文档库 最新最全的文档下载
当前位置:文档库 › 第一章行列式作业及答案

第一章行列式作业及答案

第一章行列式作业及答案
第一章行列式作业及答案

第一部分 行列式作业

(一)选择题(15分)

1.在5阶行列式展开式中,12335544i j a a a a a 是其中带有正号的一项,则,i j 之值为( )

(A) 1,2i j == (B) 2,3i j == (C) 1,3i j == (D) 2,1i j ==

2.在5阶行列式展开式中,包含1325,a a 并带有负号的项是( )

(A) 1325344251a a a a a - (B) 1325314254a a a a a - (C) 1325324154a a a a a - (D) 1325314452a a a a a -

3.已知行列式11

121321

222331

3233a a a a a a m a a a =,则行列式2122

1331113212331

311211222

1323

222222a a a a a a a

a a a a a a

a a ---=+++( )

(A)-4m (B)-2m (C)2m (D)4m

4.已知4101

1111

11111111

x D ---=----,则4D 中x 的系数是( )

(A)4 (B)-4 (C)-1 (D)1

5. 设方程组12312312

3112

x x x x x x x x x λλλ--=??

++=??-++=? ,若方程组有惟一解,则λ的值应为( )

(A)0 (B)1 (C)-1 (D)异于0与1±的数 (二)填空题(15分)

1.排列(1)(2)321n n n -?-??? 的逆序数为 。 2.排列12n a a a 与排列121n n a a a a - 的逆序数之和等于 。

3.行列式D 中第2行元素的代数余子式之和21222324A A A A +++= ,其中

1111

1111

11111111

D -=

--。

4.若行列式11

121321

222331

32

331

2a a a a a a a a a =,则行列式11131112

21

23212231

33

3132

222222a a a a a a a a a a a a --=- 。 5.设方程组123231

2320

250320

x x x x x x x kx ++=??

+=?

?--+=?有非零解,则k = 。 (三)计算题(前两题各5分,后两题各10分,共30分)

1.304

0222

20700532

2D =

-- 2.566

66566665666

65

3.133333

2333333333331

3333

3n D n n =

-

4.

1

2321213

2

1

2

121

n n

n D n n n n -=---

(四)证明题与综合题(30分)

1.2

2223

333

11112

34()234234x

f x x x =是关于x 的三次多项式,判断()0f x '=的根的个数及其所在的范围。

2.设行列式D 中每行元素之和均等于零,证明:0D =

3.证明:

2222222222222

2

2

2

(1)(2)(3)(1)(2)(3)0(1)(2)(3)(1)(2)(3)a a a a b b b b c c c c d d d d ++++++=++++++

自测题答案:

(一)1.(A)2.(B)3.(D) 4(A) 5.(D) (二)1.

(1)(2)2n n -- 2.(1)

2

n n - 3.0

4.2 5.7

(三)1.-28 2.-23 3.6(3)!n - 4.12(1)(1)2n n n ---+ (四)1.提示:在[][]2,3,3,4两个区间上满足罗尔定理条件。

2.提示:将行列式的第2列至第n 列的(+1)倍都加到第1列上,则第1列的各元素均为每行元素之和,由于第1列元素全为零,故行列式的值为零。

3.提示:用拆项方法证明。

第1章行列式 例题习题

1.计算下列各行列式: (1)????????????7110 025******** 1 4; (2)?????? ? ?? ? ??-2605 23 211 2 131412; (3)???? ??????---ef cf bf de cd bd ae ac ab ; (4)? ? ??? ? ???? ??---d c b a 100 11 00 11001 解 (1) 7 1 1 025102 0214214 343 27c c c c --0 1 1423102021 10214--- =3 4) 1(14310221 1014 +-?--- =14 3 10 221 1014 --3 2 1132c c c c + +14 17 17 2001099-=0 (2) 2605 232112131 412 -24c c -2605 032122130412- 24r r -0 4 1 2 03212213 0412 - 1 4r r -0 032122130412 -=0 (3)ef cf bf de cd bd ae ac ab ---=e c b e c b e c b adf ---

=1 1 1 111 1 11---adfbce =abcdef 4 (4) d c b a 1 110011001---2 1ar r +d c b a ab 1 110011010 ---+ =1 2) 1)(1(+--d c a ab 1 110 1--+ 2 3dc c +0 1 111-+-+cd c ad a ab =2 3) 1)(1(+--cd ad ab +-+11 1=1++++ad cd ab abcd 2.证明: (1)1 1 1 222 2 b b a a b ab a +=3 )(b a -; (2)bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax +++++++++=y x z x z y z y x b a )(3 3 +; (3) 0) 3() 2() 1()3()2()1()3()2()1()3()2()1(2 2 2 2 222222222222=++++++++++++d d d d c c c c b b b b a a a a ; (4) 4 4 4 4 22221111d c b a d c b a d c b a ))()()()((d b c b d a c a b a -----=))((d c b a d c +++-?;

(完整版)线性代数行列式第一章练习题答案

《线性代数》(工)单元练习题 一、填空题 1、设矩阵A 为4阶方阵,且|A |=5,则|A*|=__125____,|2A |=__80___,|1-A |= 1/5 2、若方程组?? ? ??=+=+=+a bz cy b az cx ay bx 0 有唯一解,则abc ≠ 0 3、把行列式的某一列的元素乘以同一数后加到另一列的对应元素上,行列式 0 . 4、当a 为 1 or 2 时,方程组??? ??=++=++=++0 40203221321321x a x x ax x x x x x 有非零解. 5、设=-+----=31211142,4 101322 13A A A D 则 .0 二、单项选择题 1.设) (则=---===33 3231312322212113 1211113332312322 211312 11324324324,1a a a a a a a a a a a a D a a a a a a a a a D B (A)0 ; (B)―12 ; (C )12 ; (D )1 2.设齐次线性方程组??? ??=+-=++=+02020z y kx z ky x z kx 有非零解,则k = ( A ) (A )2 (B )0 (C )-1 (D )-2 3.设A=7 925138 02-,则代数余子式 =12A ( B ) (A) 31- (B) 31 (C) 0 (D) 11- 4.已知四阶行列式D 中第三列元素依次为-1,2,0,1,它们的余子式依次分别为5,3,-7,4, 则D= ( A ) (A ) -15 (B ) 15 (C ) 0 (D ) 1 三、计算行列式

第一章行列式练习题目及答案

第一章 行列式 一、单项选择题 1.=0 001001001001000( ). (A) 0 (B)1- (C) 1 (D) 2 2. =0 001100000100100( ). (A) 0 (B)1- (C) 1 (D) 2 3. 若2 1 33 32 31 232221 131211 ==a a a a a a a a a D ,则=---=32 3133 31 2221232112 111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 4.若 a a a a a =22 2112 11,则 =21 11 2212ka a ka a ( ). (A)ka (B)ka - (C)a k 2 (D)a k 2- 5. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( ). (A) 0 (B)3- (C) 3 (D) 2 6. 若5 734111113263478 ----=D ,则D 中第一行元的代数余子式的和为( ). (A)1- (B)2- (C)3- (D)0 7. 若2 23 5 00 1 011110403 --= D ,则D 中第四行元的余子式的和为( ). (A)1- (B)2- (C)3- (D)0

8. k 等于下列选项中哪个值时,齐次线性方程组??? ??=++=++=++0 00321 321321x x kx x kx x kx x x 有非零解. ( ) (A)1- (B)2- (C)3- (D)0 二、填空题 1. 行列式=0 100111010100111. 2.行列式 = -0 10000200 0010 n n . 3.行列式 =--0 01) 1(2211)1(111 n n n n a a a a a a . 4.如果M a a a a a a a a a D ==3332 31 232221131211 ,则=---=32 323331 2222232112121311133333 3a a a a a a a a a a a a D . 5.已知某5阶行列式的值为5,将其第一行与第5行交换并转置,再用2乘所有元素,则所得的新行列式的值为 . 6.行列式 = --+---+---111 1 111111111111 x x x x . 7.n 阶行列式=+++λλλ 111 1 11111 . 8.已知三阶行列式中第二列元素依次为1,2,3, 其对应的余子式依次为3, 2, 1,则该行列式的值为 .

第1章行列式自测题(答案)

内容提要: 一、行列式的定义 1、2阶和3阶行列式 2112221122 21 1211a a a a a a a a D -== 31231232211333221133 32 31 23222113 1211a a a a a a a a a a a a a a a a a a ++= 322311332112312213a a a a a a a a a --- 2、排列与逆序 定义 由n ,,3,2,1 组成的一个有序数组称为一个n 阶排列. 3、n 阶行列式定义 定义 称∑ -== n n n p p p np p p p p p nn n n n n a a a a a a a a a a a a D 21212121) (2 1 22221 11211 )1(τ )det(ij a = 为n 阶行列式,记作D 或n D .也记作)det(ij a . 4、三角形行列式:主对角线元素的乘积。 二、行列式的性质 性质1 D D ='. 性质2 互换行列式的某两行(或列),行列式仅变符号. 推论 若行列式中某两行(或列)相同,则行列式为零. 性质3 行列式某行(列)的各元素乘以k ,等于用数k 乘以行列式. 推论 行列式的某行(或列)各元素的公因子可以提到行列式符号外面相乘. 推论 若行列式的某两行(或列)的对应成元素成比例,则行列式为零.

性质4 nn n n in i i n nn n n in i i n nn n n in in i i i i n a a a a a a a a a a a a a a a a a a 21 21 1121121 21112112 1 2211112 11βββαααβαβαβα+=+++ 性质5 将行列式的某行(或列)各元素乘以数k 加到另一行(或列)的对应元素上,行列式的值不变. 三、行列式的展开定理 定义 在n D 中划掉ij a 所在的行和列(即第i 行和第j 列),余下的元素按原来的相对位置构成一个(1-n )阶行列式,称为ij a 的余子式,记作ij M . ij j i ij M A +-=)1( ——ij a 的代数余子式 定理1 in in i i i i A a A a A a D +++= 2211 (n i ,,2,1 =) →按第i 行展开 或 ni ni i i i i A a A a A a D +++= 2211 (n i ,,2,1 =) →按第i 列展开 推论 02211=+++jn in j i j i A a A a A a (j i ≠) 或 02211=+++nj ni j i j i A a A a A a (j i ≠) 四、Cramer 规则 ?????? ?=+++=+++=+++n n nn n n n n n n b x a x a x a b x a x a x a b x a x a x a 22112 222212********* (1) 定理 当0≠D 时,方程组(1)有唯一解 D D x 11= ,D D x 22=,……,D D x n n =.

第一章行列式与矩阵的计算的练习(含答案)

行列式及矩阵的计算(课堂练习) 、填空 1 ?已知三阶方阵A 的行列式为3,贝U 2A = -24 1 2 ,g(x) 0 1 3 .设, ,为3维列向量, 记矩阵 A ( , , ),B ( A 3, 则B 3 = ,,丨 6 1 1 1 4?行列式 1 1 x 的展开式中,X 的系数是 2 . 1 1 1 1 0 1 0 5.设A 则A k 。(k 为正整数). 2 1 2k 1 7.已知四阶行列式D 中第三列元素分别为1 , 3 , 别为3, 2, 1 , 1,则行列式D =二3 24 4 (1) 1 , 2, 3, 2 16m n 2.设A 则 g(A )= n ,则 1 , 2, 3,2 1 2 16m n 2, 2,它们对应的余子式分

(X ) 解:D = 1 X 3+ 3X(— 2) + (— 2)X 1 + 2X 1 = — 3 二、判断题 1. 设A 、B 均为n 阶方阵, |AB | [AB AB A|B. (V ) 二、行列式计算 3 3 3 3 4 3 3 4 (1) D n 3 3 4 3 3 3 3 4 3n 1 3 Cl C 2 3n 1 4 解: Ci C 3 D n 3n 1 3 G C n 3n 1 3 1 1 1 1 1 2 3 1 (2 D 1 4 9 1 1 8 27 1 2. 设A 、B 均为n 阶方阵, 解:(范得蒙行列式)=(— 3 3 3 1 =3n 1 1 0 0 0 1 3 3 3n 1 3 3 D n 0 「3 A 4 3 ——0 3 4 r n r 1 ax 1 X 2 X 3 2 五、 a 为何值时, 线性方程组: X 1 ax 2 X 3 2 有唯一解? X 1 X 2 ax 3 3 a a 1 1 解: det A 1 a 1 (a 2)(a 1)2 a 2且a 1时,有唯一解 1 1 a 1)=— 240 1 — 3) (— 1 + 2) (— 1— 1) (3+ 2) ( 3— 1) ( — 2—

第一章行列式作业及答案

第一部分 行列式作业 (一)选择题(15分) 1.在5阶行列式展开式中,12335544i j a a a a a 是其中带有正号的一项,则,i j 之值为( ) (A) 1,2i j == (B) 2,3i j == (C) 1,3i j == (D) 2,1i j == 2.在5阶行列式展开式中,包含1325,a a 并带有负号的项是( ) (A) 1325344251a a a a a - (B) 1325314254a a a a a - (C) 1325324154a a a a a - (D) 1325314452a a a a a - 3.已知行列式11 121321 222331 3233a a a a a a m a a a =,则行列式2122 1331113212331 311211222 1323 222222a a a a a a a a a a a a a a a ---=+++( ) (A)-4m (B)-2m (C)2m (D)4m 4.已知4101 1111 11111111 x D ---=----,则4D 中x 的系数是( ) (A)4 (B)-4 (C)-1 (D)1 5. 设方程组12312312 3112 x x x x x x x x x λλλ--=?? ++=??-++=? ,若方程组有惟一解,则λ的值应为( ) (A)0 (B)1 (C)-1 (D)异于0与1±的数 (二)填空题(15分) 1.排列(1)(2)321n n n -?-??? 的逆序数为 。 2.排列12n a a a 与排列121n n a a a a - 的逆序数之和等于 。 3.行列式D 中第2行元素的代数余子式之和21222324A A A A +++= ,其中 1111 1111 11111111 D -= --。

线性代数第一章行列式复习题(32课时)答案

线性代数行列式复习题 一、填空题: 1.设2 3 26 21932 186 2131-= D ,则=+++42322212A A A A 0. 2. 在5阶行列式中,项5314453221a a a a a 的符号为 正号 3. 排列7623451的逆序数是_______15. 4. 四阶行列式中含有因子 1123a a 且取负号的项是 -11233244a a a a . 5. 设30 300453 k D k ==当且仅当k= 3± 6. 在五阶行列式中,项2543543112a a a a a 的符号应取 正号( 填正号或负号)。 二、选择题: 1. 行列式33 3 222 1 11 321321321a a a a a a a a a D +++++++++=的值为( A ). A 、0 B 、1 C 、2 D 、3 2. 若23332 31 232221 13 1211 =a a a a a a a a a ,则=---------33 32 31 23222113 1211 222222222a a a a a a a a a ( B ) (A ) 8 (B )-16 (C ) 16 (D ) 0 3. 当(C )时,齐次线性方程组0 2020kx z x ky z kx y z +=?? ++=??-+=? ,仅有零解 (A) 0k ≠ (B) 1k ≠- (C) 2k ≠ (D) 2k ≠-

4. 当( )时,齐次线性方程组??? ??=λ++=+λ+=++λ0 00321 321321x x x x x x x x x ,有非零解 (A) 1或2 (B) -1或-2 (C) 1或-2 (D) -1或2 5. 下列行列式计算正确的是:(A ) A 、0 1 4 1030430 -=-- B 、161 1111 1111 1111 111=------------ C 、 00 1 1110111 1 011110=------ D 、12115020 2473004000 --=- 6. 若11 1213 21 222331 32 331 2a a a a a a a a a =,则11 111213 21 21222331 3132 33 424242a a a a a a a a a a a a --=-(D ) A 、0 B 、4 C 、1 D 、-2 7. 设2312781 2 39325232 D -= -,则=+++42322212A A A A (C )。 A 、1 B 、-1 C 、0 D 、2 8. 设2 10000012100000000 0001210000012 =n D ,则=n D ( B ) A 、1 B 、1+n C 、1-n D 、-1 9. 设(.....)τ 表示排列的逆序数, 则(431625)τ=( B ) (A )1 (B) 7 (C)3 (D) 2 三、计算题:

第一章行列式与矩阵计算练习(含答案)

行列式及矩阵的计算(课堂练习) 一、填空 1.已知三阶方阵A 的行列式为3,则 2A -= -24 2. 设12,01A -?? = ???1()32x g x x -= -+,则()g A =0800-?? ??? 3.设,,αβγ为3维列向量,记矩阵(,,),(,,)A B αβγαββγγα==+++,若 3,A B =则=,,,,6αβγ βγα+= 4.行列式1 1 1 11 1 11 ---x 的展开式中,x 的系数是 2 . 5.设???? ??=1201A 则=k A 1021k ?? ??? 。(k 为正整数). 6.设321,,ααα,21,ββ都是四维列向量,且四阶行列式1123,,,m αααβ=, 1232,,,n αααβ=,则12312,,,2αααββ-=16m n + 解:11231232,,,2,,,D αααβαααβ=+- 14412312322,,,(1),,,16m n αααβαααβ=+-=+ 7. 已知四阶行列式D 中第三列元素分别为1,3,-2,2,它们对应的余子式分 别为3,-2,1,1,则行列式D =-3 .

解:D =1×3+3×(-2)+(-2)×1+2×1=-3 二、判断题 1.设A 、B 均为n 阶方阵,则A B A B =. ( × ) 2.设A 、B 均为n 阶方阵,则AB A B =. (√ ) 三、行列式计算 (1)4 3 3 3 34333 343 3334 Λ ΛΛΛΛΛΛ ΛΛ=n D 解: n D n c c c c c c +++13121M 4 3 3 1 334313334133331 3Λ ΛΛΛΛΛΛΛΛ++++n n n n 1 1312r r r r r r n ---M 1 01000 0103 3313Λ ΛΛΛΛΛΛΛΛ+n =13+n (2)11111231 149118271 D --=-- 解:(范得蒙行列式)=(-1-3)(-1+2)(-1-1)(3+2)(3-1)(-2- 1)=-240 五、a 为何值时,线性方程组:??? ??-=++=++=++a ax x x x ax x x x x a 322321 321321有唯一解? 解:2 )1)(2(11111 1det -+==a a a a a A ,2-≠a 且1≠a 时,有唯一解.

线性代数习题-[第一章]行列式

习题1—1 全排列及行列式的定义 1. 计算三阶行列式123 4 56789 。 2. 写出4阶行列式中含有因子1324a a 并带正号的项。 3. 利用行列式的定义计算下列行列式: ⑴0 004003002001 0004 D

⑵0 0000000052 51 42413231 2524232221 151********a a a a a a a a a a a a a a a a D = ⑶0 001 0000 200 0010 n n D n -= 4. 利用行列式的定义计算210111()0211 1 1 x x x f x x x -= 中34 , x x 的系数。

习题1—2 行列式的性质 1. 计算下列各行列式的值: ⑴ 2141 012112025 62 - ⑵ef cf bf de cd bd ae ac ab --- ⑶ 2 2 2 2 2 2 2 2 22222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c c b b b b a a a a

2. 在n 阶行列式nn n n n n a a a a a a a a a D 2 1 222 2111211 = 中,已知),,2,1,(n j i a a ji ij =-=, 证明:当n 是奇数时,D=0. 3. 计算下列n 阶行列式的值: ⑴x a a a x a a a x D n = ⑵n n a a a D +++= 11 1 1 1111121 ()120n a a a ≠

线性代数第1章行列式试卷及答案

第一章 行列式 一、单项选择题 1.行列式D 非零的充分条件是( D ) (A) D 的所有元素非零 (B) D 至少有n 个元素非零 (C) D 的任何两行元素不成比例 (D)以D 为系数矩阵的非齐次线性方程组有唯一解 2.二阶行列式 1 2 21--k k ≠0的充分必要条件是( C ) A .k ≠-1 B .k ≠3 C .k ≠-1且k ≠3 D .k ≠-1或≠3 3.已知2阶行列式 2 21 1b a b a =m , 2 21 1c b c b =n ,则 2 22 111c a b c a b ++=( B ) +n (m+n ) 4.设行列式==1 11103 4 222,1111304z y x z y x 则行列式( A ) A. 32 D.3 8 5.下列行列式等于零的是(D ) A .100123123- B. 031010300- C . 100003010- D . 2 61422613- 6.行列式 1 1 1 101111011110------第二行第一列元素的代数余子式21A =( B ) A .-2 B .-1 C .1 D .2 8.如果方程组?? ? ??=+=-=-+0404033232321kx x x x x kx x 有非零解,则 k =( B ) 9.(考研题)行列式 0000000a b a b c d c d =( B ) A.()2ad bc - B.() 2ad bc -- C.2222 a d b c - D.22 2 2 b c a d - 二、填空题 1.四阶行列式中带负号且含有因子12a 和21a 的项为 44332112a a a a 。 2. 行列式11 1 2 3 44916 中(3, 2 )元素的代数余子式 A 32=___-2___. 3. 设7 3 43690211 1 1 875 1----= D ,则5A 14+A 24+A 44=_______。 解答:5A 14+A 24+A 44= 1501 3430 90211 1 15751-=--- 4.已知行列式01 110321 2=-a ,则数a =____3______. 5.若a ,b 是实数,则当a =___且b =___时,有=---10100 a b b a 0。 解答:0)(1 0100 22=+-=--=---b a a b b a a b b a a =0, b =0 6. 设1 31 2 4321322 )(+--+-+= x x x x f ,则2 x 的系数为 23 。 7. 五阶行列式=6 200357020381002 300031000___________。 解答:4232 1 2 331)1(6 200357020381002 30003100032=?? -=? 8. (考研题)多项式2 1 1 111 )(32 132132 1321+++++= x a a a a x a a a a x a a a a x f 的所有零 点为 01=x ,12-=x ,23-=x 。 9、(考研题)设x d c b d x c b d c x b d c b x x f = )(,则方程0)(=x f 的根为=x 。 【分析】 )(x f 是关于x 的四次多项式,故方程0)(=x f 应有四根,利用行列式的性质知,当d c b x ,,=时,分别会出现两行相等的情况,所以 行列式为零,故d c b x ,,=是方程的三个根。 再将后三列均加到第一列上去可以提取一个公因子为 d c b x +++,所以当)(d c b x ++-=时,满足0)(=x f ,所以得方程的 第四根)(d c b x ++-=。 故方程的四个根分别是:)(,,,d c b d c b ++-。 二、计算题 1、计算000100 0200020120002013000 002014 D = 。 【分析】方法一:此行列式刚好只有n 个非零元素 nn n n n a a a a ,,,,112211--- ,故非零项只有一项: nn n n n t a a a a 112211)1(---- ,其中2 ) 2)(1(--= n n t , 因此 (20141)(20142) 2 (1) 2014!2014!D --=-= 方法二:按行列展开的方法也行。 2、计算行列式 3 214214314324 321= D 。 分析:如果行列式的各行(列)数的和相同时,一般首先采用的是将各列(行)加到第一列(行),提取第一列(行)的公因子(简称列(行)加 法). 解 这个行列式的特点是各列4个数的和为10 ,于是,各行加到第一行,得

第一章 行列式 习题及答案

第一章 行列式习题 1. n 阶行列式D 的值为c ,若将D 的第一列移到最后一列,其余各列依次保持原来的次序向左移动,则得到的行列式值为 。 (1(1)n c --) 2. n 阶行列式D 的值为c ,若将D 的所有元素改变符号,得到的行列式值为 。 ((1)n c -) 3. 2 (1) (2,1,21,2,,1,)(21)0(23)012 2 k k N k k k k k k k k --+=-++-+++=+ ?。 4. 由行列式的定义计算行列式 41333123362 6 x x x x x x 展开式中4x 和3 x 的系数。 (3412, 12x x -) (分析:4 x 的系数:四个元素中必须全都包含x 。第一行只能取11a ,第三行只能取33a ,这样第二、四 行只能取22a 和44a ,则此项为(1234) 4 11223344(1) 4312N a a a a x x x x x -=???=。 3 x 的系数:(2134) (4231) 333 1221334441223314(1) (1)3912N N a a a a a a a a x x x -+-=--=-。) 5. 已知1703,3159,975,10959能被13整除,不直接计算行列式 17033159097510 959 的值,证明他是13的倍数。 证明: 1234 1701703170170341000131531593153159410021309709750979754103 10 9 5 10 9 5 9 10 9 5 10959 l c c l c c l c c l +?+?=? +?,能被13整除。 注意,以下两个行列式: 1703170370331593159159097597597510 9 5 910959 9 5 9 ≠ ,所以一定要加到最后一列上。 6. 设行列式3112523420111 3 3--= --D ,求11213141243A A A A +--及2123242-++M M M 。 (0和-5) 解:112131412 1124234243010113 3 3 A A A A -+--= =----。

线性代数第一章行列式试题及答案

如何复习线形代数 线性代数这门课的特点主要有两个:一是试题的计算量偏大,无论是行列式、矩阵、线性方程组的求解,还是特征值、特征向量和二次型的讨论都涉及到大量的数值运算,稍有不慎,即会出错;二是前后内容紧密相连,纵横交织,既相对独立又密不可分,形成了一个完整、独特的知识体系. 在掌握好基本概念、基本原理和基本方法的前提下,下面谈谈在复习过程中应注意的一些问题. 一、加强计算能力训练,切实提高计算的准确性 二、扩展公式结论蕴涵,努力探索灵活解题途径 三、注重前后知识联系,努力培养综合思维能力 线性代数不仅概念多,公式结论多,而且前后知识联系紧密,环环相扣,几乎从任何一个知识点都可切入将前后知识联系起来考查 四、加强综合题型训练,全面系统地掌握好知识 计算能力的提高不是一朝一夕的事,除了要不断归纳总结一些重要公式和结论并加以巧妙、适当的应用外,还要靠平时的积累,要养成踏踏实实、有始有终将最后结果计算出来的习惯,只要持之以恒、坚持练习,计算准确性的提高并不是一件困难的事. 而对整个知识的融会贯通、综合应用也有赖于适当地多做这方面的练习, 第一章行列式 一.概念复习 1. 形式和意义 形式:用n2个数排列成的一个n行n列的表格,两边界以竖线,就成为一个n阶行列式: a11 a12 (1) a21 a22 (2) ………. a n1 a n2…a nn 如果行列式的列向量组为1,2, …,n,则此行列式可表示为|1,2, …,n|. 意义:是一个算式,把这n2个元素按照一定的法则进行运算,得到的数值称为这个行列式的值. 请注意行列式和矩阵在形式上和意义上的区别. 当两个行列式的值相等时,就可以在它们之间写等号! (不必形式一样,甚至阶数可不同.) 每个n阶矩阵A对应一个n阶行列式,记作|A|. 行列式这一讲的的核心问题是值的计算,以及判断一个行列式的值是否为0. 2. 定义(完全展开式) 一般地,一个n阶行列式 a11 a12 (1) a21 a22 (2) ……… a n1 a n2…a nn 的值是许多项的代数和,每一项都是取自不同行,不同列的n个元素的乘积,其一般形式为: n nj j j a a a 2 1 2 1 ,这里把相乘的n个元素的行标按自然顺序排列,它们的列标j1j2…j n构成1,2, …,n的一个全排列(称为一个n元排列), 一个n元排列的总项数共有n!个,因此n阶行列式的值是n!项的代数和。 所谓代数和是在求总和时每项先要乘+1或-1.规定(j1j2…j n)为全排列j1j2…j n的逆序数,全排列的逆序数即小数排列在大数右面的现象出现的个数. 逆序数可如下计算:标出每个数右面比它小的数的个数,它们的和就是逆序数.例如求436512的逆序数: 2 3 2 3 215 6 3 4,(436512)=3+2+3+2+0+0=10. 则项 n nj j j a a a 2 1 2 1 所乘的是. )1 () (2 1n j j j τ -即逆序数是偶数时,该项为正;逆序数是奇数时,该项为负;在一个n元排列的n!项中,奇排列和偶排列各有n!/2个。至此我们可以写出n阶行列式的值: a11 a12 (1) a21 a22…a2n =. )1 ( 2 1 2 1 2 1 2 1 ) ( n n n nj j j j j j j j j a a a τ - ∑ ……… a n1 a n2…a nn

第一章行列式作业

第一章行列式作业 一、填空题 1、设行列式D=3332 31 232221 13 1211 a a a a a a a a a =3,D 1=33 32 31312322212113 12 1111 252525a a a a a a a a a a a a +++,则D 1的值为( ) 2、 045 000002001 00-=( ) 3、行列式600 300301398200199 204 100 103=__________. 4已知4阶行列式D 中第1行的元素分别为1,2,0,-1,第3行的元素的余子式依 次为5,x ,17,1,则x=__________. 5.已知,1 21112 3111211 )(x x x x x f -= 则3x 的系数=____________. 6.排列36715284的逆序数为( ) 7.行列式=--2 22 2510 211 ( ) 8. 2009 2008 2007 200620052004 2003 20022001 =( ) 二、选择题 1、若方程组???=-=+0x kx 0 x x 21 21有非零解,则k=( ) A. -1 B. 0 C.1 D.2 2、设D= 3 465 312186427 931-, D 中元素ij a 的代数余子式ij A ,则4443424132A A A A +++= ( ) A. 0 B. 3 C. 2 D. 4

3、设D = 3 4 653021864212 963, D 中元素ij a 的代数余子式ij A ,则44424132A A A ++=( ) A. 0 B. 3 C. 2 D. 4 4.设D= 3 465 312186427 931-, D 中元素ij a 的代数余子式ij A ,则44434241793A A A A +++-= ( ) A. 0 B. 3 C. 2 D. 4 三、计算题 1.计算下列行列式 (1) 6 741 212060311512 -----(2) 2111121111211112 (3)12341012311 01 2 5 D = ---(4) .0 1 1 2 12120112 110-----= D 2. 设D= 2 211765144334 321, D 中元素ij a 的代数余子式ij A ,试求44434241A A A A ++与. 3. 设,3 142 3 1 3 150111253 ------= D D 中元素ij a 的余子式和代数余子式依次记作ij M 和ij A , 求(1)14131211A A A A +++; (2)41312111M M M M +++.

第一章 行列式试题及答案

第一章 行列式试题及答案 一 选择题 (每小题3分,共30分) ⑴ n 元排列 i 1 i 2… i n 经过相邻对换,变为i n … i 2 i 1,则相邻对换的次数为( ) (A) n (B) n /2 (C) 2n (D) n (n -1)/2 ⑵ 在函数()x x x x x x f 21421 12---=中,x 3的系数是( ) (A) -2 (B) 2 (C) -4 (D) 4 ⑶ 若D n =det(a ij )=1,则det(-a ij ) = ( ) (A) 1 (B) -1 (C) (-1)n (D) (-1) n(n -1)/2 ⑷ 设 n n λλλλλλ 21 2 1 = ,则n 不可取下面的值是( ) (A)7 (B) 2k +1(k ≥2) (C) 2k (k ≥2) (D) 17 ⑸ 下列行列式等于零的是( ) (A)100123123- (B) 031010300- (C) 100003010- (D) 2614226 13- ⑹ 行列式D 非零的充分条件是( ) (A) D 的所有元素非零 (B) D 至少有n 个元素非零 (C) D 的任何两行元素不成比例 (D)以D 为系数矩阵的非齐次线性方程组有唯一解 ⑺ =+++1 11 222c bc ac bc b ab ac ab a ( ) (A) 1 000100 01222 +c bc ac bc b ab ac ab a (B) 1111122222 +++++c bc ac bc b ab ac ab c bc ac bc b ab ac ab a (C) 101011122 22 2 +++++c bc bc b ac ab c bc ac bc b ab ac ab a (D) 1 1122 2 bc ac bc ab ac ab c bc ac bc b ab ac ab a + ⑻ 设a ,b ,c 两两不同,则02 22=+++c b a c b a b a a c c b 的充要条件是( ) (A) abc =0 (B) a+b+c =0 (C) a =1, b =-1, c =0 (D) a 2 =b 2 , c =0 ⑼ 四阶行列式 =4 4 3 322 1 1 a b a b b a b a ( ) (A) (a 1a 2- b 1b 2) (a 3a 4- b 3b 4) (B) (a 1a 4- b 1b 4) (a 2a 3- b 2b 3) (C) (a 1b 2- a 2b 1) (a 3b 4- a 4b 3) (D) (a 1b 4- a 4b 1) (a 2b 3- a 3b 2) ⑽ 齐次线性方程组??? ??=-+=+-=-+03020 223 21321321x x x x x x x x x λ只有零解,则λ应满足的条 件是( ) (A) λ=0 (B) λ=2 (C) λ=1 (D) λ≠1 二 填空 (每小题3分,共15分) ⑴ 在五阶行列式中,3524415312a a a a a 的符号是_________。 ⑵ 五阶行列式=6 200357020381002 300031000___________。 ⑶ 设7 3 4 369 02 111 1875 1----= D ,则5A 14+A 24+A 44=_______。 ⑷ 若a ,b 是实数,则当a =___且b =___时,有=---10100 a b b a 0。 ⑸ 设x 1,x 2,x 3是方程x 3+px +q =0的根,则行列式=1 32213 3 21 x x x x x x x x x __。 三 计算行列式 (每小题6分,共30分) ⑴ 0 112 2 1 032101132 2 2 1 13 1 3211----- ⑵ ()()()()()()()()()()()()2 22 2 2222 2222 2222321321321321++++++++++++d d d d c c c c b b b b a a a a ⑶ y y x x -+-+11 1 1 111111111111 ⑷ a c b a c b a c b a c b a ⑸ x b b b a x b b a a x b a a a x D n =(a ≠ b ) 四 证明题 (每小题10分,共20分) ⑴ 用归纳法证明: 任意一个由自然数1,2,…,n 构成的n 元排列,一定可以经过不超过n 次对换变成标准排列12…n ⑵ 设平面上三条不同的直线为 000 =++=++=++b ay cx a cy bx c by ax , 证明: 三条直线交于一点的充分必要条件是0=++c b a

线性代数第一章行列式练习题

第一章第一次练习题 一)填空题 1)计算(1465372)τ=________;[135(21)246(2)]n n τ-L L =________; 2)写出四阶行列式中含有因子1123a a 的项及符号__________; 3)在四阶行列式中,21143243a a a a 的符号为__________; 4)设12134453k l a a a a a 在五阶行列式中带有负号,则k =________;l =________. 二)解答题 5)计算三阶行列式 2 221 11a b c a b c .

6)用定义证明 1 (1) 2 12 1 00 000 (1) 00 00 n n n n n λ λλλλ λ - - =- L L L L L .

个元素为零,证明这个行列式为零. 7)设n阶行列式中有多于2n n

班级__________ 姓名__________ 学号_______ 第一章第二次练习题 一)填空题 1)把行列式1 11222 a b c a b c ++定出两个行列式之和______________________; 2)把行列式13 24 1 2 34 0000a a a a x y b b z w b b 写成两个行列式之积_________________________________; 3)提取行列式第二行公因子后11 12132122 2331 3233333a a a a a a a a a =__________________________; 4)行列式22 3456 7 89a b c d a ab ac ad =_________________________________. 二)解答题 5)化简行列式1 11122 223 333x y x a z x y x a z x y x a z +++

行列式习题

[自测题Ⅰ] 一. 填空题。 1.若,0==ij n a D 则= -=ij a D 。 2.已知,11 11203 =z y x 则=--1 1 426 12 324z y x x 。 3.行列式 =0 650 30040430 2003 。 4.行列式=199 4210221 30113。 5.方程 027******** 11113 2=x x x 的全部根是 。 二.选择题。 1.下列各项中,( )是4阶行列式的一项。 (A )42341321a a a a -; (B )42332111a a a a -; (C )44131231a a a a -; (D )41322114a a a a -。 2.5阶行列式的展开式中共有( )项。 (A )2 5; (B )5!; (C )10; (D )15。 3.行列式=600 300301395200199204 200103( )。 (A )1000 (B )-1000 (C )2000 (D )-2000 4. 设 ,30 30 32 1 1n a a a D = ,0 02 1 2n a a a D =

其中021≠n a a a ,则( )。 (A )21D D =; (B )2131 D n D = ; (C )213D D n =; (D )213D D n -=。 5. 齐次线性方程组??? ??=-+=+-=-+0 302022321 321321x x x x x x x x x λ 只有零解,则λ应满足的条件是( )。 (A )0=λ (B )2=λ (C )1=λ (D )1≠λ 三.计算题。 1.设,216125642736251691 1116543=D 计算44434241A A A A +++。 2.已知,11 000100 011=z y x z y x 求z y x ,,。 3.计算,0 1 001 01 1 11210 n a a a a D = ).0(21≠n a a a 4.问λ取何值时,线性方程组??? ??=-+=++=-0 22213321 32131x x x x x x x x λλ 有唯一解。 四.综合题。 1.证明 2=+++++++++y x x z z y q p p r r q b a a c c b .z y x r q p c b a 2.设n n x c x c x c c x f ++++= 2210)(,若)(x f 有1+n 个不同的零点,证明)(x f 是零 多项式。 3.计算n 阶行列式

相关文档
相关文档 最新文档