文档库 最新最全的文档下载
当前位置:文档库 › 板坯缺陷原因

板坯缺陷原因

板坯缺陷原因
板坯缺陷原因

板坯缺陷之二—《中厚板质量工程师手稿》—陈定乾

(2011-06-07 19:45:19)

转载

分类:中厚板质量工程师手稿

标签:

杂谈

板坯缺陷

2、板坯裂纹

据现场经验,铸坯表面存在深1㎜、长10㎜的裂纹,会在后面的轧制工序中引起质量问题。YB/T2012-2004《连续铸钢板坯》的表面质量规定为:1、连铸板坯表面不得有目视可见的重接、重叠、翻皮、结疤、夹杂、深度或高度大于3㎜的划痕、压痕、擦伤、气孔、冷溅、皱纹、凸坑、凹坑和深度大于2㎜的裂纹,不得有高度大于5㎜的火焰切割瘤。2、连铸板坯横截面不得有影响使用的缩孔、皮下气泡、裂纹。3、连铸板坯表面如存在上述缺陷,应沿轧制方向清除,清除处应圆滑无棱角。清除宽度不得小于深度的6倍,长度不得小于深度的10倍。表面清除的深度,单面不得大于连铸板坯厚度的10%,两相对面清除深度之和不得大于厚度15%。清除深度自实际尺寸算起。4、如果清除深度大于厚度的4%,而清除处又不在连铸坯宽度方向的中部1/3内时,可在连铸板坯同一面上与长度方向的中心轴线对称位置修磨相应的面积和深度。5、经供需双方协商,连铸板坯表面质量要求可在适当范围内调整。

板坯表面裂纹主要有:表面纵裂或角部纵裂、表面横裂或角部横裂、星裂。资料显示:钢的温度与裂纹有关系,称之为“钢的高温性能”。⑴钢可分为三个延性区:Ⅰ区凝固脆性区(Tm-1350℃),Ⅱ区高温塑性区(1300-1000℃),Ⅲ区低温脆化区(900-700℃),Ⅰ区使铸坯产生内裂纹,Ⅲ区使铸坯产生表面裂纹。⑵外力作用为:结晶器坯壳与铜板摩擦力、钢水静压力产生鼓肚、喷水冷却不均匀产生热应力、铸坯弯曲或矫直力、支承辊不对中产生的机械力、相变应力,当这些力作用在高温铸坯表面或凝固前沿产生的应力或应变量超过钢的σ临或ε临时就产生裂纹,然后在二冷区裂纹进一步扩展。⑶工艺性能为:浇注过热度、杂质元素含量( S 、Mn/S 、P 、Cu 、Sn 、Zn……)、二冷水量和铸坯表面温度分布、坯壳与结晶器铜板良好的润滑性、结晶器液面的稳定性、结晶器内坯壳均匀生长。设备性能:结晶器锥度、结晶器的振动(振动频率f,振幅S,负滑脱时间tN)、气水喷雾冷却、对弧准确,防止坯壳变形(对弧误差[0.5mm])、在线检测支承辊开口度([0.5mm])、支承辊变形、多点矫直或连续矫直、多节辊、压缩浇注等。外力、钢的高温性能、工艺性能和设备性能共同作用下产生缺陷。

⑴表面纵向裂纹(见图8)

连铸坯表面纵裂纹是指在铸坯长度方向的裂纹。资料表明:纵裂一般发生在铸坯内弧,长度有几十毫米到几百毫米,有的甚至贯穿,裂纹长度不小于100㎜,深有几毫米,一般出现在铸坯宽面中部,经常在Q235B等钢种中出现,裂纹处有初次树枝晶,一般可以通过按标准进行修磨(可参考YB/T2012)给予去除。尺寸较小的裂纹,长度不大于20~30㎜,深度不大于1㎜,随机出现在铸坯宽面中部到1/4宽处,可用手砂轮修磨掉,如果不进行处理,钢板上面会有裂纹,大多数可以轻微修磨消除。

包晶钢容易出现此种裂纹,从现场的实践来看,〔C〕=0.15~0.16的钢为多。技术人员认为纵裂纹有以下组织特点:与无裂纹部位相比,裂纹区的激冷层越薄,裂纹深度越大。产生原因是:

图8 连铸坯表面纵裂纹

⑵表面横裂纹(见图9)

横裂纹可位于铸坯面部或角部。横裂纹与振痕共生,深度2~4mm,可达

7mm,裂纹深处生成FeO。不易剥落,热轧板表面出现条状裂纹。振痕深,柱状晶异常,形成元素的偏析层,轧制板上留下花纹状缺陷。铸坯横裂纹常常被FeO 覆盖,只有经过酸洗后,才能发现。横裂纹产生于结晶器初始坯壳形成振痕的波谷处,振痕越深,则横裂纹越严重。振痕波谷处,奥氏体晶界脆性增大,为裂纹产生提供了条件。铸坯运行过程中,受到外力(弯曲,矫直,鼓肚,辊子不对中等)作用时,刚好处于低温脆性区的铸坯表面处于受拉伸应力作用状态,如果坯>1.3%,在振痕波谷处就产生裂纹。C=0.08~0.15%,坯壳厚度不均壳所受的ε

匀性强,振痕深,表面易产生凹陷或横裂纹;生产实践表明,C=0.15~0.18%或0.15~0.20%时,振痕浅了,铸坯边部横裂减少;降低钢中[N],防止氮化物沉淀。结晶器振动频率f增加,振痕变浅,横裂纹减少。负滑脱时间增加,振痕深度增加。结晶器液面波动增加,横裂纹加重。保护渣耗量增加,横裂纹减少。调整二

冷水分布,在矫直前铸坯温度>900℃,避开脆性区,合适二冷水量并降低铸坯横向温度差,尤其是角部温度。

图9 表面横裂纹

⑶表面星状裂纹(见图10)

表面星状裂纹指在连铸坯表面呈星状或网状(也称鸡爪形),一般深度小于10㎜,有时陷藏于氧化铁皮下不容易被发现,板坯入库目测检查只容易发现大纵裂、边部横裂纹,星裂往往被放过去,案例中采用六西格玛分析方法,对裂纹的判断进行了一些讨论,也许对今后的工作有所裨益。星裂经酸洗或喷丸后才出现在铸坯表面。星裂可能会引发钢板表面的龟裂、星裂等形式的裂纹。星裂可以通过钢坯清理、钢板表面修磨消除。金相观察表明,裂纹沿初生奥氏体晶界扩展。裂纹中充满FeO,轧制成品板材表面裂纹走向不规则,成弥散分布,细若发丝,深度很浅,最深达1.1mm。

形成原因是:在摩擦力作用下,高温凝固坯壳与结晶器铜板接触,铜元素吸附在高温坯壳上,Cu熔点是1040℃,并在坯壳表面氧化铁皮下的某一区域集,在1100℃下,其中有一部分液体。铜熔化沿着开裂的奥氏体晶界渗入,铸坯出结晶器后受应力后被脆化。在裂纹里发现有铜(Cu=1.6%)。钢中含Cu=0.05~0.2%,高温铸坯由于Fe氧化,在FeO皮下形成含Cu的富集相(70% Cu,15%Ni,10%Sn,5?)熔点低,形成液相沿晶界穿行,在高温时(1100~1200℃)具有最大的裂纹敏感性。结晶器内和出结晶后的强冷会产生应力,使裂纹更重,即使没有铜元素,保护渣的变化也会导致裂纹(见案例4)。对于高强度钢中含有Al、V和Nb等元素,形成氮化物沉淀以及硫化物在晶界沉淀。资料认为由于降低了晶界的强度,引起晶界脆化,导致星状裂纹产生。表面网状裂纹也有不含Cu也不含保护渣,当钢水中[H]>5.5ppm出现网状裂纹废品,当[H]>10-11ppm,网状裂纹废品增加,降低钢中[H],降低[S],提高Mn/S比,可使网状裂纹明显减少。树枝晶间富集S→奥氏体晶界富集有(Fe,Mn)S (Mn28-29%,Fe 34-35%,S 36%),熔点980-1000℃,晶界形成硫化物液体薄膜,在外力作用下形成网状裂纹。降低[S],提高Mn/S比,延长加热时间,提高加热温度,使晶界(Fe,Mn)S转变为MnS,轧制板材无裂纹。

图10 星状裂纹

⑷表面凹坑(见图11)

铸坯表面的凹坑,是在结晶器内产生的,有两种可能:一是保护渣熔化效果不好,导致结团,出结晶器后脱落导致;二是浇钢工在浇注过程中,挑保护渣条不当导致。

图11 表面凹坑

3、气泡

气泡一般分成两种,一种是针孔状气泡,另一种是蜂窝状气泡。针孔状气泡形貌特征是,铸坯酸浸试面或硫印图上呈现针孔状黑斑,由于钢液裹入气体而形成;蜂窝状泡形貌特征是,铸坯酸浸试面或硫印图上角部呈现方向垂直铸坯表面的条状和椭圆状气孔,因钢液脱氧不良或浇铸系统潮湿而产生。如果在轧制中不能焊合,形成中间裂纹,造成钢板探伤不合及分层,或切削加工后出现裂纹。

一般认为钢水脱氧不足是产生气泡的主要原因,从碳的氧势图中看,随着温度的降低,碳氧反应的平衡会发和生移动,钢中C-O平衡被破坏,由C-O反应生成一氧化碳气体,当一氧化碳气体的分压大于钢液静压力与大气压力之和时,

就产生一氧化碳气泡。在钢液的凝固过程中,这些气泡被树枝晶捕集或受到已凝固表面层的阻碍而不能从钢坯中逸出,就会在钢坯中富集,凝固时就会形成铸坯皮下气泡。另外,钢水中的气体含量高(尤其是氢)也是生成气泡的一个重要原因,这些通过各种方式溶解在钢液中的气体,随着钢水温度的降低,在钢中溶解度下降,就会从钢液中析出,产生气泡。气泡的严重程度与钢水中气体含量多少有关。钢中气体含量少时常常产生铸坯皮下不足1mm的皮下针孔。仅仅分布于铸坯皮

下深约15mm的范围内。钢中气体含量大时则出现直径较大的大气泡,并且分布在整个铸坯断面上,甚至于裸露于铸坯表面。

图12 20CrMnTi与表面相通的两个皮下气泡金相形态,弧形白色区为高温

氧化铁素体

图14 钢板上的气泡

连铸气泡原因分析及预防措施

在铸坯坯表皮以下,沿柱状晶方向生长的孔洞称为气泡。接近于铸坯表面,相对比较小的气泡且密集分布的称之气孔。根据气泡位置,将露出表面的称之为表面气泡,不漏出表面的称之为皮下气泡。钢水脱落不良是产生气泡的主要原因,而钢中气体含量高(主要是氢)也是形成气泡的一个重要原因。另外出钢、浇注过程空气、水分的带入也会产生气泡。由于发生的位置不同,通常把露出铸坯表面的气泡称为表面气泡;把潜伏在铸坯表面下边而又靠近表面的称为皮下气泡。前者在未经清理的铸坯表面即可观察到,而后者只有在对铸坯表面进行清理之后才可观察到。当气泡直径较小但密集在一定面积时称为针孔。当连铸坯有气泡缺陷时,在进一步轧制过程中,会在轧材表面形成鳞状折叠缺陷,因此对有气泡缺陷的铸坯应进行修磨处理。

铸坯表面气泡形成的原因,一般是在凝固过程中,钢中的氧、氢、氮和碳等元素在凝固界面

富集。当其生成的CO,H2,N2等气体的总压力大于钢水静压力和大气压力之和时,就会有气泡形成。如果这些气泡不能及时从钢中逸出,就会存在于铸坯表面或皮下成为气泡缺陷。连铸坯脱氧不足(钢中残铝量小于0.0015%)往往是生成铸坯表面或皮下气泡的重要原因。此外操作因素对气泡缺陷也有一定影响,如在冶炼末期终点控制不当,钢水过氧化,或者出钢时间长,浇注温度高,以钢包和耐火材料烘烤不良等,都会使钢中溶解的气体增加,并导致形成铸坯气泡的危险。

为了防止铸坯表面气泡孔的生成,首要条件是控制钢中总的气体含量。为避免发生表面和皮下气泡,钢中氧的活度应小于一极限值。当钢中含炭量一定时,此极限值和钢中含[H]量与含[N]量有关。随着钢中[H]和[N]的增加,此极限值降低。因此加强限制和控制钢中[H]和[N]的含量,对生产无气泡缺陷的铸坯是必要的。控制结晶器中钢液面的波动,对减少铸坯针孔也很重要。在自动控制液面情况下,铸坯的针孔数比手动浇注情况下大为减少。近年来发展的结晶器电磁搅拌技术(M--EMS),可以促使气体从凝固界面逸出,因而可减少铸坯表面和皮下气泡的形成。

a在实际生产中,产生气泡的常见原因

⑴脱氧不良,当钢中溶解铝大于0.008%就可防止CO气泡产生。

(2)钢水过热渡大。

(3)两次氧化,空气中水汽吸入。

⑷保护渣水分超标。

⑸结晶器上口渗水。

⑹结晶器润滑油过量。

⑻中间包衬(绝热板)潮湿。

一般整炉铸坯出现气泡是由于钢水脱氧不足所引起的,中间包开浇第一炉的前面数铸坯出现气泡,是由于绝热板潮湿或粘结剂分解向钢水增氢所致。对于连续出现的气泡缺陷,应检查保护渣水分(要求小于0.5%)和结晶器上口是否渗水。

b采取的措施

⑴冶炼镇静钢一定要脱氧安全,防止在浇注过程中产生CO。

⑵确定正确的出钢温度,防止高温出钢。

⑶采用无氧化浇注,防止钢水吸气。

⑷钢包、中间包、水口要烘烤、去潮。

F 双浇

铸坯表面在水平方向呈现的不连续重接痕迹为“双浇”(或重接),对接位置往往是由于中断浇注造成的。

a产生双浇原因

(1)生产中操作不当,如:水口堵塞、更换浸入式水口、拉坯故障停车等。在弯月面形成不连续凝壳,继而再浇都会造成双浇缺陷。重接(双浇)处在轧制时不能焊合应该切除。

(2)结晶器的注流突然停浇,或瞬间停止拉坯。如果停浇时间过长,就会在铸坯表面形成明显的重接。

(3)钢水太粘、温度过低、水口堵塞、注流偏离等都可能引起重皮。

b防止双浇措施

减少注流中断的时间是防止双浇的唯一措施。

G翻皮

凝壳在结晶器内发生轻微破裂时,会有少量钢水流出来,弥合裂口,铸坯表面有横向的折叠状,好像贴了一层皮似的,称之为翻皮或重皮,严重将导致漏钢。

a常见的原因

(1)操作不当引起的结晶器内润滑不足或短时间拉速过快造成的润滑不足。

(2)结晶器弯月面出的钢管内壁有变形和凹坑(大于0.5mm)。

(3)烧氧造成的毛糙,形成挂钢。

(4)温度过高,凝壳薄,易撕裂。

(5)结晶器上口或边角出有渗漏水。

(6)结晶器震动参数选择不当。

由于结晶器铜管内壁上部挂钢所造成的翻皮是连续出现的,由于操作因素(润滑不足,过热度大)所造成的翻皮是个别的、继续的。

b采取的措施

(1)稳定拉速,润滑好结晶器。

(2)对结晶器的使用要严格把关,其参数误差超过规程严禁使用。

(3)严格按浇注制度浇钢,超过钢种要求的浇铸温度上限应拒浇。

H振痕异常

铸坯侧面正常的振痕是呈波浪状等距离地分布在铸坯表面,如果振痕不是水平线,而是在离铸坯角部很短的距离处,变成模糊的变形曲线,再在靠近相对的角部重新变成水平线状,这就是异常振痕,有时异常振痕表现为振痕过深,类似“横沟”的现象。在连铸过程中,为了避免坯壳与结晶器壁粘结,通常连铸机都设有结晶器振动装置,由于结晶器上下往复运动,在铸坯表面形成周期性的和拉坯方向垂直的震动痕迹。他是在坯壳不断的不断的被拉破又不断重新焊合的过程中形成的,若振痕深度较浅(小于0.5mm),而且比较规则的话,在铸坯进一步加工时不会形成的缺陷。但是如果振痕较深,在振痕谷部往往潜伏着横裂、夹渣和针孔等缺陷,这些缺陷将危害成品质量,在这种情况下,就构成了铸坯的“深振痕”表面缺陷。[NextPage]

研究工作证实,振痕深度和振动参数(频率、振幅、负滑动时间等)、钢中含炭量、保护渣性能以及结晶器液面波动状态等因素有关,随着震动频率的增加振幅的减小,振痕深度变小,因而采用高频率小振幅的振动方式,可显著改善铸坯表面质量,钢中含碳量对振痕的影响。显然低碳钢(0.1%左右时)铸坯的振痕最深。这种情况和前边已多次提到的低碳钢坯壳表面粗糙不平有关。调解保护渣粘度,降低保护渣消耗量,也有利于减小振痕深度。

一些研究工作证实,当结晶器内弯月面处液面保持高温时,可显著减小振痕深度,改善铸坯表面质量。为此,近年国外研制一种带有不锈钢插件的热顶结晶器。使用这种新型结晶器,可显著改善振痕深度。

a振痕异常原因

(1)结晶器震动异常是造成振痕异常的根本原因。

(2)结晶器铜管内表面不平整,特别是弯月面处有沟槽。

(3)结晶器内润滑不当也会造成振痕异常。

(4)操作不当引起。

b采取的措施

(1)严格检查结晶器的震动系统,防止出现震动异常。

(2)加强对结晶器的管理,防止结晶器带病工作。

(3)加强对结晶器的润滑。

I冷溅

由于金属

I冷溅

由于金属小颗粒夹在铸坯和结晶器壁之间,在铸坯表面形成分厂粗糙的凹痕面,称之为冷溅。

a造成冷溅的原因

(1) 敞口浇注时钢流的喷溅粘到结晶器的表面的冷钢嵌入凝固壳。

(2) 结晶器液面波动太大,把渣中的不容物卷入凝固壳。

(3) 浇注过程中烧氧操作不当使液滴飞溅到结晶器壁上。

b采取的措施

(1) 稳定结晶器液面,防止液面波动量过大。

(2) 防止铸流堵塞,正确浇氧,以免液滴飞溅到结晶器壁上。

(3) 采用保护浇注,提高自开率。

J渗漏

出现在铸坯表面的(成串的)钢液凝滴,称为渗漏。

a渗漏的原因

(1) 凝壳上的小裂纹,可能发生在结晶器内或二次冷却装置上部

(2) 其他一些缺陷及事故造成的渗漏。发生渗漏时,如果不及时对结晶器或二次冷却加强冷却,就将会发生漏钢,它是许多缺陷或事故的预警报。

b采取的措施

结晶器及二冷供水合适。

K擦伤

在铸坯表面沿拉环坯方向连续或部连续的划痕称为擦伤,其深度和宽度不一,引成原因主要是外来的损伤,加之拉速太快、铸坯温度过高,铸坯表面在高温状态时硬度较低所至。

a生产中造成擦伤的原因

(1)结晶器下有异物,划伤铸坯。

(2)足辊或导向辊旋转不良,时转时不转,附有氧化铁而造成铸坯损伤。

(3)因漏钢后冷钢、硬渣粘附在辊子上未及时清理,与铸坯摩擦划伤。

(4)拉矫水套处氧化铁堆积过多。

(5)采用液压剪切机时剪机套口附近有异物所至。

(2)角部纵向裂纹。这种裂纹在方坯中较常出现。发生这种裂纹的原因和方坯的形状缺陷。当铸坯发生脱方时,在其钝角处冷却速度快,较早收缩形成气隙,随后此处坯壳的生长受气隙影响厚度交薄,当其受到横向拉应力的作用时,即形成角部纵裂纹。当结晶器某些参数设计不当,圆角半径过大,倒锥度过小,或者因结晶器使用次数较多变形量较大时,都会使铸坯角部冷却不均匀,并诱发角部纵裂纹的发生。适当增大结晶锥度,使用凹面结晶器提高铸坯角部散热率,在二冷区对铸坯均匀冷却,防止铸坯脱方,都有助于减少角部纵裂纹的发生。

(3)表面横裂纹(和角部横裂纹)。表面横裂纹多发生在弧形联主机铸坯的内弧侧,而且常发生在铸坯表面深振痕的波谷处。对于含Al高的钢种和含有Nb、Cu、Ni、N等微量元素的钢种较容易出现这种裂纹。现已查明,这种裂纹的发生是在钢的第三脆性区(600°~900°),沿粗大的奥氏体晶界有AlN、BN等化合物析出的结果。在这个脆性区矫直铸坯时,铸坯内弧侧受到拉伸应力,很容易产生横裂

纹。表面横裂纹之所以经常发生振痕的波谷处,是因为波谷中往往充填有保护渣,使此处冷却速度降低,凝固组织粗大,坯壳强度低;而且波谷处有常是析出物的发源地。当矫直辊水平度异常时,铸坯的矫直应变比正常情况下增大,因而会导致横裂纹发生率增加。有时猪皮在矫直之前,表面已有星状裂纹,若在脆性区矫直,就会以原有的星状裂纹为缺口扩展为表面横裂纹。

除上述原因外,如果结晶器锥度过大,振动参数不适当,拉坯速度不稳定,二冷区铸坯冷却不均匀,都会加剧横裂纹的产生。为减少表面横裂应采取措施减小振痕深度,严格控制钢中Al和N的含量,向钢中加入适量的Ti、Zr、Ca等元素抑止氮化物、碳化物在晶界析出;尤其要控制矫直温度,使铸坯在脆性区之外矫直。当铸坯在900℃以上矫直时横裂纹大幅度减少。目前已广泛采用弱冷铸坯、高温矫直的措施,这不但有利于提高铸坯质量,而且易于实现铸坯热送。

关于角部横裂纹的形成原因以及预防措施,和表面横裂纹是基本上相同的,不过还应注意二冷区夹辊的对中,使铸坯角部不发生过分被弯曲的情况,否则将助长角部横裂的发生。(4)星形裂纹。星形裂纹又称表面龟裂,是在铸坯表面呈网状分布的细小裂纹。通常在铸坯表面经喷丸处理、酸洗、或剥皮后,才能检查出来。此种裂纹沿晶界分布,深度为1-2mm,长约10-20mm,分布在30-50mm2的范围内。星状裂纹的产生过程是热坯壳直接与结晶器铜板接触,铜的微粒在铸坯的晶界熔化并析出,最后在铸坯表面形成由铜引起的星形裂纹

板坯连铸机粘结漏钢的原因分析及预防 刘雷锋

板坯连铸机粘结漏钢的原因分析及预防刘雷锋 发表时间:2018-01-02T16:54:15.037Z 来源:《基层建设》2017年第28期作者:刘雷锋 [导读] 摘要:随着连铸技术的发展和广泛应用,连铸坯的质量和品质受到了人们的广泛关注,提高连铸坯的质量成为连铸生产中重点关注的问题之一。 宁波钢铁有限公司浙江宁波 315807 摘要:随着连铸技术的发展和广泛应用,连铸坯的质量和品质受到了人们的广泛关注,提高连铸坯的质量成为连铸生产中重点关注的问题之一。连铸过程开始广泛运用于有色金属行业,尤其是铜和铝。连铸技术迅速发展起来。本文对此进行了分析研究。 关键词:坯;连铸;连铸工艺 连铸漏钢是个常见现象。钢水在结晶器内形成坯壳,连铸坯出结晶器后,薄弱的坯壳抵抗不住钢水静压力,出现断裂而漏钢。对于薄板坯连铸来说更易发生漏钢事故。漏钢对连铸生产危害很大。即影响了连铸车间的产量,又影响了连铸坯的质量,更危及操作者的安全。因此,降低薄板坯连铸漏钢率是提高生产效率,提高产量,提高产品质量,降低成本的重要途径。现对某厂自2008~2013年薄板坯漏钢率进行统计。2008年漏钢率达0.56%;2009年漏钢率达0.19%;2010年漏钢率达0.19%;2011年漏钢率达0.19%;2012年漏钢率达0.15%;2013年漏钢率达0.07。 1 工艺流程 某厂第一钢轧厂工艺流程为:鱼雷罐供应铁水/混铁炉供应铁水→铁水预处理→转炉炼钢→氩站→精炼→薄板坯连铸 2 薄板坯漏钢类型 某厂薄板坯连铸漏钢主要有:粘结漏钢、裂纹漏钢、卷渣漏钢、开浇漏钢、鼓肚漏钢五个类型。 3 薄板坯漏钢特征、原因及预防措施 3.1 粘结漏钢 粘结漏钢是指钢水直接与结晶器铜板接触形成粘结点,粘结点处坯壳与结晶器壁之间发生粘结,此处在结晶器振动和拉坯的双重作用下被撕裂,并向下和两侧扩展,形成倒“V”形破裂线,钢水补充后又形成新的粘结点,这一过程反复进行,粘结点随坯壳运动不断下移,此处坯壳较薄,出结晶器后,坯壳不能承受上部钢水的静压力,便会发生漏钢事故。据统计,粘结漏钢发生率最高,高达50%以上。 (1)铸坯粘结漏钢后特征。粘结漏钢后铸坯特征。坯壳呈“V”字型或“倒三角”状,粘结点明显。 (2)粘结漏钢的原因: 1)保护渣性能不好。保护渣在结晶器铜板与凝固坯壳之间起润滑的效果。保护渣的性能好坏直接影响凝固坯壳的质量,保护渣的粘度是一个重要指标,它决定渣膜的薄厚,保护渣粘度高,不易流入坯壳与铜板之间形成润滑渣膜,使得钢水和结晶器铜板之间易发生粘结。2)钢水纯净度低。钢水中[O]含量高,使得钢水中A12O3含量升高,进而结晶器保护渣中A12O3含量高,保护渣性能发生变化,渣粘度增大、不易流入坯壳与铜板之间形成润滑渣膜,使得钢水和结晶器铜板之间易发生粘结。3)结晶器振动参数不合适。合适的振动形式和振动参数可以降低结晶器铜板与凝固坯壳之间的摩擦力和减小振痕深度,改善铸坯表面的质量。若结晶器振动参数不合适,负滑脱时间过长造成凝固坯壳上的振痕过深,使坯壳容易在应力的作用下断裂产生粘结。4)浸入式水口烘烤不符合标准。如果浸入式水口烘烤温度不够,连铸开浇时水口与结晶器内外弧间的保护渣产生搭桥现象,保护渣不易熔化,进而流入到坯壳和结晶器之间的保护渣减少,渣膜变薄,润滑效果变差,容易粘结漏钢。5)钢水温度过低。钢水温度过低,保护渣粘度大,润滑效果不好,易粘结漏钢。 3.2 卷渣漏钢 定義:由于结晶器液面波动会将渣卷入初生坯壳,这些渣子附着在坯壳表面,由于其导热性差,卷渣处的坯壳较薄,铸坯出结晶器后,渣子在钢水静压力作用下脱落产生漏钢。 在结晶器内的固态或半熔融的夹渣物随着浇注钢流的运动,被推向结晶器壁;或在更换中间包长水口时,中间包内钢液面下降后,中间包内钢渣易随钢流进入结晶器,最后被初生坯壳捕捉; (1)卷渣漏钢后特征。卷渣漏钢主要特征表现为:漏钢部位有“孔洞或结渣”,漏钢部位一般发生在结晶器出口位置。 (2)卷渣漏钢原因: 1)残留在钢中的大型夹杂物较多造成卷渣现象;2)较大的结晶器液面波动造成卷渣现象;3)捞渣不及时或捞不净造成的卷渣现象。 3.3开浇漏钢 开浇漏钢是指铸机开浇或者换中间包时,由于连接不好而造成的漏钢。 (1)开浇漏钢后铸坯特征。开浇漏钢铸坯特征为:漏钢一般发生在开浇起步期间,引锭头刚拉出结晶器就发生漏钢。(2)开浇漏钢原因:引锭头未扎好,包括石棉绳没扎紧;开浇起步过快,凝固时间不够开拉,坯头强度不够,将引锭头处拉裂漏钢。 4 薄板坯漏钢的预防措施 4.1 优化结晶器保护渣性能 通过优化保护渣碱度、熔点、熔速、粘度等指标,有效地减少了粘结、卷渣、裂纹漏钢等生产事故。 4.2 恒温恒拉速浇注 恒温恒拉速浇注是降低薄板坯漏钢率的主要因素。 4.3 优化连铸工艺参数 对不同钢种、不同断面的连铸相关参数(结晶器水流量、结晶器初始锥度、二冷水各段分配比例及比水量、扇形段压下终点位置等)进行优化调整,并固化使用。 4.4 连铸耐材优化与管理 (1)加强水口的烘烤操作。(2)优化中间包结构。中间包控流装置由“单挡渣坝”式改为“一挡墙+两挡坝”组合结构,将钢包下渣完全挡在冲击区内,产生的流场有利于钢液中夹杂物的充分上浮,有利于钢液成分、温度的均匀,提高了钢水质量,降低了漏钢事故。(3)加

连铸板坯缺陷特征和缺陷图谱

连铸板坯缺陷特征和 缺陷图谱 首钢京唐板坯质检编制 2010年8月8日

一.连铸坯质量特征综述 1.1连铸坯质量定义和特征 所谓连铸坯质量是指的到合格产品所允许的铸坯缺陷的严重程度。对铸坯质量要求而言,主要有四项指标,即连铸坯几何形状、表面质量、内部组织致密性和钢的洁净性;而这些质量要求与连铸机本身设计,采取的工艺以及凝固特点密切相关。 1.2铸坯的检查和清理的意义 提高钢的质量,降低成本,加强产品市场的竞争力是企业追求的目标,生产无缺陷连铸坯以保证高附加值产品优良的性能是永恒的主题,连铸坯的裂纹和夹杂物所产生的缺陷可以说是影响产品质量的两大障碍,生产无缺陷或缺陷不足以影响产品质量的连铸坯,这是要努力达到的目标,而连铸坯裂纹和夹杂物所产生的缺陷是受设备、工艺、管理等多种因素制约的。因此设备、工艺和管理的现代化加上人的质量意识是提高产品质量的关键。,但是在连铸生产中,铸坯的各种缺陷总是无法避免的,铸坯清理对钢厂保障铸坯质量、降低废品比例具有重要意义。 (1)火焰铸坯清理的注意事项 1)一般对表面质量要求较高的钢种,铸坯清理的目的以检查铸坯表面和皮下质量为主,包括夹杂物、气泡、裂纹等分布情况,在清理检查的基础上提供铸坯的进一步处理(清除缺陷、决定铸坯表面质量级别、是否送机器去皮、决定钢种是否达到热送条件等)的意见。 2)微合金钢如Nb、V微合金钢和包晶钢等容易产生角部横裂纹,往往位于铸坯振痕谷底,也需要用火焰清理才能发现。这方面也应引起足够重视。 3)对于包晶钢、中碳钢等钢种,则以人工清理肉眼可见缺陷为主,包括铸坯常见的表面缺陷,如纵裂、角横裂、重接、凹陷、夹渣、毛刺等,以便尽量降低铸坯判废损失。 (2)不良的火焰清理的危害 虽然火焰清理是检查和去除连铸坯表面缺陷的一个极好的方法。但是,这项操作的确需要掌握一定的技巧,一旦能够正确地操作可确保最终产品不产生额外的表面缺陷。连铸坯表面上的深槽、凸脊和界面必须平滑以确保清理操作本身不造成额外表面缺陷。如果采取了正确的操作,轧制表面通常不会产生与清理操作有关的缺陷。一个确保光滑过渡的良好操作是清理工作宽度要6倍于清理深度,如果没有采用正确的清理操作,那么缺陷会折叠,轧制后看起来像一条连续的划伤。 二连铸板坯内部缺陷 1.1中心疏松和缩孔 【定义与特征】在板坯断面上就可以发现中心附近有许多细小的空隙,中心疏松严重时会形成中心缩孔。 【鉴别与判定】用肉眼观察,铸坯轧制压缩比达3~5mm时,中心疏松可焊合,所以小的中心疏松和缩孔可以放过。但是严重的中心疏松会对产品质量危害甚大,所以必须进行切尺处理。 【图谱】

板坯外观缺陷图谱

第一篇连铸钢坯外观缺陷 目次 1.1 方坯 (2) 1.1.1脱方 (2) 1.1.2鼓肚 (3) 1.1.3弯曲 (4) 1.1.4端面剪切变形 (5) 1.1.5表面横裂 (6) 1.1.6角部横裂 (7) 1.1.7结疤或夹渣 (8) 1.1.8划痕 (9) 1.1.9气孔 (9) 1.1.10凹陷 (10) 1.1.11扭曲 (10) 1.1.12缩孔 (10) 1.1.13接痕 (11) 1.2 板坯 (12) 1.2.1鼓肚 (12) 1.2.2弯曲 (13) 1.2.3表面纵裂 (14) 1.2.4表面横裂 (16) 1.2.5角部纵裂 (17) 1.2.6角部横裂 (18) 1.2.7振痕 (20) 1.2.8气孔 (21) 1.2.9凹陷 (21) 1.2.10接痕 (23) 1.2.11中间裂纹 (25) 1.2.12中心线裂纹 (26) 1.2.13三角区裂纹 (27) 1.2.14端面切斜 (28) 1.2.15豁口、立沟、错牙 (29) 1.2.16弧形 (30) 1.2.17掰断 (30) 1.2.18毛刺和熔渣 (31) 1.2.19镰刀弯 (33) 1.2.20划痕 (33)

1.1 方坯1.1.1脱方英:Off square 【定义与特征】 脱方是方坯横截面上两个对角线不相等。 【原因分析】 方坯结晶器内各边冷却不均匀,造成凝固壳厚度不均。结晶器铜板水缝不均匀, 铜板磨损不均匀,下口锥度过大,水口不对中。 【鉴别与判定】 用量具测量铸坯横截面两个对角线的长度,如两对角线之差超出标准要求,做判废或改尺处理。

1.1.2鼓肚 英:Protuberance 【定义与特征】 铸坯表面凝固壳受到钢水静压力的作用导致一个或几个表面鼓胀成凸面。 【原因分析】 二冷喷嘴阻塞,水压不足或偏离;钢水过热度过高;拉速过快,冷却强度不足。【鉴别与判定】 用量具测量鼓肚量,如超出标准要求,做判废或改尺处理。

板坯缺陷原因

板坯缺陷之二—《中厚板质量工程师手稿》—陈定乾 (2011-06-07 19:45:19) 转载 分类:中厚板质量工程师手稿 标签: 杂谈 板坯缺陷 2、板坯裂纹 据现场经验,铸坯表面存在深1㎜、长10㎜的裂纹,会在后面的轧制工序中引起质量问题。YB/T2012-2004《连续铸钢板坯》的表面质量规定为:1、连铸板坯表面不得有目视可见的重接、重叠、翻皮、结疤、夹杂、深度或高度大于3㎜的划痕、压痕、擦伤、气孔、冷溅、皱纹、凸坑、凹坑和深度大于2㎜的裂纹,不得有高度大于5㎜的火焰切割瘤。2、连铸板坯横截面不得有影响使用的缩孔、皮下气泡、裂纹。3、连铸板坯表面如存在上述缺陷,应沿轧制方向清除,清除处应圆滑无棱角。清除宽度不得小于深度的6倍,长度不得小于深度的10倍。表面清除的深度,单面不得大于连铸板坯厚度的10%,两相对面清除深度之和不得大于厚度15%。清除深度自实际尺寸算起。4、如果清除深度大于厚度的4%,而清除处又不在连铸坯宽度方向的中部1/3内时,可在连铸板坯同一面上与长度方向的中心轴线对称位置修磨相应的面积和深度。5、经供需双方协商,连铸板坯表面质量要求可在适当范围内调整。 板坯表面裂纹主要有:表面纵裂或角部纵裂、表面横裂或角部横裂、星裂。资料显示:钢的温度与裂纹有关系,称之为“钢的高温性能”。⑴钢可分为三个延性区:Ⅰ区凝固脆性区(Tm-1350℃),Ⅱ区高温塑性区(1300-1000℃),Ⅲ区低温脆化区(900-700℃),Ⅰ区使铸坯产生内裂纹,Ⅲ区使铸坯产生表面裂纹。⑵外力作用为:结晶器坯壳与铜板摩擦力、钢水静压力产生鼓肚、喷水冷却不均匀产生热应力、铸坯弯曲或矫直力、支承辊不对中产生的机械力、相变应力,当这些力作用在高温铸坯表面或凝固前沿产生的应力或应变量超过钢的σ临或ε临时就产生裂纹,然后在二冷区裂纹进一步扩展。⑶工艺性能为:浇注过热度、杂质元素含量( S 、Mn/S 、P 、Cu 、Sn 、Zn……)、二冷水量和铸坯表面温度分布、坯壳与结晶器铜板良好的润滑性、结晶器液面的稳定性、结晶器内坯壳均匀生长。设备性能:结晶器锥度、结晶器的振动(振动频率f,振幅S,负滑脱时间tN)、气水喷雾冷却、对弧准确,防止坯壳变形(对弧误差[0.5mm])、在线检测支承辊开口度([0.5mm])、支承辊变形、多点矫直或连续矫直、多节辊、压缩浇注等。外力、钢的高温性能、工艺性能和设备性能共同作用下产生缺陷。 ⑴表面纵向裂纹(见图8) 连铸坯表面纵裂纹是指在铸坯长度方向的裂纹。资料表明:纵裂一般发生在铸坯内弧,长度有几十毫米到几百毫米,有的甚至贯穿,裂纹长度不小于100㎜,深有几毫米,一般出现在铸坯宽面中部,经常在Q235B等钢种中出现,裂纹处有初次树枝晶,一般可以通过按标准进行修磨(可参考YB/T2012)给予去除。尺寸较小的裂纹,长度不大于20~30㎜,深度不大于1㎜,随机出现在铸坯宽面中部到1/4宽处,可用手砂轮修磨掉,如果不进行处理,钢板上面会有裂纹,大多数可以轻微修磨消除。

板坯连铸机弯曲段的工作原理

板坯连铸机弯曲段的工作原理[工程]收藏转发至天涯微博 悬赏点数10 该提问已被关闭2个回答 匿名提问2009-04-26 11:36:26 板坯连铸机弯曲段的工作原理 最佳答案 297006692009-04-26 12:52:27 近年来,我国钢铁行业发展迅速,我国已成为世界上钢铁消费和钢铁生产大国,2005年我国的粗钢产量~3.4亿吨,连铸比达到95%以上。其中由于连铸具有显著的高生产率、高成材率、高质量和低成本的优点,因此连铸技术对钢铁工业生产流程的变革、产品质量的提高和结构化等方面起了革命性的作用。 钢铁技术的引进为我国钢铁工业的发展做出了巨大的贡献,特别是上世纪90年代以来,连铸技术的引进与推广极大的壮大了我国钢铁工业的实力,同时在连铸技术的消化吸收和创新的方面也取得了长足的进步,极大提高了我国连铸技术的自行设计和制造能力,实现了连铸技术的国产化。中冶京诚(原北京钢铁设计研究总院)在板坯连铸技术的集成创新和自主开发方面始终走在前列,随着国内连铸技术和连铸设备制造能力的发展与进步,为我国板坯连铸机的国产化做出了重要贡献。 板坯连铸国产化实践 板坯连铸机机型经历了由立式-弧形-直弧形的发展历程,特别是从世界上近10多年来新建的高质量板坯连铸机来看,直弧形连铸机已成为发展趋势和方向。直弧形连铸机兼具弧形和立式连铸机的优点,可根据产品方案和生产品种的不同,设计不同的基本弧半径和适宜的结晶器及以下的直线段长度,从而大大提高铸坯的洁净度和内部质量;国内外的生产实践证明,特别是在生产汽车用钢、管线钢等高质量钢方面,直弧形板坯连铸机有不可替代的作用。 中冶京诚是国内最早研究开发并参与引进消化国外先进直弧形板坯连铸工艺及装备技术的单位。多年以来,中冶京诚一直致力于研究开发、重视技术和理念的创新,先后成功地设计或总包建设了一大批技术经济指标达到国际先进水平的板坯连铸工程,拥有着丰富的先进技术资源和设计经验。无论是设计水平、总包能力还是设备集成技术,京诚公司在国内板坯连铸行业均占据着不可动摇的业绩优势和技术领先地位。 在多年的设计和生产实践中,开发出了如多种连铸机机型的辊列设计(连续弯曲连续矫直技术)、结晶器铜板传热计算、矫直反力计算、大包回转台有限元计算、扇形段有限元计算、小辊径密排分节辊、结晶器电动及液压调宽、扇形段远程调辊缝等软件技术,以及结晶器液压振动、动态二冷控制、扇形段轻压下等连铸工艺技术。新技术的不断应用大大提高了

带钢轧制常见缺陷原因分析

带钢轧制常见缺陷原因分析 结疤(M01) 图7-1-1 图7-1-2 1.缺陷特征 附着在钢带表面,形状不规则翘起的金属薄片称结疤。呈现叶状、羽状、条状、鱼鳞状、舌端状等。结疤分为两种,一种是与钢的本体相连结,并折合到板面上不易脱落;另一种是与钢的本体没有连结,但粘合到板面上,易于脱落,脱落后形成较光滑的凹坑。 2.产生原因及危害 产生原因: ①板坯表面原有的结疤、重皮等缺陷未清理干净,轧后残留在钢带表面上;②板坯表面留有火焰清理后的残渣,经轧制压入钢带表面。 危害: 导致后序加工使用过程中出现金属剥离或产生孔洞。 3.预防及消除方法 加强板坯质量验收,发现板坯表面存在结疤和火焰清理后残渣应清理干净。 4.检查判断 用肉眼检查; 不允许存在结疤缺陷,对局部结疤缺陷,允许修磨或切除带有结疤部分带钢的方法消除,如结疤已脱落,则比照压痕缺陷处理。 7.2气泡(M02)

图7-2-1闭合气泡 图7-2-2开口气泡 图7-2-3开口气泡 1.缺陷特征 钢带表面无规律分布的圆形或椭圆形凸包缺陷称气泡。其外缘较光滑,气泡轧破后,钢带表面出现破裂或起皮。某些气泡不凸起,经平整后,表面光亮,剪切断面呈分层状。 2.产生原因及危害 产生原因: ①因脱氧不良、吹氩不当等导致板坯内部聚集过多气体; ②板坯在炉时间长,皮下气泡暴露或聚集长大。 危害: 可能导致后序加工使用过程中产生分层或焊接不良。 3.预防及消除方法 ①加强板坯质量验收,不使用气泡缺陷暴露的板坯; ②严格按规程加热板坯,避免板坯在炉时间过长。 4.检查判断 用肉眼检查; 不允许存在气泡缺陷。 7.3表面夹杂(M03) 图7-3-1

板坯缺陷的种类形态、成因及处理办

板坯常见缺陷的形态成因及处理方法 技术质量部 2010年8月12日

前言 近年来,我国中厚板的生产规模有了大幅度增长,随着市场竞争的激烈,产品质量能够满足客户的需求,节约成本成为企业的核心竞争力。由于连铸钢坯质量决定最终产品质量,因此钢坯质量的检查和判定对钢坯质量控制以及钢板质量控制有着重要的作用,目前钢坯的质量检验主要依靠检验人员的现场观测和低倍硫印的检验。 本书由长期从事产品质量管理方面的专家、学者和有着丰富经验的现场检查判定人员通过较长时间的现场跟踪,对缺陷和生产过程的分析研究后,共同参与编写的,旨在通过概述的编写和出版为有关人员提供参考和借鉴。 本书立足于我公司的生产实际情况,以钢板质量为目标,连铸坯质量控制为核心的钢坯缺陷为例,对钢坯缺陷的形态、产生原因、影响以及处理办法给予了介绍。随着今后钢种数量的增多和生产方式的多样化,需要对本书不断的补充和丰富。本书将适时做进一步的补充,欢迎和感谢读者提出宝贵意见和建议。 限于编著者水平,书中难免有不足之处,望读者批评指正,编者不胜感激。

目录 一、表面缺陷 (1) 1、纵向裂纹 (1) 2、横向裂纹 (2) 3、角部横裂纹 (3) 4、角部纵裂纹 (4) 5、窄面横裂(侧裂) (5) 6、星状裂纹 (6) 7、表面夹杂 (7) 8、划伤 (8) 9、豁口 (9) 10、重接 (10) 11、毛刺 (11) 二、内部缺陷 (12) 1、皮下裂纹 (12) 2、皮下气泡 (13) 3、缩孔 (14) 4、角裂纹 (15) 5、三角区裂纹 (16) 6、中心裂纹 (17) 三、形状缺陷 (18) 1、鼓肚 (18) 2、凹陷 (19) 3、不平度 (20)

连铸坯质量缺陷

连铸坯的质量缺陷及控制 摘要 连铸坯质量决定着最终产品的质量。从广义来说所谓连铸坯质量是得到合格产品所允许的连铸坯缺陷的严重程度,连铸坯存在的缺陷在允许范围以内,叫合格产品。连铸坯质量是从以下几个方面进行评价的: (1)连铸坯的纯净度:指钢中夹杂物的含量,形态和分布。 (2)连铸坯的表面质量:主要是指连铸坯表面是否存在裂纹、夹渣及皮下气泡等缺陷。连铸坯这些表面缺陷主要是钢液在结晶器内坯壳形成生长过程中产生的,与浇注温度、拉坯速度、保护渣性能、浸入式水口的设计,结晶式的内腔形状、水缝均匀情况,结晶器振动以及结晶器液面的稳定因素有关。 (3)连铸坯的内部质量:是指连铸坯是否具有正确的凝固结构,以及裂纹、偏析、疏松等缺陷程度。二冷区冷却水的合理分配、支撑系统的严格对中是保证铸坯质量的关键。 (4)连铸坯的外观形状:是指连铸坯的几何尺寸是否符合规定的要求。与结晶器内腔尺寸和表面状态及冷却的均匀程度有关。 下面从以上四个方面对实际生产中连铸坯的质量控制采取的措施进行说明。 关键词:连铸坯;质量;控制 1 纯净度与质量的关系 纯净度是指钢中非金属夹杂物的数量、形态和分布。夹杂物的存在破坏了钢基体的连续性和致密性。夹杂物的大小、形态和分布对钢质量的影响也不同,如果夹杂物细小,呈球形,弥散分布,对钢质量的影响比集中存在要小些;当夹杂物大,呈偶然性分布,数量虽少对钢质量的危害也较大。 此外,夹杂物的尺寸和数量对钢质量的影响还与铸坯的比表面积有关。一般板坯和方坯单位长度的表面积(S)与体积(V)之比在0.2~0.8。随着薄板与薄带技术的发展,S/V 可达10~50,若在钢中的夹杂物含量相同情况下,对薄板薄带钢而言,就意味着夹杂物更接近铸坯表面,对生产薄板材质量的危害也越大。所以降低钢中夹杂物就更为重要了。 提高钢的纯净度就应在钢液进入结晶器之前,从各工序着手尽量减少对钢液的污染,并最大限度促使夹杂物从钢液中排除。为此应采取以下措施:

板坯粘结漏钢原因与预防措施

板坯粘结漏钢原因与预防措施 Doi :10.3969/j .issn .l 006-110X .2018.z l .005 板坯粘结漏钢原因与预防措施 孟阳 (天津钢铁集团有限公司炼钢厂,天津300301) [摘要]天津钢铁集团有限公司3号板坯连铸机短时间内多次发生的漏钢事故,作者通过排除法分析出漏钢 事故类型为粘结性漏钢。重点分析了发生粘结漏钢的原因,并对其他类型的漏钢机理进行简要介绍。针对3号板坯连 铸机的工艺操作和设备精度调整等方面制定了详细的改进措施,实施后,天钢3号板坯连铸机发生漏钢的几率大大降 低,降低了其对生产顺行的影响。 [关键词]漏钢;粘结;工艺;改进;板坯;连铸 Causes and Preventive Measures of Steel B1eed-out by Slab Bonding MENG Yang (Steel-making Plant , Tianjin Iron and Steel Group Co ., Ltd . Tianjin 300301, Ch 74$比"8+ In Tianjin Iron and Steel Group Co . Ltd . the bleed-out accident occurred many times in a short period of t ime on the No .3 slab continuous caster , and the author analyzed that the type of bleed-out accident by the method of exclusion was adhesive bleed -out . The cau were analyzed , and the mechanism of other types of bleed-out was brie process operation of No . 3 slab continuous casting machine and the adjustment of equ the detailed improvement measures were made . After the implementation , the probability of steel bleed-out in the No . 3 slab caster was greatly reduced , and the influence on production was reduced .Ke5 bleed -out , bonding , technology , improvement , slab , continuous casting o 引言 随着天钢板坯的连铸技术操作水平逐年提高, 漏钢率已经控制的很低。但是在2015年7月底至8 月初的5天时间内,天钢3#板坯连铸机出现两次漏 钢,经过仔细分析和逐一排除法,分析出这两次漏 钢均属于粘结漏钢。漏钢发生于板坯连铸生产环 节,造成设备损坏、产量降低、生产不稳定等严重后 果。本文分析了漏钢的原因,并提出解决漏钢问题 的方法,以预防漏钢事故的发生。 1连铸机基本情况 1.1 天钢炼钢厂3(板坯连铸机主要技术参数 (1) 机型:一机一流直结晶器弧形板坯连铸机, R =8.4m ; (2) 铸坯断面尺寸:180/200/250mm x 1050" 收稿日期:2018-06-02 作者简介:孟阳(1991一)男,天津人,主要从事板坯连铸工艺技 1600mm ; (3) 铸坯定尺:一切 6~9.9m ,二切 2"3.3m ;(4) 拉速范围:0.4~1.6m/min ;(5) 引锭杆插入方式:下装式;(6) 结晶器铜板长度:900mm ; (7) 振动装置:四偏心高频率小振幅振动系统;(8) 中间包容量:35~38t 。2 漏钢种类及原因 漏钢的种类大致可分为3种,开浇漏钢、尾坯 封顶漏钢和浇铸过程中漏钢。 2.1 开F 漏钢 指开浇过程中,不当的操作致使引锭头刚被拉 出结晶器,随机出现漏钢事故。2.2封顶漏钢 当浇注结束时,对尾坯进行尾坯封顶操作,封 顶前熔化的保护渣未捞干净,如二冷强度过大,出 结晶器的板坯收缩过大,使板坯鼓肚且又受到支撑 术管理工作。 tmmsmmmmm 你〈钢铁冶炼〉你 -15 -

连铸板坯质量

连铸板坯质量 概述 纵裂纹时发生在板坯宽面与浇注方向平行的表面裂纹。该类缺陷造成板坯表面清理量增大,收得率低,严重时大量报废,甚至漏钢,给生产带来不稳定因素,影响铸机生产和铸坯质量。 铸坯纵裂纹影响因素 ?钢水过热度与拉速 过热度高,拉速波动大,对板坯表面质量有显著影响。过热度和拉速决定结晶器内坯壳的厚度。在结晶器水量设定不变,二冷水自动控制的条件下,拉速与过热度的匹配,对纵裂纹的发生率有着重要影响。过热度过高时,拉速降低,虽然能在结晶器上部形成一定厚度的坯壳,但在结晶器中下部过早形成气隙,使传热不均匀,坯壳不能均匀生长,造成热应力,摩擦力加大,极易导致纵裂纹,另外,钢水过热度高,导致钢水凝固推迟,坯壳厚度薄且平均温度高,坯壳温度向钢的第Ⅰ脆性区移动,使纵裂倾向加重。 ?钢种成份 1、碳的影响 C在0.10%—0.16%范围内的碳钢凝固过程会发生包晶反应,在凝固点附近体积收缩率增大,属于裂纹敏感区,极易因收缩不均匀产生纵裂。而又因Mn等合金的加入,碳的范围还要向下移,宝钢生产的中碳钢相当一部分在这个范围内。例如,表3-1中Ⅳ钢,其碳含量在0.08%—0.11%之间,属亚包晶钢,占每个月纵裂报废的大头。 2、钢种各元素对纵裂纹的影响程度用纵裂纹敏感因子表示如下: CSF=36%C+12%Mn+8%Si+540%S+812%P+5%Ni+3.5%Co-20%V 从上式中可以看到,P和S对纵裂的影响极大,主要是因为P、S在δ-Fe中的溶解度和扩散系数要比在γ-Fe中大得多,在相变时有可能产生晶界富集,导致裂纹的发生。 因此降低钢中P、S含量,对提高坯壳的强度,减少裂纹的初生与扩展都是有益的,有经验表明提高Mn/S可以有效降低S对裂纹的影响,减少纵裂的发生,当Mn/S<40时,会发生严重的晶界脆化现象,Mn/S>100时,使FeS充分转化为MnS,减少了低熔点硫化物的析出,可使裂纹发生率降低。 3、另外Cu、Sn等元素在钢种能显著降低钢的热塑性,在晶界富集降低晶界表面能, 增大晶界处孔洞形核与长大速度,增加裂纹的敏感度。 宝钢生产的耐候钢中P含量很高,C含量又在亚包晶范围内,因此纵裂发生率及报废量特别高,约占50%,在不影响产品质量的情况下,我们对其中的几个钢种进行了降碳试验,结果表明,C含量避开包晶范围能有效降低纵裂的发生率。 ?结晶器一冷水 结晶器缓冷能减轻初生坯壳的热应力,有效减少纵裂的发生。 ①提高结晶器入口水温,经与能源部水处理分厂协商,为减少纵裂的发生,把结晶器入 口水温目标值由原来的36℃提高到38℃,对防止纵裂有一定的好处。 ②减小结晶器水量,减小结晶器水量能有效减少结晶器的冷却强度,对纵裂敏感性钢种 均采用K1方式(小水量)取得了一定效果,但为防止结晶器一冷水的局部沸腾,对一冷水的流速有最低限制,为了能得到进一步的缓冷,我们采取了减少结晶器水槽深度的方法,把原来深度为28-29mm的水槽改为25-26mm,22-23mm,这样水量有了进一步调节的余地。 ?铸坯纵裂影响因素 结晶器内形成的裂纹大都细而浅,铸坯进入二冷区后,如果冷却强度过大或冷却不均匀,强的热应力会促使铸坯已形成的微细裂纹扩大、延伸,最终发展成表面纵裂缺陷。目前

连铸机漏钢的原因及防范措施

漏钢 连铸中遇到的主要操作故障之一是“漏钢”。当铸流坯壳破裂时,坯壳内静止的熔融钢水溢出,堵塞机器,需要付出昂贵的停机代价。为拉出漏钢坯壳,就要再延长漏钢引起的停机时间,因为它可能会堵塞导辊或足辊,需要用气割清理堵塞,拉出坯壳。当漏钢坯壳温度降低时,需要把它切成小块,用矫直机从机器中取出,而矫直机设计成能在稳定阶段逐步地矫直曲冷坯壳,上轧辊可提供足够的提升重力,弄出不太长的弯曲铸流。因此,漏钢对铸机的有效性有重大影响——影响生产率和生产成本。 漏钢的影响因素影响漏钢发生的因素有: 温度和拉速不一致——钢水过热度越高,坯壳厚度越薄。由于结晶器中钢水施加的静压力,导致坯壳发生膨胀。当坯壳强度不够时,容易发生漏钢。不一致和不均匀的温度对漏钢的产生有很大影响。当拉速增大时,较易发生漏钢,因为结晶器不够润滑,从弯月面到坯壳/结晶器壁面,结晶器保护渣流动性较差,而且增大拉速会导致总放热量减少。漏钢常常是由于拉速太高造成的,当坯壳没有足够时间凝固到需要厚度时,或者金属太热,这意味着最终凝固正好发生在矫直辊下方,因矫直时施加应力,坯壳撕裂。对于钢中碳含量一定时,温度高且拉速快容易发生漏钢。在振动设置上所作的任何改变都会促使漏钢发生,因为通过提高振动频率来减少振痕的做法会增加结晶器速率,从而增加交界面处的摩擦力。

结晶器和坯壳之间润滑不良——如果使用质量较差的保护渣,弯月面下方的钢水容易夹渣,导致结晶器和坯壳粘结,拉坯中断,造成悬挂漏钢。方坯连铸时,因润滑不良或不均,坯壳粘结到结晶器上,影响传热,造成粘结漏钢。 保护渣加入方式不正确——由于现场工人操作习惯,一次性加入过多,且主要集中在内弧,呈斜坡状,会造成液渣不均匀填充,影响结晶器与坯壳间的润滑与均匀传热。在正常浇注情况下,小渣条没必要捞出,且应禁止用捞渣棒试探结晶器内是否形成渣条,会破坏弯月面初始坯壳的均匀形成。 结晶器中无效水流——减少进入结晶器的水流会导致传热降低,致使形成薄坯壳,最终导致漏钢。进出口的水温、压力和流速的不同直接影响结晶器的冷却。结晶器冷却系统堵塞导致压力增加,流速减小,影响传热,易发生漏钢。因而进出口水温(高温) 的巨大差异导致结晶器与坯壳粘结,容易发生拉断漏钢。 结晶器几何形状不当——为增加钢水一结晶器接触面,调节结晶器锥度,以适应钢的凝固收缩,从而增加结晶器的传热,增加坯壳厚度。对于高速方坯连铸机上带线性锥度的传统结晶器而言,弯月面处的热传递迅速使铸流凝固成一固体外壳,随着外壳的收缩,角部脱离结晶器,停止热传递。因此,在结晶器底部,除了角部有再熔化之外,坯壳继续生长。当坯壳离开结晶器时,坯壳温度变化较大,此时增加拉速可能导致漏钢。如果调节的锥度不合要求,结晶器和坯壳之间就会产生气隙,当空气对结晶器中热量传递的阻力达到最大时,它将严

连铸板坯缺陷图谱及产生的原因分析(新)

第二篇连铸板坯缺陷(AA)

第二篇连铸板坯缺陷(AA) (1) 2.1表面纵向裂纹(AA01) (4) 2.2表面横裂纹(AA02) (6) 2.3星状裂纹(AA03) (7) 2.4角部横裂纹(AA04) (8) 2.5角部纵裂纹(AA05) (10) 2.6气孔(AA06) (11) 2.7结疤(AA07) (12) 2.8表面夹渣(AA08) (13) 2.9划伤(AA09) (14) 2.10接痕(AA13) (15) 2.11鼓肚(AA11) (16) 2.12脱方(AA10) (17) 2.13弯曲(AA12) (18) 2.14凹陷(AA14) (19) 2.15镰刀弯(AA15) (20) 2.16锥形(AA16) (21) 2.17中心线裂纹(AA17) (22) 2.18中心疏松(AA18) (23) 2.19三角区裂纹(AA19) (25) 2.20中心偏析(AA20) (27) 2.21中间裂纹(AA21) (28)

2.1表面纵向裂纹(AA01) 图2-1-1 1、缺陷特征 表面纵向裂纹沿浇注方向分布在连铸板坯上下表面,裂纹深度一般为2mm~15mm,裂纹部位伴有轻微凹陷。在连铸浇注过程中,当连铸板坯坯壳在结晶器内所受到的应力超过了坯壳所能承受的抗拉强度时,即产生表面纵向裂纹。表面纵向裂纹缺陷在结晶器内产生,出结晶器后若二次冷却不良,裂纹将进一步加剧。 2、产生原因及危害 产生原因: ①钢中碳含量处于裂纹敏感区内; ②结晶器钢水液面异常波动。当结晶器钢水液面波动超过10mm时,表面纵向裂纹缺陷易于产生; ③结晶器保护渣性能不良。保护渣液渣层过厚、过薄或渣膜厚薄不均,使连铸板坯凝固壳局部过薄而产生表面纵向裂纹; ④中间包浸入式水口与结晶器对中不良,钢水产生偏流冲刷连铸板坯凝固壳,而产生表面纵向裂纹。 危害:轻微的表面纵裂纹经火焰清理后均能消除;表面纵向裂纹严重时可能会造成漏钢;表面纵向裂纹若送热轧进行轧制可能导致热轧产品出现分层、开裂缺陷。 3、预防及消除方法 ①控制好钢中碳含量,使钢中碳含量不在裂纹敏感区; ②减少结晶器钢水液面异常波动,将结晶器钢水液面波动控制在±5mm以内; ③选择合适的结晶器保护渣; ④保证中间包浸入式水口与结晶器对中,防止钢水出浸入式水口侧孔后出现偏流。 4、检查判断 肉眼检查,必要时用钢卷尺测量裂纹长度及其分布位置;

连铸坯缺陷及对策

连铸坯在凝固过程中形成裂纹的原因 随着市场竞争的日趋激烈,产品的质量已经成为占有市场的主要砝码,连铸坯作为炼钢厂的终端产品,其质量直接影响着轧材单位的产量和轧材质量,据统计炼钢厂连铸坯质量缺陷中约70%为连铸坯裂纹,连铸坯裂纹成为影响连铸坯产量和质量的重要缺陷之一,下面将对铸坯在凝固过程中裂纹的形成做简要分析: 一、铸坯凝固过程的形成 铸坯在连铸机内的凝固可看成是一个液相穴很长的钢锭,而凝固是沿液相穴的固液界面在液固相温度区间把液体转变为固体把潜热释放出来的过程。在固液界面间刚凝固的晶体强度和塑性都非常小,当作用于凝固壳的热应力、鼓肚力、矫直力、摩擦力、机械力等外力超过所允许的外力值时,在固液界面就产生裂纹,这就形成了铸坯内部裂纹。而已凝固的坯壳在二冷区接受强制冷却,由于铸坯线收缩,温度的不均匀性,坯壳鼓肚、导向段对弧形不准,固相变引起质点如(AlN)在晶界的沉淀等,容易使外壳受到外力和热负荷间歇式的突变,从而产生裂纹就是表面裂纹。 二、连铸坯裂纹形态和影响因素 连铸坯裂纹形态分为表面裂纹和内部裂纹,表面裂纹有纵向、横向角部裂纹、表面横裂和纵裂、网状裂纹和凹陷等,内部裂纹有中间、中心和矫直裂纹等。 连铸坯裂纹的影响因素: 连铸坯表面裂纹主要决定于钢水在结晶器的凝固过程,它是受结晶器传热、振动、润滑、钢水流动和液面稳定性所制约的,铸坯内部裂纹主要决定于二冷区凝固冷却过程和铸坯支撑系统(导向段)的对弧准确性。铸坯凝固过程坯壳形成裂纹,从工艺设备和钢凝固特性来考虑影响裂纹形成的因素可分为: 1、连铸机设备状态方面有: 1)结晶器冷却不均匀 2)结晶器角部形状不当。 3)结晶器锥度不合适。 4)结晶器振动不良。 5)二冷水分布不均匀(如喷淋管变形、喷咀堵塞等)。 6)支承辊对弧不准和变形。

连铸粘结漏钢成因机理分析

2011年9月 连 铸 增刊 连铸粘结漏钢成因机理分析 王叶婷1, 赵洪强1, 国兴龙1, 曾 智2, 孙立根2, 张家泉 2 (1. 大连重工·起重集团公司,辽宁 大连 116013; 2. 北京科技大学,北京 100083) 摘 要:粘结漏钢是连铸过程中漏钢的主要形式,许多文献都尝试解释结晶器中的粘结现象。本文认为其成因应从整个结晶器包括物质流进出的平衡、拉坯过程中摩擦阻力的变化以及产生粘结的现象等各方面的因素来综合考虑。基于弄清整个结晶器的进出物流平衡来分析粘结形成原因,可为开发有效的漏钢预报系统提供有力的依据。 关键词:结晶器;粘结漏钢;漏钢预报;摩擦力 Investigation on the Mechanism of Sticker-Type Breakout WANG Ye-ting 1, ZHAO Hong-qiang 1, GUO Xing-long 1, ZENG Zhi 2, SUN Li-gen 2, ZHANG Jia-quan 2 (1. DHI·DCW Group Co., Dalian 116013, Liaoning,China;2.University of Science and Technology Beijing, Beijing 100083, China) Abstract :Shell sticking is the main type of breakouts in the process of continuous casting, and the literature contains several explanations for mold sticking. This paper considered its causes from new perspectives, including the balance of inlet and outlet material flow, variation of the withdrawal resistance during casting and other phenomena throughout the mold. Based on material balance analysis, the mechanism of sticker-type was proposed to provide a strong basis to develop an effective breakout prevention system. Key words :casting mold; sticker-type breakout; breakout prevention; friction 1 前言 连铸坯的质量与生产顺行始终是连铸生产者 关注的两大焦点问题。在高效连铸的背景下,围绕这两点开展了大量研究。然而,由于连铸过程的复杂性和随机性,一些问题依然难以完全解决,漏钢就是其一。有报道称一次典型的漏钢事故的损失竟高达20万美元,如果再加上因漏钢导致的生产停滞以及前后铸坯质量的影响,其损失可能是不可估量的[1]。因此,要开发出有效的漏钢预报系统避免漏钢的发生,正确了解漏钢的产生机理是必需的前提。 漏钢按产生的原因可分为四大类,分别是由传热不足引起的漏钢、粘结漏钢、缺陷漏钢和操作失误引起的漏钢,具体划分见图1。其中粘结漏钢是漏钢的主要形式,在规范操作条件下,粘结漏钢可占漏钢总数的90%以上[2],因此最初开发出的漏钢预报系统大多针对漏钢的粘结行为,成为名副其实 的粘钢预报。 2 结晶器物流状态分析 由于粘结生成于结晶器这个黑匣子之中,关于粘结的成因暂时只能通过推理得到。本文从结晶器的物流平衡状态以及从能量角度考虑的物流平衡状态出发展开推理。 首先从图2我们可以得知从物流平衡角度考虑,从结晶器上口进入的物质有结晶器保护渣、钢液(其中包含钢液中的夹杂物)以及随钢液卷入结晶器的大包渣和中包渣,而从结晶器流出的物质有连铸坯和固态的保护渣皮(包括上口捞出的渣圈和

板坯连铸机粘接漏钢事故分析.doc

YJ0701-板坯连铸机粘接漏钢事故分析 案例简要说明:依据国家职业标准和冶金技术专业教学要求,归纳提炼出所包含的知识和技能点,弱化与教学目标无关的内容,使之与课程学习目标、学习内容一致,成为一个承载了教学目标所要求知识和技能的教学案例。该案例是连续铸钢事故分析与处理案例,体现了连续铸钢等岗位工艺参数、凝固理论知识点和具体岗位操作步骤,与本专业连续铸钢等课程事故预防与处理单元的教学目标相对应。

板坯连铸机粘接漏钢事故分析 1 背景介绍 某中型转炉炼钢厂,采用喷吹颗粒镁预脱硫,拥有三座100t的转炉, 采用CAS-OB、LF炉、RH精炼装置,四台不同断面的大型厚板坯连铸机,连铸机采用双排热电偶漏钢预报装置。 该厂主要生产管线、船板等中厚板。 2 主要内容 2.1 事故经过 2012年12月26日,某铸机浇注浇次1212B26(断面2000mm×250mm,钢种45-1)第21炉2Q08199浇注4:46时发生结晶器外弧粘连漏钢,至当日22:00处理完毕,共造成铸机非计划停浇17小时14分,构成粘连漏钢事故。 2.1.1 精炼处理 2Q08199炉次是3#LF炉处理,使用12#钢包,包龄44次。钢水到站后热修包报12#钢包为正常周转包,但在处理过程中升温速度慢,温降异常。铸机要点4:20,要温1538℃。2Q08199炉次在3#LF炉处理61min,加热40min,软吹4min。具体处理过程如下: 3:15到站,到站温度1514℃,3:17进加热位并加入一批渣料。 3:20第一次升温,3:33停止 (升温13min),测温1506℃,取钢样。 3:35第二次升温,3:45钢样成分回来后,调硅铁133kg、锰铁61kg、碳粉60kg,3:54升温结束。进行钙处理,取钢样,并进行软吹。因钢包包况不好,钢水温降大,4:05测温1516℃。温度低向工长室反馈,并与热修包核实钢包状况。经再次核实,12包为小修2次包(12#钢包,小修1次,0:30出钢,进站后因无氩气倒14#包,未在LF炉处理)。 4:05第三次升温,加热10min,其间在4:11测温(1529℃、1527℃),4:14

连铸坯表面质量缺陷及处理措施

连铸坯表面质量缺陷及处理措施 【摘要】对于连铸板坯而言,振痕和裂纹是其主要的质量缺陷问题。虽然这个缺陷在大多数情况下对连铸坯的质量影响不大,但是如果不及时有效的处理调还会带来很多附加的质量问题。尤其是在生产不锈钢和高强度钢品种时,这种质量缺陷所带来的弊端更加明显。 【关键词】连铸坯;振痕;质量影响 1振痕形成机理 在连铸坯生产中,振痕和裂纹是两种最为常见的质量缺陷问题,主要是由于弯月面顶端溢流造成的,该缺陷形成以后会附带其他质量缺陷一并产生。 2振痕对铸坯质量的影响 振痕对连铸坯的质量影响会导致后期出现列裂纹,包括横裂纹、角部横裂纹及矫直裂纹。如果连铸坯内掺杂的杂质较多,会导致大规模网状裂纹的出现,甚至出现穿钢现象。如果在连铸坯出现振痕的地方晶粒很大,就会产生晶间裂纹现象,在这样的情况下需要对连铸坯修磨,从而提高成材率。 3影响振痕深度的因素 振动参数对振痕形状和深度有重要影响。其中振幅、频率、负滑脱时间及振动方式最为重要;结晶器保护渣的耗量、粘度、保温性能及表面性能等有着重要影响;.钢的凝固特性对振痕有着重要影响,特别是当钢中碳含量和钢中Ni/Cr 比影响最突出。当钢中碳含量为0.1%左右,Ni/Cr≈0.55左右,铸坯表面振痕最深。 4减少振痕深度的措施 采用小振幅(s)、高频率(f)及减少负滑脱时间(tN),可以有效的减少振痕的深度;采用非正弦振动方式可以减少振痕的深度,这是因为非正弦振动其负滑脱时间tN比正弦振动短;采用渣耗量低,粘度高的保护渣,可以使振痕深度变浅。采用保温性能好和能增加弯月面半径的保护渣可以减少振痕深度;提高不锈钢、钢液的过热度,尤其是含钛和含铝的不锈钢对减少该钢表面振痕深度是有效的。 提高结晶器进出冷却水的温差,对减少振痕深度是有利的。 5铸坯表面裂纹 5.1表面纵裂纹

相关文档
相关文档 最新文档