集记录存储系统。产品主要应用于雷达,通信,生物医学,超声无损检测,分布式光纤测试,质谱,高能物理,高压局放监控等领域。

数据采集卡

USB2002数据采集卡使用说明书 北京阿尔泰科贸有限公司

USB简介 USB(UNIVERSAL SERIER BUS)又称之为通用串行总线,不仅仅简单地将计算机和外设连接在一起,而是使我们进入了一个全新的PC机时代。 USB是您进行数字图象处理的最佳选择,同时她也为数字化设计提供了无限的创造空间,一但您尝试使用了USB,势必爱不释手。 为什么USB越来越受到用户的青赖呢? 第一.USB实现了那些一直梦想快速直接连接外设到PC机的使用者的梦想,添加一个传统外设首先您不得不弄清楚在那些令人迷惑的端口序列中那一个才是您需要的。其次,在通常情况下,您还不得不提前拆开PC机,安装需要的板卡,并且选择跳线,诸如中断设置等,这些非常的麻烦。甚至使一些用户惧怕去想添加外设。USB使添加外设变的十分简单,任何人都可以轻松的做到。 首先,USB用一个标准的插拔端口代替了所有的不同种类的串并口。使用USB连接PC机和外设,您只须把他们连接在一起!剩下的事情USB会自动帮您完成。他就像是给您的PC机添加一个新的功能。您再也不须拆开您的PC机,也不必担心插入板卡,DIP跳线和中断设置。 第二.USB的即插即用功能,当您需要接入外设时,甚至不必关闭电源重启计算机。只要插入便可运行!PC自动检测外围设备并且配置必要的软件。这种功能可用于想分享外设的商业PC和笔记本PC。而当您需要移走外设时,只须拔走USB插头即可。 也许您会问“我可以同时接多个外围设备吗?PC机有足够的USB接口吗?” USB当然可以同时连接多个外围设备;许多PC机有两个以上的USB端口,而集线器——一种特殊的USB外围设备,可以附属多个USB端口,当您需要使用多于两个外设时,接入一个集线器即可。 第三.USB传输数据的速度非常快,达到12MBIT,而在新发行的USB2.0版本中,其传输速度居然达到480Mbit。 第一章概述

高速数据采集系统设计

高速数据采集系统 设计

基于FPGA和SoC单片机的 高速数据采集系统设计 一.选题背景及意义 随着信息技术的飞速发展,各种数据的实时采集和处理在现代工业控制和科学研究中已成为必不可少的部分。高速数据采集系统在自动测试、生产控制、通信、信号处理等领域占有极其重要的地位。随着SoC单片机的快速发展,现在已经能够将采集多路模拟信号的A/D转换子系统和CPU核集成在一片芯片上,使整个数据采集系统几乎能够单芯片实现,从而使数据采集系统体积小,性价比高。FPGA为实现高速数据采集提供了一种理想的实现途径。利用FPGA高速性能和本身集成的几万个逻辑门和嵌入式存储器块,把数据采集系统中的数据缓存和控制电路全部集成在一片FPGA芯片中,大大减小了系统体积,提高了灵活性。FPGA 还具有系统编程功能以及功能强大的EDA软件支持,使得系统具有升级容易、开发周期短等优点。 二.设计要求 设计一高速数据采集系统,系统框图如图1-1所示。输入模拟信号为频率200KHz、Vpp=0.5V的正弦信号。采样频率设定为25MHz。经过按键启动一次数据采集,每次连续采集128点数据,单片机读取128点数据后在LCD模块上回放显示信号波形。

图1-1 高速数据采集原理框图 三.整体方案设计 高速数据采集系统采用如图3-1的设计方案。高速数据采集系统由单片机最小系统、FPGA最小系统和模拟量输入通道三部分组成。输入正弦信号经过调理电路后送高速A/D转换器,高速A/D 转换器以25MHz的频率采样模拟信号,输出的数字量依次存入FPGA内部的FIFO存储器中,并将128字节数据在LCD模块回放显示。 图3-1 高速数据采集系统设计方案 四.硬件电路设计 1.模拟量输入通道的设计 模拟量输入通道由高速A/D转换器和信号调理电路组成。信号调理电路将模拟信号放大、滤波、直流电平位移,以满足A/D转换器对模拟输入信号的要求。

USB接口的高速数据采集卡的设计与实现

摘要:讨论了基于USB接口的高速数据采集卡的实现。该系统采用TI公司的TUSB3210芯片作为USB通信及主控芯片,完全符合USB1.1协议,是一种新型的数据采集卡。 关键词:USB A/D FIFO 固件 现代工业生产和科学研究对数据采集的要求日益提高,在瞬态信号测量、图像处理等一些高速、高精度的测量中,需要进行高速数据采集。现在通用的高速数据采集卡一般多是PCI 卡或ISA卡,存在以下缺点:安装麻烦;价格昂贵;受计算机插槽数量、地址、中断资源限制,可扩展性差;在一些电磁干扰性强的测试现场,无法专门对其做电磁屏蔽,导致采集的数据失真。 通用串行总线USB是1995年康柏、微软、IBM、DEC等公司为解决传统总线不足而推广的一种新型的通信标准。该总线接口具有安装方便、高带宽、易于扩展等优点,已逐渐成为现代数据传输的发展趋势。基于USB的高速数据采集卡充分利用USB总线的上述优点,有效解决了传统高速数据采集卡的缺陷。 1 USB数据采集卡原理 1.1 USB简介 通用串行总线适用于净USB外围设备连接到主机上,通过PCI总线与PC内部的系统总线连接,实现数据传送。同时USB又是一种通信协议,支持主系统与其外设之间的数据传送。USB器件支持热插拔,可以即插即用。USB1.1支持两种传输速度,既低速1.5Mbps和高速 12Mbps,在USB2.0中其速度提高到480Mbps。USB具有四种传输方式,既控制方式(Control mode)、中断传输方式(Interrupt mode)、批量传输方式(Bulk mode)和等时传输方式(Iochronous mode)。 考虑到USB传输速度较高,如果用只实现USB接口的芯片外加普通控制器(如8051),其处理速度就会很慢而达不到USB传输的要求;如果采用高速微处理器(如DSP),虽然满足了USB传输速率,但成本较高。所以选择了TI公司内置USB接口的微控制器芯片 TUSB3210,开发了具有USB接口的高速数据采集卡。 1.2 系统原理图

【价格】多通道数据采集 80K 14位 16路同步模拟量输入采集卡)系列)图

PCI8008 同步采集卡硬件使用说明书 阿尔泰科技发展有限公司 产品研发部修订

阿尔泰科技发展有限公司 目录 目录 (1) 第一章概述 (3) 第一节、产品应用 (3) 第二节、AD 模拟量输入功能 (3) 第三节、其他指标 (4) 第四节、板卡外形尺寸 (4) 第五节、产品安装核对表 (4) 第六节、安装指导 (4) 一、软件安装指导 (4) 二、硬件安装指导 (4) 第二章元件布局图及简要说明 (5) 第一节、主要元件布局图 (5) 一、信号输入输出连接器 (5) 二、电位器 (5) 三、跳线器 (5) 四、物理ID 拨码开关 (6) 五、指示灯 (7) 第三章信号输入输出连接器 (8) 第一节、AD 模拟量信号输入连接器定义 (8) 第二节、模拟量输入/输出接口 (8) 第三节、跳线器设置 (9) 第四章各种信号的连接方法 (10) 第一节、AD 模拟量输入的信号连接方法 (10) 一、AD 单端输入连接方式 (10) 二、AD 双端输入连接方式 (10) 第二节、同步触发脉冲信号的连接方法 (11) 一、同步触发脉冲信号输入连接方式 (11) 二、同步触发脉冲信号输出连接方式 (11) 第三节、时钟输入输出信号的连接方法 (11) 第四节、触发信号连接方法 (12) 第五节、多卡同步的实现方法 (12) 第五章数据格式、排放顺序及换算关系 (14) 第一节、AD 模拟量输入数据格式及码值换算 (14) 一、AD 双极性模拟量输入数据格式 (14) 二、AD 单极性模拟量输入数据格式 (14) 第二节、关于AD 数据端口高位空闲部分的定义 (14) 第三节、AD 多通道采集时的数据排放顺序 (15) 第六章各种功能的使用方法 (16) 第一节、AD 触发功能的使用方法 (16) 一、AD 内触发功能 (16) 二、AD 外触发功能 (16) 第二节、AD 内时钟与外时钟功能的使用方法 (19) 一、AD 内时钟功能 (19) 二、AD 外时钟功能 (19)

高速以太网通讯数据采集卡使用说明

16 位 64 通道 500KSPS 光隔 AD 16 通道光隔数字入/16 通道光隔数字出 T9255 使用说明书 一、性能特点: 本板采用有线 10M/100M 以太网口的数据采集器。 本采集卡提供基于 DLL 的编程技术,用户不需要网络知识就可以实现网络采集与控制功能。 本板通过采用高速高精度 AD 芯片、高精度的放大器、高密度 FPGA 逻辑芯片、精细地布线以及优良的制版工艺,实现了高速、高精度实时数据采集,具有以下性能特点: 1、2、 3、 4、5、6、64 通道模拟量高速采集。可以设置 1-64 通道采集,起始通道号可以自由设定。 AD 幅值采集高精度:16 位采集精度,长时间采集时,误差跳码为±2LSB,相对精度优于 0.001%,直流电压波动小于 0.1 毫伏。 软件校准:将校准信息存储在板卡上,用户不用打开仪器设备就可以进行校 准,使用方便,一般情况下不需要用户进行任何校准。 丰富的备用扩展资源:板上 CPLD 资源非常丰富,可以为用户的特殊需求进行定制,如旋转编码器接口、脉冲周期测量接口、PWM 输出接口、外同步接口、触发记录接口、开关量控制接口等(定制)。 提供外部时钟模式:在该模式下,外部时钟信号启动所有通道采集一次,从而 实现多通道与外时钟同步采集模式(定制)。 提供外部触发启动模式:在该模式下,只有当外部给出上升延触发信号后才开 始采集,从而实现用户外触发采集模式的需要(定制)。

二、功能与指标 AD 的性能指标: AD 采样精度:16 位 AD 通道数:单端方式 64 通道。 AD 采集的综合跳码误差为±2LSB。 模拟采集的定时精度:缺省情况下为 50PPM,特殊要求可以定制 AD 输入电压范围:-5V 到+5V、0-10V 可选,或根据用户需要定制量程。 AD 输入阻抗:100 千欧 模拟输入安全电压:±15 伏。当超过 AD 输入量程时,只要不超过安全电压就不 会损坏硬件。建议用户尽可能使输入信号在量程范围内。 抗静电电压:2000 伏 采集方式:连续采集 模拟量安全电压:当输入电压超过±20V 时,有可能造成硬件损坏,由此造成的损 失不在保修范围内。 接口: 总线方式:10M/100M 以太网 开关量指标: 16 路数字量输入,独立光电隔离模式,TTL 电平方式,高电平输入为 高于 2.4V,低电平低于 0.8V,限流电阻 1k 欧姆。 开关量输入的电流,小于 1uA 16 路数字量输出,上电复位清零功能,高电平输出大于 2.4V,低电平 输出低于 0.2V 开关量输出的电流大于 5mA,小于 10mA。 电源: 外部电源输入 10-30V DC,电源电流 200mA。 尺寸: 电路板尺寸:150mm*100mm 电路板定位孔:140*90——Φ3.5mm 工作环境 工作温度:0-70℃ 环境湿度:90%以内

基于DSP和PCI总线的同步数据采集卡设计

基于!"#和#$%总线的同步数据采集卡设计 王宏,许飞云,贾民平 (东南大学设备监控与故障诊断研究所,江苏南京&’(()*) 摘要:介绍了一种在大型设备状态监测和故障诊断系统中作为核心的同步数据采集卡的设 计方法。该采集卡使用+%公司的+,"-&(.$/0’(1!"#做数字信号处理器,对数据采集过 程进行控制,并进行数字信号处理。应用#$%&(0(实现+,"-&(.$/0’(1!"#到#$%总线间 可靠连接,从而保证了采集数据快速、高效地传输到#$机。采集卡集同步数据采集、信号处 理及高速数据传输于一体。在状态监测和故障诊断系统中应用时,能很好的满足数据采集、处 理和传输的需要。 关键词:!"#;#$%总线;#$%&(0(;同步数据采集 中图分类号:+#-)’233文献标识码:1文章编号:’*3’4/&3*(&((3)(’4(()/4(0 !"#$%&’()*&+,-’&’.#!/0/1+2.$#$0$’&3/-45/#"4’&!)6/&46375.# 516789:;,<=>?@4A B:,C%1,@:4D@:; (E?F?G H I J$?:K?H9L$9:M@K@9:,9:@K9H@:;G:M>G B N K!@G;:9F@F, "9B K J?G F K=:@O?H F@K A,6G:P@:;&’(()*,$J@:G) 18#0-/+0:1M?F@;:9L F A:I J H9:9B F M G K G G I Q B@F@K@9:I G H M@F B F?M G F I9H?@:N G H;?4F I G N??Q B@D R?:K’F I9:M@K@9:R9:@K9H@:;G:M L G B N K M@G;:9F@F2+,"-&(.$/0’(1!"#9L+%I9R D G:A@F B F?M G F M@;@K G N F@;:G N D H9I?F F9H9:K J?I G H M K9I9:K H9N K J?D H9I?F F9L M G K G G I4 Q B@F@K@9:G:M K9D H9I?F F K J?G I Q B@H?M M G K G2#$%&(0(@F G D D N@?M K9D H9O@M?G K H@?M I9::?I K@9:S?K T??:+,"-&(.$/0’(1!"#G:M #$%S B F K9;B G H G:K??K J?G I Q B@H?M M G K G K H G:F L?H H?M K9#$@:J@;J F D??M G:M J@;J?L L@I@?:I A2+J?I G H M I9R S@:?F F A:I J H9:9B F M G K G G I Q B@F@K@9:,F@;:G N D H9I?F F G:M J@;J U F D??M M G K G K H G:F@K@9:@:9:?25J?:B F?M@:I9:M@K@9:R9:@K9H@:;G:M L G B N K M@G;:9F@F F A F4 K?R F,K J?I G H M I G:T?N N R??K K J?:??M F9L G I Q B@F@K@9:,D H9I?F F G:M K H G:F R@F F@9:9L M G K G2 9"*:’-4#:!"#;#$%S B F;#$%&(0(;F A:I J H9:9B F M G K G G I Q B@F@K@9: ;引言 随着现代化工业生产日益系统化、高速化和自动化的发展,现代工业生产已逐渐形成一个具有整体性的生产链,一旦某一设备发生故障,将会引起整个生产过程不能正常运行,从而造成巨大的经济损失,严重时将造成灾难性的设备损坏及人员伤亡。近年来,国内外的设备事故时有发生。因此,人们对设备的可靠性和安全性提出了越来越高的要求,设备的故障监测与诊断技术受到了人们的高度重视,并已发展成为一门综合性的交叉学科,亦取得了显著的经济效益和社会效益[’]。 设备的故障监测与诊断技术多是基于#$机的测试系统,首先要进行数据采集,然后才能对获得的数据进行测试分析。所以数据采集卡是设备的故障监测与诊断的基础。 文中主要阐述了基于!"#的#$%总线同步数据采集卡的硬件设计,使用美国+%公司的+,"-&(.$/0’(1 !"#作为采集卡的处理器,使用高速的#$%总线与#$机连接,实现数据的采集和快速传送。该卡主要用于大型设备监测和故障诊断系统中完成数据采集和预处理功能,实现对被监测系统的实时监测。 <硬件设计 <2<采集卡总体结构 在大型设备的状态监测和故障诊断中,振动信号能最迅速最直接地反映机械设备的运行状态,3(V以上的运行故障都以振动形式表现出来。由于振动信号在工频及其各倍频处的能量分布直接反映了设备运行状态,因此需要在数倍于工频的范围内分析振动频谱,作为振动信号的状态监测系统要求也就比较高[-],表现为:采样频率高、信号处理量大、数据传输量也很大。而使用!"#和#$%总线相结合设计的同步采集卡却能满足这一需求。#$%总线数据采集卡系统的原理框图如图’所示。 由图’可以看出,’*通道模拟信号同步采集模块对由抗混滤波板输入的模拟信号进行缓冲处理输入后续的0片0通道同步采集芯片1!3W*/,该0片1!3W*/芯片由同一个采样脉冲控制采样及1/!转换,实现’*通道信号的同步采集。所有1!3W*/芯片的转换结果均通过板内部的!"#总线供+,"-&(.$/0’(1!"#芯片读取,该同步采集模块可根据测量的转速实现’*通道模拟信号同步整周期采集,采集频率每通道可高达3/X8Y。 此外,该信号同步采集模块具有内触发与外触发采样功能,其外触发采样功能可以保证多块’*通道信号同步采集模块同时使用,实现更多通道(如-&、0W通道等)的同步采样。 +,"-&(.$/0’(1!"#芯片为’*通道信号同步采集板的核心,它一方面控制各种信号的采集及保存,另一方面负责信号的分析与处理,并提取设备故障的特征信号通过其8#%接口供计算机获取用于故障诊断。各相关单元如1/!转换芯片、0Z-&[字数据E1,、’&W[字程序/数 !"#$%&’()%*+%&,-.)/01"/%0&,2’34556,78(9)::;!:

高速数据采集卡250MSPS

高速数据采集卡250MSPS 14bit 250MSPS 14bit 8通道高速数据采集卡主要应用于雷达、通信、电子对抗、高能物理、质谱分析、超声等高科技领域。西安慕雷电子在高速数据采集卡研发及系统应用领域拥有十多年经验,2013年底发布了250MSPS 14bit 8通道高速数据采集卡MR-HA-250M,采集记录存储带宽高达3000MB/S。高速数据采集卡MR-HA-250M及记录存储系统的成功发布使得西安慕雷电子在高速数据采集卡及相关记录存储回放领域为国防及科研领域又提供了一套高性能解决方案。 图一高速数据采集卡MR-HA-250M 高速数据采集卡MR-HA-250M模块参数: ●输入接口: 连接器:SSMC; 输入方式:AC或DC耦合; 通道数量:8通道,可同步32通道 ●AFE模块: 高速数据采集卡中的信号调理模块一般采用衰减、滤波及程控增益放大器等对信号进行处理,高速数据采集卡MR-HA-250M采用信号直通AD模式,减少前端调理对高速数据采集卡动态性能影响。 图二高速数据采集卡MR-HA-250M

●ADC模块: 高速数据采集卡的ADC芯片采用Linear Tech LTC2157-14 (250 MSPS) 图三高速数据采集卡MR-HA-250M动态性能 ●时钟管理模块: 高速数据采集卡MR-HA-250M可选择外时钟、内时钟或参考时钟 ●FPGA模块: XILINX或ALTERA的FPGA芯片广泛用于高速数据采集卡中。FPGA模块开放编程是高速数据采集卡的必备能力。高速数据采集卡MR-HA-250M采用XILINX V6系列高性能FPGA。 ●DDR模块: 高速数据采集卡一般都会配有DDR缓存,存储采集过程中的数据。高速数据采集卡MR-HA-250M配置有4GB DDR2。 ●FIFO模式 高速数据采集卡将板载内存虚拟为FIFO,允许采集数据由缓冲后连续不断地通过总线传输到主机内存或硬盘中。该模式特点就是高速、大容量,使得高速数据采集卡记录时间达数小时。记录时间取决于存储介质的容量。 图四高速数据采集卡MR-HA-250M

等间距采样的高速数据采集系统设计

等间距采样的高速数据采集系统设计 郝亮,孟立凡,刘灿,高建中 (中北大学仪器科学与动态测试教育部重点实验室,太原030051) 摘要:简单介绍通过对窄脉冲等间距采样来测试电缆故障的基本原理,分析其脉冲的特点和处理要求;采用F PGA和MSP430F149作为主控芯片,设计了单路多次低速数据采集系统;利用Quartus II软件编写主控程序,并在Modelsim下进行仿真验证。实验结果表明,该系统方案切实可行,可有效解决电缆故障测距过程中的高精度数据采集问题。 关键词:等间距采样;数据采集;MSP430F149;F PGA 中图分类号:TN98文献标识码:B H igh2spe ed Data Acquisition System Based on Equidistance Sampling Hao Liang,Meng Lifan,Liu Can,Gao Jianzhong (Inst ruments Science and Dynamic Measurement Ministry of Education Key Laboratory, North University of China,T aiyuan030051,China) A bstract:T he basic principle of testing cable faults wit h narrow2pulse equidistance sampling is described.Pulse characteristics and pro2 cessing requirements are analyzed.The single2line repeated low2speed dat a acquisition system is designed with FPGA and MSP430F149 as main control chips.Main control procedures are programmed in Quartus II and simulated in Modelsim.Experimental result shows that t he system is practical,and the problem of high2precision data acquisition in the process of cable fault location is resolved effectively. K ey words:equidist ance sampling;data acquisit ion;MSP430F149;FPGA 引言 电缆故障是通信行业中的常见故障,而电缆测距是排除故障的前提条件。准确的电缆测距可以缩短发现故障点的时间,利于快速排除故障,减少损失。窄脉冲时域反射仪利用时域反射技术来测定电缆断点位置,可以同时检测出同轴传输系统中多个不连续点的位置、性质和大小。窄脉冲信号持续的时间非常短暂,为了能够有效地捕捉到窄脉冲信号,对A/D采样率和处理器速率提出了较高的要求,传统的数据采集已经不能满足系统设计需求。本文介绍的单路多次低速数据采集方案硬件结构简单,成本低,能够满足系统设计要求。 1系统设计理论依据 根据电磁波理论,电缆即传输线。假若在电缆的一端发送一探测脉冲,它就会沿着电缆进行传输,当电缆线路发生障碍时会造成阻抗不匹配,电磁波会在障碍点产生反射。在发射端,由测量仪器将发送脉冲和反射脉冲波形记录下来。实际测试中,具体障碍的波形有所差异:断线(开路)障碍时,反射脉冲与发射脉冲极性相同;而短路、混线障碍时,反射脉冲与发射脉冲极性相反。波形如图1所示。 图1发射脉冲与反射脉冲波形 设从发射窄脉冲开始到接收到反射脉冲波的时间为$t,则: l=v#$t 2 其中,v为脉冲波在电缆中的传输速度;l为电缆故障点与脉冲波送入端的距离。 由以上分析可知,在同一个固定障碍的线路上多次送入同一脉冲电压,其反射脉冲将同样地在同一位置多次出现。 要实现对反射窄脉冲的捕获和1m的测距分辨率(在波速为200m/L s的情况下),则$t= 2l v =2@1 200 =0.01L s =10ns。即要求抽样的时间分辨率为10ns,对应的数据采集系统频率高达100MHz。同时,最大测量范围是2km 时,要求发射脉冲的重复周期T= 2l v =2@2000 200 =20L s。

1仪器的工作原理及系统构成-高速数据采集卡

1 仪器的工作原理及系统构成 虚拟示波器是由信号调理器,PCI总线的数据采集卡组成的外部采集系统加上软件构成的分析处理系统组成。被测信号送到信号调理电路,进行隔离、放大、滤波整流后送数据采集卡进行A/D转换,最后由控制软件对测试信号进行数据处理,完成波形显示,参数测量、频谱分析等功能。系统结构如图1显示 图1 系统结构图 2 系统的设计及功能实现 2.1硬件部分 硬件部分主要包括传感器、信号调理电路及数据采集卡。 理电路针对不同的测试对象有不同的选择和设计。数据采集是硬件部分的核心, 它的性能直接影响数据采集的速度和精度。另外,LabVIEW可对NI公司的数据 采集卡进行驱动和配置,可充分利用采集卡的性能。基于此,我选择的数据采集 卡是NI公司生产的。下面主要介绍数据采集卡的性能和安装配置。 2.1.1 PCI—6010数据采集卡的简介 PCI—6010采集卡是基于32位PCI总线的多通道的数据采集设备,具有数 字输入/输出、模拟输入/输出和计数器等功能。它通过SH37F—37M电缆与CB —37F—LF 输入输出接口面板连接,该接口面板具有37个螺旋状的接口终端。 同时此数据采集卡具有3个完全独立的DMA控制(模拟输入、定时/计数器0、 定时/计数器1)。本卡还具有刻度校准电路系统。由于运行时,时间和温度漂移 会引起一定的模拟输入、输出误差,为了使此误差最小,可以调整设备的校准刻 度。而它的出厂校准信息存储在EEPROM中,不能修改。而修改此信息必须通 过软件来实现。

该数据采集卡具有8个差动模拟输入通道(即16个对地单信号模拟输入通道),电压范围为±5V, ±1V,±0.2V;2个模拟输出通道,电压范围为±5V。同时它还具有6个数字输入通道,4个数字输出通道。数字输入的VIH(Input high voltag e)的最小值是2.0 V, 最大值是5.25 V,VIL(Input low voltage)的最大值是0. 8 V, 最小值是–0.3 V;数字输出的IOH(Output high current)的最大值是–6 mA ,IOL (Output low current) 的最大值是2 mA。信号通道的最大采样速率是200 kS/s (single channel) ,扫描时最大采样速率是33.3 kS/s (scanning)。 2.1.2 PCI—6010数据采集卡的安装 将NI PCI—6010数据采集卡插到计算机主板的一个插槽中,接好附件。附件包括一个型号为CB—37F—LF的转接板,和一条SH37F—37M电缆。转接板直接与外部信号连接。在完成了NI PCI—6010数据采集卡的硬件连接后,就需要 安装该卡的驱动程序。安装步骤如下: (1)运行程序→National Instrument DAQ→NI-DAQ Setup。在出现对话框中 单击NEXT按钮。 (2)在出现的Seletct DAQ Devices对话框中选中NI PCI—6010,单击NEXT 按钮。 (3)在后续出现的全部对话框中单击NEXT按钮,即可完成NI PCI—6010数 据采集卡的安装。 (4)重新启动计算机。完成数据采集卡的安装。 2.1.3 PCI—6010数据采集卡的配置 在安装好数据采集卡后就要对其进行系统配置。点击图标Measurement & Automation Explorer,在弹出的Devices and Interface 中进行I/O配置。 (1) 这支采集卡在系统的设备的编号:将参数Device值设为1; (2) 设置模拟输入AI的属性:将Polarity 值设为-5V~+5V,将Mode属性设 置为Differentioal(差动); (3) 设置模拟输出AO的属性:在AO窗口中,将属性设为Bipolar(双极性)。 在完成上述设定之后,单击“确定”按钮。在Systerm窗口中有“Test Resources”按钮,可检验设备是否正确配置。通过后再进行简单的通道配置,即可完成数据采集卡的全部设置。

第10章基于研华数据采集卡的LabVIEW程序设计

第10章基于研华数据采集卡的 L a b V I E W程序设计 本章利用研华公司的PCI-1710HG数据采集卡编写LabVIEW程序,包括:模拟量输入、模拟量输出、开关量输入以及开关量输出等。 10.1 模拟量输入(AI) 10.1.1 基于研华数据采集卡的LabVIEW程序硬件线路 在图10-1中,通过电位器产生一个模拟变化电压(范围是0V~5V),送入板卡模拟量输入0通道(管脚68),同时在电位器电压输出端接一信号指示灯,用来显示电压变化情况。 图10-1 计算机模拟电压输入线路 本设计用到的硬件为:PCI-1710HG数据采集卡、PCL-10168数据线缆、ADAM-3968接线端子(使用模拟量输入AI0通道)、电位器(10K)、指示灯(DC5V)、直流电源(输出:DC5V)等。 10.1.2 基于研华数据采集卡的LabVIEW程序设计任务 利用LabVIEW编写应用程序实现PCI-1710HG数据采集卡模拟量输入。 任务要求: (1)以连续方式读取电压测量值,并以数值或曲线形式显示电压测量变化值;

(2)当测量电压小于或大于设定下限或上限值时,程序画面中相应指示灯变换颜色。

10.1.3 基于研华数据采集卡的LabVIEW程序任务实现 1.建立新VI程序 启动NI LabVIEW程序,选择新建(New)选项中的VI项,建立一个新VI程序。 在进行LabVIEW编程之前,必须首先安装研华设备管理程序Device Manager、32bit DLL驱动 程序以及研华板卡LabVIEW驱动程序。 2.设计程序前面板 在前面板设计区空白处单击鼠标右键,显示控件选板(Controls)。 (1)添加一个实时图形显示控件:控件(Controls)→新式(Modern)→图形(Graph)→波形图形(Waveform Chart),标签改为“实时电压曲线”,将Y轴标尺范围改为0.0-5.0。 (2)添加一个数字显示控件:控件(Controls)→新式(Modern)→数值(Numeric)→数值显示控件(Numeric Indicator),标签改为“当前电压值:”。 (3)添加两个指示灯控件:控件(Controls)→新式(Modern)→布尔(Boolean)→圆形指示灯(Round LED),将标签分别改为“上限指示灯:”、“下限指示灯:”。 (4)添加一个停止按钮控件:控件(Controls)→新式(Modern)→布尔(Boolean)→停止按钮(Stop Button)。 设计的程序前面板如图10-2所示。 图10-2 程序前面板 3.框图程序设计——添加函数 进入框图程序设计界面,在设计区空白 处单击鼠标右键,显示函数选板(Functions)。 在函数选板(Functions)下添加需要的函数。 (1)添加选择设备函数:用户库→ Advantech DA&C(研华公司的LabVIEW函数库)→ EASYIO → SelectPOP →,如图10-3所示。 图10-3 SelectPop函数库

教你设计pci总线的高速数据采集卡(基于pci9054)

教你设计PCI总线的高速数据采集卡(基于PCI9054) 2007-03-13 21:02 眼下有不少场合需要用到PCI总线的数据采集卡,下面我就来谈一下设计PCI数采卡的原理及要点。 首先我要以我的实际经验,纠正存在于很多人心里的几个误区: 1.设计PCI采集卡要通读PCI协议。 相信有很多初学者都在这个地方被吓住了,几百页的英文要通读并理解谈何容易!其实PCI协议处理的这部分功能已经被PCI接口芯片完成了,如PLX公司的9054、9056和9052等等,它封装了PCI协议的细节,我们只需要控制这颗接口芯片local端的几个控制线就可以完成PCI总线的数据传输。PCI协议也有它的用处,我们只需要在某些需要注意的地方查阅一下相关章节即可,比如PRSNT1#和PRSNT2#引脚至少要有一个下拉,才能识别到卡,这就是PCI协议中的规定。 2. PCI卡布线很复杂,一不小心就可能不成功。 其实对于32位33MHz的PCI总线来说,布线相对比较简单,只要稍加注意就不会出问题。比如:PCI总线的时钟线要做成2500(+/-100)mil,这个是要注意的一点,一般PCI卡上的蛇行弯曲走线就是这条线,因为走直线距离一般都达不到此长度。其他要求,比如地址和数据线要在1500mil以内,其实你超过一些也没什么问题,不要超太多就好了。 3. PCI卡的驱动程序编写很难。 其实无论是软件还是硬件设计,都有一些相对成熟的资料可以参考。对驱动程序来说也是这样,对实际项目的开发没有几个是从头到尾自己在编代码,都可以在网上找到一些成熟的代码,然后自己修改一下即可,况且PCI卡的驱动程序又相对比较成熟,可参考的资料也较多。所以你要从网上找代码,向PCI接口芯片的供应商要代码,等收集到足够多的代码,再配以适当的教材(比如对于windows2000/XP系统下的WDM驱动程序,可以参考武安河老师的教材就足够),就可以进行你自己的驱动设计了。 下面我再针对具体应用谈谈PCI采集卡的设计: 一般数采卡的情况是将A/D转换后的数据通过PCI总线上传到PCI机,然后利用

5 Gsps高速数据采集系统的设计与实现

5 Gsps 高速数据采集系统的设计与实现 摘要:以某高速实时频谱仪为应用背景,论述了5 Gsps 采样率的高速数据采集系统的构成和设计要点,着重分析了采集系统的关键部分高速ADC(analog to digital,模数转换器)的设计、系统采样时钟设计、模数混合信号完整性设计、电磁兼容性设计和基于总线和接口标准(PCI Express)的数据传输和处理软件设计。在实现了系统硬件的基础上,采用Xilinx 公司ISE 软件的在线逻辑分析仪(ChipScope Pro)测试了ADC 和采样时钟的性能,实测表明整体指标达到设计要求。给出上位机对采集数据进行处理的结果,表明系统实现了数据的实时采集 存储功能。关键词:高速数据采集;高速ADC;FPGA;PCI Express 高速实时频谱仪是对实时采集的数据进行频谱分析,要达到这样的目的,对数据采集系 统的采样精度、采样率和存储量等指标提出了更高的要求。而在高速数据采集 系统中,ADC 在很大程度上决定了系统的整体性能,而它们的性能又受到时钟质量的影响。为满足系统对高速ADC 采样精度、采样率的要求,本设计中提 出一种新的解决方案,采用型号为EV8AQ160 的高速ADC 对数据进行采样;考虑到ADC 对高质量、低抖动、低相位噪声的采样时钟的要求,采用AD9520 为5 Gsps 数据采集系统提供采样时钟。为保证系统的稳定性,对模数混合信号完整性和电磁兼容性进行了分析。对ADC 和时钟性能进行测试,并给出上位 机数据显示结果,实测表明该系统实现了数据的高速采集、存储和实时后处理。 1 系统的构成高速数据采集系统主要包括模拟信号调理电路、高速ADC、高速时钟电路、大容量数据缓存、系统时序及控制逻辑电路和计算机接口电路等。图1 所示为5 Gsps 高速数据采集系统的原理框图。所用ADC 型号为EV8AQ160,8 bit 采样精度,内部集成4 路ADC,最高采样率达5 Gsps,可以工作在多种模式下。通过对ADC 工作模式进行配置,ADC 既可以工作在采样

高速数据采集卡在超声领域的最新解决方案

高速数据采集卡在超声检测领域的最新解决方案 高速数据采集卡作为进行相关超声测量的理想工具,在开发、测试、操作超声产品中可以发挥关键作用。高速数据采集卡和任意波形发生器提供宽范围的带宽、采样率和动态范围,能够完美匹配超声测量的的相关需求。 图1,M4i.4451-x8 14bit 500MS/s PCIe 接口高速数据采集卡采集超声信号 超声应用: 超声波是一种频率超过人耳听觉范围的一种声波。超声波设备操作频率一般从20 kHz到几GHz不等。表1总结了一些超声应用的典型频率范围。 每个应用领域的的频率使用范围都反映出工程上的权衡。增加了操作频率来提高分辨率可实现对较小的工件精确检测,但另一方面,较高频率信号的渗透能力是有限的,超声波应用的常见问题是信号衰减、其与信号频率成反比。因此,非常高频率往往应用与物体表面研究应用中,相对的低频率往往应用在需要更大的渗透和能量的应用中。北京坤驰科技有限公司所提供的高速数据采集卡具有较宽动态范围,可以在检测大信号的同时,检测到的小信号,可适应较多的应用场景。 应用举例:

表1:常用超声应用的推荐产品 采样率: 通常高速数据采集卡产品的选择是基于应用使用的频率的,高速数据采集卡的采集速率通常要5到10倍于工程应用频率,也就是需要采集和检测的信号频率。但在多普勒频移应用中,因其经常需要测量信号的某些特定的小的片段,需要很高时间分辨率,高速数据采集卡的采样率有时需要多达测量频率的10倍以上。 带宽: 高速数据采集卡的带宽应该超过工程应用的最高频率。工作带宽较低将导致高频频率信号衰减,并可能限制测量的分辨率和准确性。 动态范围: 增加数字转换器的动态范围(位数)可实现小信号的检测。高分辨率ADC通常提供更好的信噪比,可实现采集卡同时检测大信号和小信号。这就是为什么应用系统前端通常使用更高分辨率的ADC或信号处理(如平均和过滤)来提高他们的整体测量灵敏度。 其他方面: 高速数据采集卡的输入电路必须与超声传感器的输出阻抗和耦合元件相

多通道数据采集文献综述

多通道数据采集系统的设计与实现 引言 进来,我在网上浏览了200余篇有关数据采集系统的文献。下载了其中100多篇,详细研读了其中50余篇。我了解到在当今社会各个领域,包括科研和实验研究,数据采集系统有着不可代替的作用,数据采集和处理进行得越及时,工作效率就越高,取得的经济效益就越大.数据采集系统性能的好坏主要取决于它的精度和速度,在保证精度的条件下,还要尽可能地提高采样速度,以满足实时采集、实时处理和实时控制的要求。 数据采集系统涉及多学科,所研究的对象是物理或生物等各种非电或电信号,如温度、压力、流量、位移等模拟量,根据各种非电或电信号的特征,利用相应的归一化技术,将其转换为可真实反映事物特征的电信号后,经A/D转换器转换为计算机可识别的有限长二进制数字编码,即数字量,并进行存储、处理、显示或打印。以此二进制数字编码作为研究自然科学和实现工业实时控制的重要依据,实现对宏观和微观自然科学的量化认识。 Microsoft V isual C++是Microsoft公司推出的开发Win32环境程序,面向对象的可视化集成编程系统。它不但具有程序框架自动生成、灵活方便的类管理、代码编写和界面设计集成交互操作、可开发多种程序等优点,而且通过简单的设置就可使其生成的程序框架支持数据库接口、OLE2,WinSock网络、3D控制界面。 本课题研究的是利用PC机上的声卡作为数据采集卡构建数据采集系统。利用VC编程实现多通道数据采集并对数据采集进行控制和处理。 正文 1.研究背景及发展近况 国外数据采集技术较上世纪有了很大的发展,从最近国外公司展示的新产品可以看出,主要的发展方向可以概括为使用方便、功能多样和体积减小三个方面。国内数据采集技术起步比较晚,国内的数据采集系统与国外数据采集系统相比,在技术上仍然存在一定的差距,主要表现在: (1) 由于整个国内的微电子技术还与世界水平有一定差距,模数转换芯片的速度还不能达到世界先进水平,同时高速PCB设计方面的人才比较稀少,所以国内较少研制出速度非常高同时性能又非常好的数据采集系统。 (2) 数据采集系统的内存不大,数据采集系统本身的信号处理功能不强,在现场只能做一些简单的数据分析,大多数的处理要离线到计算机上去做。 (3) 系统的软件水平以及人机界面方面的水平还不是很高,设备操作起来有很多不人性化的地方。 虽然国内与国外在数据采集技术上存在差距,但是总体来看这个差距在不断缩小,在不久的将来中国的数据采集系统肯定会晋升国际一流的水准。随着数字化步伐的不断加深,数据采集技术作为走进数字世界的一把钥匙,必须要紧跟数字化的脚步,只有掌握了尖端的数据采集技术才能在这个飞速变化的世界具有竞争力。

基于研华数据采集卡的LabVIEW程序设计

第10章基于研华数据采集卡的L a b V I E W 程序设计 本章利用研华公司的PCI-1710HG数据采集卡编写LabVIEW程序,包括:模拟量输入、模拟量输出、开关量输入以及开关量输出等。 10.1 模拟量输入(AI) 10.1.1 基于研华数据采集卡的LabVIEW程序硬件线路 在图10-1中,通过电位器产生一个模拟变化电压(X围是0V~5V),送入板卡模拟量输入0通道(管脚68),同时在电位器电压输出端接一信号指示灯,用来显示电压变化情况。 图10-1 计算机模拟电压输入线路 本设计用到的硬件为:PCI-1710HG数据采集卡、PCL-10168数据线缆、ADAM-3968接线端子(使用模拟量输入AI0通道)、电位器(10K)、指示灯(DC5V)、直流电源(输出:DC5V)等。 10.1.2 基于研华数据采集卡的LabVIEW程序设计任务 利用LabVIEW编写应用程序实现PCI-1710HG数据采集卡模拟量输入。 任务要求: (1)以连续方式读取电压测量值,并以数值或曲线形式显示电压测量变化值;

(2)当测量电压小于或大于设定下限或上限值时,程序画面中相应指示灯变换颜色。 209 / 21

10.1.3 基于研华数据采集卡的LabVIEW程序任务实现 1.建立新VI程序 启动NI LabVIEW程序,选择新建(New)选项中的VI项,建立一个新VI程序。 在进行LabVIEW编程之前,必须首先安装研华设备管理程序Device Manager、32bitDLL驱动 程序以及研华板卡LabVIEW驱动程序。 2.设计程序前面板 在前面板设计区空白处单击鼠标右键,显示控件选板(Controls)。 (1)添加一个实时图形显示控件:控件(Controls)→新式(Modern)→图形(Graph)→波形图形(Waveform Chart),标签改为“实时电压曲线”,将Y轴标尺X围改为0.0-5.0。 (2)添加一个数字显示控件:控件(Controls)→新式(Modern)→数值(Numeric)→数值显示控件(Numeric Indicator),标签改为“当前电压值:”。 (3)添加两个指示灯控件:控件(Controls)→新式(Modern)→布尔(Boolean)→圆形指示灯(Round LED),将标签分别改为“上限指示灯:”、“下限指示灯:”。 (4)添加一个停止按钮控件:控件(Controls)→新式(Modern)→布尔(Boolean)→停止按钮(Stop Button)。 设计的程序前面板如图10-2所示。 图10-2 程序前面板 3.框图程序设计——添加函数 进入框图程序设计界面,在设计区空白 处单击鼠标右键,显示函数选板(Functions)。 在函数选板(Functions)下添加需要的函数。 (1)添加选择设备函数:用户库→ Advantech DA&C(研华公司的LabVIEW函数库) →EASYIO→SelectPOP→Sel ectDevicePop.vi,如 图10-3 SelectPop函数库

相关文档
相关文档 最新文档