文档库 最新最全的文档下载
当前位置:文档库 › 阀控式免维护铅酸蓄电池的充电条件的建议

阀控式免维护铅酸蓄电池的充电条件的建议

阀控式免维护铅酸蓄电池的充电条件的建议
阀控式免维护铅酸蓄电池的充电条件的建议

阀控式免维护铅酸蓄电池的充电条件的建议

以下阀控式免维护铅酸蓄电池简称电池

一、电池怕什么

1、高温:高温使用会加速正极板腐蚀,加速电池失水,环境温度30℃以上温度每升高10℃电池寿命减半;大多数电池环境温度达到40℃时就要停止充电,达到50℃停止放电。

2、过充:轻微过充会加快电池失水,失水过多会导致电解液比重增高,导致电池正极栅板的腐蚀加快,使电池的活性物质减少从而使电池的容量降低,也会导致电池更容易热失控。

电池在环境温度25℃单体电压达到2.3V正极开始产生氧气,氧气被负极吸收化合成水,反应如下:

O2 + 2Pb →2PbO PbO + H2SO4→ H2O +PbSO4

但不可能所有的氧气都能化合成水,并且过充时正极释放的氧气会越来越快、越多,氧气与氢化合成水的合成率会越来越低,最终导致加快失水;

以下是某资料的说法:

PS:均充就属于过充,所以要严格控制均充的频次和时间,能不均充尽量不要均充。

3、长时间欠充:电池负极栅板的主要活性物质是海棉状铅电池充电时负极栅板发生如下化学反应:PbSO4 + 2e = Pb + SO4 ,

正极上发生氧化反应:PbSO4 + 2H2O = PbO2 + 4H+ + SO4 + 2e

放电过程发生的化学反应是这一反应的逆反应,当电池的荷电不足时在电池的正负极栅板上就有PbSO4 存在,PbSO4 长期存在会失去活性不能再参与化学反应,这一现象称为活性物质的硫酸化,硫酸化使电池的活性物质减少,降低电池的有效容量也影响电池的气体吸收能力,久之就会使电池失效。因此,为防止硫酸化的形成,电池必须经常保持在充足电的状态。

4、大电流放电和过放电:电池放电电流不宜过大一般不超过3C,更要避免短路放电。放电时要保护电池端电压不要低于相应放电速率下的终止电压,以防蓄电池过度放电导致蓄电池性能下降和寿命缩短,放电后应该及时充电不允许蓄电池在放电状态下长期搁置(阳光的管式胶体除外)。

二、浮充和均充

1、浮充:在电源系统中电池总是在线备用工作的,这样电池基本处于长期的浮充状态中,浮充电压的选取对电池的长期可靠运行起着至关重要的作用,正如前面所述偏高的浮充电压会造成电池缓慢失水并发展产生热失控而使电池失效,偏低的浮充电压会造成电池长期处于充不饱电的状态使电池发生硫酸化而导致电池失效。正确的浮充电压一般应选在2.23

-2.25V/单体. 并应随同电池工作温度进行相应调整,由于电池生产厂家的不同这一参数会有一些差异应严格按照厂家提供的参数选取。

浮充是为了补充电池自放电而设定的充电过程,其选择原则是使正板栅合金阳极氧化电位处于腐蚀电流最小的电位区,在铅的阳极氧化电位和氧化电流密度关系中不同的正板栅合金其阳极氧化腐蚀电流最小的电位区不同,所以,浮充电压值也不同。

电池由于板栅合金成分不同浮充电压选定值也不同Pb-Sb 合金系列电池浮充电压为

2.23-2.27V /单体,Pb-Ca 合金系列电池浮充电压为2.23 -2.35V /单体。

早期的电池浮充电压值比较高用户和制造厂家均认为较高的浮充电压导致了电池腐蚀加快和失水引起电池早期容量失效,因此经过多年的使用电池采用低浮充电压被认为是防止早期失效的途径之一。有关专家和生产厂技术人员认为浮充值偏低较好,宁愿电池欠充也要防止过充。

2、均充:在一个电池组中电池总是串联充电的,由于电池存在个体差异,每个电池的端电压不会严格一致,为保证电池组中每个电池的长期安全运行,必须保证电池组中每个电池的浮充端电压都处于正确的范围,对电池进行均衡充电是经常采用的方法通过适当的过充电来保证电池组中落后电池充足电。这一方法由于要对电池组过充电而应限制使用,可以使用单个电池补充充电代替均衡充电,如果必须对电池组进行均衡充电必须严格控制均衡充电电压和时间,均衡充电的电压应严格按照电池生产厂的规定选取。

提高阀控铅酸蓄电池寿命的措施简易版

A Specific Measure To Solve A Certain Problem, The Process Includes Determining The Problem Object And Influence Scope, Analyzing The Problem, Cost Planning, And Finally Implementing. 编订:XXXXXXXX 20XX年XX月XX日 提高阀控铅酸蓄电池寿命 的措施简易版

提高阀控铅酸蓄电池寿命的措施简 易版 温馨提示:本解决方案文件应用在对某一问题,或行业提出的一个解决问题的具体措施,过程包含确定问题对象和影响范围,分析问题,提出解决问题的办法和建议,成本规划和可行性分析,最后执行。文档下载完成后可以直接编辑,请根据自己的需求进行套用。 阀控铅酸蓄电池已经在电力系统中得到了 广泛的应用,因其全密封、无须加水维护,被 称为“免维护”蓄电池,由于“免维护”的误 导,在使用过程中都放松了对蓄电池的日常维 护和管理,造成蓄电池使用寿命缩短,进而影 响了正常的使用,理论上,阀控铅酸蓄电池的 使用寿命可达到20年,而在实际应用中,也只 在10年以上,其使用寿命经常缩短为10年以 下。现就影响阀控铅酸蓄电池使用寿命的主要 因素,及提高其使用寿命的措施,提供一些经 验。

1 影响阀控铅酸蓄电池使用寿命的因素 影响阀控铅酸蓄电池使用寿命的因素主要有以下几个方面: 1.1 蓄电池所处环境温度的影响 蓄电池最合理的工作温度是25℃,温度过高,蓄电池的极板腐蚀将加剧,并将会消耗掉更多的水,造成蓄电池寿命缩短,如果蓄电池长期运行温度升高10℃,其寿命将缩短一半。因此在使用蓄电池时,应该认真做到根据实际温度的变化,合理地调整蓄电池的放电电流,同时控制好蓄电池室内的温度,使其保持在

阀 控 式 密 封 铅 酸 蓄 电 池

阀控式密封铅酸蓄电池 1.1. UPS系统常用的储能装置 碱性镉镍蓄电池(Alkaline Cd-Ni batteries) 碱性蓄电池是以KOH,NaOH的水溶液做为电解质的,镉镍蓄电池是碱性蓄电池,碱性镉镍 蓄电池相对于铅酸蓄电池是长寿命、高倍率、,可以做到密封。IEC285、IEC623标准规定循环寿命500—1000次可以工作5-10年,高低温性能好,高倍率(5-10倍率)放电性能好,除有记忆效应,制造工艺复杂,组成镉镍蓄电池的材料昂贵短缺外,其它各方面都优于铅酸蓄电池,其价格是铅蓄电池的几十倍,单体电压低(1.25V)。一般UPS系统不宜选用镉镍蓄电池,尤其是大功率UPS系统用镉镍蓄电池造价非常可观。 阀控铅酸蓄电池AGM体系(Valve-reguleted lead-acid batteries Absorptive glass mat) 组成蓄电池材料资源丰富,价格便宜,单体电压高(2V),经过阀控达到密封,现在工艺都很成熟,大电流高倍率放电性能基本满足UPS系统工作要求,工作其间对环境没有污染,价格相对镉镍蓄电池便宜很多,尤其是大功率UPS系统所用电池。是目前UPS系统首选的蓄电池。 富液免维护铅酸蓄电池Freedom体系(最早以美国Delco公司命名为依据Vented lead acid battery) 富液免维护铅酸蓄电池国外也称Flooded Sealed Maintenance Free lead acid batteries,其工作原理除氧气阴极复合不如AGM、,其化学反应机理相同。由于将AGM体系的贫液式改为富液式Freedom体系,用PE (polythylene)隔板、富液密封,能克服AGM贫液体系所产生的热失控、干涸、内阻大等缺点。由于该体系的流动性大、低温内阻小,从电化学动力学的理论分析,高速放电传质速度优于AGM体系和gel体系。由于采用过剩电解液气体可以自由进出,通过特殊的复合盖结构设计 通过分子筛性质的滤气安全阀,实现了对电池的完全密封,永不漏液。由于生产工艺简单单体电容易实现一致,电液量高于AGM, Gel体系1.2倍,使用寿命5--10年。根据以上几点分析和比较能,目前为UPS系统配套首选VRLA蓄电池和Flooded体系和Gel胶体蓄电池。 关于胶体密封铅酸蓄电池(Gel electrolyte sealed lead-acid batteries) 1.2. 关于硅胶体(Gelled)

免维护铅酸蓄电池10大常见问题解答

免维护铅酸蓄电池10大常见问题解答: 1、什么是免维护铅酸蓄电池? 免维护铅酸蓄电池英文为Valve Regulated Lead Battery(简称VRLA电池),其基本特点是使用期间不用加酸加水维护,电池为密封结构,不会漏酸,不会排酸雾,电池盖子上设有单向排气阀(又叫安全阀),该阀的作用是当电池内部气体压力超过一定值,安全阀自动打开,排出气体,然后自动关闭,常规状态下安全阀是密闭的。 VRLA电池与传统铅酸蓄电池的最大区别是,传统蓄电池非密封,由于挥发、反应等过程,电池会失酸失水,需要定期加酸加水,最常见的传统蓄电池就是汽车蓄电池,生活中叫做电瓶来的。 2、免维护铅酸蓄电池的分类? 分AGM(普通型)与GEL(胶体)两类;AGM采用玻璃纤维棉(Absorbed Glass MAT)做隔膜,电解液吸附在极板与隔膜中,贫液式设计,电池内无流动电解液。GEL(胶体)采用二氧化硅做凝固剂,电解液吸附在极板和胶体内,使用环境适应性更强。 区别(从应用角度讲): AGM:一般寿命5-12年,温度适用-15度到40度之间,价格适中,大电流放电好,浮充使用好; GEL:一般寿命8-15年,温度适用-25度到60度之间,价格高于AGM,大电流一般,浮充使用最好; 3、免维护铅酸蓄电池的电压是多少?蓄电池容量单位是?电池容量是如何表征的? 目前最常见的单个电池电压有2V、4V、6V、12V、24V。电池的容量单位是AH。目前行业内一般以20AH作为分界点,20AH以下电池称为小密电池,20AH以上电池称为中大密电池;小密电池一般以20小时率来表征容量,大密电池一般以10小时率来表征容量,没有特殊表明,电池容量默认为10小时率或者20小时率。 5、免维护铅酸蓄电池放电终止电压是多少? 电池类型终止电压(C10)终止电压(C20)终止电压(1C)终止电压(3C)小密电池 1.75V/Cell 1.6V/Cell 中大密电池 1.8V/Cell 1.6V/Cell Cell表示电池的单格,每Cell电压近似2V;12V电池有6个单格,终止电压为单格终止电压的6倍;6V电池有3个单格,终止电压为单格终止电压的3倍;其他类推; 6、免维护铅酸蓄电池放电深度是指什么?如何计算? 放电深度是指电池实际放出容量与额定容量的比值; 放电深度=实际放出容量/额定容量; 如:12V75AH电池,额定容量为10小时率75AH,如按照5小时率放电使用,容量表征为65AH,则放电深度为86.7%。 7、普朗特蓄电池的放电深度一般为多少? 小密电池或富液20小时率为100%,10小时率为95%,5h约85%,3h为75%,1h约55~60%; 中大密电池10hr是100%,5hr是85%,3小时75%,1小时60%,1c约40%等,其他的介于其中;

阀控式免维护铅酸蓄电池充放电试验规程

阀控式免维护铅酸蓄电池充放电试验规程 1 主题内容与适用范围 1.1 本通则规定了阀控式免维护铅酸蓄电池的充放电试验内容、要求和周期。 1.2 本通则适用于现场维护人员对蓄电池的充放电试验。 1.3 下列人员应通晓本规程 领导人员:生产副总、生产部门经理(主任)、副经理(副主任、经理助理)、专职技术人员。 生产人员:值长、运行值班员、维护班人员。 2 阀控式免维护铅酸蓄电池日常要求 2.1 蓄电池应每半月进行一次巡视、检查并记录整组电压和各个标示电池电压。 2.2 阀控式免维护铅酸蓄电池核对充放电周期 新安装后的阀控式免维护铅酸蓄电池组,应进行全核对性充放电试验,以后每隔2年进行一次核对性充放电试验,运行了6年以后的阀控蓄电池,应每年做一次核对性充放电试验。 3 阀控式免维护铅酸蓄电池充放电项目 3.1 检查电池表面是否完好无鼓胀变形,电池连接的接触良好,极柱的连接表面无腐蚀。 3.2 准备好充放电工器具,记录表格及开工资料。 3.3 确定电池充放电时间和要求放出容量预测值。充足电后进入放电,放电10小时单体终止电压1.90V,最低不能低于1.80V。 3.4 在充放电过程中每隔2小时记录一次单体电压,总电压,充放电电流。并检查电池发热,充电装置运行情况。 3.5 充放电工作结束后应进行数据分析,对电池的电压有不正常下降,容量不足的电池应单独进行充电或更换处理。 4 阀控式免维护铅酸蓄电池充放电技术要求. 4.1 蓄电池应处在清洁、阴凉及干燥的远离热源和可能产生火花的地方,室温应保持在16℃~32℃的范围内。 4.2 蓄电池室内应通风良好,同时排出的气流不得立即回到电池室内,以防室内的氢气含量超过4%而有爆炸的危险。 4.3 蓄电池不能过电流或过电压充电,亦不能过放电,每次放电完后,应及时充电,需充电的时间在10小时以上。

铅酸蓄电池常见故障分析及处理方法

铅酸蓄电池常见故障分析及处理方法 常见故障不良现象故障产生的原因故障的处理方法 蓄电池充电不足1.静止电压低 2.密度低,充电结束后达不 到规定要求 3.工作时间短 4.工作时仪表显示容量下降 快 1.充电器电压、电流设置 过低 2.初充电不足 3.充电机故障 1.调整,检修充电 器 2.蓄电池补充充电 3.严重时需更换新 电池 蓄电池过充电1.注液盖篓色泽变黄,变红 2.外壳变形 3.隔板炭化、变形 4.正极腐蚀、断裂 5.极柱橡胶套管上升、老 化、开裂 6.经常补水,充电时电解液 浑浊 1.充电器电压,电流设置 过高 2.充电时间过长 3.频繁充电 4.放电量小而充电量大 5.充电机故障 1.调整,检修充电 器 2.调整充电制度 3.严重时需更换新 电池

铅酸蓄电池热失控故障分析 当电池处于充电状态时,电池温度发生一种积累性的增强作用。当增温过程的热量积累到一定程度,电池端电压会突然出现降低,迫使电流骤然增大,电池温度高升而损坏蓄电池的现象称之为热失控。 1.故障现象 充电时特别到了末期,充电器不转绿灯,同时电池严重发热,如果测量充电电流会发现电流很高可达到2A或2A以上。发热严重时,析气压力过高,会导致电池壳受热变形,直至电池报废。 2.故障产生原因 ⑴电池失水 失水后,蓄电池中超细玻璃纤维隔板发生收缩现象,使之与正负极板的附着力变得很差,内阻增大,充放电过程中发热量加大。经过上述过程,蓄电池内部产生的热量只能经过电池槽散热,如散热小于发热量,即出现温度上升现象。温度上升,使蓄电池析气过电位降低,析气量增大,正极大量的氧气通过“通道”,在负极表面反应,发出大量的热量,使温度快速上升,形成恶性循环,即所谓的“热失控”。最

阀控式铅酸蓄电池

阀控式铅酸蓄电池 构成阀控铅酸蓄电池的主要部件是正负极板、电解液、隔膜、电池壳和盖、安全阀,此外还一些零件如端子、连接条、极柱等。 阀控式铅酸蓄电池的设计 1 板栅合金的选择 参加电池反应的活性物质铅和二氧化铅是疏松的多孔体,需要固定在载体上。通常,用铅或铅基合金制成的栅栏片状物为载体,使活性物质固定在其中,这种物体称之为板栅。它的作用是支撑活性物质并传输电流。 1.1正板栅合金 阀控电池是一种新型电池,使用过程中不用加酸加水维护,要求正板栅合金耐腐蚀性好,自放电小,不同厂家采用的正板栅合金并不完全相同,主要有:铅—钙、铅—钙—锡,铅—钙—锡—铝、铅—锑—镉等。不同合金性能不同,铅—钙。铅—钙—锡合金具有良好的浮充性能,但铅钙合金易形成致密的硫酸铅和硫酸钙阻挡层使电池早期失效,合金抗蠕变性差,不适合循环使用。铅-钙-锡-铝、铅-锑-镉各方面性能相对比较好,既适合浮充使用,又适合循环使用。 1.2负板栅合金 阀控电池负板栅合金一般采用铅-钙合金,尽量减少析氢量。 2板栅厚度 正极板厚度决定电池寿命,极板厚度与电池预计寿命的关系见下表: 安全阀 安全阀具有防爆、减压之功能,可释放内部产生过多之气体,并防止酸气外泄、能抗酸、耐撞击,安全阀开启压力值14kPa至18kPa。 当内压上升并高於限定值时,安全阀会自动释放过多的气体,当内压降低并恢复至所设定正常值时,安全阀会密封并严紧以防气体泄漏。 1.2 阀控铅酸蓄电池失效模式 一、电池失水 铅酸蓄电池失水会导致电解液比重增高、导致电池正极栅板的腐蚀,使电池的活性物质减少,从而使电池的容量降低而失效。 铅酸蓄电池密封的难点就是充电时水的电解。当充电达到一定电压时(一般在2.30V/单体以上)在蓄电池的正极上放出氧气,负极上放出氢气。一方面释放气体带出酸雾污染环境,另一方面电解液中水份减少,必须隔一段时间进行补加水维护。阀控式铅酸蓄电池就是为克服这些缺点而研制的产品,其产品特点为: 1、采用多元优质板栅合金,提高气体释放的过电位。即普通蓄电池板栅合金在2.30V/单体(25℃)以上时释放气体。采用优质多元合金后,在2.35V/单体(25℃)以上时释放气体,从而相对减少了气体释放量。 2、让负极有多余的容量,即比正极多出10%的容量。充电后期正极释放的氧气与负极接触,发生反应,重新生成水,即 O2 + 2Pb→2PbO PbO + H2SO4 →H2O +PbSO4

免维护铅酸蓄电池的结构

免维护铅酸蓄电池的结构
免维护铅酸蓄电池的结构 免维护铅酸蓄电池的结构 人们常说的免维护蓄电池正规名称叫做阀控式密封铅酸蓄电池,它作为电动车的 动力源使用广泛。电动车用的阀控式密封铅酸蓄电池从外表看,有外壳、阀盖、接线 端子。接线端子周边的密封材料分别用红色和黑色(或者蓝色)来表明正极和负极。 12V 的电池内部分为 6 个独立的相互隔绝的单格,每个单格内有用各自的汇流导体连接 的正极板群和负极板群。铅酸蓄电池的极板犹如钢筋水泥的结构,是在合金丝的筛网 状的骨架上涂敷(或者轧制)活性物质形成的:正极板上的物质是二氧化铅(PbO2),负极 板上的物质是绒状铅(Pb)。每一个正、负极板之间都隔着多孔的超细纤维物质(也有使 用二氧化硅胶物质填充的),其中吸附着硫酸(H2SO4)电解液,这个纤维物质(或硅胶物 质)是电化学反应过程中液相传输和气相传输的通道,它和正、负极板群被紧密地装配 在一起,形成一个 2V 的电池单体。由于铅酸蓄电池在充电时极板不可避免的会产生氢 气和氧气,当它们产生的过多并且来不及化和成水的时候就会在单格内形成压力。为 了保证蓄电池正常安全的工作,每个单格都设有自己的溢气阀,当压力过量时让气体 自动逸出。相对于电池槽里装满电解液体的富液电池而言,阀控式密封铅酸蓄电池内 部只蕴含着很少的电解液,属于贫液电池。尽管如此,由于设计时电解液有一定的冗 余,并且在溢气阀压力的保护下只要使用合理,由气体逸出造成的水损失极小,以至 阀控蓄电池的电解液在寿命过程中基本不用补充,因此阀控式密封铅酸蓄电池也被称 为免维护蓄电池。以上是电动自行车常用的阀控式密封铅酸蓄电池的结构示意图。图 中 6 个 2V 的单格串联成 12V 的电池,电动自行车就是由 2 个、3 个或者 4 个这样的电
1 / 10

铅酸蓄电池最佳充电方法

铅酸蓄电池最佳充电方法 上世纪60年代中期,美国科学家马斯对开口蓄电池的充电过程作了大量的试验研究,并提出了以最低出气率为前提的,蓄电池可接受的充电曲线,如图1所示。实验表明,如果充电电流按这条曲线变化,就可以大大缩短充电时间,并且对电池的容量和寿命也没有影响。原则上把这条曲线称为最佳充电曲线。 目录 1原理简介

蓄电池放电后,用直流电按与放电电流相反的方向通过蓄电池,使它恢复工作能力,这个过程称为蓄电池充电。蓄电池充电时,电池正极与电源正极相联,电池负极与电源负极相联,充电电源电压必须高于电池的总电动势。充电方式有恒电流充电和恒电压充电两种。 2详细内容 蓄电池充电器原理 蓄电池里面有大量的硫酸等可供电离的溶液,当插上电源,电流就通过里面的铅板(有些电池不是铅)电离溶液,这样就将电能转化为化学能;如果要使用,溶液就会转化为电能通过电极输送出去。这是原理上的描述,事实上,真实的情况十分复杂,可参考相关专业书籍。 充电方法制度 常规充电制度是依据1940年前国际公认的经验法则设计的。其中最著名的就是“安培小时规则”:充电电流安培数,不应超过蓄电池待充电的安时数。实际上,常规充电的速度被蓄电池在充电过程中的温升和气体的产生所限制。这个现象对蓄电池充电所必须的最短时间具有重要意义。 恒流充电法 恒流充电法是用调整充电装置输出电压或改变与蓄电池串联电阻的方法,保持充电电流强度不变的充电方法。控制方法简单,但由于电池的可接受电流能力是随着充电过程的进行而逐渐下降的,到充电后期,充电电流多用于电解水,产生气体,使出气过甚,因此,常选用阶段充电法。 恒压充电法 充电电源的电压在全部充电时间里保持恒定的数值,随着蓄电池端电压的逐渐升高,电流逐渐减少。与恒流充电法相比,其充电过程更接近于最佳充电曲线。用恒定电压快速充电,由于充电初期蓄电池电动势较低,充电电流很大,随着充电的进行,电流将逐渐减少,因此,只需简易控制系统。 这种充电方法电解水很少,避免了蓄电池过充。但在充电初期电流过大,对蓄电池寿命造成很大影响,且容易使蓄电池极板弯曲,造成电池报废。鉴于这种缺点,

阀控式密封和免维护铅酸蓄电池的寿命影响

阀控式密封和免维护铅酸蓄电池的寿命影响 摘要:本文讨论了阀控式密封和免维护铅酸蓄电池作为太阳能灯具、光伏电站和光伏户用系统的储能电源,在全天候运行时的耐候性问题,即自然环境下温度对蓄电池寿命、容量的影响,以及光伏系统储能铅酸蓄电池研究、开发。 关键词:VRLA蓄电池胶体铅酸蓄电池免维护铅酸蓄电池环境温度蓄电池寿命蓄电池容量蓄电池研发方向 近年来,太阳电池的光伏发电技术得到了世界各国的高度重视。从欧美的太阳能光伏“屋顶计划”到我国的西部光伏发电项目。太阳能光伏发电已经显示了其强劲的发展势头。随着光伏发电技术的发展和低成本光伏组件的产业化,太阳能灯具、光伏电站和光伏户用电源,均要求蓄电池供应商能够提供全天候运行的蓄电池,而目前光伏系统多采用阀控式密封铅酸蓄电池(以下简称铅酸蓄电池缩写为VRLAB)胶体铅酸蓄电池和免维护铅酸蓄电池(不是VRLA蓄电池)作为储能电源。耐候性是指蓄电池适应自然环境的特性。本文主要讨论自然环境下温度对蓄电池寿命、容量的影响及解决方法,以及储能铅酸蓄电池研究发展方向。上述三种产品在河北奥冠电源公司已批量生产,山东皇明太阳能公司做储能蓄电池已配套应用,现场试验效果很好。 一、温度对铅酸蓄电池寿命的影响 VRLA铅酸蓄电池受温度影响较大,按阿里纽斯原理,在大于40℃,温度升高10度,寿命降低一倍,寿命终止的主要原因是:(一)硫酸电解液干涸;(二)热失控;(三)内部短路等。(一)硫酸电解液干涸: 硫酸电解液作为参加化学反应的电解质,在铅酸蓄电池中是容量的主要控制因素之一。酸液干涸将造成电池容量降低,甚至失效。造成电池干涸失效这一因素是铅酸电池所特有的。酸液干涸的原因:(1)气体再化合的效率偏低,析氢析氧、水蒸发;(2)从电池壳体内部向外渗水;(3)控制阀设计不当;(4)充电设备与电池电压不匹配,电池电压过高、发热、失水、干涸而失效。 VRLA铅酸蓄电池受到上述(1)(2)(3)(4)四种因素的影响,其中(2)(3)(4)三种因素引起的失水速度随环境温度的上升而加快,从而加速了铅酸蓄电池以干涸方式失效。酸液干涸是影响VRLA铅酸蓄电池寿命的致命因素,VRLA蓄电池不适于在35℃以上高温条件下使用。 (二)热失控: 蓄电池在充放电过程中一般都产生热量。充电时正极产生的氧到达负极,与负极的绒面铅反应时会产生大量的热,如不及时导走就会使蓄电池温度升高。蓄电池若在高温环境下工作,其内部积累的热量就难以散发出去,就可能导致蓄电池产生过热、水损失加剧,内阻增大,更加发热,产生恶性循环,逐步发展为热失控,最终导致蓄电池失效。 VRLA铅酸蓄电池由于采用了贫液式紧装配设计,隔板中保持着10%的孔隙酸液不能进入,因而电池内部的导热性极差,热容量极小。VRLA铅酸蓄电池之所以在高温环境下非凡分类生热失控,是由于安全阀排出的气体量太少,难以带走电池内部积累的热量。热失控的巨热将使蓄电池壳体发生严重变形、胀裂、蓄电池彻底失效。 (三)内部短路:由于隔膜物质的降解老化穿孔,活性物质的脱落膨胀使两极连接,或充电过程中生成枝晶穿透隔膜等引起内部短路。深放电之后的蓄电池,其吸附式隔板易出现铅绒或弥散型沉淀,或形成枝晶,导致正负极板微短路。 由于VRLA铅酸蓄电池的负极冗余设计,充电的初、中期充电效率比正极板充电效率高,所以在正极板析氧之前,负极已生成足够的绒面铅,用于使氧进行再化合。在制作蓄电池过程中,以负极活性物质的量作为控制因素,可以减缓电池性能的恶化。

阀控式铅酸蓄电池特性

阀控式铅酸蓄电池特性

目录 目录 ............................................................................................................................................... 错误!未定义书签。 1 背景 ........................................................................................................................................... 错误!未定义书签。 2 VRLA电池结构及工作原理 ................................................................................................. 错误!未定义书签。 2.1VRLA电池的电化学反应原理.......................................................................................... 错误!未定义书签。 2.2VRLA电池的氧循环原理.................................................................................................. 错误!未定义书签。 2.3VRLA电池的容量分类...................................................................................................... 错误!未定义书签。 3 特性曲线 ................................................................................................................................... 错误!未定义书签。 3.1充放电曲线 ......................................................................................................................... 错误!未定义书签。 3.2倍率特性 ............................................................................................................................. 错误!未定义书签。 3.3温度特性 ............................................................................................................................. 错误!未定义书签。 3.4循环特性 ............................................................................................................................. 错误!未定义书签。4总结 ............................................................................................................................................ 错误!未定义书签。参考文献 ....................................................................................................................................... 错误!未定义书签。

免维护铅酸蓄电池常见问题问答

免维护铅酸蓄电池常见问题 上海西恩迪蓄电池有限公司闫峰 1.蓄电池容量C20、C10分别是什么意义? 答:蓄电池的容量通常用安时(Ah)表示,即放电电流的安培A数乘以放电时间h的乘积。根据不同放电时间对同电池有不同的容量定义。C20为100Ah@1.75V 的定义:蓄电池经完全充电后,静止1h~24h,当蓄电池的表面温度为25℃±5℃时,进行容量放电实验,以5A的电流放电,到单体蓄电池平均电压为1.75V时终止,放电时间为20h.此电池为5A×20h=100Ah.。 C10为100Ah@1.8V 的定义:蓄电池经完全充电后,静止1h~24h,当蓄电池的表面温度为25℃±5℃时,进行容量放电实验,以10A的电流放电,到单体蓄电池平均电压为1.8V时终止,放电时间为10h.此电池为10A×10h=100Ah.。 例:C&D 12-100 LBT蓄电池放电电流表如下 此C&D 12-100 LBT电池的C =100AH,C10=91AH. 20 2.环境温度对蓄电池容量的影响如何计算? 当实际蓄电池放电环境温度不是25℃的时候,应该以以下公式对蓄电池容量折算: C t=C e× [1+K×(t-25)]

–C e--25℃基准温度容量 –t--放电时环境温度 –K--温度系数(10h率K=0.006,3h率K=0.008,1h率K=0.01)例如某石化单位UPS蓄电池间环境温度为15℃,UPS后备时间30分钟,预配置的是100AH电池,此时的电池折算如下: C e=100AH t=15℃K=0.01 C t=C e× [1+K×(t-25)] C t=100× [1+0.01×(15-25)] C t=90Ah 所以,此100AH在此环境下已经折算为90Ah. 3.蓄电池的氢气排放量如何计算? 免维护铅酸蓄电池正常运行的时候是不产生氢气的。如果环境温度过高或充电电压过高,蓄电池会排出氢气。 一般情况下,当单体电池充电电压为2.4V时,每个2V单体氢气的产生量为0.035立方厘米/Ah/Hr; 那么,一块12V 100Ah的电池此极端情况每小时产生0.035×6×100=21立方厘米氢气; 如果一个电池间有120节100Ah电池,其氢气产生量为每小时21*120=2520立方厘米。设计者可以根据此数据安排自然通风或通风设施。 4.蓄电池的热量产生有多大? 免维护铅酸蓄电池发热分三种阶段:浮充电、放电、恢复性充电。其

免维护蓄电池的正确使用与维护

免维护蓄电池的正确使用与维护 免维护蓄电池的正确使用与维护 1、在蓄电池极柱和盖的周围常会有黄白色的糊状物,这是因为硫酸腐蚀了根柱、线卡、固定架等造成的。这些物质的电阻很大,要及时清除。 2、普通铅酸蓄电池要注意定期添加蒸馏水。干荷蓄电池在使用之前最好适当充电。至于可加水的免维护蓄电池并不是不能维护适当查看必要时补充蒸馏水有助于延长使用寿命。 3、时常查看极柱和接线头连接得是否可靠。为防止接线柱氧化可以涂抹凡士林等保护剂。 4、不可用直接打火(短路试验)的方法检查蓄电池的电量这样会对蓄电池造成损害。 5、检查蓄电池在支架上的固定螺栓是否拧紧,安装不牢靠会因行车震动而引起壳体损坏。另外不要将金属物放在蓄电池上以防短路。 6、当需要用两块蓄电池串联使用时蓄电池的容量最好相等。否则会影响蓄电池的使用寿命。 7、蓄电池盖上的气孔应通畅。蓄电池在充电时会产生大量气泡若通气孔被堵塞使气体不能逸出当压力增大到一定的程度后就会造成蓄电池壳体炸裂。 一般免维护电池从出厂到使用可以存放10个月,其电压与电容保持不变,质量差的在出厂后的3个月左右电压和电容就会下降。在购买时选离生产日期有3个月的,当场就可以检查电池的电压和电容是否达到说明书上的要求,若电压和电容都有下降的情况则说明它里面的材质不好,那么电池的质量肯定也不行,有可能是加水电池经过经销商充电后伪装而的。 免维护蓄电池保养方法: 一、保养要求: 1、检查蓄电池在车上是否固定好,外壳表面是否有磕碰伤; 2、蓄电池电缆是否连接可靠,排气孔是否有灰尘; 3、通过蓄电池上的电眼检查充电情况和质量状态,绿色表示合格,黑色表示亏电,白色表示电池损坏需要更换。 二、补充充电: 1、如果长时间不使用车辆或充电系统有故障,当蓄电池负载电压低于10V,空载电压低于12.4V必须补充充电; 2、采风恒电限流充电方法,多只蓄电池充电必须采用串联连接; 3、充电第一阶段,以蓄电池容量的1/10电流充电,其充电电流为6A。充电至平均每只电池电压达到16A后转为第二阶段充电; 4、充电第二阶段,以蓄电池容量x0.045的电流充电,如6-QW-60蓄电池,充电电流为60x0.045=2.7A。充电至平均每只电池电压达到16V后再继续充3-5个小时; 5、充电时电解液湿度超过40度时,应采取停止充电,减少电流或物理降温,当湿度达到45度时必须停止充电; 6、充电间保证良好通风,不许有明火和易燃物; 7、充足电标准,电眼为绿色。 三、快速充电: 1、快速充电仅限于汽车不能启动的应急措施,时间容许的条件下尽量采用普通充电机; 2、快速充电电流为蓄电池容量的3/10; 3、快速充电时间不超过2小时。 四、充电系统故障诊断:

阀控式免维护铅酸蓄电池的充电条件的建议

阀控式免维护铅酸蓄电池的充电条件的建议 以下阀控式免维护铅酸蓄电池简称电池 一、电池怕什么 1、高温:高温使用会加速正极板腐蚀,加速电池失水,环境温度30℃以上温度每升高10℃电池寿命减半;大多数电池环境温度达到40℃时就要停止充电,达到50℃停止放电。 2、过充:轻微过充会加快电池失水,失水过多会导致电解液比重增高,导致电池正极栅板的腐蚀加快,使电池的活性物质减少从而使电池的容量降低,也会导致电池更容易热失控。 电池在环境温度25℃单体电压达到2.3V正极开始产生氧气,氧气被负极吸收化合成水,反应如下: O2 + 2Pb →2PbO PbO + H2SO4→ H2O +PbSO4 但不可能所有的氧气都能化合成水,并且过充时正极释放的氧气会越来越快、越多,氧气与氢化合成水的合成率会越来越低,最终导致加快失水; 以下是某资料的说法: PS:均充就属于过充,所以要严格控制均充的频次和时间,能不均充尽量不要均充。 3、长时间欠充:电池负极栅板的主要活性物质是海棉状铅电池充电时负极栅板发生如下化学反应:PbSO4 + 2e = Pb + SO4 , 正极上发生氧化反应:PbSO4 + 2H2O = PbO2 + 4H+ + SO4 + 2e 放电过程发生的化学反应是这一反应的逆反应,当电池的荷电不足时在电池的正负极栅板上就有PbSO4 存在,PbSO4 长期存在会失去活性不能再参与化学反应,这一现象称为活性物质的硫酸化,硫酸化使电池的活性物质减少,降低电池的有效容量也影响电池的气体吸收能力,久之就会使电池失效。因此,为防止硫酸化的形成,电池必须经常保持在充足电的状态。 4、大电流放电和过放电:电池放电电流不宜过大一般不超过3C,更要避免短路放电。放电时要保护电池端电压不要低于相应放电速率下的终止电压,以防蓄电池过度放电导致蓄电池性能下降和寿命缩短,放电后应该及时充电不允许蓄电池在放电状态下长期搁置(阳光的管式胶体除外)。 二、浮充和均充 1、浮充:在电源系统中电池总是在线备用工作的,这样电池基本处于长期的浮充状态中,浮充电压的选取对电池的长期可靠运行起着至关重要的作用,正如前面所述偏高的浮充电压会造成电池缓慢失水并发展产生热失控而使电池失效,偏低的浮充电压会造成电池长期处于充不饱电的状态使电池发生硫酸化而导致电池失效。正确的浮充电压一般应选在2.23 -2.25V/单体. 并应随同电池工作温度进行相应调整,由于电池生产厂家的不同这一参数会有一些差异应严格按照厂家提供的参数选取。 浮充是为了补充电池自放电而设定的充电过程,其选择原则是使正板栅合金阳极氧化电位处于腐蚀电流最小的电位区,在铅的阳极氧化电位和氧化电流密度关系中不同的正板栅合金其阳极氧化腐蚀电流最小的电位区不同,所以,浮充电压值也不同。 电池由于板栅合金成分不同浮充电压选定值也不同Pb-Sb 合金系列电池浮充电压为

铅酸蓄电池结构详解

铅酸蓄电池结构详解 一、蓄电池的功用 蓄电池种类较多,根据电解液不同,有酸性和碱性之分。由于铅酸蓄电池阻小,电压稳定,在短时间能供给较大的起动电流,而且结构简单,价格较低,所以在汽车拖拉机上被广泛采用。 蓄电池为一可逆直流电源,在汽车拖拉机上与发电机并联,它的主要作用是:(1)发动机起动时,蓄电池向起动机和点火装置供电。起动发动机时,蓄电池必须在短时间(5~10s)给起动机提供强大的起动电流(汽油机为200~600A。柴油机有的高达1000A)。 (2)在发电机不发电或电压较低发动机处于低速时,蓄电池向点火系及其它用电设备供电,同时向交流发电机供给他激励磁电流。 (3)当用电设备同时接入较多,发电机超载时,蓄电池协助发电机共同向用电设备供电。 (4)当蓄电池存电不足,而发电机负载又较少时,可将发电机的电能转变为化学能储存起来,即充电。 (5)蓄电池还有稳定电网电压的作用。当发动机运转时,交流发电机向整个系统提供电流。蓄电池起稳定电器系统电压的作用。蓄电池相当于一个较大的电容器,可吸收发电机的瞬时过电压,保护电子元件不被损坏。延长其使用寿命。 二、蓄电池的构造 车用12V蓄电池均由6个单格电池串联而成,每个单格的标称电压为2V,串联成12V的电源,向汽车拖拉机用电设备供电。

蓄电池主要由极板、电解液、格板、电极、壳体等部分组成。 1.极板 极板分为正极板和负极板两种。蓄电池的充电过程是依靠极板上的活性物质和电解液中硫酸的化学反应来实现的。正极板上的活性物质是深棕色的二氧化铅(PbO2),负极板上的活性物质是海绵状、青灰色的纯铅(Pb)。 正、负极板的活性物质分别填充在铅锑合金铸成的栅架上,加入锑的目的是提高栅架的机械强度和浇铸性能。但锑有一定的副作用,锑易从正极板栅架中解析出来而引起蓄电池的自行放电和栅架的膨胀、溃烂,从而影响蓄电池的使用寿命。 负极板的厚度为1.8mm,正极板为2.2mm,为了提高蓄电池的容量,国外大多采用厚度为1.1~1.5mm的薄型极板。另外,为了提高蓄电池的容量,将多片正、负极板并联,组成正、负极板组。在每单格电池中,负极板的数量总比正极板多一片,正极板都处于负极板之间,使其两侧放电均匀,否则因正极板机械强度差,单面工作会使两侧活性物质体积变化不一致,造成极板弯曲。 2.隔板 为了减少蓄电池的阻和体积,正、负极板应尽量靠近但彼此又不能接触而短路,所以在相邻正负极板间加有绝缘隔板。隔板应具有多孔性,以便电解液渗透,而且应具有良好的耐酸性和抗碱性。 隔板材料有木质、微孔橡胶、微孔塑料以及浸树脂纸质等。近年来,还有将微孔塑料隔板做成袋状,紧包在正极板的外部,防止活性物质脱落。 3.壳体

免维护蓄电池的维护与修理

免维护蓄电池的维护与修理 免维护蓄电池(以下简称电瓶)在电动三轮车、电动自行车、摩托车、UPS、LED手电等多方面已得到了广泛的应用,具有价格低廉(相对于锂电池、镍氢电池)、便于携带(相对于普通铅酸蓄电池)以及容量较大等优点,但它比较"娇嫩",使用不当(主要是过放电)易造成容量减小甚至电瓶报废。因电动三轮车和电动自行车使用频繁,经常处于放电和充电的状态中,稍不留意就会过放电,而过放电又是造成电瓶容量减小或报废的"罪魁祸首". 一、正确使用须知 1.避免过放电 电瓶是由普通铅酸蓄电池发展而来的,它加大了阴极面积,并添加了硅胶等多种化学材料,使其在充放电过程中基本不产生气体,因此可密封起来,以便于携带和使用。它的工作原理和铅酸蓄电池的工作原理相同。充电时,正极板上的硫酸铅还原为二氧化铅和硫酸;负极板上的硫酸铅还原成海绵状的金属铅和硫酸,则电解液中的硫酸浓度增加。放电时则相反,正极板上的二氧化铅和负极板上的海绵状铅粒和电解液中的硫酸反应生成硫酸铅和水,则电解液中的硫酸浓度则下降。 在充放电的过程中,硫酸铅起到了非常重要的作用,被称为活性物质。放电完毕,每个单格电瓶的电压应大于1.75V.常用的12V电瓶由6个小电瓶串联组成,其放电完毕的电压应大于10.5V.此时,如果再放电,那就是过放电了,其结果会造成部分硫酸铅转化为坚硬质密的硫酸铅,这种硫酸铅颗粒粗大,其电阻大导电不好,充电时很难再转化成普通的硫酸铅,从而成为电瓶容量降低、寿命缩短的重要原因,这也就是常说的"电瓶硫化".因此,使用和维护电瓶时,首先要避免电瓶过放电而引起硫化。 2.及时补水 正常工作时,单格电瓶充满电的电压是2.4V,12V的电瓶充满电的电压等于14.4V,此时90%以上的活性物质已转化为二氧化铅和海绵状的铅。如果继续对电瓶充电,电瓶的正极开始析出氧气,阴极析出氢气,也就是电瓶内部产生了气体,并臣随着充电的继续进行,产生的气体愈来愈多,电瓶内部的水电解转化成了气体,电瓶开始失水。另一方面,电瓶里的气体增多后,气体的压力也愈来愈大,如不予以释放,就可能引发电瓶的爆炸。因此,在电瓶的顶部都开有小孔, 并用橡皮帽盖上,一方面可以释放充电时产生的气体,另一方面在电瓶失水时可以通过小孔对电瓶补充水。补充的水应是纯净的蒸馏水(可以在电瓶的维修店买到,价格不贵)或是去离子水,绝不能使用开水或自来水,因为开水和自来水中有许多杂质,会降低电瓶寿命。 另外,在电瓶失水后向瓶内加硫酸会增大电解液的浓度,同样也会降低电瓶寿命。 电瓶失水后,电瓶的硫化加剧,内阻上升,导致电瓶容量下降甚至报废。在我国北方,因气候比较干燥,电瓶很容易失水,所以每过半年或一年,就应把电瓶上面的塑料板打开,取下橡皮帽,向每个小电瓶按每安时(AH)注入 0.5mL~1mL蒸馏水,比如UPS电源中的7Ah电瓶,可用注射器向每个小电瓶注人5mL水;再用一根端部锉平的小木棍(约3mm粗细)插入电瓶内轻轻触到极板,观看木棍端部,若能明显看到水迹而木棍本身并没有水迹,说明注入的水量合适,若是木棍本身也有了水迹,则表明注入的水太多,应把多余的水抽出。反之,若是木棍端部的水迹不明显,说明注人的水太少,还要再注人一点水。总之,检查电瓶是否缺水和注人水是一项细致活。 另外,在注水时,只能用塑料小管套在注射器上注水,如图1所示,不可用金属注射头伸人电瓶内注水,因这样可能把铁元素带人电瓶内,造成电瓶内部自行放电而缩短寿命。

免维护铅酸蓄电池参数

免维护铅酸蓄电池的的基本知识 人们常说的免维护蓄电池正规名称叫做阀控式密封铅酸蓄电池。阀控式密封铅酸蓄电池从外表看,有外壳、阀盖、接线端子。接线端子周边的密封材料分别用红色和黑色(或者蓝色)来表明正极和负极。 12V的电池内部分为6个独立的相互隔绝的单格,每个单格内有用各自的汇流导体连接的正极板群和负极板群。铅酸蓄电池的极板犹如钢筋水泥的结构,是在合金丝的筛网状的骨架上涂敷(或者轧制)活性物质形成的:正极板上的物质是二氧化铅(PbO2),负极板上的物质是绒状铅(Pb)。每一个正、负极板之间都隔着多孔的超细纤维物质(也有使用二氧化硅胶物质填充的),其中吸附着硫酸(H2SO4)电解液,这个纤维物质(或硅胶物质)是电化学反应过程中液相传输和气相传输的通道,它和正、负极板群被紧密地装配在一起,形成一个2V的电池单体。由于铅酸蓄电池在充电时极板不可避免的会产生氢气和氧气,当它们产生的过多并且来不及化和成水的时候就会在单格内形成压力。为了保证蓄电池正常安全的工作,每个单格都设有自己的溢气阀,当压力过量时让气体自动逸出。相对于电池槽里装满电解液体的富液电池而言,阀控式密封铅酸蓄电池内部只蕴含着很少的电解液,属于贫液电池。尽管如此,由于设计时电解液有一定的冗余,并且在溢气阀压力的保护下只要使用合理,由气体逸出造成的水损失极小,以至阀控蓄电池的电解液在寿命过程中基本不用补充,因此阀控式密封铅酸蓄电池也被称为免维护蓄电池。 蓄电池的电压多少伏算正常?

人们常说:这个蓄电池电压是12V的。这里所说的12V是指蓄电池的最基本参数——标称电势(单位V)。一个铅酸蓄电池单格标称电势为2V,由6个单格串连起来的蓄电池标称电势就是12V。电动车使用的电源一般都是用2到5个12V的蓄电池串连组成24V、36V、48V、60V电池组,这里都是指蓄电池组的标称电势,它是由蓄电池所采用活性物质的特性决定的理论值。实际上,不同的状况下蓄电池的电压和标称电势存在差异。比如:一个标称电势为12V的正常的铅酸蓄电池在充电过程的末期,充电极化达到最大值,电压可以达到14.4V或更高一点;在放电将终了时,放电极化达到最大值,电压可以低到9V左右。而充电或者放电停止并且静置数小时后,极化电压(浓度极化)完全消失,这个12V的蓄电池的电势可以在13.8V (充满后)至11V(放完后)之间,此时的差异是蓄电池内部的活性物质状态的改变造成的。 电池容量(Ah)的含义是什么? 蓄电池的额定容量C,单位安时(Ah),它是放电电流安(A)和放电时间小时(h)的乘积。由于对同一个电池采用不同的放电参数所得出的Ah 是不同的,为了便于对电池容量进行描述、测量和比较,必须事先设定统一的条件。实践中,电池容量被定义为:用设定的电流把电池放电至设定的电压所给出的电量。也可以说电池容量是:用设定的电流把电池放电至设定的电压所经历的时间和这个电流的乘积。为了设定统一的条件,首先根据电池构造特征和用途的差异,设定了若干个放电时率,最常见的有20小时、10小时时率、电动车专用电池为2小时率,写做C20、C10和C2,其中C代表电池容量,后面跟随的数字表示该类电池以某种强度的电流放

铅酸蓄电池充电安全操作规程

铅酸蓄电池充电安全操作规程 1.充电前的准备工作: 1.1.工作人员必须戴防护眼镜、口罩和橡胶手套,系橡胶围裙,穿胶鞋。 1.2.提前做好中和溶液(碳酸钠溶液),以防电解液灼伤时使用。 1.3.由于蓄电池大量放电、或长期存放导致电池亏电,因此应定期从设备上拆 下蓄电池,在充电间对蓄电池进行补充充电。补充充电一般每个月进行一次,以提高其使用可靠性,延长使用寿命。进入冬天时最好进行一次补充充电。 1.4.充电前应先用万用电表测量电池的电压并进行记录,以便根据各电池的亏 电情况确定充电方案。 1.5.检查交流电源是否符合使用要求,电源应为220V,50Hz交流电。 1.6.先接蓄电池,将充电机“+”极接至蓄电池“+”极,充电机“-”极接至 蓄电池“—”极接线柱上,注意防止负载短路。 1.7.选择充电电压。若充电电池为12V,则电压选择档应旋转到12V档,若充电 电池为24V,则电压选择档应旋转到24V档,不得选错,否则将损坏充电机或蓄电池。 2.充电操作: 2.1.初充电、补充充电常采用恒流充电(恒流充电是在一定的时间段始 终以一定不变的电流对电池进行充电,其优点是充电比较完全,但是后期电流几乎全部被消耗在水的分解和热的发生上)。补充充电电流为0.1C20A(如60Ah蓄电池用6A),充电时间为3~5 h,或根据存放时间长短确定充电时间。 2.2.维护充电常采用恒压充电(恒压充电是始终以一定不变的电压对电 池进行充电,其优点是气体产生很少,耗水量小,存在充电不完全的缺点。单体电压通常设定在2.3~2.4V(12 V电池为13.8~14.4 V,6 V电池为 6.9~ 7.2 V),直到充足电为止)。 2.3.将充电机电流选择档位调至最低档位。 2.4.确保红、黑夹没有接触才可以通电,否则会造成短路并损坏机器; 2.5.充电采用二步充电法:

相关文档
相关文档 最新文档