文档库 最新最全的文档下载
当前位置:文档库 › 【免费下载】 线性代数第一章行列式作业参考解答

【免费下载】 线性代数第一章行列式作业参考解答

【免费下载】 线性代数第一章行列式作业参考解答
【免费下载】 线性代数第一章行列式作业参考解答

第一章行列式练习题目及答案

第一章 行列式 一、单项选择题 1.=0 001001001001000( ). (A) 0 (B)1- (C) 1 (D) 2 2. =0 001100000100100( ). (A) 0 (B)1- (C) 1 (D) 2 3. 若2 1 33 32 31 232221 131211 ==a a a a a a a a a D ,则=---=32 3133 31 2221232112 111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 4.若 a a a a a =22 2112 11,则 =21 11 2212ka a ka a ( ). (A)ka (B)ka - (C)a k 2 (D)a k 2- 5. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( ). (A) 0 (B)3- (C) 3 (D) 2 6. 若5 734111113263478 ----=D ,则D 中第一行元的代数余子式的和为( ). (A)1- (B)2- (C)3- (D)0 7. 若2 23 5 00 1 011110403 --= D ,则D 中第四行元的余子式的和为( ). (A)1- (B)2- (C)3- (D)0

8. k 等于下列选项中哪个值时,齐次线性方程组??? ??=++=++=++0 00321 321321x x kx x kx x kx x x 有非零解. ( ) (A)1- (B)2- (C)3- (D)0 二、填空题 1. 行列式=0 100111010100111. 2.行列式 = -0 10000200 0010 n n . 3.行列式 =--0 01) 1(2211)1(111 n n n n a a a a a a . 4.如果M a a a a a a a a a D ==3332 31 232221131211 ,则=---=32 323331 2222232112121311133333 3a a a a a a a a a a a a D . 5.已知某5阶行列式的值为5,将其第一行与第5行交换并转置,再用2乘所有元素,则所得的新行列式的值为 . 6.行列式 = --+---+---111 1 111111111111 x x x x . 7.n 阶行列式=+++λλλ 111 1 11111 . 8.已知三阶行列式中第二列元素依次为1,2,3, 其对应的余子式依次为3, 2, 1,则该行列式的值为 .

线性代数行列式算与性质

线性代数行列式的计算与性质 行列式在数学中,是一个函数,其定义域为的矩阵,取值为一个标量,写作或。行列式可以看做是有向面积或体积的概 念在一般的欧几里得空间中的推广。或者说,在维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。 行列式概念最早出现在解线性方程组的过程中。十七世纪晚期,关孝和与莱布尼茨的著作中已经使用行列式来确定线性方程组解的个数以及形式。十八世纪开始,行列式开始作为独立的数学概念被研究。十九世纪以后,行列式理论进一步得到发展和完善。矩阵概念的引入使得更多有关行列式的性质被发现,行列式在许多领域都逐渐显现出重要的意义和作用,出现了线性自同态和矢量组的行列式的定义。 行列式的特性可以被概括为一个多次交替线性形式,这个本质使得行列式在欧几里德空间中可以成为描述“体积”的函数。 矩阵 A 的行列式有时也记作 |A|。绝对值和矩阵范数也使用这个记法,有可能和行列式的记法混淆。不过矩阵范数通常以双垂直线来表示(如: ),且可以使用下标。此外,矩阵的绝对值是没有定义的。因此,行 列式经常使用垂直线记法(例如:克莱姆法则和子式)。例如,一个矩阵: A= ? ? ? ? ? ? ? i h g f e d c b a , 行列式也写作,或明确的写作: A= i h g f e d c b a , 即把矩阵的方括号以细长的垂直线取代 行列式的概念最初是伴随着方程组的求解而发展起来的。行列式的提出可以追溯到十七世纪,最初的雏形由日本数学家关孝和与德国数学家戈特弗里德·莱布尼茨各自独立得出,时间大致相同。

地大《线性代数》在线作业一_答案

免费免费免费免费 地大《线性代数》在线作业一 1. A. A B. B C. C D. D 正确答案:B 满分:4 分得分:4 2. A. A B. B C. C D. D 正确答案:D 满分:4 分得分:4 3. A. A B. B C. C D. D 正确答案:D 满分:4 分得分:4 4. A. A B. B C. C D. D 正确答案:C 满分:4 分得分:4 5. A. A B. B C. C D. D 正确答案:C 满分:4 分得分:4 6. A. A B. B C. C D. D 正确答案:C 满分:4 分得分:4 7. A. A B. B C. C D. D

正确答案:A 满分:4 分得分:4 8. A. A B. B C. C D. D 正确答案:C 满分:4 分得分:4 9. A. A B. B C. C D. D 正确答案:C 满分:4 分得分:4 10. A. A B. B C. C D. D 正确答案:D 满分:4 分得分:4 11. A. A B. B C. C D. D 正确答案:D 满分:4 分得分:4 12. A. A B. B C. C D. D 正确答案:B 满分:4 分得分:4 13. A. A B. B C. C D. D 正确答案:A 满分:4 分得分:4 14. A. A B. B C. C D. D 正确答案:C 满分:4 分得分:4 15.

B. B C. C D. D 正确答案:A 满分:4 分得分:4 16. A. A B. B C. C D. D 正确答案:A 满分:4 分得分:4 17. A. A B. B C. C D. D 正确答案:D 满分:4 分得分:4 18. A. A B. B C. C D. D 正确答案:B 满分:4 分得分:4 19. A. A B. B C. C D. D 正确答案:C 满分:4 分得分:4 20. A. A B. B C. C D. D 正确答案:B 满分:4 分得分:4 21. A. A B. B C. C D. D 正确答案:C 满分:4 分得分:4 22. A. A B. B

第1章行列式自测题(答案)

内容提要: 一、行列式的定义 1、2阶和3阶行列式 2112221122 21 1211a a a a a a a a D -== 31231232211333221133 32 31 23222113 1211a a a a a a a a a a a a a a a a a a ++= 322311332112312213a a a a a a a a a --- 2、排列与逆序 定义 由n ,,3,2,1 组成的一个有序数组称为一个n 阶排列. 3、n 阶行列式定义 定义 称∑ -== n n n p p p np p p p p p nn n n n n a a a a a a a a a a a a D 21212121) (2 1 22221 11211 )1(τ )det(ij a = 为n 阶行列式,记作D 或n D .也记作)det(ij a . 4、三角形行列式:主对角线元素的乘积。 二、行列式的性质 性质1 D D ='. 性质2 互换行列式的某两行(或列),行列式仅变符号. 推论 若行列式中某两行(或列)相同,则行列式为零. 性质3 行列式某行(列)的各元素乘以k ,等于用数k 乘以行列式. 推论 行列式的某行(或列)各元素的公因子可以提到行列式符号外面相乘. 推论 若行列式的某两行(或列)的对应成元素成比例,则行列式为零.

性质4 nn n n in i i n nn n n in i i n nn n n in in i i i i n a a a a a a a a a a a a a a a a a a 21 21 1121121 21112112 1 2211112 11βββαααβαβαβα+=+++ 性质5 将行列式的某行(或列)各元素乘以数k 加到另一行(或列)的对应元素上,行列式的值不变. 三、行列式的展开定理 定义 在n D 中划掉ij a 所在的行和列(即第i 行和第j 列),余下的元素按原来的相对位置构成一个(1-n )阶行列式,称为ij a 的余子式,记作ij M . ij j i ij M A +-=)1( ——ij a 的代数余子式 定理1 in in i i i i A a A a A a D +++= 2211 (n i ,,2,1 =) →按第i 行展开 或 ni ni i i i i A a A a A a D +++= 2211 (n i ,,2,1 =) →按第i 列展开 推论 02211=+++jn in j i j i A a A a A a (j i ≠) 或 02211=+++nj ni j i j i A a A a A a (j i ≠) 四、Cramer 规则 ?????? ?=+++=+++=+++n n nn n n n n n n b x a x a x a b x a x a x a b x a x a x a 22112 222212********* (1) 定理 当0≠D 时,方程组(1)有唯一解 D D x 11= ,D D x 22=,……,D D x n n =.

考研数学线性代数行列式的计算方法

考研数学线性代数行列式的计算方法考研数学线性代数行列式的计算方法 一、基本内容及历年大纲要求。 本章内容包括行列式的定义、性质及展开定理。从整体上来看,历年大纲要求了解行列式的概念,掌握行列式的性质,会应用行列 式的性质及展开定理计算行列式。不过要想达到大纲中的要求还需 要考生理解排列、逆序、余子式、代数余子式的概念,以及性质中 的相关推论是如何得到的。 二、行列式在线性代数中的地位。 行列式是线性代数中最基本的运算之一,也是考生复习考研线性 代数必须掌握的基本技能之一(另一项基本技能是求解线性方程组),另外,行列式还是解决后续章节问题的一个重要工具,不论是后续 章节中出现的重要概念还是重要定理、解题方法等都与行列式有着 密切的联系。 三、行列式的计算。 由于行列式的计算贯穿整个学科,这就导致了它不仅计算方法灵活,而且出题方式也比较多变,这也是广大考生在复习线性代数时 面临的第一道关卡。虽然行列式的计算考查形式多变,但是从本质 上来讲可以分为两类:一是数值型行列式的计算;二是抽象型行列式 的计算。 1.数值型行列式的计算 主要方法有: (1)利用行列式的定义来求,这一方法适用任何数值型行列式的 计算,但是它计算量大,而且容易出错;

(2)利用公式,主要适用二阶、三阶行列式的计算; (3)利用展开定理,主要适用出现零元较多的行列式计算; (4)利用范德蒙行列式,主要适用于与它具有类似结构或形式的行列式计算; (5)利用三角化的思想,主要适用于高阶行列式的计算,其主要思想是找1,化0,展开。 2.抽象型行列式的计算 主要计算方法有: (1)利用行列式的性质,主要适用于矩阵或者行列式是以列向量的形式给出的; (2)利用矩阵的运算,主要适用于能分解成两个矩阵相乘的'行列式的计算; (3)利用矩阵的特征值,主要适用于已知或可以间接求出矩阵特征值的行列式的计算; (4)利用相关公式,主要适用于两个矩阵相乘或者是可以转化为两个矩阵相乘的行列式计算; (5)利用单位阵进行变形,主要适用于既不能不能利用行列式的性质又不能进行合并两个矩阵加和的行列式计算。 我们究竟该做多少年的真题? 建议大家在刚开始复习的时候,不要去做真题,因为以你刚开始复习的程度还不足以支撑起真题的难度和深度。我们做真题的时间是在我们的强化阶段结束之后,也就是提高阶段和冲刺模考去做真题。 应该怎么样去做真题? 第一:练习重质不重量

第一章行列式作业及答案

第一部分 行列式作业 (一)选择题(15分) 1.在5阶行列式展开式中,12335544i j a a a a a 是其中带有正号的一项,则,i j 之值为( ) (A) 1,2i j == (B) 2,3i j == (C) 1,3i j == (D) 2,1i j == 2.在5阶行列式展开式中,包含1325,a a 并带有负号的项是( ) (A) 1325344251a a a a a - (B) 1325314254a a a a a - (C) 1325324154a a a a a - (D) 1325314452a a a a a - 3.已知行列式11 121321 222331 3233a a a a a a m a a a =,则行列式2122 1331113212331 311211222 1323 222222a a a a a a a a a a a a a a a ---=+++( ) (A)-4m (B)-2m (C)2m (D)4m 4.已知4101 1111 11111111 x D ---=----,则4D 中x 的系数是( ) (A)4 (B)-4 (C)-1 (D)1 5. 设方程组12312312 3112 x x x x x x x x x λλλ--=?? ++=??-++=? ,若方程组有惟一解,则λ的值应为( ) (A)0 (B)1 (C)-1 (D)异于0与1±的数 (二)填空题(15分) 1.排列(1)(2)321n n n -?-??? 的逆序数为 。 2.排列12n a a a 与排列121n n a a a a - 的逆序数之和等于 。 3.行列式D 中第2行元素的代数余子式之和21222324A A A A +++= ,其中 1111 1111 11111111 D -= --。

线性代数技巧行列式的计算方法

计算n 阶行列式的若干方法举例 n 阶行列式的计算方法很多,除非零元素较多时可利用定义计算(①按照某一列或某一行展开②完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法,值得注意的是,同一个行列式,有时会有不同的求解方法。下面介绍几种常用的方法,并举例说明。 1.利用行列式定义直接计算 例1 计算行列式 00100 20010000 n D n n = - 解 D n 中不为零的项用一般形式表示为 112211!n n n nn a a a a n ---= . 该项列标排列的逆序数t (n -1 n -2…1n )等于 (1)(2) 2 n n --,故 (1)(2) 2 (1) !.n n n D n --=- 2.利用行列式的性质计算

例2 一个n 阶行列式n ij D a =的元素满足 ,,1,2,,,ij ji a a i j n =-= 则称D n 为反对称行列式,证明:奇数阶反对称行列式为零. 证明:由i j j a a =-知i i i a a =-,即 0,1,2,,ii a i n == 故行列式D n 可表示为 1213112 23213 2331230000 n n n n n n n a a a a a a D a a a a a a -=----- 由行列式的性质A A ' = 1213112 23213 2331230000n n n n n n n a a a a a a D a a a a a a -----=- 1213112 23213 23312300(1)00 n n n n n n n a a a a a a a a a a a a -=------ (1)n n D =- 当n 为奇数时,得D n =-D n ,因而得D n = 0.

#线性代数技巧行列式的计算方法

计算n 阶行列式的若干方法举例 n 阶行列式的计算方法很多,除非零元素较多时可利用定义计算(①按照某一列或某一行展开②完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法,值得注意的是,同一个行列式,有时会有不同的求解方法。下面介绍几种常用的方法,并举例说明。 1.利用行列式定义直接计算 例1 计算行列式 0010020010000 00n D n n = - 解 D n 中不为零的项用一般形式表示为 112211!n n n nn a a a a n ---=. 该项列标排列的逆序数t (n -1 n -2…1n )等于 (1)(2) 2 n n --,故 (1)(2) 2 (1) !.n n n D n --=- 2.利用行列式的性质计算 例2 一个n 阶行列式 n ij D a =的元素满足 ,,1,2, ,,ij ji a a i j n =-= 则称D n 为反对称行列式,证明:奇数阶反对称行列式为零. 证明:由i j j i a a =-知i i i i a a =-,即 0,1,2, ,ii a i n ==

故行列式D n 可表示为 1213112 23213 2331230000 n n n n n n n a a a a a a D a a a a a a -=----- 由行列式的性质A A '= 1213112 23213 2331230000 n n n n n n n a a a a a a D a a a a a a -----=- 1213112 23213 23312300(1)0 n n n n n n n a a a a a a a a a a a a -=------ (1)n n D =- 当n 为奇数时,得D n =-D n ,因而得D n = 0. 3.化为三角形行列式 若能把一个行列式经过适当变换化为三角形,其结果为行列式主对角线上元素的乘积。 因此化三角形是行列式计算中的一个重要方法。 例3 计算n 阶行列式 a b b b b a b b D b b a b b b b a = 解:这个行列式的特点是每行(列)元素的和均相等,根据行列式的性质,把第2,3,…,

西南交《线性代数》离线作业-2014春季学期(优.选)

西南交《线性代数》离线作业1 一、单项选择题(只有一个选项正确,共8道小题) 1. 下列矩阵中, B 不是初等矩阵。 (A) (B) (C) (D) 2. 则D。 (A) (B) (C) (D) 3. A、B为 n阶方阵,且A、B等价,| A |=0 ,则R(B) A 。 (A) 小于n (B) 等于n (C) 小于等于n (D) 大于等于n 4. 若A为5阶方阵且|A|=2,则|-2A|= C 。 (A) 4 (B) -4 (C) -64 (D) 64

16.行列式| 1 2 3 12, 4 1 2 5 | = 4 。 17. 则t= 3 18. |AB|=0 19. λ=-3 20. k= 3 21. λ= 3 22. (2,3,1)T - 23. 答:题目等价为讨论 123 ,, βββ线性无关的条件。

1122331312123230()()()0 k k k k k k k k k βββλαλαλα++=?+++++= 因为13123213 2=0,,=0=0 k k k k k k λαααλλ+?? +??+?线性无关,所以 123,,βββ是Ax=0的一个基础解系,则齐次方程组132132=0 =0=0 k k k k k k λλλ+?? +??+?只有零解,故系数行列式不为零。 31 01 001+0-101 λλ λλλ ≠?≠?≠ 所以,-1λ ≠时,123,,βββ是Ax=0的一个基础解系 24. 设A 是反对称矩阵,E+A 是可逆矩阵。 是正交矩阵。 证明:因为A T =-A,故 [(E-A)(E+A)-1]T [(E-A)(E+A)-1]=(E+A T )-1(E-A )T (E-A)(E+A) -1 =(E-A)-1(E+A )(E-A)(E+A) -1 (E+A )与(E-A)可交 =(E-A)-1(E+A ) (E+A)-1 (E-A)=E 所以,(E?A) (E+A) ?1是正交矩阵。 25. 已知3阶方阵A 可逆且 求A 的伴随矩阵的逆矩阵.

线性代数-特殊行列式及行列式计算方法总结

特殊行列式及行列式计算方法总结 一、 几类特殊行列式 1. 上(下)三角行列式、对角行列式(教材P7例5、例6) 2. 以副对角线为标准的行列式 111121 12,1221222,11,21,1 1,1 12 ,1 (1)2 12,1 1 000000000000000 00 (1) n n n n n n n n n n n nn n n n n n nn n n n n n a a a a a a a a a a a a a a a a a a a a a a ---------= ==- 3. 分块行列式(教材P14例10) 一般化结果: 00n n m n n m n m m n m m n m A C A A B B C B ????==? 0(1)0n m n n m n mn n m m m n m m n A C A A B B C B ????==-? 4. 范德蒙行列式(教材P18例12) 注:4种特殊行列式的结果需牢记! 以下几种行列式的特殊解法必须熟练掌握!!! 二、 低阶行列式计算 二阶、三阶行列式——对角线法则 (教材P2、P3) 三、 高阶行列式的计算 【五种解题方法】 1) 利用行列式定义直接计算特殊行列式; 2) 利用行列式的性质将高阶行列式化成已知结果的特殊行列式;

3) 利用行列式的行(列)扩展定理以及行列式的性质,将行列式降 阶进行计算——适用于行列式的某一行或某一列中有很多零元素,并且非零元素的代数余子式很容易计算; 4) 递推法或数学归纳法; 5) 升阶法(又称加边法) 【常见的化简行列式的方法】 1. 利用行列式定义直接计算特殊行列式 例1 (2001年考研题) 0001000200019990002000000 002001 D = 分析:该行列式的特点是每行每列只有一个元素,因此很容易联想到直接利用行列式定义进行计算。 解法一:定义法 (1,2,...,2,1,)012...19990(1)2001!(1)2001!2001!n n n D τ--+++++=-=-= 解法二:行列式性质法 利用行列式性质2把最后一行依次与第n -1,n -2,…,2,1行交换(这里n =2001),即进行2000次换行以后,变成副对角行列式。 2001(20011) 20011 20011 2 000020010 001000200(1) (1) (1)2001!2001!019990002000 00 D ?---=- =--=

《线性代数(理)》第1阶段在线作业

?A) 矩阵A存在一个阶子式不等于零; ?B) 矩阵A的所有r 1阶子式全等于零 ?C) 矩阵A存在r个列向量线性无关 ?D) 矩阵A存在m-r个行向量线性无关 ?A) A与B等价的充要条件是rank(A)=rank(B) ?B) 若A与B等价,则|A|=|B| ?C) A与B等价的充要条件是存在可逆阵P、Q ,使A=PBQ ?D) A可逆的充要条件是A等价于E n

?A) 若n阶线性方程组Ax=b的系数矩阵行列式|A|≠0,则该方程组存在唯一解;?B) 若n阶线性方程组Ax=0的系数矩阵行列式|A|≠0,则该方程组只有零解;?C) 一个行列式交换两列,行列式值不变; ?D) 若一个行列式的一列全为零,则该行列式的值为零 ?A) 若干个初等阵的乘积必是可逆阵 ?B) 可逆阵之和未必是可逆阵 ?C) 两个初等阵的乘积仍是初等阵 ?D)

可逆阵必是有限个初等阵的乘积 ?A) ACB=E ?B) CBA=E ?C) BAC=E ?D) BCA=E ?A) A与B相似的充要条件是存在可逆阵P,使得A=P-1BP ?B) 若A是反对称矩阵,则A T=-A

若A可逆,则A可以表示成若干个初等矩阵的乘积?D) 若A是正交矩阵,则|A|=1 ?A) PA=B ?B) AP=B ?C) PB=A ?D) BP=A

矩阵A中必有一列元素等于0 ?B) 矩阵A中必有两列元素对应成比例 ?C) 矩阵A中必有一列向量是其余列向量的线性组合?D) 矩阵A中任一列向量是其余列向量的线性组合 ?A) r>t ?B) r<="" div="" style="box-sizing: border-box;"> ?C) r=t ?D) r与t的关系不定 参考答案:C 收起解析 解析: 无 10(10.0分)

第一章 行列式 习题及答案

第一章 行列式习题 1. n 阶行列式D 的值为c ,若将D 的第一列移到最后一列,其余各列依次保持原来的次序向左移动,则得到的行列式值为 。 (1(1)n c --) 2. n 阶行列式D 的值为c ,若将D 的所有元素改变符号,得到的行列式值为 。 ((1)n c -) 3. 2 (1) (2,1,21,2,,1,)(21)0(23)012 2 k k N k k k k k k k k --+=-++-+++=+ ?。 4. 由行列式的定义计算行列式 41333123362 6 x x x x x x 展开式中4x 和3 x 的系数。 (3412, 12x x -) (分析:4 x 的系数:四个元素中必须全都包含x 。第一行只能取11a ,第三行只能取33a ,这样第二、四 行只能取22a 和44a ,则此项为(1234) 4 11223344(1) 4312N a a a a x x x x x -=???=。 3 x 的系数:(2134) (4231) 333 1221334441223314(1) (1)3912N N a a a a a a a a x x x -+-=--=-。) 5. 已知1703,3159,975,10959能被13整除,不直接计算行列式 17033159097510 959 的值,证明他是13的倍数。 证明: 1234 1701703170170341000131531593153159410021309709750979754103 10 9 5 10 9 5 9 10 9 5 10959 l c c l c c l c c l +?+?=? +?,能被13整除。 注意,以下两个行列式: 1703170370331593159159097597597510 9 5 910959 9 5 9 ≠ ,所以一定要加到最后一列上。 6. 设行列式3112523420111 3 3--= --D ,求11213141243A A A A +--及2123242-++M M M 。 (0和-5) 解:112131412 1124234243010113 3 3 A A A A -+--= =----。

线性代数习题-[第一章]行列式

习题1—1 全排列及行列式的定义 1. 计算三阶行列式123 4 56789 。 2. 写出4阶行列式中含有因子1324a a 并带正号的项。 3. 利用行列式的定义计算下列行列式: ⑴0 004003002001 0004 D

⑵0 0000000052 51 42413231 2524232221 151********a a a a a a a a a a a a a a a a D = ⑶0 001 0000 200 0010 n n D n -= 4. 利用行列式的定义计算210111()0211 1 1 x x x f x x x -= 中34 , x x 的系数。

习题1—2 行列式的性质 1. 计算下列各行列式的值: ⑴ 2141 012112025 62 - ⑵ef cf bf de cd bd ae ac ab --- ⑶ 2 2 2 2 2 2 2 2 22222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c c b b b b a a a a

2. 在n 阶行列式nn n n n n a a a a a a a a a D 2 1 222 2111211 = 中,已知),,2,1,(n j i a a ji ij =-=, 证明:当n 是奇数时,D=0. 3. 计算下列n 阶行列式的值: ⑴x a a a x a a a x D n = ⑵n n a a a D +++= 11 1 1 1111121 ()120n a a a ≠

第一章行列式作业

第一章行列式作业 一、填空题 1、设行列式D=3332 31 232221 13 1211 a a a a a a a a a =3,D 1=33 32 31312322212113 12 1111 252525a a a a a a a a a a a a +++,则D 1的值为( ) 2、 045 000002001 00-=( ) 3、行列式600 300301398200199 204 100 103=__________. 4已知4阶行列式D 中第1行的元素分别为1,2,0,-1,第3行的元素的余子式依 次为5,x ,17,1,则x=__________. 5.已知,1 21112 3111211 )(x x x x x f -= 则3x 的系数=____________. 6.排列36715284的逆序数为( ) 7.行列式=--2 22 2510 211 ( ) 8. 2009 2008 2007 200620052004 2003 20022001 =( ) 二、选择题 1、若方程组???=-=+0x kx 0 x x 21 21有非零解,则k=( ) A. -1 B. 0 C.1 D.2 2、设D= 3 465 312186427 931-, D 中元素ij a 的代数余子式ij A ,则4443424132A A A A +++= ( ) A. 0 B. 3 C. 2 D. 4

3、设D = 3 4 653021864212 963, D 中元素ij a 的代数余子式ij A ,则44424132A A A ++=( ) A. 0 B. 3 C. 2 D. 4 4.设D= 3 465 312186427 931-, D 中元素ij a 的代数余子式ij A ,则44434241793A A A A +++-= ( ) A. 0 B. 3 C. 2 D. 4 三、计算题 1.计算下列行列式 (1) 6 741 212060311512 -----(2) 2111121111211112 (3)12341012311 01 2 5 D = ---(4) .0 1 1 2 12120112 110-----= D 2. 设D= 2 211765144334 321, D 中元素ij a 的代数余子式ij A ,试求44434241A A A A ++与. 3. 设,3 142 3 1 3 150111253 ------= D D 中元素ij a 的余子式和代数余子式依次记作ij M 和ij A , 求(1)14131211A A A A +++; (2)41312111M M M M +++.

2020春线性代数离线作业-

厦门大学网络教育2019-2020学年第二学期 《线性代数》课程期离线作业 学习中心: 年级: 专业: 学号: 姓名: 成绩: 一.选择题(共10小题,每题3分) 1. 已知3阶矩阵A 的特征值为1, 2, 3, 则|A 3-5A 2+7A |的值为( D )。 A . 3; B. 6; C. 9; D. 18。 2. 设??? ? ??-=321011330A , AB =A +2B , 求B =( A ) A . 033123110?? ? - ? ???; B. 033123110?? ? ? ???; C. 033123-110?? ? - ? ??? ; D. 033123-110?? ? ? ??? 3. 已知A 是四阶方阵,A *是A 的伴随矩阵,若A *的特征值是1,-1,2,4,那么不可逆矩阵是(C )。 A . A-E ; B .2A-E ; C .A+2E ; D .A-4E ; 4. 若A ,A *和B 均为n 阶非零矩阵,且AB=O 则必有r(B)=( A )。 A .1; B .2; C .n-1; D .不确定; 5. 设A 为3阶矩阵, |(2A )-1-5A *|=-16,则||A =( B )。 A . 1; B. 1/2; C. 0; D.-1 6. 设???? ??--=111111111A , ??? ? ??--=150421321B , 则A T B 的值为( )。

A . 0-58056290?? ? - ? ???; B. 0-58056290?? ? ? ??? ; C. 058056290?? ? - ? ??? ; D. 0-58056-290?? ?- ? ??? 7. 设三阶矩阵)(321ααα=A ,)2(21βαα=B ,其中βααα,,,321均为三维列向量,且2=A ,1=B ,则B A +=( )。 A .5; B. 0; C.1; D. 15. 8. 若齐次线性方程组?????=++=++=++0 200 321321321x x x x x x x x x μμλ有非零解,则( )。 A .μ=0或λ=1; B. μ=1或λ=0; C. μ=0且λ=1; D. μ=1且λ=0。 9. 设A , B 都是n 阶对称矩阵,那么AB =BA 是AB 为对称矩阵的( )。 A .充分条件; B. 必要条件; C. 充分必要条件; D. 非充分必要条件 10. 在1~9构成的排列1 2 7 4 j 5 6 k 9为偶排列,则下列选项中关j 、k 表达正确的是( )。 A .j =3,k =8; B. j = 8或3,k = 3; C. j = 8,k = 3; D. j = 8 ,k = 3或8 二. 判断题(共5小题,每题2分;对的请“√”,错的请打“×”) 11. 若线性方程组AX= B 中,方程的个数小于未知量的个数,则AX=B 一定有无穷多解。 (√) 12. 秩()A B +=秩A ,当且仅当秩0B =。 ( ×) 13. 若向量组的秩为r ,则其中任意r+1个向量都线性相关。 ( √) 14. 若A 满足A 2+3A+E=0,则A 可逆。 (√)

第一章行列式与矩阵的计算的练习(含答案)

行列式及矩阵的计算(课堂练习) 一、填空 1.已知三阶方阵A 的行列式为3,则 2A -= -24 2. 设12,01A -?? = ???1()32x g x x -= -+,则()g A =0800-?? ??? 3.设,,αβγ为3维列向量,记矩阵(,,),(,,)A B αβγαββγγα==+++,若 3,A B =则=,,,,6αβγ βγα+= 4.行列式1 1 111 1 11 ---x 的展开式中,x 的系数是 2 . 5.设???? ??=1201A 则=k A 1021k ?? ??? 。(k 为正整数). 6.设321,,ααα,21,ββ都是四维列向量,且四阶行列式1123,,,m αααβ=, 1232,,,n αααβ=,则12312,,,2αααββ-=16m n + 解:1 1231232 ,,,2,,,D αααβαααβ= +- 14412312322,,,(1),,,16m n αααβαααβ=+-=+ 7. 已知四阶行列式D 中第三列元素分别为1,3,-2,2,它们对应的余子式分 别为3,-2,1,1,则行列式D =-3 . 解:D =1×3+3×(-2)+(-2)×1+2×1=-3 二、判断题 1.设A 、B 均为n 阶方阵,则A B A B =. ( × ) 2.设A 、B 均为n 阶方阵,则AB A B =. (√ )

三、行列式计算 (1)4 3 3 3 34333 3433 3 3 4 =n D 解:n D n c c c c c c +++13121 43313343133341333313 ++++n n n n 1 1312r r r r r r n --- 1 01000 0103 3313 +n =13+n (2)11111231 149118271 D --=-- 解:(范得蒙行列式)=(-1-3)(-1+2)(-1-1)(3+2)(3-1)(-2- 1)=-240 五、a 为何值时,线性方程组:??? ??-=++=++=++a ax x x x ax x x x x a 322321 321321有唯一解? 解:2 )1)(2(11111 1det -+==a a a a a A ,2-≠a 且1≠a 时,有唯一解.

线性代数第一章行列式练习题

第一章第一次练习题 一)填空题 1)计算(1465372)τ=________;[135(21)246(2)]n n τ-L L =________; 2)写出四阶行列式中含有因子1123a a 的项及符号__________; 3)在四阶行列式中,21143243a a a a 的符号为__________; 4)设12134453k l a a a a a 在五阶行列式中带有负号,则k =________;l =________. 二)解答题 5)计算三阶行列式 2 221 11a b c a b c .

6)用定义证明 1 (1) 2 12 1 00 000 (1) 00 00 n n n n n λ λλλλ λ - - =- L L L L L .

个元素为零,证明这个行列式为零. 7)设n阶行列式中有多于2n n

班级__________ 姓名__________ 学号_______ 第一章第二次练习题 一)填空题 1)把行列式1 11222 a b c a b c ++定出两个行列式之和______________________; 2)把行列式13 24 1 2 34 0000a a a a x y b b z w b b 写成两个行列式之积_________________________________; 3)提取行列式第二行公因子后11 12132122 2331 3233333a a a a a a a a a =__________________________; 4)行列式22 3456 7 89a b c d a ab ac ad =_________________________________. 二)解答题 5)化简行列式1 11122 223 333x y x a z x y x a z x y x a z +++

K201903线性代数离线作业

2018-2019学年第二学期 《线性代数》课程离线作业 学习中心: 年级: 专业: 学号: 姓名: 成绩: 一. 选择题(共10小题,每题3分) 1. 已知3阶矩阵A 的特征值为1, 2, 3, 则|A 3-5A 2+7A |的值为( d )。 A . 3; B. 6; C. 9; D. 18。 2. 设??? ? ??-=321011330A , AB =A +2B , 求B =( ) A . 033123110?? ?- ? ??? ; B. 033123110?? ? ? ???; C. 033123-110?? ?- ? ???; D. 033123-110?? ? ? ??? 3. 已知A 是四阶方阵,A *是A 的伴随矩阵,若A *的特征值是1,-1,2,4,那么不可逆矩阵是( )。 A . A-E ; B .2A-E ; C .A+2E ; D .A-4 E ; 4. 若A ,A *和B 均为n 阶非零矩阵,且AB=O 则必有r(B)=( )。 A .1; B .2; C .n-1; D .不确定; 5. 设A 为3阶矩阵, |(2A )-1-5A *|=-16,则||A =( )。 A . 1; B. 1/2; C. 0; D.-1

6. 设???? ??--=111111111A , ??? ? ??--=150421321B , 则A T B 的值为( )。 A . 0-58056290?? ?- ? ???; B. 0-58056290?? ? ? ??? ; C. 058056290?? ?- ? ???; D. 0-58056-290?? ?- ? ??? 7. 设三阶矩阵)(321ααα=A ,)2(21βαα=B ,其中βααα,,,321均为三维列向量,且2=A ,1=B ,则B A +=( )。 A .5; B. 0; C.1; D. 15. 8. 若齐次线性方程组?????=++=++=++0 200 321321321x x x x x x x x x μμλ有非零解,则( )。 A .μ=0或λ=1; B. μ=1或λ=0; C. μ=0且λ=1; D. μ=1且λ=0。 9. 设A , B 都是n 阶对称矩阵,那么AB =BA 是AB 为对称矩阵的( )。 A .充分条件; B. 必要条件; C. 充分必要条件; D. 非充分必要条件 10. 在1~9构成的排列1 2 7 4 j 5 6 k 9为偶排列,则下列选项中关j 、k 表达正确的是( )。 A .j =3,k =8; B. j = 8或3,k = 3; C. j = 8,k = 3; D. j = 8 ,k = 3或8 二. 判断题(共5小题,每题2分;对的请“√”,错的请打“×”) 11. 若线性方程组AX= B 中,方程的个数小于未知量的个数,则AX=B 一定有无穷多解。 ( )

《线性代数》离线作业doc-厦门大学网络教育2013-2014学年

厦门大学网络教育2013-2014学年第二学期 《线性代数》离线作业 1. 行列式计算(10分): a a D n 1 1???= , 其中对角线上元素都是a , 未写出的元素都是0. 2. 设????? ??--=111111111A , ???? ? ??--=150421321B , 求3AB -2A .(10分) 3. 设???? ? ??----=32321321k k k A , 问k 为何值, 可使 (1)R (A )=1; (2)R (A )=2; (3)R (A )=3.(10分) 4. 求解矩阵方程(12分): 设???? ? ??=101020101A , 且AB +E =A 2+B , 求B . 5. 设A 2-3A +2E =O , 证明A 的特征值只能取1或2. (10分) 6. 设有向量组A : a 1=(α, 2, 10)T , a 2=(-2, 1, 5)T , a 3=(-1, 1, 4)T , 及b =(1, β, -1)T , 问α, β为何值时 (1)向量b 不能由向量组A 线性表示; (2)向量b 能由向量组A 线性表示, 且表示式唯一; (3)向量b 能由向量组A 线性表示, 且表示式不唯一, 并求一般表示式. (15分) 7. 线性方程组计算(17分) λ取何值时, 非齐次线性方程组?????=++=++=++23213213211λ λλλλx x x x x x x x x . (1)有唯一解; (2)无解; (3)有无穷多个解? 8. 设二次型32312123222132122422),,(x x x x x x ax x x x x x f ++++--=,若正交变换

相关文档
相关文档 最新文档