文档库 最新最全的文档下载
当前位置:文档库 › ansys_workbench_螺栓_接触分析

ansys_workbench_螺栓_接触分析

螺栓组受力分析与计算..

螺栓组受力分析与计算 一.螺栓组联接的设计 设计步骤: 1.螺栓组结构设计 2.螺栓受力分析 3.确定螺栓直径 4.校核螺栓组联接接合面的工作能力 5.校核螺栓所需的预紧力是否合适 确定螺栓的公称直径后,螺栓的类型,长度,精度以及相应的螺母,垫圈等结构尺寸,可根据底板的厚度,螺栓在立柱上的固定方法及防松装置等全面考虑后定出。 1. 螺栓组联接的结构设计 螺栓组联接结构设计的主要目的,在于合理地确定联接接合面的几何形状和螺栓的布置形式,力求各螺栓和联接接合面间受力均匀,便于加工和装配。为此,设计时应综合考虑以下几方面的问题: 1)联接接合面的几何形状通常都设计成轴对称的简单几何形状,如圆形,环形,矩形,框形,三角形等。这样不但便于加工制造,而且便于对称布置螺栓,使螺栓组的对称中心和联接接合面的形心重合,从而保证接合面受力比较均匀。 2)螺栓的布置应使各螺栓的受力合理。对于铰制孔用螺栓联接,不要在平行于工作载荷的方向上成排地布置八个以上的螺栓,以免载荷分布过于不均。当螺栓联接承受弯矩或转矩时,应使螺栓的位置适当靠近联接接合面的边缘,以减小螺栓的受力(下图)。如果同时承受轴向载荷和较大的横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载荷,以减小螺栓的预紧力及其结构尺寸。 接合面受弯矩或转矩时螺栓的布置

3)螺栓排列应有合理的间距,边距。布置螺栓时,各螺栓轴线间以及螺栓轴线和机体壁间的最小距离,应根据扳手所需活动空间的大小来决定。扳手空间的尺寸(下图)可查阅有关标准。对于压力容器等紧密性要求较高的重要联接,螺栓的间距t0不得大于下表所推荐的数值。 扳手空间尺寸 螺栓间距t0 注:表中d为螺纹公称直径。 4)分布在同一圆周上的螺栓数目,应取成4,6,8等偶数,以便在圆周上钻孔时的分度和画线。同一螺栓组中螺栓的材料,直径和长度均应相同。 5)避免螺栓承受附加的弯曲载荷。除了要在结构上设法保证载荷不偏心外,还应在工艺上保证被联接件,螺母和螺栓头部的支承面平整,并与螺栓轴线相垂直。对于在铸,锻件等的粗糙表面上应安装螺栓时,应制成凸台或沉头座(下图1)。当支承面为倾斜表面时,应采用斜面垫圈(下图2)等。

螺纹连接习题解答(讲解)

螺纹连接习题解答 11—1 一牵曳钩用2个M10的普通螺钉固定于机体上,如图所示。已知接合面间的摩擦系数 f=0.15,螺栓材料为Q235、强度级别为4.6 级,装配时控制预紧力,试求螺栓组连接 允许的最大牵引力。 解题分析:本题是螺栓组受横向载荷作用的典型 例子.它是靠普通螺栓拧紧后在接合面间产生的摩擦力来传递横向外载荷F R。解题时,要先求出螺栓组所受的预紧力,然后,以连接的接合面不滑移作为计算准则,根据接合面的静力平衡条件反推出外载荷F R。 解题要点: (1)求预紧力F′: 由螺栓强度级别4.6级知σS =240MPa,查教材表11—5(a),取S=1.35,则许用拉应力:[σ]=σS/S =240/1.35 MPa=178 MPa ,查(GB196—86)M10螺纹小径d1=8.376mm 由教材式(11—13): 1.3F′/(πd21/4)≤[σ] MPa 得: /(4×1.3)=178 ×π×8.3762/5.2 N F′=[σ]πd2 1 =7535 N (2)求牵引力F R: =7535×0.15×2×由式(11—25)得F R=F′fzm/K f

1/1.2N=1883.8 N (取K =1.2) f 11—2 一刚性凸缘联轴器用6个M10的铰制孔用螺栓(螺栓 GB27—88)连接,结构尺寸如图所示。两半联轴器材料为HT200,螺栓材料为Q235、性能等级5.6级。试求:(1)该螺栓组连接允许传递的最大转矩T max。(2)若传递的最大转矩T max不变,改用普通螺栓连接,试计算螺栓直径,并确定其公称长度,写出螺栓标记。(设两半联轴器间的摩擦系数f=0.16,可靠性系数K f=1.2)。 解题要点: (1)计算螺栓组连接允许传递的最大 转矩T max: 该铰制孔用精制螺栓连接所能传递 转矩大小受螺栓剪切强度和配合面 挤压强度的制约。因此,可先按螺栓剪 切强度来计算T max,然后较核配合面挤 压强度。也可按螺栓剪切强度和配合面挤压强度分别求出T max,取其值小者。本解按第一种方法计算 1)确定铰制孔用螺栓许用应力 由螺栓材料Q235、性能等级 5.6级知: σs300MPa 被连接件材料HT200 = σb500MPa、= = σb200MPa 。 (a)确定许用剪应力

螺栓最大扭紧力矩计算

螺栓最大扭紧力矩计算 一、背景 安装时对于一般的零件装配,靠操作者在扭紧时的感觉和经验来拧紧螺栓就已经能满足安装要求。但对于重要的联接,就需提供具体的扭紧力矩值来保证产品质量与安全。针对这一问题,现参考机械设计手册及相关的机械设计资料,对螺栓的最大扭紧力矩进行详细的分析计算,并把不同等级不同规格的螺栓的最大扭紧力矩计算结果列成表格,供参考使用,为安装现场提供准确的扭紧力矩依据。 二、分析计算 拧紧螺栓需要的预紧力矩T=KFd×10-3(N.m) 1. K——扭矩系数。 K值大小主要与螺纹副摩擦、支承面摩擦有关,K=0.15~0.2,加润滑油的可达0.12。根据《机械设计》(濮良贵主编)建议,按K=0.2计算。 2. F——预紧力(N) 拧紧后螺纹连接件的预紧力F不得超过其材料屈服极限的80%,推荐按以下关系式确定F。 螺栓:F≤(0.6~0.7)σs A1; 不锈钢螺栓:F≤(0.5~0.6)σs A1, 即F≤K1σs A1,螺栓K1取0.6,不锈钢螺栓K1取0.5。 1)σs——对应等级螺栓的材料屈服极限(MPa)(需查表) 2)A1——螺栓危险截面的面积,单位mm2 根据《机械设计》(濮良贵主编),危险截面按螺栓小径d1计算,即 A1=1/4×π×d12

故F≤K1σs A1 =K1σs×1/4×π×d12 ( N) 3. d——螺栓螺纹外径(mm) 由以上分析,综合得 T=KFd×10-3 ≤K×(K1×σs×1/4×π×d12)×d×10-3 =1/4×K×K1×σs×π×10-3×d12×d(N.m) 即螺栓最大扭紧力矩T max=1/4×K×K1×σs×π×10-3×d12×d(N.m) 三、扭紧力矩值表 相同外径的粗牙螺栓对应一种螺栓小径,而相同外径的细牙螺栓存在几种螺栓小径。其中细牙螺栓优选规格如下: 注:P——螺距 根据螺栓最大扭紧力矩T max计算公式,分别计算出不同规格螺栓最大扭紧力矩值T max。以下列出常用的T max供设计使用。(注:对于细牙螺栓,选用细牙螺栓优选规格计算。)

螺栓组受力分析与计算

螺栓组受力分析与计算 螺栓组联接的设计 设计步骤: 1. 螺栓组结构设计 2. 螺栓受力分析 3. 确定螺栓直径 4. 校核螺栓组联接接合面的工作能力 5. 校核螺栓所需的预紧力是否合适 确定螺栓的公称直径后,螺栓的类型,长度,精度以及相应的螺母,垫圈等结构尺寸,可根据底板的厚度,螺栓在立柱上的固定方法及防松装置等全面考虑后定出。 "1.螺栓组联接的结构设计 螺栓组联接结构设计的主要目的,在于合理地确定联接接合面的几何形状和螺栓的布置形式,力求各螺栓和联接接合面间受力均匀,便于加工和装配。为此,设计时应综合考虑以下几方面的问题: 1)联接接合面的几何形状通常都设计成轴对称的简单几何形状,如圆形,环形,矩形,框形, 三角形等。这样不但便于加工制造,而且便于对称布置螺栓,使螺栓组的对称中心和联接接 合面的形心重合,从而保证接合面受力比较均匀。 2)螺栓的布置应使各螺栓的受力合理。对于铰制孔用螺栓联接,不要在平行于工作载荷的方向上成排地布置八个以上的螺栓,以免载荷分布过于不均。当螺栓联接承受弯矩或转矩时,应使螺栓的位置适当靠近联接接合面的边缘,以减小螺栓的受力(下图)。如果同时承受轴向载荷和较大的横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载荷,以减小螺栓的预紧力及其结构尺寸。 塾〉不令 接合面受弯矩或转矩时螺栓的布置

3)螺栓排列应有合理的间距,边距。布置螺栓时,各螺栓轴线间以及螺栓轴线和机体壁间的 最小距离,应根 据扳手所需活动空间的大小来决定。扳手空间的尺寸(下图)可查阅有关标 准。对于压力容器等紧密性要求较高的重要联接, 螺栓的间距to 不得大于下表所推荐的数值 扳手空间尺寸 螺栓间距t o 注:表中d 为螺纹公称直径。 4) 分布在同一圆周上的螺栓数目,应取成 4, 6, 8等偶数,以便在圆周上钻孔时的分度和画 线。同一螺栓 组中螺栓的材料,直径和长度均应相同。 5) 避免螺栓承受附加的弯曲载荷。除了要在结构上设法保证载荷不偏心外,还应在工艺上保 证被联接件,螺 母和螺栓头部的支承面平整,并与螺栓轴线相垂直。对于在铸,锻件等的粗 糙表面上应安装螺栓时,应制成凸台或沉头座(下图 1)。当支承面为倾斜表面时,应采用 斜面垫圈(下图2)等。 1 ? 6*-4 4* 10 10* 1? 14-20 3W

第6章螺纹联接讨论重点内容受力分析、强度计算。难点受翻转力矩

第6章 螺纹联接 讨论 重点内容:受力分析、强度计算 。 难点:受翻转力矩的螺栓组联接。 附加内容:螺纹的分类和参数 1.螺纹的分类 2. 螺纹参数 (1) 螺纹大径d (2)螺纹小径d 1 (3)螺纹中径d 2 (4)螺距p (5)线数n (6)导程S (7)螺纹升角ψ (8)牙型角α 6.1 螺纹联接的主要类型、材料和精度 6.1.1螺纹联接的主要类型 松联接 根据装配时是否拧紧分 图6.1 紧联接 螺栓联接 螺钉联接 按紧固件不同分 双头螺柱联接 紧定螺钉联接 受拉螺栓联接 按螺栓受力状况分 受剪螺栓联接 6.1.2螺纹紧固件的性能等级和材料 性能等级:十个等级 B σ=点前数字 ×100 ; S σ=10×点前数字×点后数字。 材料:按性能等级来选。 例如:螺栓的精度等级6.8级 6.2 螺纹联接的拧紧与防松 ???外螺纹内螺纹? ??左旋螺纹 右旋螺纹 ?? ?多线螺纹单线螺纹?? ? ??锯齿形螺纹梯形螺纹三角螺纹?? ?传动螺纹 联接螺纹?? ?圆锥螺纹圆柱螺纹

6.2.1螺纹联接的拧紧 拧紧的目的: 拧紧力矩: 21T T T += 431T T T += T 1螺纹力矩: ()V t d F d F T ρψ+?=? =tan 2 22'21 T 2螺母支承面摩擦力矩:r F T ?=' 2μ 2 213 3 131d D d D r --?= 将6410~M M 的相关参数(2d ,ψ ,1D ,0d ) 代入且取 15.0arctan =V ρ得:d F d F k T T T t ' '212.0≈=+= 标准扳手的长度 L=15d d F Fd FL T '2.015===∴ (图 6.2……) F F 75' = 要求拧紧的螺栓联接应严格控制其拧紧力矩,且不宜用小于1612~M M 的螺栓。 测力矩扳手或定力矩扳手 控制拧紧力矩的方法: 用液压拉力或加热使螺栓伸长到所需的变形量 6.2.2 螺纹联接的防松 为何要防松? 自锁条件:ψ

螺栓扭矩预紧力对照表

螺栓扭矩预紧力对照表扭力螺丝刀, 扭力扳手 数显扭距测量仪等 螺栓标准扭矩及预紧力查询表(仅供参考) 内六角外六 角 螺栓 直径 DIN267性能等级(螺栓强度等级) 螺栓螺栓 3.6 5.6 6.9 8.8 10.9 12.9 S(m m) S(m m) M(m m) Fv(N) Ma (Nm ) Fv(N) Ma (Nm ) Fv(N) Ma (Nm ) Fv(N) Ma (Nm ) Fv(N) Ma (Nm ) Fv(N) Ma (Nm ) 1.5 4 M2 255 0.1 345 0.15 710 0.3 835 0.35 1,170 0.5 1,415 0.6 2 5 M2.5 485 0.26 655 0.35 1,310 0.71 1,550 0.8 3 2,180 1.18 2,620 1. 4 2.2 5 5.5 M3 630 0.37 1,050 0.62 1,700 0.99 2,250 1.3 3,150 1.9 3,800 2.2 6 M3.5 850 0.5 7 1,400 0.95 2,250 1.5 3,000 2 4,250 2.9 5,100 3.4 3 7 M 4 1,100 0.8 5 1,850 1.4 2,900 2.3 3,900 3 5,750 4.4 6,700 5.1 4 8、9 M 5 1,800 1.7 3,000 2.8 4,800 4.5 6,400 5.9 9,400 8.7 11,000 10 5 10 M 6 2,550 2.9 4,200 4.8 6,750 7. 7 9,000 10 13,200 15 15,500 18 6 13、 14 M8 4,650 7 7,750 12 12,40 19 16,500 25 24,300 36 28,400 43 8 15、 17 M10 7,400 14 12,30 23 19,70 37 26,300 49 38,700 72 45,200 84 10 19、 21 M12 10,80 24 18,00 40 28,80 65 38,400 85 56,500 125 66,000 145 12 22、 23 M14 14,80 39 24,70 64 39,50 105 52,500 135 77,500 200 90,500 235 14 24、 26 M16 20,40 59 34,00 98 54,50 155 72,500 210 107,00 310 125,000 365 27 M18 24,80 81 41,30 135 66,00 215 91,000 300 129,00 430 152,000 500 17 30 M20 31,90 115 53,00 190 85,00 305 117,00 425 166,00 610 195,000 710 32 M22 39,90 155 66,50 260 106,0 00 415 146,00 580 208,00 820 244,000 960 19 36 M24 45,90 200 76,50 330 122,0 00 530 168,00 730 240,00 1,050 281,000 1,220 41 M27 80,50 295 100,0 00 490 161,0 00 780 222,00 1,100 316,00 1,550 369,000 1,800 22 46 M30 73,50395 122,0660 196,01,050 269,001,450 384,002,100 449,000 2,450

联接螺栓强度计算方法

联接螺栓的强度计算方法

一.连接螺栓的选用及预紧力: 1、已知条件: 螺栓的s=730MPa 螺栓的拧紧力矩T= 2、拧紧力矩: 为了增强螺纹连接的刚性、防松能力及防止受载螺栓的滑动,装配时需要预紧。 其拧紧扳手力矩T用于克服螺纹副的阻力矩T1及螺母与被连接件支撑面间的摩 擦力矩T2。装配时可用力矩扳手法控制力矩。 公式:T=T1+T2=K* F* d 拧紧扳手力矩T= 其中K为拧紧力矩系数, F为预紧力N d为螺纹公称直径mm 其中K为拧紧力矩系数, F为预紧力N d为螺纹公称直径mm 摩擦表面状态K值 有润滑无润滑 精加工表面 一般工表面 表面氧化 镀锌 粗加工表面- 取K=,则预紧力 F=T/*10*10-3=17500N 3、承受预紧力螺栓的强度计算: 螺栓公称应力截面面积As(mm)=58mm2 外螺纹小径d1=8.38mm 外螺纹中径d2=9.03mm

计算直径d3=8.16mm 螺纹原始三角形高度h=1.29mm 螺纹原始三角形根部厚度b=1.12mm 紧螺栓连接装配时,螺母需要拧紧,在拧紧力矩的作用下,螺栓除受预紧力F0的拉伸而产生拉伸应力外,还受螺纹摩擦力矩T1的扭转而产生扭切应力,使螺栓处于拉伸和扭转的复合应力状态下。 螺栓的最大拉伸应力σ1(MPa)。 1s F A σ= =17500N/58*10-6m 2=302MPa 剪切应力: =1σ=151 MPa 根据第四强度理论,螺栓在预紧状态下的计算应力: =*302= MPa 强度条件: =≤*=584 预紧力的确定原则: 拧紧后螺纹连接件的预紧应力不得超过其材料的屈服极限s σ的80%。 4、 倾覆力矩 倾覆力矩 M 作用在连接接合面的一个对称面内,底板在承受倾覆力矩之前,螺栓已拧紧并承受预紧力F 0。作用在底板两侧的合力矩与倾覆力矩M 平衡。 已知条件:电机及支架总重W1=190Kg ,叶轮组总重W2=36Kg ,假定机壳固定, () 2031 tan 2 16 v T d F T W d ?ρτπ += = 1.31ca σσ≈[] 02 11.34F ca d σσ π =≤

螺栓组受力分析与计算..

螺栓组受力分析与计算 螺栓组受力分析与计算 一.螺栓组联接的设计 设计步骤: 1.螺栓组结构设计 2.螺栓受力分析 3.确定螺栓直径 4.校核螺栓组联接接合面的工作能力 5.校核螺栓所需的预紧力是否合适 确定螺栓的公称直径后,螺栓的类型,长度,精度以及相应的螺母,垫圈等结构尺寸,可根据底板的厚度,螺栓在立柱上的固定方法及防松装置等全面考虑后定出。 H1.螺栓组联接的结构设计 螺栓组联接结构设计的主要目的,在于合理地确定联接接合面的几何形状和螺栓的布置形式,力求各螺栓和联接接合面间受力均匀,便于加工和装配。为此,设计时应综合考虑以下几方面的问题: 1)联接接合面的几何形状通常都设计成轴对称的简单几何形状,如圆形,环形,矩形,框形, 三角形等。这样不但便于加工制造,而且便于对称布置螺栓,使螺栓组的对称中心和联接接合面的形心重合,从而保证接合面受力比较均匀。 2)螺栓的布置应使各螺栓的受力合理。对于铰制孔用螺栓联接,不要在平行于工作载荷的方

向上成排地布置八个以上的螺栓,以免载荷分布过于不均。当螺栓联接承受弯矩或转矩时,应使螺栓的位置适当靠近联接接合面的边缘,以减小螺栓的受力(下图)。如果同时承受轴向载荷和较大的横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载荷,以减小螺栓的预紧力及其结构尺寸。 | 塾〉不令 接合面受弯矩或转矩时螺栓的布置

3)螺栓排列应有合理的间距,边距。布置螺栓时,各螺栓轴线间以及螺栓轴线和机体壁间的最小距离,应根据扳手所需活动空间的大小来决定。扳手空间的尺寸(下图)可查阅有关标准。对于压力容器等紧密性要求较高的重要联接,螺栓的间距to不得大于下表所推 荐的数值。 扳手空间尺寸 螺栓间距t o 注:表中d为螺纹公称直径。 4)分布在同一圆周上的螺栓数目,应取成4, 6, 8等偶数,以便在圆周上钻孔时的分度和画线。同一螺栓组中螺栓的材料,直径和长度均应相同。 5)避免螺栓承受附加的弯曲载荷。除了要在结构上设法保证载荷不偏心外,还应在工艺上保证被联接件,螺母和螺栓头部的支承面平整,并与螺栓轴线相垂直。对于在铸,锻件等的粗糙表面上应安装螺栓时,应制成凸台或沉头座(下图1)。当支承面为倾斜表面时,应采用斜面垫圈(下图2)等。

高强度螺栓预紧力和拧紧力矩比较分析

高强度螺栓预紧力和拧紧力矩比较分析 在钢结构连接中经常使用高强度螺栓。高强度螺栓连接对于防止松动有良好的可靠性,尤其用于连接动载荷的构件。在高强度螺栓连接中,预紧力和拧紧力矩是一个很重要的参数。下面就高强度螺栓的预紧力及拧紧力矩进行探讨,以期得到合理的结果,在今后的设计中应用。 1 预紧力大小的确定 高强度螺栓预紧力的大小跟螺栓的材料及其横截面面积有关。所用材料需要经过调质处理以提高其机械性能,满足使用要求。国内高强度螺栓的材料一般为45钢、40B钢及40Cr钢。45钢用作级的螺栓,40B钢及40Cr 钢用作级的螺栓。 预紧力大小由下式计算: P=σ b F i (1-1) 式中σ b —高强度螺栓材料经热处理后的抗拉强度限, F i —螺栓的计算面积(按内螺纹直径计算),按下表取。 高强度螺栓的螺纹内径d 1和计算面积F i 螺栓公称直径M16 M18 M20 M22 M24 螺纹的内径(mm) 计算面积(mm2)149 182 235 292 2 拧紧力矩的计算 拧紧力矩是为了使螺栓产生预紧力,其大小由预紧力确定。 拧紧力矩由下式计算: M =(kg·m)(2-1)

式中 P —高强度螺栓需要的预紧力(t ); d —高强度螺栓的公称直径(mm )。 3 下面就国内外高强度螺栓,根据它们的材料的机械性能计算其预紧力和拧紧力矩,并进行比较和分析,从中找到适合我们应用的预紧力和拧紧力矩。 (1) 根据《机械设计手册》(机械工业出版社) 材料: 45钢,级;40B 钢,级 抗拉强度限:45钢,850kN/mm 2;40B 钢,1550kN/mm 2。 计算结果如下表所示。 预紧力F v (kN)及扭紧力矩M A (N·m) (2) 根据《起重机设计手册》(辽宁人民出版社) 材料:45钢,级;40B 钢,级 抗拉强度限:45钢,850kN/mm 2;40B 钢,1550kN/mm 2。 计算结果如下: 预紧力F v (kN)及扭紧力矩M A (N·m)

螺栓组受力分析与计算

螺栓组受力分析与计算 一.螺栓组联接得设计 设计步骤: 1.螺栓组结构设计 2.螺栓受力分析 3.确定螺栓直径 4.校核螺栓组联接接合面得工作能力 5.校核螺栓所需得预紧力就是否合适 确定螺栓得公称直径后,螺栓得类型,长度,精度以及相应得螺母,垫圈等结构尺寸,可根据底板得厚度,螺栓在立柱上得固定方法及防松装置等全面考虑后定出。 1、螺栓组联接得结构设计 螺栓组联接结构设计得主要目得,在于合理地确定联接接合面得几何形状与螺栓得布置形式,力求各螺栓与联接接合面间受力均匀,便于加工与装配。为此,设计时应综合考虑以下几方面得问题: 1)联接接合面得几何形状通常都设计成轴对称得简单几何形状,如圆形,环形,矩形,框形,三角形等。这样不但便于加工制造,而且便于对称布置螺栓,使螺栓组得对称中心与联接接合面得形心重合,从而保证接合面受力比较均匀。 2)螺栓得布置应使各螺栓得受力合理。对于铰制孔用螺栓联接,不要在平行于工作载荷得方向上成排地布置八个以上得螺栓,以免载荷分布过于不均。当螺栓联接承受弯矩或转矩时,应使螺栓得位置适当靠近联接接合面得边缘,以减小螺栓得受力(下图)。如果同时承受轴向载荷与较大得横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载荷,以减小螺栓得预紧力及其结构尺寸。 接合面受弯矩或转矩时螺栓得布置

3)螺栓排列应有合理得间距,边距。布置螺栓时,各螺栓轴线间以及螺栓轴线与机体壁间得最小距离,应根据扳手所需活动空间得大小来决定。扳手空间得尺寸(下图)可查阅有关标准。对于压力容器等紧密性要求较高得重要联接,螺栓得间距t0不得大于下表所推荐得数值。 扳手空间尺寸 螺栓间距t0 注:表中d为螺纹公称直径。 4)分布在同一圆周上得螺栓数目,应取成4,6,8等偶数,以便在圆周上钻孔时得分度与画线。同一螺栓组中螺栓得材料,直径与长度均应相同。 5)避免螺栓承受附加得弯曲载荷。除了要在结构上设法保证载荷不偏心外,还应在工艺上保证被联接件,螺母与螺栓头部得支承面平整,并与螺栓轴线相垂直。对于在铸,锻件等得粗糙表面上应安装螺栓时,应制成凸台或沉头座(下图1)。当支承面为倾斜表面时,应采用斜面垫圈(下图2)等。

高强螺栓预紧力的计算方法

高强螺栓预紧力的计算方法 基本介绍 所谓螺栓预紧力,就是在拧螺栓过程中拧紧力矩作用下的螺栓与被联接件之间产生的沿螺栓轴心线方向的预紧力。对于一个特定的螺栓而言,其预紧力的大小与螺栓的拧紧力矩、螺栓与螺母之间的摩擦力、螺母与被联接件之间的摩擦力有关。对于一个不确定的螺栓而言,一个螺栓可使用的最大预紧力与螺栓材料品种、螺栓材料热处理、螺栓直径大小等都有关系。 假设螺栓在压力容器密封端盖上起到密封预紧的作用,并且这个端盖上有均布同规格的若干只螺栓,那么,这若干只螺栓所能承受的最小预紧力之和必须大于密封容器中工质最高压力所产生的反作用力,否则压力容器端盖与器体之间的密封就无法保障。 在工程领域中,测定螺栓预紧力通常有一些技术方法。对于精度要求高的螺栓预紧力的测量,往往采取螺栓弹性变形量大小来测量并计算出预紧力大小。对于中等要求的螺栓预紧力的测量,通常选用力矩扳手(力矩扳手的种类目前较多,在此不作具体介绍),按照规定的力矩大小拧紧螺母即可。对于一般要求的螺栓预紧力测量,用的最多的方法就是根据手力拧紧螺母,便从此时开始,按规定要求用扳手拧转螺母若干个角(一个角为60度)来估测预紧力是否已经达到。 预紧的目的 预紧可以提高螺栓连接的可靠性、防松能力和螺栓的疲劳强度,增强连接的紧密性和刚性。事实上,大量的试验和使用经验证明:较高的预紧力对连接的可靠性和被连接的寿命都是有益的,特别对有密封要求的连接更为必要。当然,俗话说得好,“物极必反”,过高的预紧力,如若控制不当或者偶然过载,也常会导致连接的失效。因此,准确确定螺栓的预紧力是非常重要的。 高强螺栓预紧力的计算方法 Mt=K×P0×d×10-3 N.m K:拧紧力系数 d:螺纹公称直径 P0:预紧力 P0=σ0×As As也可由下面表查出 As=π×ds2/4 ds:螺纹部分危险剖面的计算直径 ds=(d2+d3)/2 d3= d1-H/6 H:螺纹牙的公称工作高度 σ0 =(0.5~0.7)σs σs――――螺栓材料的屈服极限N/mm2 (与强度等级相关,材质决定) K值查表:(K值计算公式略) 摩擦表面状况 K值 有润滑无润滑

螺纹连接受力分析

螺纹连接受力分析 一、 螺纹强度校核 把螺母的一圈螺纹沿大径展开,螺杆的一圈螺纹沿小径展开,视为悬臂梁,如图。 相关参数: 轴向力F ,旋合螺纹圈数z (因为旋合的各圈螺纹牙受力不均,因而z 不宜大于10); 螺纹牙底宽度b ,螺纹工作高度h ,每圈螺纹牙的平均受力为F z ,作用在中径上。 螺母——内螺纹,大径、中径、小径分别为D 、2D 、1D 。 螺杆——外螺纹,大径、中径、小径分别为d 、2d 、1d 。 1. 挤压强度 螺母一圈挤压面面积为2D h π,螺杆一圈挤压面积为2d h π。 螺母挤压强度2[]p p F F z A D h πσ= =≤σ 螺杆挤压强度2[]p p F F z A d h σσπ= =≤ p σ为挤压应力, []p σ 为许用挤压应力。 2. 剪切强度 螺母剪切面面积为Db π,螺杆剪切面面积1d b π。 螺母,剪切强度[]F F z A Db ττπ= =≤ 螺母的一圈沿大径展开 螺杆的一圈沿小径展开

螺杆,剪切强度1[]F F z A d b ττπ= =≤ []0.6[]τσ=,[]s n σσ= 为材料许用拉应力,s σ为材料屈服应力。 安全系数,一般取3~5。 3. 弯曲强度 危险截面螺纹牙根部,A -A 。 螺母,弯曲强度23[]b b M Fh W Db z σσπ= =≤ 螺杆,弯曲强度213[]b b M Fh W d b z σσπ= =≤ 其中,L :弯曲力臂,螺母22D D L -= ,螺杆2 2 d d L -= M :弯矩,螺母22D D F M F L z -=?= ?,螺杆2 2 d d F M F L z -=?=? W :抗弯模量,螺母2 6 Db W π= ,螺杆2 16 d b W π= []b σ:螺纹牙的许用弯曲应力,对钢材,[]1~1.2[]b σσ= 4. 自锁性能 自锁条件v ψψ≤, 其中,螺旋升角22 arctan arctan S np d d ψππ==,螺距、导程、线数之间关系:S =np ; 当量摩擦角arctan arctan cos v v f f ψβ ==, 当量摩擦系数cos v f f β= f 为螺旋副的滑动摩擦系数,无量纲,定期润滑条件下,可取0.13~0.17; β为牙侧角,为牙型角α的一半,2βα= 5. 螺杆强度 1、 实心

螺栓预紧力的计算

1螺栓的预紧力可按下式计算: P0—预紧力 P0=σ0×As As=π×ds^2/4 ds—螺纹部分危险剖面的计算直径 2ds=(d2+d3)/2 d3= d1-H/6 H—螺纹牙的公称工作高度 σ0 =(0.5~0.7)σs σs—螺栓材料的屈服极限kgf/mm^2 (与强度等级相关,材质决定) 2 也可查表: 螺栓性能等级的含义 2007年11月23日星期五 14:29 钢结构连接用螺栓性能等级分3.6、4.6、4.8、5.6、6.8、8.8、9.8、10.9、12.9等10余个等级,其中8.8级及以上螺栓材质为低碳合金钢或中碳钢并经热处理(淬火、回火),通称为高强度螺栓,其余通称为普通螺栓。螺栓性能等级标号有两部分数字组成,分别表示螺栓材料的公称抗拉强度值和屈强比值。例如,性能等级4.6级的螺栓,其含义是: 1、螺栓材质公称抗拉强度达400MPa级; 2、螺栓材质的屈强比值为0.6; 3、螺栓材质的公称屈服强度达400×0.6=240MPa级性能等级10.9级高强度螺栓,其材料经过热处理后,能达到: 1、螺栓材质公称抗拉强度达1000MPa级; 2、螺栓材质的屈强比值为0.9; 3、螺栓材质的公称屈服强度达1000×0.9=900MPa级 螺栓性能等级的含义是国际通用的标准,相同性能等级的螺栓,不管其材料和产地的区别,其性能是相同的,设计上只选用性能等级即可。 强度等级所谓8.8级和10.9级

是指螺栓的抗剪切应力等级为8.8GPa和10.9Gpa 8.8 公称抗拉强度800N/MM2 公称屈服强度640N/MM2 一般的螺栓是用"X.Y"表示强度的, X*100=此螺栓的抗拉强度, X*100*(Y/10)=此螺栓的屈服强度 (因为按标识规定:屈服强度/抗拉强度=Y/10)

螺丝破坏扭力的计算

在螺纹紧固件的使用中应用的较广泛的是螺栓-螺母连接副的形式,应用的较多的是有预紧力的连接方式,预紧力的连接可以提高螺栓连接的可靠性、防松能力及螺栓的疲劳强度,并且能增强螺纹连接体的紧密性和刚度。在螺纹紧固件的连接使用中,没有预紧力或预紧力不够时,起不到真正的连接作用,一般称之为欠拧;但过高的预紧力或者不可避免的超拧也会导致螺纹连接的失败。众所周知,螺纹连接的可靠性是由预紧力来设计和判断的,但是,除在实验室可以测量外,在装配现场一般是不易直观的测量。螺纹紧固件的预紧力则多是采用力矩或转角的手段来达到的。因此,当设计确定了预紧力之后,安装时采用何种控制方法?如何规定拧紧力矩的指标?则成为关键重要问题,这就提出来了螺纹紧固件扭(矩)-拉(力)关系的研究课题。 螺纹紧固件扭-拉关系,不仅涉及到扭矩系数、摩擦系数(含螺纹摩擦系数和支撑面摩擦系数)、屈服紧固轴力、屈服紧固扭矩和极限紧固轴力等以一系列螺纹连接副的紧固特性的测试及计算方法,还涉及到螺纹紧固件的应力截面积和承载面积的计算方法等基础的术语、符号的规定。并且也还必须给出螺纹紧固件紧固的基本规则、主要关系式以及典型的拧紧方法。目前,这些内容ISO/TC2尚无相应的标准,德国工程师协会早在七十年代就发表了DVI2230《高强度螺栓连接的系统计算》技术准则。日本也于1987和1990年发布了三项国家标准,尚未查到其他国家的标准。国内尚未发现相应的行业标准,仅少数企业制定了企业标准。尤其是随着引进技术的国产化不断的拓展和螺纹紧固件技术发展的需要,这一需求日趋迫切。这也就是制定此项标准的初衷。 日本国家标准JIS B 1082-1987《螺纹紧固件应力截面积和承载面积》、JIS B 1083-1990《螺纹紧固件紧固通则》及JIS B 1084-1990《螺纹紧固件拧紧试验方法》三个标准,概括了国际上有关螺纹紧固件扭-拉关系的研究成果和应用经验,根据标准验证,对我国也是适用的。因此,在制定标准时,在充分消化、分析日本标准的基础上,提出了等效采用的意见。 因此,本系列标准也包括了下列三个国家标准: 1、GB/T16823.1-1997《螺纹紧固件应力截面积和承载面积》; 2、GB/T16823.2-1997《螺纹紧固件紧固通则》; 3、GB/T16823.3-1997《螺纹紧固件拧紧试验方法》 一、GB/T16823.1-1997《螺纹紧固件应力截面积和承载面积》 本标准等效采用JIS B 1082-1987《螺纹紧固件应力截面积和承载截面积》标准,本标准是设计螺纹紧固件扭-拉关系系列标准之一。 1、范围 本标准规定的螺纹紧固件的应力截面积(As)适用于计算外螺纹紧固件的最小拉力载荷、保证载荷以及内螺纹紧固件的保证载荷。外螺纹紧固件包括螺栓、螺钉和螺柱等标准件和专用件;内螺纹紧固件包括螺母标准件、专用件及机体中的螺孔。其螺纹尺寸及公差均应符合GB/T193、GB/T196和GB/T197的规定。本标准不适用于寸制螺纹、统一螺纹、惠氏螺纹等其他螺纹紧固件。 2、螺纹紧固件应力截面积计算公式 本标准规定的螺纹紧固件应力截面积计算公式有两个,即公式(1)和公式(2)。 螺纹紧固件应力截面积计算公式(1)与已发布的国家标准,即 GB/T3098.1《紧固件机械性能螺栓、螺钉和螺柱》、GB/T3098.2《紧固件机械性能螺母》、GB/T3098.4《紧固件机械性能细牙螺母》和GB/T3098.6《紧固

螺栓组受力分析与计算..

螺栓组受力分析与计算 1.螺栓组联接的设计 设计步骤: 1.螺栓组结构设计 2.螺栓受力分析 3.确定螺栓直径 4.校核螺栓组联接接合面的工作能力 5.校核螺栓所需的预紧力是否合适 确定螺栓的公称直径后,螺栓的类型,长度,精度以及相应的螺母,垫圈等结构尺寸,可根据底板的厚度,螺栓在立柱上的固定方法及防松装置等全面考虑后定出。 1. 螺栓组联接的结构设计 螺栓组联接结构设计的主要目的,在于合理地确定联接接合面的几何形状和螺栓的布置形式,力求各螺栓和联接接合面间受力均匀,便于加工和装配。为此,设计时应综合考虑以下几方面的问题: 1)联接接合面的几何形状通常都设计成轴对称的简单几何形状,如圆形,环形,矩形,框形,三角形等。这样不但便于加工制造,而且便于对称布置螺栓,使螺栓组的对称中心和联接接合面的形心重合,从而保证接合面受力比较均匀。 2)螺栓的布置应使各螺栓的受力合理。对于铰制孔用螺栓联接,不要在平行于工作载荷的方向上成排地布置八个以上的螺栓,以免载荷分布过于不均。当螺栓联接承受弯矩或转矩时,应使螺栓的位置适当靠近联接接合面的边缘,以减小螺栓的受力(下图)。如果同时承受轴向载荷和较大的横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载荷,以减小螺栓的预紧力及其结构尺寸。 接合面受弯矩或转矩时螺栓的布置 3)螺栓排列应有合理的间距,边距。布置螺栓时,各螺栓轴线间以及螺栓轴线和机体壁间的最小距离,应根据扳手所需活动空间的大小来决定。扳手空间的尺寸(下图)可查阅有关标准。对于压力容器等紧密性

要求较高的重要联接,螺栓的间距t0不得大于下表所推荐的数值。 扳手空间尺寸 螺栓间距t0 注:表中d为螺纹公称直径。 4)分布在同一圆周上的螺栓数目,应取成4,6,8等偶数,以便在圆周上钻孔时的分度和画线。同一螺栓组中螺栓的材料,直径和长度均应相同。 5)避免螺栓承受附加的弯曲载荷。除了要在结构上设法保证载荷不偏心外,还应在工艺上保证被联接件,螺母和螺栓头部的支承面平整,并与螺栓轴线相垂直。对于在铸,锻件等的粗糙表面上应安装螺栓时,应制成凸台或沉头座(下图1)。当支承面为倾斜表面时,应采用斜面垫圈(下图2)等。 图1 凸台与沉头座的应用 图2 斜面垫圈的应 用

机械设计习题集答案第十五章螺纹连接(解答)

15—4 一牵曳钩用2个M10的普通螺钉固定于机体上,如图所示。已知接合面间的摩擦系数f=0.15,螺栓材料为Q235、强度级别为4.6级, 装配时控制预紧力,试求螺栓组连接允许的最大牵引力。 解题分析:本题是螺栓组受横向载荷作用的典型 例子.它是靠普通螺栓拧紧后在接合面间产生的摩擦 力来传递横向外载荷F R 。解题时,要先求出螺栓组所 受的预紧力,然后,以连接的接合面不滑移作为计算 准则,根据接合面的静力平衡条件反推出外载荷F R 。 题15—4图 解题要点: (1)求预紧力F ′: 由螺栓强度级别4.6级知σS =240MPa ,查教材表11—5(a ),取S=1.35,则许用拉应力: [σ]= σS /S =240/1.35 MPa=178 MPa , 查(GB196—86)M10螺纹小径d 1=8.376mm 由教材式(11—13): 1.3F ′/(πd 21/4)≤[σ] MPa 得: F ′=[σ]πd 21/(4×1.3)=178 ×π×8.3762 /5.2 N =7535 N (2) 求牵引力F R : 由式(11—25)得F R =F ′fzm/K f =7535×0.15×2×1/1.2N=1883.8 N (取K f =1.2) 分析与思考: (1)常用螺纹按牙型分为哪几种?各有何特点?各适用于什么场合?连接螺纹用什么牙型?传动螺纹主要用哪些牙型?为什么? 答:根据牙型,螺纹可以分为三角形、矩形、梯形、锯齿形等。选用时要根据螺纹连接的工作要求,主要从螺纹连接的效率和自锁条件两个方面考虑,结合各种螺纹的牙形特点。例如三角形螺纹,由于它的牙形角α较大,当量摩擦角υρ也较大(βρυυcos arctan arctan f f ==),分 析螺纹的效率() υρη+ψψ=tan tan 和自锁条件 Ψυρ≤,可知三角形螺纹效率较低,但自锁条件较好,因此用于连接。同理可知矩形、梯形和锯齿形螺纹等当量摩擦角υρ较小,效率较高,自锁条件较差,因此用于传动。 (2)从自锁和效率的角度比较不同线数螺纹的特点,为什么多线螺纹主要用于传动?螺纹线数一般控制在什么范围内?为什么? 答:当螺纹副的当量摩擦系数一定时,螺纹线数越多,螺纹升角越大,效率越高,越不易自锁,

螺栓预紧力标准

螺栓预紧力标准 各单位: 近来发现许多维修人员在设备维修时,对设备连接螺栓扭力力矩要求不清楚,使用的扭力不规范,易造成维修缺陷及故障隐患,为加强设备连接螺栓的紧固规范,提高维修质量,现要求维修员工在维修中,螺栓的预紧力矩一律按以下力矩表严格执行。 特殊设备螺栓紧固要求及紧固力矩一;水泥磨辊压机锁紧盘螺栓紧固要求及紧固力矩:先用1/3的力矩,对角交叉均匀扭紧,再用1/2的力矩对角交叉均匀扭紧,然后用总力矩对角交叉均匀扭紧,最后用总扭力矩,按圆周顺序紧固一遍完成,(注:该螺栓的总力为1100N.m)。 二;生料辊压机锁紧盘螺栓紧固要求及紧固力矩:先用1/3的力矩,对角交叉均匀扭紧,再用1/2的力矩对角交叉均匀扭紧,然后用总的力矩对角交叉均匀扭紧,最后用总扭力矩,按圆周顺序紧固一遍完成,(注:该螺栓的总力为1640N.m)。 三:皮带输送机,提升机及其他辅机减速机锁紧盘螺栓紧固力矩表

紧固要求:先用1/2的扭力力矩对角交叉紧固,最后用总扭力按圆周顺序依次紧固。直到所有的力满为止。 四:斜拉链机连接螺栓更换及使用力矩:在更换齿片时,一定要同时更换相应的紧固件,而且必须使用扭力扳手,头部螺栓力矩为1080N.m ;尾部螺栓为630N.m。 五:钢丝胶带提升机夹板螺栓及料斗螺栓的紧固方式及力矩: 胶带夹板紧固力矩表 1:防松螺母紧固力100N.m。 2:在操作期间,紧固力矩可减少到200N.m,如果检查时发现低于200N.m,固定螺母应重新紧固到300N.m. 3紧固顺序: 第一行..........9 5 1 3 7 11 第二行.........10 6 2 4 8 12 注:提升机调试运行第一年内,必须在带载运行六个阶段12小时,72小时,2周,1个月,3个月,6个月,对带夹连接螺栓进行紧固。(力矩按照上表),并

螺栓预紧力对照表

强度等级 4.8 6.88.810.912.9螺栓预紧力对照表最小破断 强度 392 Mpa 588 Mpa 784 Mpa 941Mpa 1176 Mpa 材质一般构造用钢机械构造用碳钢铬铝合金钢镍铬铝合金钢镍铬合金钢螺栓对边mm 6~12扭距值N.m M611 612M813 8~1516~30M1017 18~3036~63M1219 30~4770~110M1422 6998137165225M1624 98137206247363M1827 137206284341480M2030 176296402569480M2232 225333539765911M2436 3144706869811176M2741 441637102914721764M3046 588882122519622352M3350 7351127147020602450M3655 9801470176424532940M3960 11761764215629433626M4265 15192352274438264606M4570 17642744313644155390M4875 22543430392055926664M5280 27444116470465738330M5685 352851495978843710290M6090 4018597877421079113230M6495 499874488820M68100 5684852610780M72105 6468980012642M76110 73501078014710M80115 81431225018130M85120 88201372022050105841617024500M90130 M100145 1372020090M110155 1636624990M120175 1989429890 M125180 注:1、上表为德国工业标准;表中扭矩值为螺栓达到屈服极限的70%时所测定

机械设计螺栓计算题

1. 用于紧联接的一个M16普通螺栓,小径d 1=14.376mm, 预紧力F ˊ=20000N,轴向工作载荷F =10000N,螺栓刚度C b =1 ×106N/mm,被联接件刚度C m =4×106N/mm,螺栓材料的许用应力[σ]=150N/mm 2; (1)计算螺栓所受的总拉力F (2)校核螺栓工作时的强度。 1. 解 (1) 2.010)41(1016 6 =?+?=+m b b C C C =20000+0.2×10000=22000N ………………(5分) (2) () 2210 376.144220003.143.1??==ππ σd F ca =176.2N/mm 2>[]σ ………………(5分) 2.图c 所示为一托架,20kN 的载荷作用在托架宽度方向的对称线上,用四个螺栓将托架连接在一钢制横梁上,螺栓的相对刚度为0.3,螺栓组连接采用普通螺栓连接形式,假设被连接件都不会被压溃,试计算: 1) 该螺栓组连接的接合面不出现间隙所需的螺栓预紧力F′ 至少应大于多少?(接合面的抗弯剖面模量W=12.71×106mm 3)(7分) 2)若受力最大螺栓处接合面间的残余预紧力F ′′ 要保证6956N , 计算该螺栓所需预紧力F ′ 、所受的总拉力F 0。(3分) (1)、螺栓组联接受力分析:将托架受力 情况分解成下图所示的受轴向载荷Q 和受倾覆力矩M 的两种基本螺栓组连接情况分别考虑。 (2)计算受力最大螺栓的工作载荷F :(1分) Q 使每个螺栓所受的轴向载荷均等,为:)(50004 200001N Z Q F === 倾覆力矩M 使左侧两个螺栓工作拉力减小;使右侧两个螺栓工作拉力增加,值为:)(41.65935.22745.22710626412 max 2N l Ml F i i =???==∑= 显然,轴线右侧两个螺栓所受轴向工作载荷最大,均为: (3)根据接合面间不出现间隙条件确定螺栓所需的预紧力F ’:

相关文档
相关文档 最新文档