文档库 最新最全的文档下载
当前位置:文档库 › 地震波使用说明

地震波使用说明

地震波使用说明
地震波使用说明

地震波使用说明

此目录下提供了四类场地土的地震波时程曲线和上海人工波。

按照场地土类型(1,2,3或4),选择时程曲线。在定义时程工况时,对于多遇或罕遇地震,按比例调整时程曲线的最大值。中国抗震规范规定,作为抗震计算中底部剪力法和振型分解反应谱法的补充方法,对于特别不规则,特别重要的和较高的结构应采用时程分析法进行多遇地震下的补充计算。 可取多条时程曲线的计算结果的平均值与振型分解反应谱法计算结果的较大值。

采用时程分析法时,应咱建筑场地类别和设计地震分组选用不少于二组的实际强震记录和一组人工模拟的加速度时程曲线,其平均地震影响系数曲线应与振型分解反应谱法所采用的地震影响系数曲线在统计意义上相符。 其加速度时程最大值可按规范中对于多遇和罕遇地震在不同烈度下的值。 弹性时程分析时,每条时程曲线计算所得结构底部剪力不应小于振型分解反应谱法计算结果的65%,多条时程曲线计算所得结构底部剪力的平均值不应小于振型分解反应谱法计算结果的80% 。 可使用弹塑性时程分析法计算罕遇地震下结构的变形。

时程分析是一个承受随时间变化的指定荷载结构的逐步动态反应分析,可以是线性或非线性的。 此章对时程分析进行一般的描述,特别是线性时程分析。

定义时程函数

用户可使用“从文件中添加函数”,导入已定义的文本文件,即实测的时程曲线;也可使用程序内置的时程函数。

时程函数定义对话框

时程函数定义对话框中的条目解释如下:

?函数名

通过在编辑框中直接键入以指定或修改时程函数的名称。

?函数文件

1.在函数文件域点击浏览按钮以调出一个对话框,在此可找出包含时程函数的

文本文件名。注意文件名显示在文件名框中

2.在 "要跳过的标题行" 编辑框中输入一个希望ETABS在文本文件中跳过的

行数。

3.在 "每行要跳过的前缀字符" 编辑框中输入一个希望ETABS在文本文件中

每行要跳过的字符数。

4.在 "每行的点数" 编辑框中输入一个数告诉ETABS文本文件每行的绘图点

数。

如果需要,点击转换为用户自定义按钮,那么ETABS把反应谱导入到它的数据

库文件中,这个数据会一直对模型有效甚至在原文件无效时也是如此。

通常地,ETABS不把文件导入到它的数据库中。它只简单地保持一个到这个文

件位置的链接。因此如果移动反应谱文件,或者如果移动(扩展名是).edb

的文件到另一个位置,ETABS可能找不到这个反应谱文件。

ETABS使用下述方法读取函数文件:

首先它跳过指定的标题行数。

接下来它查看该行是否以 $ 符作为第一个字符。 如果是,ETABS 会

跳到下一行。

如果此行不是以 $ 符作为第一个字符,那么ETABS读取此行上的信

息,并从这行开始部分跳过指定的字符数。

如果一行是空白的或者到了文件的尾部,那么ETABS会停止读取并

关闭此文件。

?数值

选择:

?时间周期与函数值 如果文本文件同时包含时间及函数值选定此复选框。

?{指定数字}的相等间隔的值 如果文本文件包含相等时间间隔的函数值选定此复选框,并在编辑框中输入时间间隔的值。

?格式类型

用户可以选择:

?自由格式 如果文本文件在行上的条目可以由空格或制表符分隔开,选定此复选框。

?固定格式 如果文本文件在行上的条目没有以空格或制表符分隔开,选定此复选框并指定每项的字符数。一行上的每个条目按指定的字符数目分配赋值

空间。ETABS在它跳过在函数文件域中指定的前缀字符数后开始计算这些空

间。

?函数曲线图

此域显示函数的一个曲线图。首先在函数文件、数值是以及格式类型域中指定所有的数据。然后点击此对话框中函数曲线图域中的显示曲线图按钮,以显示函数的曲线图。

可以移动鼠标指针到函数曲线图上,沿着表示反应谱的线会出现一个圆点。这个圆点的坐标在曲线图下面的框中显示。

定义时程工况

在定义时程工况时,用户可定义分析类型,振型阻尼,时程的持续时间,和指定荷载。 时程工况定义对话框如下:

时程工况定义对话框

时程工况数据对话框具有下列域:

?时程工况名称 指定或修改时程工况名称

?选项.为下列选项指定参数。

?分析类型

从下列中选择,以定义时程分析的类型。

?线性:在一个线性时程分析中所有对象的性能是线性的。在一个线

性时程分析中只有指定给连接单元的线性属性被考虑。使用定义菜

单 > 框架非线性铰属性 命令指定分配的框架非线性(pushover)铰

对一个线性时程分析没有影响。

?周期: 一个周期时程分析是一个线性分析。对于这个分析,指定周

期函数的一个循环,然后 ETABS 假定这个被指定的循环无限连续。

ETABS 显示单一循环的时程结果,这需要在输出被稳定之后,使其

在循环开始的条件等于循环结束的条件。在一个周期时程分析中所

有对象的性能是线性的。在一个周期时程分析中只有指定给连接单

元的线性属性被考虑。使用定义菜单> 框架非线性铰属性 命令指定

分配的框架非线性(pushover)铰对一个周期时程分析没有影响。

?振型阻尼

如果选择指定振型阻尼替代选项,那么振型阻尼替代域激活并且能指定替代任何振型阻尼值在某些模态的振型阻尼与指定的所有振型阻尼不同的时候,用替代覆盖。

如果选择无阻尼替代/删除替代项,那么振型阻尼替代域变成无效的,并且任何被指定的阻尼替代会被删除。

?输出时间段数

输出时间步数是报告输出结果时相等间隔的步数。不要与输入时程函数中的时间步数混淆。输出时间步数不同于输入时程函数中的时间步数。输出时间步数乘以输出时间步大小等于报告的输出结果的时间长度。

?输出时间段大小

输出时间步大小是每个等间距的输出时间步之间的时间,以秒计。不要与输入时程函数中的时间步大小混淆。输出时间步大小不同于输入时程函数中的时间步大小。输出时间步数乘以输出时间步大小等于报告的输出结果的时间长度。 时程曲线的一般持续时间,一般为结构基本周期的5至10倍。

?从上次时程开始

从上一个时程开始选项允许为时程分析设置初始条件到在上一个运行分析(在同一个分析运行中)末尾的已有条件。这个选项对周期的时程分析无效。

注意在很多情况下,能够在荷载分配域中使用达到时间功能完成同样的事情。从上一个时程开始选项的优点是当想从另一个时程的最终条件开始一些不同时程的时候,例如一个重力荷载时程,只需运行其它的(重力)时程一次而不是多次。

通常有些时候,想要运行重力荷载作为一个时程,然后使用从上一个时程开始选项从重力荷载时程的最终条件开始一个或多个分支时程。要运行一个重力荷载时程,在荷载分配域中定义荷载作为荷载工况包含的重力荷载,并且从内置的斜坡时程函数模板创建一个输入函数。它对这个重力荷载时程设置的振型阻尼最高值(比方说0.99)同样是有用的。

? 指定荷载

为下列选项指定参数。

?荷载

荷载可以是任意一个已定义的静力荷载工况,acc dir1、acc dir2或acc dir3。这三个加速度(acc dir1、acc dir2和acc dir3)是时程在局部轴方向上的地面加速度。正的acc dir3对应正的全局Z方向。查阅在此域中角度项的论述以获得关于acc dir1和acc dir2的信息。当指定这三个地面加速度中的一个时,输入函数定义了地面加速度如何随着时间变化。

在此域中定义的静力荷载工况可以是力荷载或位移荷载。在这个工况下,输入函数定义这个荷载或位移如何随着时间变化。

注意:能够在ETABS中使用位移时程执行多个支座激发的时程分析。要做到这一点,在一个或多个位置上定义一个有单位位移的静力荷载工况,还要定义一个时程函数定义那个单位位移如何随着时间变化。根据需要可以多次重复这一步骤。然后定义一个有多个荷载分配的时程函数,每个荷载分配由一个单位位移荷载工况和与它关联的时程函数组成。

荷载可以是任意一个已定义的静力荷载工况, acc dir1、acc dir2或acc dir3。这三个加速度(acc dir1、acc dir2和acc dir3)是时程在局部轴方向上的地面加速度。正的acc dir3对应正的全局Z方向。查阅在此域中角度项的论述以获得关于acc dir1和acc dir2的信息。当指定这三个地面加速度中的一个时,输入函数定义了地面加速度如何随着时间变化。

在此域中定义的静力荷载工况可以是力荷载或位移荷载。在这个工况下,输入函数定义这个荷载或位移如何随着时间变化。

注意:能够在ETABS中使用位移时程执行多个支座激发的时程分析。要做到这一点,在一个或多个位置上定义一个有单位位移的静力荷载工况,还要定义一个时程函数定义那个单位位移如何随着时间变化。根据需要可以多次重复这一步骤。然后定义一个有多个荷载分配的时程函数,每个荷载分配由一个单位位移荷载工况和与它关联的时程函数组成。

当为时程位移分析创建函数的时候,输入函数的时间步通常应该比一个可比的加速度时程的小。关于这一点的原因是,当加速度在两个点之间线性变化时,在同样两个点之间的位移变化为三次方。因此在这两个点之间能够就通过定义两个点而定义加速度。不过,将不得不在它们之间定义两个和更多的点来合理地定义位移。

?函数

使用已定义的时程函数

?比例系数

比例系数项是作为一个乘数以用于输入函数值。 比例系数的单位取决于在荷载下拉列表框中指定的荷载类型。如果荷载被指定成一个地面加速度(也就是,acc dir1、acc dir2或acc dir3),那么这个比例系数的单位为长度/秒2。 如果这个荷载是一个静力荷载工况, 那么这个比例系数是无单位的。

这个比例系数可以是任何正的或负的数,或者0。 如荷载为两个或三个方向的加速度时,其最大值通常1(水平1):0.85(水平2):0.65(竖向)的比例调整。

?到达时间

到达时间是一个特定荷载分配开始的时间。假定想在全局X(轴)和Y(轴)的方向上持续30秒应用同样的地面加速度到建筑。更进一步假定想在全局X(轴)方向上开始的地面加速度10秒后开始在全局Y(轴)方向上的地面加速度。在此情况下,可为荷载分配全局X(轴)方向的震动指定一个为0的到达时间,为荷载分配全局Y(轴)方向的震动指定一个为10的到达时间。

这个到达时间可以是0或者任何正的或负的时间。对于一个给定的时程工况,时程分析总是从时间0开始。因此,如果为一个荷载分配指定一个负的到达时间, 那么在时间0之前发生的以及它相关的输入函数的任何部分被忽略。例如,假定一个特定荷载分配有一个 -5秒的到达时间。那么和那个荷载分配有关的输入函数的第一个5秒被程序忽略掉。

?角度

时程工况坐标系统的局部1和2轴位于全局的XY平面。作为默认,局部1轴和正向全局X轴在同一个方向上,局部2轴和正向全局Y轴在同一个方向上,局部3轴和正向全局Z轴在同一个方向上。可以相对于局部3轴(全局的Z轴)旋转时程坐标系统的局部1和2轴。角度项指定从时程工况坐标系统的正向全局X轴到正向局部1轴测量的角度当用户向下观看模型时,正角度显示为逆时针方向。

如果荷载项是acc dir1或acc dir2角度项才被考虑。否则,角度项没有意义。注意,这个角永远是被测量到局部1轴,尽管在荷载项被指定为acc dir2的时候。因此,如果荷载项被指定为acc dir2,角被指定为30度,那么acc dir2和局部坐标方向2被确定一个从正向全局X轴(逆时针测量)120度的角。

在 ansys 中如何 施加 地震波

三向输入简化后的单向输入 首先,将三个方向的地震加速度放到一个文本文件里,如accexyz.txt,在这个数据文件里共放三列数据,每列为一个方向的地震加速度值,这里仅给出数据文件中前几行的数据: -0.227109E-02 -0.209046E+00 0.467072E+01 -0.413893E-02 -0.168195E+00 0.261523E+01 -0.574753E-02 -0.157890E+00 0.809014E-01 -0.731227E-02 -0.152996E+00 0.119975E+01 -0.876865E-02 -0.138102E+00 0.130902E+01 -0.101067E-01 -0.131582E+00 0.143611E+00 ....................... 然后,再建一个文本文件用来存放三个方向的地震加速度时间点,如time.txt,在这个数据文件里仅一列数据,对应于加速度数据文件里每一行的时间点,这里给出数据文件中前几行数据: 0.100000E-01 0.200000E-01 0.300000E-01 0.400000E-01 0.500000E-01 0.600000E-01 ....................... 编写如下的命令流文件,并命名为acce.inp *dim,ACCEXYZ,TABLE,2000,3 !01行 *vread,ACCEXYZ(1,1),accexyz,txt,,JIK,3,2000 !02行(3e16.6) !03行 *vread,ACCEXYZ(1,0),time,txt !04行 (e16.6) !05行 ACCEXYZ(0,1)=1 !06行 ACCEXYZ(0,2)=2 !07行,同上 ACCEXYZ(0,3)=3 !08行,同上 finish /SOLU ANTYPE,trans btime=0.01 !定义计算起始时间 etime=15.00 !定义计算结束时间 dtime=0.01 !定义计算时间步长 *DO,itime,btime,etime,dtime time,itime AUTOTS,0 NSUBST,1, , ,1 KBC,1 acel,ACCEXYZ(itime,1),ACCEXYZ(itime,2),ACCEXYZ(itime,3) !施加三个方向的地震加速度 SOLVE

地震勘探的一些基础知识.doc

接收条件received condition:指地震勘探中接收地震波的仪器的工作状态和条件。广义地说, 接收条件包括地震检波器的安置情况、组合个数与方式,以及地震仪的各种因素等。但通常将接收条件狭义地指地震检波器的安置情况。地震资料的质量与接收条件有密切关系。陆地工作中埋置检波器,海洋工作中使检波器处于水面下一定深度,都是为了避免风、浪等影响而改善接收条件。 界面速度interface velocity:指折射波沿折射界面滑行的速度。界面速度主要反映折射界面以下地层中岩石的物理性质。由于组成地层的岩石颗粒排列有方向性,通常界而速度大于层速度。界面速度可通过折射波测得。 加速度检波器accelerometer:即“压电地震检波器”。 激发条件excited condition:地震勘探中将震源种类、能最、周围介质的情况总称为激发条件。对于炸药震源来说,激发条件一般包括炸药量大小、药包形状,个数,分布方式及埋置岩性和沉放深度等。对于非炸药震源,激发条件则包括装置的种类、能量、参数选择及安置情况等。激发条件的选择是否适当,对地震勘探原始资料质量的影响很大。一般认为,陆地工作中, 风化层下的含水可塑性岩层是有利的激发条件,因此往往采用井中爆炸,在海洋工作小,主要是以减小气泡影响作为合适的激发条件。 海洋地震勘探marine seismic survey:是利用勘探船在海洋上进行地震勘探的方法°其特点是在水中激发,水中接收,激发,接收条件均一;可进行不停船的连续观测。震源多使用非炸药震源,接收常用压电地震检波器,工作时,将检波器及电缆拖曳于船后一定深度的海水中由于上述特点,使海洋地震勘探具有比陆地地震勘探高得多的生产效率,更需要用数字电子计算机处理资料。海洋地震勘探中常遇到一些特殊的干扰波,如鸣震和交混问响,以及与海底有关的底波干扰。海洋地震勘探的原理,使用的仪器,以及处理资料的方法都和陆地地震勘探基本相同。由于在大陆架地区发现大量的石汕和天然气,因此.海洋地震勘探有极为广阔的前景。 高频地震high frequency seismic survey:在水文地质、工程地质调杏和金属矿床勘探中,勘测深度只在儿米到儿百米之间,需要精细分层和精确地测定波的传播时间。为了提高仪器的分辨能力,要用专门的高频地震仪,记录震波的高频分量。高频地震仪的通频带?般在60-350周 /秒之间,专门测定岩石波速时需提高到500-600周/秒。为了压制低频干扰,仪器频率特性的低频一边应有较大的陡度。 干扰波noise:地震勘探中妨碍分辨有效波的振动都属于干扰波。干扰波大体上可分为两种:其中具有明显传播规律的称为规则干扰或干扰波,如声波、面波,多次波等等;没有明显传播规律性的振动称为随机干扰,或简称干扰,如微震等。抗干扰的问题是关系到地震勘探中提高勘探的质量和能力的极其重要的问题。因此,在野外工作和资料处理上采用多种措施,以提高有效波而压制干扰波。干扰波有时也是相对的概念,如在反射法中,折射波就常

地震波使用说明

地震波使用说明 此目录下提供了四类场地土的地震波时程曲线和上海人工波。 按照场地土类型(1,2,3或4),选择时程曲线。在定义时程工况时,对于多遇或罕遇地震,按比例调整时程曲线的最大值。中国抗震规范规定,作为抗震计算中底部剪力法和振型分解反应谱法的补充方法,对于特别不规则,特别重要的和较高的结构应采用时程分析法进行多遇地震下的补充计算。 可取多条时程曲线的计算结果的平均值与振型分解反应谱法计算结果的较大值。 采用时程分析法时,应咱建筑场地类别和设计地震分组选用不少于二组的实际强震记录和一组人工模拟的加速度时程曲线,其平均地震影响系数曲线应与振型分解反应谱法所采用的地震影响系数曲线在统计意义上相符。 其加速度时程最大值可按规范中对于多遇和罕遇地震在不同烈度下的值。 弹性时程分析时,每条时程曲线计算所得结构底部剪力不应小于振型分解反应谱法计算结果的65%,多条时程曲线计算所得结构底部剪力的平均值不应小于振型分解反应谱法计算结果的80% 。 可使用弹塑性时程分析法计算罕遇地震下结构的变形。 时程分析是一个承受随时间变化的指定荷载结构的逐步动态反应分析,可以是线性或非线性的。 此章对时程分析进行一般的描述,特别是线性时程分析。 定义时程函数 用户可使用“从文件中添加函数”,导入已定义的文本文件,即实测的时程曲线;也可使用程序内置的时程函数。

时程函数定义对话框 时程函数定义对话框中的条目解释如下: ?函数名 通过在编辑框中直接键入以指定或修改时程函数的名称。 ?函数文件 1.在函数文件域点击浏览按钮以调出一个对话框,在此可找出包含时程函数的 文本文件名。注意文件名显示在文件名框中 2.在 "要跳过的标题行" 编辑框中输入一个希望ETABS在文本文件中跳过的 行数。 3.在 "每行要跳过的前缀字符" 编辑框中输入一个希望ETABS在文本文件中 每行要跳过的字符数。 4.在 "每行的点数" 编辑框中输入一个数告诉ETABS文本文件每行的绘图点 数。

时程分析中地震波选取浅析

时程分析中地震波选取浅析 通过介绍时程分析法中输入地震波的选择原则、地震动幅值和频率特性等一系列问题,使初学者对输入地震波的选择有初步认识和了解,为以后更深层次的研究打下基础。 标签:时程分析法;地震波选择 1、引言 随着社会、经济和科技的不断发展以及人口数量的迅速膨胀,高层、超高层以及复杂形状的建筑的数量定会快速增长。抗震设计规范规定,对于此类重要、复杂并超过规定高度的建筑,其抗震设计中的地震作用计算都要通过时程分析法进行补充验证。而在时程分析法的计算过程中最重要,最影响地震作用计算结果的莫过于地震波的选取。所以,本文将从地震波选取原则、地震动幅值、频谱特性、持续时间、地震波数量、地震波转动分量等多个方面对地震波的选取进行浅析。 2、地震波的选取原则 时程分析中的地震波如何选取的问题,一直是时程分析法中的一个难点。在选择地震波输入时,要满足两点要求: 1)首先要使选择输入的地震波的某些参数和建筑物所在地的条件相一致。参数主要包括:场地的土壤类别、地震烈度、地震强度参数、卓越周期和反应谱等。 2)其次还要满足地震活动三要素的要求。即频谱特性、地震加速度时程曲线持续时间和幅值,选取的地震波中的这三者,要满足相关规定。相关规定要求:选用数字化的地震波应按照建筑场地类别和设计地震分组进行选取,选用不少于两组的实际强震记录和一组人工模拟的加速度时程曲线,其平均地震影响系数曲线应与振型分解反应谱分析法所采用的地震影响系数曲线在统计意义上相符。在统计意义上相符是指:其平均地震影响曲线与振型分解反应谱法所用到的地震影响系数曲线相比,在各个周期点上相差不大于20%。弹性时程分析时,每条时程曲线计算所得的结构底部剪力不应小于阵型分解反应谱法计算结果的65%。多条时程曲线计算结果的结构底部剪力平均值不应小于振型分解反应谱计算结果的80%[1]。 3、地震动幅值 地震动幅值有两种意义,即可以指地震加速度、位移和速度中的任何一种的最大值,又可以指在某种意义下的等代值。在一定程度上,地震波的峰值能够反应并代表地震波的强度,所以,建筑物所在地的设防烈度所要求的多遇地震或罕

地震波运动学理论

第二章地震波运动学理论 一、名词解释 1. 地震波运动学:研究在地震波传播过程中的地震波波前的空间位置与其传播时间的关系,即研究波的传播规律,以及这种时空关系与地下地质构造的关系。 2. 地震波动力学:研究地震波在传播过程中波形、振幅、频率、相位等特征的及其变化规律,以及这些变化规律与地下的地层结构,岩石性质及流体性质之间存在的联系。 3. 地震波:是一种在岩层中传播的,频率较低(与天然地震的频率相近)的波,弹性波在 岩层中传播的一种通俗说法。地震波由一个震源激发。 4. 地震子波:爆炸产生的是一个延续时间很短的尖脉冲,这一尖脉冲造成破坏圈、塑性带,最后使离震源较远的介质产生弹性形变,形成地震波,地震波向外传播一定距离后,波形逐渐稳定,成为一个具有2-3个相位(极值)、延续时间60-100毫秒的地震波,称为地震子波。地震子波看作组成一道地震记录的基本元素。 5.波前:振动刚开始与静止时的分界面,即刚要开始振动的那一时刻。 6.射线:是用来描述波的传播路线的一种表示。在一定条件下,认为波及其能量是沿着一条“路径”从波源传到所观测的一点P。这是一条假想的路径,也叫波线。射线总是与波阵面垂直,波动经过每一点都可以设想有这么一条波线。 7. 振动图和波剖面:某点振动随时间的变化的曲线称为振动曲线,也称振动图。地震勘探中,沿测线画出的波形曲线,也称波剖面。 8. 折射波:当入射波大于临界角时,出现滑行波和全反射。在分界面上的滑行波有另一种特性,即会影响第一界面,并激发新的波。在地震勘探中,由滑行波引起的波叫折射波,也叫做首波。入射波以临界角或大于临界角入射高速介质所产生的波 9.滑行波:由透射定律可知,如果V2>V1 ,即sinθ2 > sinθ1 ,θ2 > θ1。当θ1还没到90o时,θ2 到达90o,此时透射波在第二种介质中沿界面滑行,产生的波为滑行波。 10.同相轴和等相位面:同向轴是一组地震道上整齐排列的相位,表示一个新的地震波的到达,由地震记录上系统的相位或振幅变化表示。 11.地震视速度:当波的传播方向与观测方向不一致(夹角θ)时,观测到的速度并不是波前的真速度V,而是视速度Va。即波沿测线方向传播速度。 12 波阻抗:指的是介质(地层)的密度和波的速度的乘积(Zi=ρiVi,i为地层),在声学中称为声阻抗,在地震学中称波阻抗。波的反射和透射与分界面两边介质的波阻抗有关。只有在Z1≠Z2的条件下,地震波才会发生反射,差别越大,反射也越强。 13.纵波:质点振动方向与波的传播方向一致,传播速度最快。又称压缩波、膨胀波、纵波或P-波。 14.横波:质点振动方向与波的传播方向垂直,速度比纵波慢,也称剪切波、旋转波、横波或S-波,速度小于纵波约0.7倍。横波分为SV和SH波两种形式。 15.体波:波在无穷大均匀介质(固体)中传播时有两种类型的波(纵波和横波),它们在介质的整个立体空间中传播,合称体波。 16共炮点反射道集:在同一炮点激发,不同接收点上接收的反射波记录,称为共炮点道集。在野外的数据采集原始记录中,常以这种记录形式。可分单边放炮和中间放炮。 17.面波:波在自由表面或岩体分界面上传播的一种类型的波。 18.纵测线和非纵测线:激发点与接收点在同一条直线上,这样的测线称为纵测线。用纵测线进行观测得到的时距曲线称为纵时距曲线。激发点不在测线上,用非纵测线进行观测得到的时距曲线称为非纵时距曲线。

地震波的选取方法 (MIDAS内部技术资料)

地震波的选取方法(MIDAS内部技术资料) (GB50011-2001)的 5.1.2条文说明中规定,正确选择输入的地震加速度时程曲线,要满足地震动三要素的要求,即频谱特性、有效峰值和持续时间要符合规定。 频谱特性可用地震影响系数曲线表征,依据所处的场地类别和设计地震分组确定。这句话的含义是选择的实际地震波所处场地的设计分组(震中距离、震级大小)和场地类别(场地条件)应与要分析的结构物所处场地的相同,简单的说两者的特征周期Tg值应接近或相同。特征周期Tg 值的计算方法见下面公式(1)、(2)、(3)。 加速度有效峰值按建筑抗震设计规范(GB50011-2001)中的表5.1.2-2采用。地震波的加速度有效峰值的计算方法见下面公式(1)及下面说明。持续时间的概念不是指地震波数据中总的时间长度。持时Td的定义可分为两大类,一类是以地震动幅值的绝对值来定义的绝对持时,即指地震地面加速度值大于某值的时间总和,即绝对值|a(t)|>k*g的时间总和,k常取为0.05;另一类为以相对值定义的相对持时,即最先与最后一个k*amax之间的时段长度,k一般取0.3~0.5。不论实际的强震记录还是人工模拟波形,一般持续时间取结构基本周期的5~10倍。 说明: 有效峰值加速度EPA=Sa/2.5(1) 有效峰值速度EPV=Sv/2.5(2) 特征周期Tg=2*EPV/EPA(3)

1978年美国ATC-3规范中将阻尼比为5%的加速度反应谱取周期为0.1-0.5秒之间的值平均为Sa,将阻尼比为5%的速度反应谱取周期为0.5-2秒之间的值平均为Sv(或取1s附近的平均速度反应谱),上面公式中常数2.5为0.05组尼比加速度反应谱的平均放大系数。 上述方法使用的是将频段固定的方法来求EPA和EPV,1990年的《中国地震烈度区划图》采用了不固定频段的方法分析各条反应谱确定其相应的平台频段。具体做法是:在对数坐标系中同时做出绝对加速度反应谱和拟速度反应谱,找出加速度反应谱平台段的起始周期T0和结束周期T1,然后在拟速度反应谱上选定平台段,其起始周期为T1(即加速度反应谱平台段的结束周期T1),结束周期为T2,将加速度反应谱在T0至T1之间的谱值求平均得Sa,拟速度反应谱在T1至T2之间的谱值求平均得Sv,加速度反应谱和拟速度反应谱在平台段的放大系数采用2.5,按公式(1)、(2)、(3)求得EPA、EPV、Tg。 在MIDAS程序中提供将地震波转换为绝对加速度反应谱和拟速度反应谱的功能(工具地震波数据生成器,生成后保存为SGS文件),用户可利用保存的SGS文件(文本格式文件)根据上面所述方法计算Sv、Sa、Tg。通过Tg值可判断该地震波是否适合当地场地和地震设计分组,然后将抗震规范中表5.1.2-2中的EPA值与Sa相比求出调整系数,将其代入到地震波调整系数中。将地震波转换为绝对加速度反应谱和拟速度反应谱时注意周期范围要到6秒(建筑抗震规范规定)。 建筑抗震设计规范5.1.2条中规定,采用时程分析方法时,应按照场地类别和设计地震分组选用不少于二组的实际强震记录和一组人工模拟

论地震勘探中几种主要地震波

论地震勘探中的几种主要地震波 论文提要 地震勘探,就是通过人工方法激发地震波,研究地震波在地层中传播的情况,以查明地下地质构造,为寻找油气田或其它勘探目的服务的一种方法。也可以理解为就是利用地震子波从地下地层界面反射回地面时带回来的旅行时间和形状变化的信息,用以推断地下的底层构造和岩性。地震勘探在勘探已有的各种物探方法中,是最有效地方法。在地震勘探中用炸药激发时,一声炮响之后会产生各种各样的地震波。按波在传播过程中质点震动的方向来区分,可以纵波和横波;根据波动所能传播的空间范围而言,地震波又可以分为体波和面波;按照波在传播过程中的传播路径的特点,又可以把地震波分为直达波、反射波、透射波、折射波,等等。地震勘探在石油勘探中除了能产生来自地层界面有用的反射波外,还会产生各种各样的干扰波。因此,我们要更好的了解各种波的产生、特点、用途,等等。下面简单介绍几种地震勘探中产生的地震波。 正文 一、反射波 (一)反射波的形成 1、几何地震学的观点 当炸药在井中爆炸激发地震波时,在雷管引爆几百微妙之内爆炸便完成了,在接近爆炸点的压强是一个延续时间很短的尖脉冲,爆炸脉冲向外传播,压强逐渐减少,地层开始产生弹性形变,形成地震波。地震波继续传播,由于介质对高频的吸收,地震波信号减小。当波入射到两种介质的分界面时(当上层介质波阻抗与下层介质波阻抗不等时,弹性地震波才会发生反射;上层介质波阻抗与下层介质波阻抗差别越大,反射波越强——反射波条件),一部分波回到第一种介质中,这就是所谓的反射波。如图所示 2、物理地震学观点 地震波从震源出发以球面波的方式向下传播,到达反射界面S,S可以就看成有许多

Midas地震波的选取方法

地震波的选取方法 建筑抗震设计规范(GB 50011-2001)的,正确选择输入的地震加速度时程曲线,要满足地震动三要素的要求,即频谱特性、有效峰值和持续时间要符合规定。 频谱特性可用地震影响系数曲线表征,依据所处的场地类别和设计地震分组确定。这句话的含义是选择的实际地震波所处场地的设计分组(震中距离、震级大小)和场地类别(场地条件)应与要分析的结构物所处场地的相同,简单的说两者的特征周期Tg值应接近或相同。特征周期 Tg值的计算方法见下面公式(1)、(2)、(3)。 加速度有效峰值按建筑抗震设计规范(GB 50011-2001)中的表 持续时间的概念不是指地震波数据中总的时间长度。持时T d的定义可分为两大类,一类是以 地震动幅值的绝对值来定义的绝对持时,即指地震地面加速度值大于某值的时间总和,即绝对值丨a(t)丨>k*g的时间总和,k常取为0.05 ;另一类为以相对值定义的相对持时,即最先与最后一个k*a max之间的时段长度,k一般取0.3?0.5。不论实际的强震记录还是人工模拟波形,一般 持续时间取结构基本周期的5?10倍。 说明: 有效峰值加速度EPA = Sa/2.5 (1) 有效峰值速度EPV = Sv/2.5 (2) 特征周期Tg = 2n *EPV/EPA (3) 1978年美国ATC- 3规范中将阻尼比为5%的加速度反应谱取周期为0.1-0.5秒之间的值平均为Sa,将阻尼比为5%的速度反应谱取周期为0.5-2秒之间的值平均为Sv(或取1s附近的平均速度反应谱),上面公式中常数2.5 为0.05组尼比加速度反应谱的平均放大系数。 上述方法使用的是将频段固定的方法来求EPA和EPV, 1990年的《中国地震烈度区划图》采 用了不固定频段的方法分析各条反应谱确定其相应的平台频段。具体做法是:在对数坐标系中 同时做岀绝对加速度反应谱和拟速度反应谱,找岀加速度反应谱平台段的起始周期T0和结束周 期T1,然后在拟速度反应谱上选定平台段,其起始周期为T1(即加速度反应谱平台段的结束周期 T1),结束周期为T2,将加速度反应谱在T0至T1之间的谱值求平均得Sa,拟速度反应谱在T1至T2 之间的谱值求平均得Sv (注:生成谱的时候一定要用对数谱),加速度反应谱和拟速度反应谱 在平台段的放大系数采用 2.5,按公式(1)、(2)、(3)求得EPA EPV Tg。 在MIDAS!序中提供将地震波转换为绝对加速度反应谱和拟速度反应谱的功能(工具〉地震 波数据生成器,生成后保存为SG敦件),用户可利用保存的SG文件(文本格式文件)根据上面所 述方法计算Sv、Sa、Tg= Sv/Sa。通过Tg值可判断该地震波是否适合当地场地和地震设计分组,然后将抗震规范中表,将其代入到地震波调整系数中。将地震波转换为绝对加速度反应谱和拟速度反应谱时注意周期范围要到6秒(建筑抗震规范规定)。 建筑抗震设计规范,采用时!分析方法时,应按照场地类别和设计地震分组选用不少于二组的实际强震记录和一组人工模拟的加速度时!曲线,其平均地震影响系数曲线应与振型分解反应谱法所采用的地震影响系数曲线在统计意义上相符。所谓“在统计意义上相符”指的是,其平均影响系数曲线与振型分解反应谱法所用的地震影响系数曲线相比,在各周期点上相差不大于20%。 在MIDASS序中,可选取两组实际强震记录生成两个SG敦件(调整Sa后的),然后将一组人 工模拟的加速度时程曲线也保存为SG或件,将三个SG敦件的数值取平均后与振型分解反应谱 法所采用的地震影响系数曲线相比较看是否满足“在统计意义上相符”,由此也可判断选取的地震波是否合适。 另外,弹性时程分析时,每条时程曲线计算所得到的结构底部剪力不应小于振型分解反应谱法计算结果的65%,多条时程曲线计算所得结构底部剪力的平均值不应小于振型分解反应谱法计算结果的80%。

有关地震和地震波的基本概念

教师启发学生活动

教学过程【导入新课】同刮风下雨一样,地震是一种自然 现象,这种自然现象与地球内部运动有关。地震 时,地面上下颠,左右晃,颠簸震撼,“如行舟于 江河大海之中”今天我们就共同来了解一下有关 地震和地震波的基本概念。 【讲授新课】 【板书】 一、震源,震中和震源深度 震源:地球内部发生地震的部位 震中:地面上正对震源的地方 震中分类:微观震中 宏观震中 【讲解】 平常所说的震中一般是指微观震中,是由地震仪 器记录到的震相确定的。宏观真震中是地震破坏 最严重的中心。因地壳结构的不均匀性,断裂错 动情况的差异性等原因,微观震中和宏观震中一 般是不一致的,但相去不远,一般相差10千米内。 【板书】 震源深度:从地面到震源的距离 震源深度分类:浅源地震 中源地震 深源地震 【讲述】 类别震源深震例 同学们共同阅读课本震源、震中 和震源深度,之后共同来学习 课题有关地震和地震波的基本概念课时 1 时间

教学内容震源,震中距和震源深度,纵波和横波,震中距,地震三要素,震级、烈度和等震线 教学目标 通过对地震基本知识的了解,让学生掌握有关地震的一些基本概念,并且让学生学到一些基本的地震常识。 德育目标了解灾难,学会在灾难中迅速逃生,急中生智教学重点震源,震中和震源深度 教学难点横波和纵波 板书设计一、震源,震中和震源深度 震源:地球内部发生地震的部位 震中:地面上正对震源的地方 震中分类:微观震中 宏观震中 二、纵波和横波 纵波:方向:与波的传播方向一致 传播地点:在地球内部传播 过程:在传播过程中,物质发生体积胀缩变化,传播速度较快。 横波:方向:震动方向与波传播的方向垂直 过程:物质发生剪切变形,体积不变 传播地点:只能通过固体传播,不能通过液体或气体传播,传播速度较慢。 三、震中距 类别地面现象 地方震100千米以内 近震100~1000千米 远震1000千米以外 四、地震三要素 地震发生的时间 地点 震级 五、震级、烈度和等震线 1、震级:地震本身能量的大小 2、烈度 3、震级与烈度的关系 4、等震线 教观察初中学生对于地震灾害的默写只是的理解和接受程度,决定自己的讲

91-杨志勇、王雁昆等-弹性及弹塑性时程分析地震波有效选取方法

弹性及弹塑性时程分析地震波有效选取方法 杨志勇,王雁昆,黄吉锋 (中国建筑科学研究院建研科技股份有限公司PKPM设计软件事业部北京100013) [摘要] 以工程实例说明弹性及弹塑性时程分析地震波选取的重要性;从“统计意义上相符”和“基底剪力的下限要求”等角度探讨了弹性时程分析选择地震波的基本原则和实际工程应用注意事项;通过基本理论分析和工程实例说明了如何利用位移谱在进行弹塑性时程分析时有效选取地震波。 [关键词] 弹性时程分析,弹塑性时程分析,地震波选取,反应谱,位移谱 1引言 正确选取地震波是保障建筑结构弹性、弹塑性时程分析有效性的重要因素,但设计人员在实际选取地震波时往往具有很大的随意性,甚至存在刻意筛选响应较小地震波的现象。本文将从提高结构抗震安全性角度探讨地震波正确选取方法,以避免弹性、弹塑性时程分析流于形式,并为地震波的正确选取提供一些理论参考。 2弹性及弹塑性时程分析在结构设计中的必要性 对于“小震”弹性阶段抗震设计而言,振型分解反应谱方法是现阶段的主流方法。该方法依据规范规定的反应谱,在结构模态空间内得到各振型所对应的地震响应,进而采用CQC等组合方法进行振型叠加得到结构的最终地震响应。其中规范所规定的反应谱是由数百条地震波通过概率平均化和平滑化后得到,且CQC振型组合方法也是基于平稳随机过程的概率保证方法,所以振型分解反应谱方法可以从概率意义上保证大多数结构地震响应计算足够保守。但对于复杂高层建筑结构等一些特殊情况,该方法可能出现计算结果偏于不安全的个别现象,所以要选取多条实际或人造地震波进行附加弹性时程分析,以进一步保证结构的安全。 对于“大震”弹塑性阶段抗震分析而言,由于非线性问题的特殊性,目前阶段尚无法找到一种类似于弹性阶段振型分解反应谱方法的,基于概率的,可以应用振型解耦和叠加原理的,漂亮且简化的分析方法。虽然学术界近年来在基于性能设计的PushOver方法等方面有所进展,但选取多条地震波进行弹塑性时程分析仍然是目前阶段保证结构“大震不倒”的主流分析方法。 从图1、图2可以看出,无论是弹性阶段还是弹塑性阶段,结构在不同地震波(指峰值相同、特征周期相同但波形不同的地震波)作用下的响应差别很大,因此正确地选取地震波对于保证结构安全十分重要。 作者简介:杨志勇(1974—), 男, 博士, 研究员

第一章地震波动力学

第一章地震波的动力学 人工激发的地震波随着时间增加向地下岩层中传播,地震波传播的动态特征反映在两方面: 地震波的运动学特征——指波传播的时间与空间的关系。 地震波场特征地震波的动力学特征——指波传播过程中振幅、频率、相位的变 化规律。 地震勘探的基本任务是研究地震波场特征。以指导找油找矿和解决其它地质问题。 本章重点: 1.地震波的反射、透射和折射 2.地震波的射线、波前、波剖面、振动曲线 3.克希霍夫公式 4.诺特方程 5.斯奈耳定律 6.褶积模型 7.横向分辨率 8.纵向分辨率 9.影响速度的因素 §1.1地震地质模型的理想化 一、理想化的原因 地震勘探主要在沉积岩中进行。与火成岩和变质岩相比,沉积岩具有沉积稳定、横向变化小,成层性好等特点。但各种构造运动等使地下地质结构复杂化,这就需要从实际介质出发,在不同的条件下,建立不同的地震地质模型,使问题得到简化,这在自然科学中是常见的,例如:气体——理想气体。 二、理想的弹性介质和粘弹性介质 1.理想弹性介质 任何一种固体,受外力作用以后,内部质点就会发生相互位置的变化,使固体

的大小和形状发生变化。外力取消后,由于内力的作用,使固体恢复到原来的状态, 即固体具有弹性。 (1)理想弹性体——外力取消后能完全复原的物体。 (2)理想塑性体——外力取消后,固体保持其受力时的形态。 (3)瞬时作用力小变形假设 一般物体在外力作用下,有弹性的一面,又有塑性的一面。如果作用力很小,作用时间很短,在外力去掉后,一般物体都能复原,即在瞬时作用力小变形的条件下,大部分物体都能被近似成弹性体。 (4)地震勘探满足瞬时作用力小变形假设,地下岩层可近似成弹性体爆炸点附近是破碎带,然后是塑性带,大约几百米以外是弹性带,在弹性带内形成弹性波。这是因为远离震源处岩石受的作用力非常小(位移小于1μm),且作用时间短(小于100ms),所以远离震源的岩石可以看作弹性体。 弹 性 带 (5)地震子波 弹性带内形成的弹性波,一般波形较稳定,具有2-3个相位。延续时间60— 100ms,叫地震子波 ....,在传播过程中,其振幅由于吸收等原因而衰减,但波形变化不大。 (6)把岩层看作弹性体的重要用途 弹性力学,光学的基本理论可以直接引用到地震勘探中来。 2.粘弹性介质 (1)介质的吸收作用 波在传播过程中一部分能量不可逆地转化成热能散掉。

Midas地震波的选取方法

地震波的选取方法 建筑抗震设计规范(GB 50011-2001)的5.1.2条文说明中规定,正确选择输入的地震加速度时程曲线,要满足地震动三要素的要求,即频谱特性、有效峰值和持续时间要符合规定。 频谱特性可用地震影响系数曲线表征,依据所处的场地类别和设计地震分组确定。这句话的含义是选择的实际地震波所处场地的设计分组(震中距离、震级大小)和场地类别(场地条件)应与要分析的结构物所处场地的相同,简单的说两者的特征周期Tg值应接近或相同。特征周期Tg值的计算方法见下面公式(1)、(2)、(3)。 加速度有效峰值按建筑抗震设计规范(GB 50011-2001)中的表5.1.2-2采用。地震波的加速度有效峰值的计算方法见下面公式(1)及下面说明。 持续时间的概念不是指地震波数据中总的时间长度。持时T d的定义可分为两大类,一类是以地震动幅值的绝对值来定义的绝对持时,即指地震地面加速度值大于某值的时间总和,即绝对值|a(t)|>k*g的时间总和,k常取为0.05;另一类为以相对值定义的相对持时,即最先与最后一个k*a max之间的时段长度,k一般取0.3~0.5。不论实际的强震记录还是人工模拟波形,一般持续时间取结构基本周期的5~10倍。 说明: 有效峰值加速度 EPA=Sa/2.5 (1) 有效峰值速度 EPV=Sv/2.5 (2) 特征周期 Tg = 2π*EPV/EPA(3) 1978年美国ATC-3规范中将阻尼比为5%的加速度反应谱取周期为0.1-0.5秒之间的值平均为Sa,将阻尼比为5%的速度反应谱取周期为0.5-2秒之间的值平均为Sv(或取1s附近的平均速度反应谱),上面公式中常数2.5为0.05组尼比加速度反应谱的平均放大系数。 上述方法使用的是将频段固定的方法来求EPA和EPV,1990年的《中国地震烈度区划图》采用了不固定频段的方法分析各条反应谱确定其相应的平台频段。具体做法是:在对数坐标系中同时做出绝对加速度反应谱和拟速度反应谱,找出加速度反应谱平台段的起始周期T0和结束周期T1,然后在拟速度反应谱上选定平台段,其起始周期为T1(即加速度反应谱平台段的结束周期T1),结束周期为T2,将加速度反应谱在T0至T1之间的谱值求平均得Sa,拟速度反应谱在T1至T2之间的谱值求平均得Sv(注:生成谱的时候一定要用对数谱),加速度反应谱和拟速度反应谱在平台段的放大系数采用2.5,按公式(1)、(2)、(3)求得EPA、EPV、Tg。 在MIDAS程序中提供将地震波转换为绝对加速度反应谱和拟速度反应谱的功能(工具>地震波数据生成器,生成后保存为SGS文件),用户可利用保存的SGS文件(文本格式文件)根据上面所述方法计算Sv、Sa、Tg=Sv/Sa。通过Tg值可判断该地震波是否适合当地场地和地震设计分组,然后将抗震规范中表5.1.2-2中的EPA值与Sa相比求出调整系数(即放大系数),将其代入到地震波调整系数中。将地震波转换为绝对加速度反应谱和拟速度反应谱时注意周期范围要到6秒(建筑抗震规范规定)。 建筑抗震设计规范5.1.2条中规定,采用时程分析方法时,应按照场地类别和设计地震分组选用不少于二组的实际强震记录和一组人工模拟的加速度时程曲线,其平均地震影响系数曲线应与振型分解反应谱法所采用的地震影响系数曲线在统计意义上相符。所谓“在统计意义上相符”指的是,其平均影响系数曲线与振型分解反应谱法所用的地震影响系数曲线相比,在各周期点上相差不大于20%。 在MIDAS程序中,可选取两组实际强震记录生成两个SGS文件(调整Sa后的),然后将一组人

地震勘探原理题库讲解

第一章地震波的运动学 第一节地震波的基本概念 第二节反射地震波的运动学 第三节地震折射波运动学 第二章地震波动力学的基本概念 第一节地震波的频谱分析 第二节地震波的能量分析 第三节影响地震波传播的地质因素 第四节地震记录的分辨率 第三章地震勘探野外数据的野外采集第一节野外工作方法 第二节地震勘探野外观测系统 第三节地震波的激发和接收 第四节检波器组合 第五节地震波速度的野外测定 第四章共中心点迭加法原理 第一节共中心点迭加法原理 第二节多次反射波的特点 第三节多次叠加的特性 第四节多次覆盖参数对迭加效果的影响及其选择原则第五节影响迭加效果的因素 第五章地震资料数字处理 第一节提高信噪比的数字滤波 第二节反滤波 第三节水平迭加 第四节偏移归位 第五节地震波的速度 第六章地震资料解释 第一节地震资料构造解释工作概述 第二节时间剖面的对比 第三节地震反射层位的地质解释 第四节各种地质现象在时间剖面上的特征和解释 第五节地震剖面解释中可能出现的假象

第六节反射界面空间位置的确定 第七节构造图、等厚图的绘制及地质解释 第八节水平切片的解释 一、名词解释 第一章地震波的运动学 1、波动(难度90区分度30) 2、波前(难度89区分度31) 3、波尾(难度89区 分度31) 4、波面(难度89区分度31) 5、等相面(80 、 33) 6、波阵面(81 、 34) 7、波线(70 、 33) 8、射线(72 、 40) 9、振动曲线(75 、 42) 10、波形曲线(76 、 44) 11、波剖面(65 、 46) 12、 子波(60 45)13、视速度(80 、 30) 14、射线平面(60 、 47) 15、运动学(70 、 55) 16、时距曲线(68、 40) 17、正常时差(60 、 45) 18、 动校正(60、 60) 19、几何地震学(70 、 35) 第二章地震波动力学的基本概念 1、动力学(70 、 40) 2、物理地震学(71、 35) 3、频谱(50 、 50) 4、波的发散(90 、 30) 5、波散(90 、 31) 6、频散(80、 35) 7、吸收(70 、 40 ) 8、纵向分辨率(60、40)9、垂向分辨率(60、40)10、横向分辨率(60、40)11、水平 分辨率(60、40)12、菲涅尔带(50、45) 13、主频(65、40) 第三章地震勘探野外数据的野外采集 1、规则干扰波(90、30) 2、不规则干扰波(90、30) 3、观测系统(80、35) 4、多次 覆盖(65、50) 5、共反射点道集(70、45) 6、检波器组合(90、30) 7、方向特性(75、30) 8、方向效应(90、30) 第四章共中心点迭加法原理 1、共中心点迭加(70、40) 2、水平迭加(60、40) 3、剩余时差(60、50) 第五章地震资料数字处理 1、偏移迭加(75、30) 2、平均速度(85、30) 3、均方根速度(80、30) 4、迭加 速度(70、40) 第六章地震资料解释 1、标准层(50、40) 2、绕射波(40、50) 3、剖面闭合(30、60) 4、三维地震(70、 30) 5、水平切片(45、60) 6、等厚图(65、40) 7、构造图(80、30) 二、填空题 第一章 1、振动在介质中的传播就是()。(90、30) 2、在地震勘探中把入射线、过入射点的界面法线、()三者所决定的平面称为()。(70、50) 3、反射波振幅的大小决定于(),极性的正负决定于(),到达时间先后决定于()。 (40、60) 4、倾斜界面共炮点反射波时距曲线形状(),极小点坐标()。(70、40) 5、地震反射界面是指()。(70、35) 6、折射波形成的条件(),盲区半径()。(75、35) 7、射线总是()波面。(70、40) 8、地面与地下反射界面都是平面,界面以上介质为均匀介质,则地面上纵直测线观测的反 射波时距曲线为()。(65、40) 9、在V(Z)=V0+(1+βZ)连续介质中,反射界面深度为H,如果要观测到该界面的反射 波,那么入射波的最大穿透深度为()。(30、50) 10、当地面和地下反射界面为平面时,共炮点反射波时距曲线极小点处的视速度为()。(35、

地震波数据生成器SGSw

地震波数据生成器 除了程序提供的30多条实测地震波,一些复杂超限工程在做时程分析时往往需要利用当地安评报告的地震波数据生成自己的时程函数,具体的转换过程是被经常提到的一个问题。 相关命令 工具〉地震波数据生成器... 问题解答 midas提供地震波数据生成器这个专门的工具用于生成自己的时程函数,具体操作步骤如下: 1)打开已安装midas软件的文件夹,找到Dbase文件夹,用记事本打开其中任何 一个后缀为dbs的文件;

2)将安评报告的实测地震波数据完全按上述dbs文件的格式输入后另存,修改后 缀txt为dbs; 3)打开地震波数据生成器,执行菜单操作Generete-Earthquake Record;

4)点击Import,导入第2)步中生成的dbs文件,同时可修改地震波三要素中的 有效峰值和持时,保存为一个sgs文件; 5)midas软件中添加时程函数时,导入第4)步生成的sgs文件即可。 相关知识 时程分析往往作为多遇地震的补充计算手段,规范中要求每条时程曲线计算底部剪力结

果不应小于振型分解反应谱法相应结果的65% ,多条时程曲线计算所得底部剪力结果平均值不应小于振型分解反应谱法计算结果的80%。所以选择合适的波很重要,地震波数据生成器还提供时程函数到反应谱的转换,可以和反应谱分析中地震影响系数曲线进行大致的比较,对结果的正确性给予一定的保证。 具体操作步骤如下: 1)同上。 2)同上。 3)打开地震波数据生成器,执行菜单操作Generete-Earthquake Response Spectra;

4)点击Import,导入第2)步中生成的dbs文件,可选择生成多种形式的反应谱,如绝对加速度、相对速度、相对位移等,保存为sgs文件; 5)和时程函数一样,也可以在定义反应谱函数的时候导入第4)步生成的sgs文件。

地震波的选取方法

地震波的选取方法 2010-10-20 22:32:00| 分类:默认分类|举报|字号订阅 建筑抗震设计规范(GB 50011-2001)的5.1.2条文说明中规定,正确选择输入的地震加速度时程曲线,要满足地震动三要素的要求,即频谱特性、有效峰值和持续时间要符合规定。频谱特性可用地震影响系数曲线表征,依据所处的场地类别和设计地震分组确定。这句话 的含义是选择的实际地震波所处场地的设计分组(震中距离、震级大小)和场地类别(场地条件) 应与要分析的结构物所处场地的相同,简单的说两者的特征周期Tg值应接近或相同。特征周期 Tg值的计算方法见下面公式(1)、(2)、(3)。 加速度有效峰值按建筑抗震设计规范(GB 50011-2001)中的表5.1.2-2采用。地震波的加速度有效峰值的计算方法见下面公式(1)及下面说明。 持续时间的概念不是指地震波数据中总的时间长度。持时Td的定义可分为两大类,一类是以 地震动幅值的绝对值来定义的绝对持时,即指地震地面加速度值大于某值的时间总和,即绝对 值|a(t)|>k*g的时间总和,k常取为0.05;另一类为以相对值定义的相对持时,即最先与最 后一个k*amax之间的时段长度,k一般取0.3~0.5。不论实际的强震记录还是人工模拟波形,一般 持续时间取结构基本周期的5~10倍。 说明: 有效峰值加速度EPA=Sa/2.5 (1) 有效峰值速度EPV=Sv/2.5 (2) 特征周期Tg = 2π*EPV/EPA (3) 1978年美国ATC-3规范中将阻尼比为5%的加速度反应谱取周期为0.1-0.5秒之间的值平

为Sa,将阻尼比为5%的速度反应谱取周期为0.5-2秒之间的值平均为Sv(或取1s附近的平均速度 反应谱),上面公式中常数2.5为0.05组尼比加速度反应谱的平均放大系数。 上述方法使用的是将频段固定的方法来求EPA和EPV,1990年的《中国地震烈度区划图》采 用了不固定频段的方法分析各条反应谱确定其相应的平台频段。具体做法是:在对数坐标系中 同时做出绝对加速度反应谱和拟速度反应谱,找出加速度反应谱平台段的起始周期T0和结束周 期T1,然后在拟速度反应谱上选定平台段,其起始周期为T1(即加速度反应谱平台段的结束周期 T1),结束周期为T2,将加速度反应谱在T0至T1之间的谱值求平均得Sa,拟速度反应谱在T1至T2 之间的谱值求平均得Sv,加速度反应谱和拟速度反应谱在平台段的放大系数采用2.5,按公式 (1)、(2)、(3)求得EPA、EPV、Tg。 在MIDAS程序中提供将地震波转换为绝对加速度反应谱和拟速度反应谱的功能(工具>地震 波数据生成器,生成后保存为SGS文件),用户可利用保存的SGS文件(文本格式文件)根据上面所 述方法计算Sv、Sa、Tg。通过Tg值可判断该地震波是否适合当地场地和地震设计分组,然后将 抗震规范中表5.1.2-2中的EPA值与Sa相比求出调整系数,将其代入到地震波调整系数中。将地 震波转换为绝对加速度反应谱和拟速度反应谱时注意周期范围要到6秒(建筑抗震规范规定)。 建筑抗震设计规范5.1.2条中规定,采用时程分析方法时,应按照场地类别和设计地震分组 选用不少于二组的实际强震记录和一组人工模拟的加速度时程曲线,其平均地震影响系数曲

《地震勘探》复习提纲

《地震勘探》复习提纲 《地震勘探》复习提纲 复习说明: 对《地震勘探》的复习,要求掌握基本概念,弄清楚各种方法的基本思路,记住最基本的公式。特别要注意对专业词汇的掌握,也就是强调对基础知识的学习。 绪论 1、了解地球信息的主要方法有哪些及各种方法的定义 2、地球物理勘探方法的特点 3、主要的物探方法有哪些?各种物探方法的物理依据如何? 4、地震勘探的主要环节?各环节的主要任务? 第一章地震波的动力学 1、地震波传播的动态特征主要反映在哪两个方面? 2、地震地质模型类型及定义 3、振动的定义及描述参数 4、波动的定义及描述参数 5、地震波的动力学参数及定义:震源、地震子波、地震波的频谱、地震波振动图及波剖面图、描述地震波的特征参数及定义、波阵面(波前、波后)、平面波与球面波、波线(射线)、惠更斯原理及应用 6、地震波的类型、振动模式及特征:体波(纵波与横波)、面波(瑞利波、拉夫波、斯通利波及管波) 7、在无限均匀各向同性介质中,只有纵波和横波存在,纵波和横波有共性也有区别。①纵波和横波的共性:都是体波,都有球面扩散; ②纵波和横波的区别:极化方向不同,传播速度不同(记住纵波和横波的速度公式)。纵波速度公式:;横波速度公式:

8、介质对地震波传播的影响因素有哪些? 9、地震波的球面扩散、几何扩散定义? 10、地震波吸收的定义、描述参数及有关结论 11、地震反射波、透射波及折射波的定义 12、费马原理及应用 13、Snell定律及应用 14、转换波定义及成因 15、临界角及折射波的形成 16、地震绕射波定义(广义和狭义) 17、地震横向分辨率定义 18、地震波遇到分界面时:①在界面上能量重新分配,传播方向发生变化。能量分配关系由诺特方程(或佐普里兹方程)决定,传播方向遵行斯奈尔定律;②非垂直入射时,一般都产生转换波;③垂直入射时,不产生转换波。记住垂直入射的反射系数、透射系数公式。利用垂直反射系数公式说明界面产生反射波的条件。 ④下覆速度大于上覆速度时,以临界角入射会产生折射波。 19、薄层的定义、分类及调谐效应 20、地震垂向分辨率定义 21、地震记录道的形成及地震波形的影响因素 22、地震道褶积模型 23、地震波传播速度及影响因素有哪些? 24、实际介质中波的传播更复杂,除了考虑上述的球面扩散、透射、反射、折射与转换波等影响外,还要考虑波的吸收、透射损失、地质结构、大地滤波作用、波的干涉叠加、岩性突变点产生的绕射波等影响。 第二章地震波的运动学 1、时间场、时间场函数、等时面、射线的定义

相关文档