文档库 最新最全的文档下载
当前位置:文档库 › 全国高考数学复习微专题:函数的图像

全国高考数学复习微专题:函数的图像

全国高考数学复习微专题:函数的图像
全国高考数学复习微专题:函数的图像

函数的图像

一、基础知识

1、做草图需要注意的信息点:

做草图的原则是:速度快且能提供所需要的信息,通过草图能够显示出函数的性质。在作图中草图框架的核心要素是函数的单调性,对于一个陌生的可导函数,可通过对导函数的符号分析得到单调区间,图像形状依赖于函数的凹凸性,可由二阶导数的符号决定(详见“知识点讲解与分析”的第3点),这两部分确定下来,则函数大致轮廓可定,但为了方便数形结合,让图像更好体现函数的性质,有一些信息点也要在图像中通过计算体现出来,下面以常见函数为例,来说明作图时常体现的几个信息点

(1)一次函数:y kx b =+,若直线不与坐标轴平行,通常可利用直线与坐标轴的交点来确定直线

特点:两点确定一条直线 信息点:与坐标轴的交点

(2)二次函数:()2

y a x h k =-+,其特点在于存在对称轴,故作图时只需做出对称轴一侧的图像,另一侧由对称性可得。函数先减再增,存在极值点——顶点,若与坐标轴相交,则标出交点坐标可使图像更为精确 特点:对称性

信息点:对称轴,极值点,坐标轴交点 (3)反比例函数:1

y x

=

,其定义域为()(),00,-∞+∞U ,是奇函数,只需做出正版轴图像即可(负半轴依靠对称做出),坐标轴为函数的渐近线 特点:奇函数(图像关于原点中心对称),渐近线 信息点:渐近线 注:

(1)所谓渐近线:是指若曲线无限接近一条直线但不相交,则称这条直线为渐近线。渐近线在作图中的作用体现为对曲线变化给予了一些限制,例如在反比例函数中,x 轴是渐近线,那么当x →+∞,曲线无限向x 轴接近,但不相交,则函数在x 正半轴就不会有x 轴下方的部分。

(2)水平渐近线的判定:需要对函数值进行估计:若x →+∞(或-∞)时,()f x →常

数C ,则称直线y C =为函数()f x 的水平渐近线

例如:2x

y = 当x →+∞时,y →+∞,故在x 轴正方向不存在渐近线 当x →-∞时,0y →,故在x 轴负方向存在渐近线0y =

(3)竖直渐近线的判定:首先()f x 在x a =处无定义,且当x a →时,()f x →+∞(或

-∞),那么称x a =为()f x 的竖直渐近线

例如:2log y x =在0x =处无定义,当0x →时,()f x →-∞,所以0x =为2log y x =的一条渐近线。

综上所述:在作图时以下信息点值得通过计算后体现在图像中:与坐标轴的交点;对称轴与对称中心;极值点;渐近线。 例:作出函数()1

f x x x

=-

的图像 分析:定义域为()(),00,-∞+∞U ,且()f x 为奇函数,故先考虑x 正半轴情况。

()'21

10f x x =+

>故函数单调递增,()''32

0f x x

=-<,故函数为上凸函数,当x →+∞时,

()f x →+∞无水平渐近线,0x →时,()f x →-∞,所以y 轴为()f x 的竖直渐近线。

零点:()1,0,由这些信息可做出正半轴的草图,在根据对称性得到()f x 完整图像: 2、函数图象变换:设函数()y f x =,其它参数均为正数 (1)平移变换:

()f x a +:()f x 的图像向左平移a 个单位 ()f x a -:()f x 的图像向右平移a 个单位 ()f x b +:()f x 的图像向上平移a 个单位 ()f x b -:()f x 的图像向下平移a 个单位

(2)对称变换:

()f x -:与()f x 的图像关于y 轴对称

()f x -:与()f x 的图像关于x 轴对称 ()f x --:与()f x 的图像关于原点对称

(3)伸缩变换:

()f kx :()f x 图像纵坐标不变,横坐标变为原来的1101k k k >??

<

:拉伸 ()kf x :()f x 图像横坐标不变,纵坐标变为原来的101k k k >??

<

拉伸倍:收缩

(4)翻折变换:

()

f

x :()()(),0,0

f x x f

x f x x ≥??=?

-

()f x :()()()()()

,0

,0f x f x f x f x f x ≥??=?

-

3、二阶导函数与函数的凹凸性:

(1)无论函数单调增还是单调减,其图像均有3种情况,

(2)上凸函数特点:增区间增长速度越来越慢,减区间下降速度越来越快 下凸函数特点:增区间增长速度越来越快,减区间下降速度越来越慢 (3)与导数的关系:设()'

f

x 的导函数为()''f x (即()f x 的二阶导函数)

,如图所示:增长速度受每一点切线斜率的变化情况的影响,下凸函数斜率随x 的增大而增大,即()

'

f x 为增函数()''

0f

x ?≥;上凸函数随x 的增大而减小,即()'f x 为减函数()''0f x ?≤;

综上所述:函数是上凸下凸可由导函数的增减性决定,进而能用二阶导函数的符号进行求解。

二、方法与技巧:

1、在处理有关判断正确图像的选择题中,常用的方法是排除法,通过寻找四个选项的不同,再结合函数的性质即可进行排除,常见的区分要素如下:

(1)单调性:导函数的符号决定原函数的单调性,导函数图像位于x 轴上方的区域表示原函数的单调增区间,位于x 轴下方的区域表示原函数的单调减区间

(2)函数零点周围的函数值符号:可通过带入零点附近的特殊点来进行区分 (3)极值点

(4)对称性(奇偶性)——易于判断,进而优先观察

(5)函数的凹凸性:导函数的单调性决定原函数的凹凸性,导函数增区间即为函数的下凸部分,减区间为函数的上凸部分。其单调性可由二阶导函数确定 2、利用图像变换作图的步骤:

(1)寻找到模板函数()f x (以此函数作为基础进行图像变换) (2)找到所求函数与()f x 的联系

(3)根据联系制定变换策略,对图像进行变换。 例如:作图:()ln 1y x =+

第一步寻找模板函数为:()ln f x x = 第二步寻找联系:可得()1y f x =+

第三步制定策略:由()1f x +特点可得:先将()f x 图像向左平移一个单位,再将x 轴下方图像向上进行翻折,然后按照方案作图即可 3、如何制定图象变换的策略

(1)在寻找到联系后可根据函数的形式了解变换所需要的步骤,其规律如下: ① 若变换发生在“括号”内部,则属于横坐标的变换 ② 若变换发生在“括号”外部,则属于纵坐标的变换

例如:()31y f x =+:可判断出属于横坐标的变换:有放缩与平移两个步骤

()2y f x =-+:可判断出横纵坐标均需变换,其中横坐标的为对称变换,纵坐标的为平移变换

(2)多个步骤的顺序问题:在判断了需要几步变换以及属于横坐标还是纵坐标的变换后,在安排顺序时注意以下原则:

① 横坐标的变换与纵坐标的变换互不影响,无先后要求 ② 横坐标的多次变换中,每次变换只有x 发生相应变化 例如:()()21y f x y f x =→=+可有两种方案

方案一:先平移(向左平移1个单位),此时()()1f x f x →+。再放缩(横坐标变为原来

1

2

),此时系数2只是添给x ,即()()121f x f x +→+ 方案二:先放缩(横坐标变为原来的1

2

),此时()()2f x f x →,再平移时,若平移a 个

单位,则()()()()2222f x f x a f x a →+=+(只对x 加a ),可解得1

2

a =,故向左平

移1

2

个单位 ③ 纵坐标的多次变换中,每次变换将解析式看做一个整体进行 例如:()()21y f x y f x =→=+有两种方案

方案一:先放缩:()()2y f x y f x =→=,再平移时,将解析式看做一个整体,整体加1,即()()()

221y f x y f x =→=+

方案二:先平移:()()1y f x y f x =→=+,则再放缩时,若纵坐标变为原来的a 倍,那么()()()

11y f x y a f x =+→=+,无论a 取何值,也无法达到()21y f x =+,所以需要对前一步进行调整:平移1

2

个单位,再进行放缩即可(2a =) 4、变换作图的技巧:

(1)图像变换时可抓住对称轴,零点,渐近线。在某一方向上他们会随着平移而进行相同方向的移动。先把握住这些关键要素的位置,有助于提高图像的精确性

(2)图像变换后要将一些关键点标出:如边界点,新的零点与极值点,与y 轴的交点等 三、例题精析:

例1:己知函数()3

2

f x ax bx c =++,其导数()'

f

x 的图象如图所示,则函数()f x 的极

大值是( )

A. a b c ++

B. 84a b c ++

C. 32a b +

D.c 思路:由图像可知:()0,2x ∈时,()'

0f

x >,()f x 单调递增,

()2,x ∈+∞时,()'0f x <,()f x 单调递减,所以()f x 的极大值为()284f a b c =++

答案:B

小炼有话说:观察导函数图像时首要关注的是函数的符号,即是在x 轴的上方还是下方,导函数的符号决定原函数的单调性

例2:设函数()y f x =可导,()y f x =的图象如图所示,则导函数()y f x '=的图像可能为( )

思路:根据原函数的图像可得:()f x 在(),0-∞单调递增,在正半轴先增再减再增,故()

'

f x 在负半轴的符号为正,在正半轴的符号依次为“正负正”,观察四个选项只有D 符合 答案:D

小炼有话说:本题可直接由导函数的符号来排除其他选项,若选项中也有符合D 中“ 负半轴的符号为正,在正半轴的符号依次为‘正负正’”,那么可观察第二条标准:从图上看在x 负半轴中,函数增长的速度越来越快,则说明切线斜率随x 的增大而增大,进而导函数在x 负半轴也单调递增,依次类推可得到正半轴的情况,D 选项依然符合特征 例3:函数()2

1x f x e x =-的部分图象为( )

思路:()()()'

2222x x f

x e x e x x x e =+=+,可得()f x 在()(),2,0,-∞-+∞单调递增,

x

y

O

图1

x

y

O A

x

y

O

B

x

y

O C

y

O D

x

在()2,0-单调递减,且可估计当x →-∞,2

20x

x x x e e

-=→即(

)1f x →-,所以1

y =-为函数()f x 的渐近线,当,x y →+∞→+∞由此可判断出图像A 正确 答案:A

小炼有话说:(1)本题考查的是通过分析函数性质作图,单调性是非常重要的一个要素,通过单调性也可排除其他三个选项

(2)关于渐近线的判断:对于x →-∞,220x

x x x e e

-=→可这样理解,x →+∞时,2,x x e

-均趋向正无穷,但x

e

-的速度更快,进而伴随着x →+∞,x

e

-将远远大于2

x ,进而比值趋

于0,当x →+∞,增长速度的排名为:直线(一次函数)<二次函数<指数函数 例4:函数()ln ||

||

x x f x x =

的图像可能是( )

思路:观察解析式可判断出()ln x x

f x x

=

为奇函数,排除A,C. 当0x >时,()0ln f x x >=,故选择B

答案:B

小炼有话说:()ln ||

||

x x f x x =

有两点可以优先观察:一个是奇偶性,则图像具有对称性,只需考虑正半轴的情况即可;二是含有绝对值,可利用x 的符号去掉绝对值,进而得到正半轴的解析式。

例5(2015 浙江文):函数()()1cos ,0f x x x x x x ππ?

?

=-

-≤≤≠ ??

?

的图像可能为( )

A

B

D

C y

O x

1

1-

y

O x

1

1-

y

O x

1

1- y

O x

1

1-

思路:观察4个选项的图像,其中A ,B 图像关于y 轴对称,C,D 图像关于原点中心对称。所以先判断函数奇偶性,可判断出()()()11cos cos f x x x x x f x x x ?

???-=-+

-=--=- ? ??

??

? 所以()f x 为奇函数,排除A ,B ,再观察C,D 的区别之一就是()f π的符号,经过计算可

得()11cos 0f ππππππ

?

?=-=-< ??

?,所以排除C 答案:D 例6:已知()21sin ,42f x x x π??

=

++ ???

()f x '为()f x 的导函数,则()f x '的图像是( )

思路:()2211

sin cos 424

f x x x x x π??=

++=+ ???,()1'sin 2f x x x =-,可判断()'f x 为奇函数,图像关于原点中心对称,排除,B D 。因为'

11sin 10626626f ππππ????

=?-=-< ?

?????

,排除C 。故A 正确。 答案:A 小炼有话说:()'

1

sin 2

f

x x x =

-可优先判断出奇偶性,进而排除一些选项,对于,A C 选项而言,其不同之处有两点,一点是从0x =处开始的()'

f

x 符号,解析的思路也源于此,

但需要代入特殊角进行判断,A 选项的图中发现在x 轴正半轴中靠近y 轴的函数值小于零,从而选择最接近0的特殊角

6

π

,除此之外,,A C 图像的不同之处还在于从0x =开始时()'f x 的单调性,所以也可对()'f x 求导,()''1cos 2f x x =-,则0,3x π??

∈ ???

时,()''0f x <,即()'f x 应先减再增。所以排除C

例7:下面四图都是在同一坐标系中某三次函数及其导函数的图像,其中一定不正确.....的序号是( )

A .①②

B .③④

C .①③

D .①④

思路:如图所示:在图①、②在每个区间上函数的单调性与对应的导数的符号是正确的,即单调增区间导数大于零,单调减区间上导数小于零;在③中显示在区间()0,b 上导函数的值为负值,而该区间上的函数图象显示不单调,二者不一致,所以③不正确;在④图象显示在区间(),a b 上导函数的值总为正数,而相应区间上的函数图象却显示为减函数,二者相矛盾,所以不正确.故选B. 答案:B

小炼有话说:要注意导函数图像与原函数图像的联系:导函数的符号与原函数的单调性相对应,导函数的增减与原函数的凹凸性相对应。

例8:已知R 上可导函数()f x 的图象如图所示,则不等式()()2

'

230x x f

x -->的解集

为( )

A.()(),21,-∞-+∞U

B. ()(),21,2-∞-U

C. ()()(),11,02,-∞--+∞U U

D. ()()(),11,13,-∞--+∞U U

思路:由图像可得:()(),1,1,x ∈-∞-+∞时,()'0f x >,()1,1x ∈-时,()'0f x <,所

以所解不等式为:()2'2300x x f x ?-->??>??或()

2'230

0x x f x ?--

答案:D

例9:函数()32

f x x bx cx d =+++的大致图象如图所示,则2212x x +等于( )

A.

89 B. 109 C. 169 D. 45

思路:由图像可得:12,x x 为()f x 的极值点,1,0,2x x x =-==为函数的零点

()'232f x x bx c =++,即12,x x 是方程2320x bx c ++=的两个根,122,3

b

x x ∴+=-

123

c x x =,()2222

12121242293b c x x x x x x ∴+=+-=-, 由()()()1010120842020000f b c d b f b c d c d d f -=?-+-+==-?????

=?+++=?=-??????===???

()

22

221

2

12124216

2939

b c x x x x x x ∴+=+-=-=

答案:C

小炼有话说:在观察一个函数图像时,有几个地方值得关注: 极值点——单调区间的分界点,导函数的零点;

零点——函数符号的分界点; 单调性——决定导函数的符号。 例10:(2015 安徽)函数()()

2

ax b

f x x c +=+的图像如图所示,

则下列结论成立的是( )

A. 0,0,0a b c >><

B. 0,0,0a b c <>>

C. 0,0,0a b c <><

D. 0,0,0a b c <<<

高考数学专题练习--函数图像

高考数学专题练习--函数图像 1. 【江苏苏州市高三期中调研考试】已知函数()2 21,0 ,0 x x f x x x x ->?=? +≤?,若函数()()g x f x m =-有三个零点,则实数m 的取值范围是__________. 【答案】1 ,04 ?? - ??? 【解析】 2. 【江苏省苏州市高三暑假自主学习测试】已知函数31 1, ,()11,, x f x x x x ?>?=?-≤≤??若关于x 的方程 ()(1)f x k x =+有两个不同的实数根,则实数k 的取值范围是 ▲ . 【答案】1 (0,)2 【解析】 试题分析:作函数()y f x =及(1)y k x =+图像,(11), (1,0)A B -,,由图可知要使关于x 的方程()(1)f x k x =+有两个不同的实数根,须满足1 (0,)(0,).2 AB k k ∈=

3. 【江苏省南通市如东县、徐州市丰县高三10月联考】设幂函数()f x kx α=的图象经过点 ()4,2,则k α+= ▲ . 【答案】 32 【解析】 试题分析:由题意得11,422 k α α==?=∴32k α+= 4. 【泰州中学第一学期第一次质量检测文科】已知幂函数()y f x =的图象经过点1 (4,)2 ,则 1 ()4 f 的值为 . 【答案】2 【解析】 试题分析:设()y f x x α ==,则11422α α=?=-,因此1 211()()244 f -== 5. 【江苏省南通中学高三上学期期中考试】已知函数2 +1, 1, ()(), 1, a x x f x x a x ?-?=?->??≤ 函数 ()2()g x f x =-,若函数()()y f x g x =- 恰有4个零点,则实数的取值范围是 ▲ . 【答案】23a <≤ 【解析】

近五年高考数学函数及其图像真题及其答案

1. 已知函数()f x =32 31ax x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围为 A .(2,+∞) B .(-∞,-2) C .(1,+∞) D .(-∞,-1) 2. 如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为 3. 设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论正确的是 A .()f x ()g x 是偶函数 B .|()f x |()g x 是奇函数 C .()f x |()g x |是奇函数 D .|()f x ()g x |是奇函数 4. 函数()y f x =的图象与函数()y g x =的图象关于直线0x y +=对称,则()y f x =的反函数是 A .()y g x = B .()y g x =- C .()y g x =- D .()y g x =-- 5. 已知函数f (x )=????? -x 2+2x x ≤0ln(x +1) x >0 ,若|f (x )|≥ax ,则a 的取值范围是 A .(-∞,0] B .(-∞,1] C .[-2,1] D .[-2,0] 6. 已知函数3 2 ()f x x ax bx c =+++,下列结论中错误的是

A .0x R ?∈,0()0f x = B .函数()y f x =的图象是中心对称图形 C .若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞单调递减 D .若0x 是()f x 的极值点,则0'()0f x = 7. 设3log 6a =,5log 10b =,7log 14c =,则 A .c b a >> B .b c a >> C .a c b >>D .a b c >> 8. 若函数()2 11=,2f x x ax a x ?? ++ +∞ ??? 在是增函数,则的取值范围是 A .[]-1,0 B .[)+∞-,1 C .[]0,3 D .[)+∞,3 9. 函数()()21=log 10f x x x ??+> ? ?? 的反函数()1 =f x - A .()1021x x >- B .()1021 x x ≠-C .()21x x R -∈D .()210x x -> 10. 已知函数()()()-1,021f x f x -的定义域为,则函数的定义域为 A .()1,1-B .11,2? ?-- ??? C .()-1,0 D .1,12?? ??? 11. 已知函数()()x x x f -+= 1ln 1 ,则y=f (x )的图像大致为 A . B .

[高考数学]高考数学函数典型例题

?0x时,总有 00 ?01}的四组函数如下: ①f(x)=x2,g(x)=x;②f(x)=10-x+2,g(x)=2x-3 x;

③ f(x)= , g(x)= ; ④ f(x)= , g(x)=2(x-1-e -x ) . 年 高 考 江 苏 卷 试 题 11 ) 已 知 函 数 f ( x ) = ? x + 1, x ≥ 0 , 则 满 足 不 等 式 ) 剪成两块,其中一块是梯形,记 S = ,则 S 的最小值是____▲____。 2 x 2 +1 xlnx+1 2x 2 x lnx x+1 其中, 曲线 y=f(x) 和 y=g(x) 存在“分渐近线”的是( ) A. ①④ B. ②③ C.②④ D.③④ 33. (20XX 年 高 考 天 津 卷 理 科 16) 设 函 数 f ( x ) = x 2 - 1 , 对 任 意 3 x x ∈[ , +∞) , f ( ) - 4m 2 f ( x ) ≤ f ( x - 1) + 4 f (m ) 2 m 恒成立,则实数 m 的取值范围是 。 34 .( 20XX ? 2 ?1, x < 0 f (1- x 2 )> f ( 2x 的 x 的范围是__▲___。 35.(20XX 年高考江苏卷试题 14)将边长为 1m 正三角形薄片,沿一条平行于底边的直线 (梯形的周长) 梯形的面积 36 已知函数 f ( x ) = ( x + 1)ln x - x + 1 . (Ⅰ)若 xf '(x) ≤ x 2 + ax + 1 ,求 a 的取值范围; (Ⅱ)证明: ( x - 1) f ( x ) ≥ 0 .

指数函数经典例题(标准答案)

指数函数 1.指数函数的定义: 函数)1 (≠ > =a a a y x且叫做指数函数,其中x是自变量,函数定义域是R 2.指数函数的图象和性质: 在同一坐标系中分别作出函数y=x2,y= x ? ? ? ? ? 2 1 ,y=x 10,y= x ? ? ? ? ? 10 1 的图象. 我们观察y=x2,y= x ? ? ? ? ? 2 1 ,y=x 10,y= x ? ? ? ? ? 10 1 图象特征,就可以得到)1 (≠ > =a a a y x且的图象和性质。 a>10

()x f c 的大小关系是_____. 分析:先求b c ,的值再比较大小,要注意x x b c ,的取值是否在同一单调区间内. 解:∵(1)(1)f x f x +=-, ∴函数()f x 的对称轴是1x =. 故2b =,又(0)3f =,∴3c =. ∴函数()f x 在(]1-, ∞上递减,在[)1+,∞上递增. 若0x ≥,则321x x ≥≥,∴(3)(2)x x f f ≥; 若0x <,则321x x <<,∴(3)(2)x x f f >. 综上可得(3)(2)x x f f ≥,即()()x x f c f b ≥. 评注:①比较大小的常用方法有:作差法、作商法、利用函数的单调性或中 间量等.②对于含有参数的大小比较问题,有时需要对参数进行讨论. 2.求解有关指数不等式 例2 已知2321(25)(25)x x a a a a -++>++,则x 的取值范围是___________. 分析:利用指数函数的单调性求解,注意底数的取值范围. 解:∵2225(1)441a a a ++=++>≥, ∴函数2(25)x y a a =++在()-+,∞∞上是增函数, ∴31x x >-,解得1 4x >.∴x 的取值范围是14 ??+ ??? , ∞. 评注:利用指数函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式,并判断底数与1的大小,对于含有参数的要注意对参数进行讨论. 3.求定义域及值域问题 例3 求函数y = 解:由题意可得2160x --≥,即261x -≤, ∴20x -≤,故2x ≤. ∴函数()f x 的定义域是(]2-, ∞. 令26x t -=,则y =, 又∵2x ≤,∴20x -≤. ∴2061x -<≤,即01t <≤. ∴011t -<≤,即01y <≤.

(word完整版)高中数学函数图象高考题.doc

B 1 .函数 y = a | x | (a > 1)的图象是 ( y y o x o A B B ( ) y o 1 x -1 o 函数图象 ) y 1 1 x o x C y y x x o 1 y 1 o x D y -1 o x A B C B 3.当 a>1 时,函数 y=log a x 和 y=(1 - a)x 的图象只可能是( ) y A4.已知 y=f(x) 与 y=g(x) 的图象如图所示 yf ( x ) x O 则函数 F(x)=f(x) ·g(x) 的图象可以是 (A) y y y O x O x O x A xa x B C B 5.函数 y (a 1) 的图像大致形状是 ( ) | x | y y y O f ( x) 2x x O 1 O x ( D 6.已知函数 x x x 1 ,则 f x ( 1- x )的图象是 log 1 2 y y y A B C 2 。 。 1 。 - 1 D y y g( x) O x y O x D y O ) x y D 2

O x

A B C D D 7.函数 y x cosx 的部分图象是 ( ) A 8.若函数 f(x) =x 2 +bx+c 的图象的顶点在第四象限,则函数 f /(x)的图象是 ( ) y y y y o x o x o x o x A B C D A 9.一给定函数 y f ( x) 的图象在下列图中,并且对任意 a 1 (0,1) ,由关系式 a n 1 f (a n ) 得到的数列 { a n } 满足 a n 1 a n (n N * ) ,则该函数的图象是 ( ) A B C D C10.函数 y=kx+k 与 y= k 在同一坐标系是的大致图象是( ) x y y y y O x O x O x O x A 11.设函数 f ( x ) =1- 1 x 2 (- 1≤ x ≤0)的图像是( ) A B C D

高考数学-对数函数图像和性质及经典例题

对数函数图像和性质及经典例题 第一部分:回顾基础知识点 对数函数的概念:函数0(log >=a x y a ,且)1≠a 叫做对数函数其中x 是自变量,函数的定义域是(0,+∞). 对数函数的图象和性质 ○ 1 在同一坐标系中画出下列对数函数的图象; (1) x y 2log = (2) x y 2 1log = (3) x y 3log = (4) x y 3 1log = ○ 2 对数函数的性质如下: 图象特征 函数性质 1a > 1a 0<< 1a > 1a 0<< 函数图象都在y 轴右侧 函数的定义域为(0,+∞) 图象关于原点和y 轴不对称 非奇非偶函数 向y 轴正负方向无限延伸 函数的值域为R 函数图象都过定点(1,1) 11=α 自左向右看, 图象逐渐上升 自左向右看, 图象逐渐下降 增函数 减函数 第一象限的图象纵坐标都大于0 第一象限的图象纵坐标都大于0 0log ,1>>x x a 0log ,10><x x a ○ 3 底数a 是如何影响函数x y a log =的. 规律:在第一象限内,自左向右,图象对应的对数函数的底数逐渐变大.

第二部分:对数函数图像及性质应用 例1.如图,A ,B ,C 为函数x y 2 1log =的图象上的三点,它们的横坐标分别是t , t +2, t +4(t ≥1). (1)设?ABC 的面积为S 。求S=f (t ) ; (2)判断函数S=f (t )的单调性; (3) 求S=f (t)的最大值 . 解:(1)过A,B,C,分别作AA 1,BB 1,CC 1垂直于x 轴,垂足为A 1,B 1,C 1, 则S=S 梯形AA 1B 1B +S 梯形BB 1C 1C -S 梯形AA 1C 1C . )44 1(log )2(4log 2 3223 1t t t t t ++=++= (2)因为v =t t 42+在),1[+∞上是增函数,且v ≥5, [)∞++=.541在v v 上是减函数,且1

高中数学常见函数图像

高中数学常见函数图像1. 2.对数函数:

3.幂函数: 定义形如αx y=(x∈R)的函数称为幂函数,其中x是自变量,α是常数. 图像 性质过定点:所有的幂函数在(0,) +∞都有定义,并且图象都通过点(1,1).单调性:如果0 α>,则幂函数的图象过原点,并且在[0,) +∞上为增函数.如果0 α<,则幂函数的图象在(0,) +∞上为减函数,在第一象限内,图象无限接近x轴与y轴.

函数 sin y x = cos y x = tan y x = 图象 定义域 R R ,2x x k k ππ??≠+∈Z ???? 值域 []1,1- []1,1- R 最值 当 22 x k π π=+ () k ∈Z 时, max 1y =; 当22 x k π π=- ()k ∈Z 时,min 1y =-. 当()2x k k π =∈Z 时, max 1y =; 当2x k π π=+ ()k ∈Z 时,min 1y =-. 既无最大值也无最小值 周期性 2π 2π π 奇偶性 奇函数 偶函数 奇函数 单调性 在 2,222k k ππππ? ?-+???? ()k ∈Z 上是增函数;在 32,222k k π πππ??++???? ()k ∈Z 上是减函数. 在[]() 2,2k k k πππ-∈Z 上 是 增 函 数 ; 在 []2,2k k πππ+ ()k ∈Z 上是减函数. 在,2 2k k π ππ π? ? - + ?? ? ()k ∈Z 上是增函数. 对称性 对称中心 ()(),0k k π∈Z 对称轴 ()2 x k k π π=+ ∈Z 对称中心 (),02k k ππ??+∈Z ?? ? 对称轴()x k k π =∈Z 对称中心(),02k k π?? ∈Z ??? 无对称轴

高三数学函数图像与性质专题

2020高三数学培优专练1:函数的图像与性质 例1:对于函数()f x ,若a ?,b ,c ∈R ,都有()f a ,()f b ,()f c 为某一三角形的三条边,则称 ()f x 为“可构造三角形函数”,已知函数()1 x x e t f x e +=+(e 为自然对数的底数)是“可构造三角形函数”, 则实数t 的取值范围是( ) A .[0,)+∞ B .[0,2] C .[1,2] D .1,22 ?????? 【答案】D 【解析】由题意可得:()()()f a f b f c +>,对a ?,b ,c ∈R 恒成立, 1 ()111 x x x e t t f x e e +-==+++,当10t -=时,()1f x =,()()()1f a f b f c ===,满足条件, 当10t ->时,()f x 在R 上单调递减,∴1()11f a t t <<+-=, 同理:1()f b t <<,1()f c t <<, ∵()()()f a f b f c +>,所以2t ≥,∴12t <≤. 当10t -<时,()f x 在R 上单调递增,∴()1t f a <<, 同理:()1t f b <<,()1t f c <<,∴21t ≥,12t ≥ .∴1 12 t ≤<. 综上可得:实数t 的取值范围是1,22?????? . 培优一 函数的图象与性质 一、函数的单调性 二、函数的奇偶性和对称性

例2:设函数()f x 、()g x 分别是定义在R 上的奇函数和偶函数,且()()2x f x g x +=,若对[1,2]x ∈, 不等式()(2)0af x g x +≥恒成立,则实数a 的取值范围是( ) A .[ )1,-+∞ B .) 22,?-+∞? C .17,6?? - +∞???? D .257,60?? - +∞???? 【答案】C 【解析】∵()f x 为定义在R 上的奇函数,()g x 为定义在R 上的偶函数, ∴()()f x f x -=-,()()g x g x -=, 又∵由()()2x f x g x +=,结合()()()()2x f x g x f x g x --+-=-+=, ∴1()(22)2x x f x -= -,1 ()(22)2 x x g x -=+, 又由()(2)0af x g x +≥,可得 221 (22)(22)022 x x x x a ---++≥, ∵12x ≤≤,∴ 315 2224 x x -≤-≤, 令22x x t -=-,则0t >,将不等式整理即得:2a t t ? ?≥-+ ?? ? . ∵31524t ≤≤,∴172257660t t ≤+≤,∴176 a ≥-.故选C . 例3:定义在R 上的奇函数()f x 满足(2)(2)f x f x +=-,当[0,2)x ∈时,2()48f x x x =-+.若在 区间[,]a b 上,存在(3)m m ≥个不同的整数i x (1i =,2,L ,m ),满足1 11 ()()72m i i i f x f x -+=-≥∑ , 则b a -的最小值为( ) A .15 B .16 C .17 D .18 【答案】D 三、函数的周期性

高中数学_经典函数试题及答案

经典函数测试题及答案 (满分:150分 考试时间:120分钟) 一、选择题:本大题共12小题。每小题5分,共60分。在每小题给出的四个选项中,只有 一项是符合题目要求的。 1.函数)12(-=x f y 是偶函数,则函数)2(x f y =的对称轴是 ( ) A .0=x B .1-=x C .21= x D .2 1-=x 2.已知1,10-<<x 时,,log )(2x x f =则当0m D .12-<<-m 或13 2 <

(新)高中数学复习专题一---函数图象问题

专题一 函数图象 数形结合是中学数学的重要的数学思想方法,尤其是函数的图象更是历年高考的热点.函数图象是函数的一种表达形式,形象的显示了函数的性质,为研究数量关系提供了“形”的直观性,它是探求解题途径,获得问题的结果的重要工具. 一、知识方法 1.函数图象作图方法 (1)描点法:列表、描点(注意关键点:如图象与x 、y 轴的交点,端点,极值点等))、连线(注 意关键线:如;对称轴,渐近线等) (2)利用基本函数图象变换。 2.图象变换(由一个图象得到另一个图象):平移变换、对称变换和伸缩变换等。 (1)平移变换 ① 水平平移:函数()y f x a =+的图象可以把函数()y f x =的图象沿x 轴方向向左 (0)a >或向右(0)a <平移||a 个单位即可得到; ② 竖直平移:函数()y f x a =+的图象可以把函数()y f x =的图象沿y 轴方向向上(0)a >或向下(0)a <平移||a 个单位即可得到. (2)对称变换 ① 函数()y f x =-的图象可以将函数()y f x =的图象关于y 轴对称即可得到; ② 函数()y f x =-的图象可以将函数()y f x =的图象关于x 轴对称即可得到; ③ 函数()y f x =--的图象可以将函数()y f x =的图象关于原点对称即可得到; (3)翻折变换 ① 函数|()|y f x =的图象可以将函数()y f x =的图象的x 轴下方部分沿x 轴翻折到x 轴上方,去掉原x 轴下方部分,并保留()y f x =的x 轴上方部分即可得到; ② 函数(||)y f x =的图象可以将函数()y f x =的图象右边沿y 轴翻折到y 轴左边替代原y 轴左边部分并保留()y f x =在y 轴右边部分即可得到. (4)伸缩变换 ① 函数()y af x =(0)a >的图象可以将函数()y f x =的图象中的每一点横坐标不变纵坐标伸长(1)a >或压缩(01a <<)为原来的a 倍得到; ② 函数()y f ax =(0)a >的图象可以将函数()y f x =的图象中的每一点纵坐标不变横坐标伸长(01a <<)或压缩(1)a >为原来的 1 a 倍得到. 3.函数图象的对称性:对于函数)(x f y =,若对定义域内的任意x 都有 ①)()(x a f x a f +=-(或))2()(x a f x f -=,则)(x f 的图象关于直线a x =对称; ②b x a f x a f 2)()(=++-(或)2)2()(b x a f x f =-+,,则)(x f 的图象关于点),(b a P 对称. 4、熟练掌握基本初等函数(如正、反比例函数,一次、二次函数,指数、对数函数,幂函数,三角函数)的图象 5、作函数图象的一般步骤: (1)求出函数的定义域;(2)化简函数式;(3)讨论函数的性质(如奇偶性、周期性、单调性)以及图像上的特殊点、线(如极值点、渐近线、对称轴等);(4)利用基本函数的图像(5)利

高中数学函数图象高考题

函数图象B1 .函数y = a| x | (a > 1)的图象是( ) B() B3.当a>1时,函数y=log a x和y=(1-a)x的图象只可能是() A4.已知y=f(x)与y=g(x)的图象如图所示 则函数F(x)=f(x)·g(x)的图象可以是(A) B5.函数(1) || x xa y a x =>的图像大致形状是()D

A B C D D 7.函数x x y cos -=的部分图象是( ) A 8.若函数f(x)=x 2+b x +c 的图象的顶点在第四象限,则函数f /(x)的图象是 ( ) A 9.一给定函数) (x f y =的图象在下列图中,并且对任意)1,0 (1∈a ,由关系式) (1n n a f a =+得到的数列}{n a 满足)(* 1N n a a n n ∈>+,则该函数的图象是 ( ) A B C D C 10.函数y=kx+k 与y=x k 在同一坐标系是的大致图象是( ) A D C

A 12. 当a >1时,在同一坐标系中,函数y =a - x 与y =log a x 的图像( ) B 13. 函数1 1 1--=x y 的图象是( ) D 14.函数b x a x f -=)(的图象如图,其中a 、b 为常数,则下列结论正确的是 ( ) A .0,1<>b a B .0,1>>b a C .0,10><

全国高考数学复习微专题:函数的图像

函数的图像 一、基础知识 1、做草图需要注意的信息点: 做草图的原则是:速度快且能提供所需要的信息,通过草图能够显示出函数的性质。在作图中草图框架的核心要素是函数的单调性,对于一个陌生的可导函数,可通过对导函数的符号分析得到单调区间,图像形状依赖于函数的凹凸性,可由二阶导数的符号决定(详见“知识点讲解与分析”的第3点),这两部分确定下来,则函数大致轮廓可定,但为了方便数形结合,让图像更好体现函数的性质,有一些信息点也要在图像中通过计算体现出来,下面以常见函数为例,来说明作图时常体现的几个信息点 (1)一次函数:y kx b =+,若直线不与坐标轴平行,通常可利用直线与坐标轴的交点来确定直线 特点:两点确定一条直线 信息点:与坐标轴的交点 (2)二次函数:()2 y a x h k =-+,其特点在于存在对称轴,故作图时只需做出对称轴一侧的图像,另一侧由对称性可得。函数先减再增,存在极值点——顶点,若与坐标轴相交,则标出交点坐标可使图像更为精确 特点:对称性 信息点:对称轴,极值点,坐标轴交点 (3)反比例函数:1 y x = ,其定义域为()(),00,-∞+∞U ,是奇函数,只需做出正版轴图像即可(负半轴依靠对称做出),坐标轴为函数的渐近线 特点:奇函数(图像关于原点中心对称),渐近线 信息点:渐近线 注: (1)所谓渐近线:是指若曲线无限接近一条直线但不相交,则称这条直线为渐近线。渐近线在作图中的作用体现为对曲线变化给予了一些限制,例如在反比例函数中,x 轴是渐近线,那么当x →+∞,曲线无限向x 轴接近,但不相交,则函数在x 正半轴就不会有x 轴下方的部分。 (2)水平渐近线的判定:需要对函数值进行估计:若x →+∞(或-∞)时,()f x →常

高中数学导数典型例题

高中数学导数典型例题 题型一:利用导数研究函数的单调性、极值、最值 1. 已知函数32()f x x ax bx c =+++ 过曲线()y f x =上的点(1,(1))P f 的切线方程为y=3x +1 。 (1)若函数2)(-=x x f 在处有极值,求)(x f 的表达式; (2)在(1)的条件下,求函数)(x f y =在[-3,1]上的最大值; (3)若函数)(x f y =在区间[-2,1]上单调递增,求实数b 的取值范围 2. 已知).(323 2)(23R a x ax x x f ∈--= (1)当41||≤ a 时, 求证:)x (f 在)1,1( -内是减函数; (2)若)x (f y =在)1,1( -内有且只有一个极值点, 求a 的取值范围. 题型二:利用导数解决恒成立的问题 例1:已知322()69f x x ax a x =-+(a ∈R ) . (Ⅰ)求函数()f x 的单调递减区间; (Ⅱ)当0a >时,若对[]0,3x ?∈ 有()4f x ≤恒成立,求实数a 的取值范围.

例2:已知函数222()2()21x x f x e t e x x t =-++++,1()()2g x f x '= . (1)证明:当t <时,()g x 在R 上是增函数; (2)对于给定的闭区间[]a b ,,试说明存在实数 k ,当t k >时,()g x 在闭区间[]a b , 上是减函数; (3)证明: 3()2 f x ≥. 例3:已知3)(,ln )(2-+-==ax x x g x x x f (1)求函数)(x f 在)0](2,[>+t t t 上的最小值 (2)对(0,),2()()x f x g x ?∈+∞≥恒成立,求实数a 的取值范围 题型三:利用导数研究方程的根 例4:已知函数a x ax x f 313)(23-+-=. (I)讨论函数)(x f 的单调性; (Ⅱ)若曲线()f x 上两点A 、B 处的切线都与y 轴垂直,且线段AB 与x 轴有公共点,求实 数a 的取值范围.

2014届高三数学一轮复习 函数的图像提分训练题

函数的图像 一、选择题 1.已知函数y =f (x )的周期为2,当x ∈[-1,1]时f (x )=x 2 ,那么函数y =f (x )的图象与函数y =|lg x |的图象的交点共有( ). A .10个 B .9个 C .8个 D .1个 解析 (数形结合法)画出两个函数图象可看出交点有10个. 答案 A 【点评】 本题采用了数形结合法.数形结合,其实质是将抽象的数学语言与直观的图形结合起来,使抽象思维与形象思维结合起来,通过对图形的处理,发挥直观对抽象的支持作用,实现抽象概念与具体形象的联系和转化,化难为易,化抽象为直观. 2.函数y =|x |与y =x 2 +1在同一坐标系上的图像为( ) 解析:因为|x |≤x 2 +1,所以函数y =|x |的图像在函数y =x 2 +1图像的下方,排除C 、D ,当x →+∞时,x 2+1→|x |,排除B ,故选A. 答案:A 3.函数y =11-x 的图象与函数y =2sin πx (-2≤x ≤4)的图象所有交点的横坐标之和等于 ( ). A .2 B .4 C .6 D .8 解析 此题考查函数的图象、两个函数图象的交点及函数的对称性问题.两个函数都是中心对称图形.

如上图,两个函数图象都关于点(1,0)成中心对称,两个图象在[-2,4]上共8个公共点,每两个对应交点横坐标之和为2,故所有交点的横坐标之和为8. 答案 D 4.y =x +cos x 的大致图象是( ) 解析:当x =0时,y =1;当x =π2时,y =π2;当x =-π2时,y =-π 2,观察各选项可知B 正确. 答案:B 5.由方程x |x |+y |y |=1确定的函数y =f (x )在(-∞,+∞)上是( ). A .增函数 B .减函数 C .先增后减 D .先减后增 解析 ①当x ≥0且y ≥0时,x 2 +y 2 =1,②当x >0且y <0时,x 2-y 2 =1, ③当x <0且y >0时,y 2 -x 2 =1, ④当x <0且y <0时,无意义. 由以上讨论作图如上图,易知是减函数. 答案 B 6.在同一坐标系中画出函数y =l og a x ,y =a x ,y =x +a 的图象,可能正确的是( ). 解析 当a >1或0<a <1时,排除C ;当0<a <1时,再排除B ;当a >1时,排除A. 答案 D

高中数学-经典函数试题及答案

(满分:150分 考试时间:120分钟) 一、选择题:本大题共12小题。每小题5分,共60分。在每小题给出的四个选项中,只有 一项是符合题目要求的。 1.函数)12(-=x f y 是偶函数,则函数)2(x f y =的对称轴是 ( ) A .0=x B .1-=x C .21= x D .2 1-=x 2.已知1,10-<<x 时,,log )(2x x f =则当0m D .12-<<-m 或13 2 <xy a

2019高考数学《函数的图像》题型专题汇编

2019高考数学《函数的图像》题型专题汇编 题型一 作函数的图象 1、分别画出下列函数的图象: (1)y =|lg(x -1)|; (2)y =2x + 1-1; (3)y =x 2-|x |-2; (4)y =2x -1x -1 . 解 (1)首先作出y =lg x 的图象,然后将其向右平移1个单位,得到y =lg(x -1)的图象,再把所得图象在x 轴下方的部分翻折到x 轴上方,即得所求函数y =|lg(x -1)|的图象,如图①所示(实线部分). (2)将y =2x 的图象向左平移1个单位,得到y =2x +1的图象,再将所得图象向下平移1个单位,得到y =2x +1-1 的图象,如图②所示. (3)y =x 2-|x |-2=???? ? x 2-x -2,x ≥0,x 2+x -2,x <0, 其图象如图③所示. (4)∵y =2+1x -1,故函数的图象可由y =1 x 的图象向右平移1个单位,再向上平移2个单位得到,如图④所 示. 题型二 函数图象的辨识 1、函数y =x 2ln|x | |x | 的图象大致是( ) 答案 D 解析 从题设解析式中可以看出函数是偶函数,x ≠0,且当x >0时,y =x ln x ,y ′=1+ln x ,可知函数在区间????0,1e 上单调递减,在区间??? ?1 e ,+∞上单调递增.由此可知应选D.

2、设函数f (x )=2x ,则如图所示的函数图象对应的函数解析式是( ) A .y =f (|x |) B .y =-|f (x )| C .y =-f (-|x |) D .y =f (-|x |) 答案 C 解析 题图中是函数y =-2-|x |的图象,即函数y =-f (-|x |)的图象,故选C. 3、函数f (x )=1+log 2x 与g (x )=????12x 在同一直角坐标系下的图象大致是( ) 答案 B 解析 因为函数g (x )=????12x 为减函数,且其图象必过点(0,1),故排除A ,D.因为f (x )=1+log 2x 的图象是由y =log 2x 的图象上移1个单位得到的,所以f (x )为增函数,且图象必过点(1,1),故可排除C ,故选B. 4、函数f (x )=??? ?2 1+e x -1·sin x 的图象的大致形状为( ) 答案 A 解析 ∵f (x )=? ????21+e x -1·sin x ,∴f (-x )=? ????21+e -x -1· sin(-x ) =-? ????2e x 1+e x -1sin x =? ?? ?? 21+e x -1· sin x =f (x ),且f (x )的定义域为R , ∴函数f (x )为偶函数,故排除C ,D ;当x =2时,f (2)=? ?? ??21+e 2-1· sin 2<0,故排除B , 只有A 符合. 5、若函数f (x )=(ax 2+bx )e x 的图象如图所示,则实数a ,b 的值可能为( )

高考数学难点突破_难点10__函数图象

难点10 函数图象与图象变换 函数的图象与性质是高考考查的重点内容之一,它是研究和记忆函数性质的直观工具,利用它的直观性解题,可以起到化繁为简、化难为易的作用.因此,考生要掌握绘制函数图象的一般方法,掌握函数图象变化的一般规律,能利用函数的图象研究函数的性质. ●难点磁场 (★★★★★)已知函数f (x )=ax 3+bx 2+cx +d 的图象如图,求b 的范围. ●案例探究 [例1]对函数y =f (x )定义域中任一个x 的值均有f (x +a )=f (a -x ),(1)求证y =f (x )的图象关于直线x =a 对称;(2)若函数f (x )对一切实数x 都有f (x +2)=f (2-x ),且方程f (x )=0恰好有四个不同实根,求这些实根之和. 命题意图:本题考查函数概念、图象对称问题以及求根问题.属★★★★★级题目. 知识依托:把证明图象对称问题转化到点的对称问题. 错解分析:找不到问题的突破口,对条件不能进行等价转化. 技巧与方法:数形结合、等价转化. (1)证明:设(x 0,y 0)是函数y =f (x )图象上任一点,则y 0=f (x 0),又f (a +x )=f (a -x ),∴f (2a -x 0)= f [a +(a -x 0)]=f [a -(a -x 0)]=f (x 0)=y 0,∴(2a -x 0,y 0)也在函数的图象上,而2)2(00x x a +-=a ,∴点(x 0,y 0)与(2a -x 0,y 0)关于直线x =a 对称,故y =f (x )的图象关于直线x =a 对称. (2)解:由f (2+x )=f (2-x )得y =f (x )的图象关于直线x =2对称,若x 0是f (x )=0的根,则4-x 0也是f (x )=0的根,由对称性,f (x )=0的四根之和为8. [例2]如图,点A 、B 、C 都在函数y =x 的图象上,它们的横坐标分别是a 、a +1、a +2.又A 、B 、C 在x 轴上的射影分别是A ′、B ′、C ′,记△AB ′C 的面积为f (a ),△A ′BC ′的面积为g (a ).

高考数学函数图像

函数图像与变换 一、 图像变换 1.平移变换: (1)水平平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向左(0)a >或向右(0)a <平移||a 个单 位即可得到; (2)竖直平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向上(0)a >或向下(0)a <平移||a 个单 位即可得到. 2.对称变换:(1)函数()y f x =-的图像可以将函数()y f x =的图像关于y 轴对称即可得到; (2)函数()y f x =-的图像可以将函数()y f x =的图像关于x 轴对称即可得到; (3)函数()y f x =--的图像可以将函数()y f x =的图像关于原点对称即可得到; (4)函数1()y f x -=的图像可以将函数()y f x =的图像关于直线y x =对称得到. 3.翻折变换: (1)函数|()|y f x =的图像可以将函数()y f x =的图像的x 轴下方部分沿x 轴翻折到x 轴上方,去掉原x 轴下方部分, 并保留()y f x = 的x 轴上方部分即可得到; (2)函数(||)y f x =的图像可以将函数()y f x =的图像右边沿y 轴翻折到y 轴左边替代原y 轴左边部分并保留 ()y f x =在y 轴右边部 分即可得到. 4.伸缩变换: (1)函数()y af x = (0a >)的图像可以将函数()y f x =的图像的纵坐标伸长到原来的(0)k k >倍(横坐标不变) 得到。 (2)函数()y af x = (0a >)的图像可以将函数()y f x =的图像的横坐标伸长到原来的(0)k k >倍(纵坐标不变) 得到。 二、典型例题 1、 函数的图象变换 函数的图象变换这一节的知识点是高考考查的重要方面,一些复杂的函数是可以通过一些较为简单的函数由相应的变换得到,从而我们可以利用之研究函数的性质。 例1、(1)设()2,()x f x g x -=的图像与()f x 的图像关于直线y x =对称,() h x 的图像由()g x 的图像 右平移1个单位得到,则()h x 为__________ (2)要得到)3lg(x y -=的图像,只需作x y lg =关于_____轴对称的图像,再向____平移3个单位而得到 (3)将函数()y f x =的图像上所有点的横坐标变为原来的13 (纵坐标不变),再将此图像沿x 轴方向向左平移2个单位,所得图像对应的函数为_____ 例2、已知f(x+199)=4x 2+4x+3(x ∈R),那么函数f(x)的最小值为____. 例3、设函数y=f(x)的定义域为R,则函数y=f(x-1)与y=(1-x)的图象关系为( ) A、直线y=0对称 B、直线x=0对称 C、直线y=1对称 D、直线x=1对称 2 、函数图象的画法 以解析式表示的函数作图象的方法有两种,即列表描点法和图象变换法,运用描点法作图象应避免描点前的盲目性,也应避免盲目地连点成线.要把表列在关键处,要把线连在恰当处.这就要求对所要画图象的存在范围、大致特征、变化趋势等作一个大概的研究.而这个研究要借助于函数性质、方程、不等式等理论和手段。用图象变换法作函数图象要确定以哪一种函数的图象为基础进行变换,以及确定怎样的变换。

相关文档 最新文档