文档库 最新最全的文档下载
当前位置:文档库 › 透射电镜的选区电子衍射

透射电镜的选区电子衍射

透射电镜的选区电子衍射
透射电镜的选区电子衍射

透射电子显微镜的选区衍射

摘要:本文主要是以透射电子显微镜的选区电子衍射为主题来说明透射电镜在材料学中的应用。

关键词:透射电镜;电子衍射谱;选区电子衍射;应用

Selected-Area Electron Diffraction of TEM

Abstract: The Selected-Area Electron Diffraction of TEM is mainly talked about in this paper, And it tell us the application of the TEM in materials science.

Key words:Transmission electron microscope; Electron diffraction spectrum; Selected-Area Electron Diffraction; application

1.透射电镜的电子衍射概论

透射电镜的电子衍射是透射电镜的一个重要应用,而透射电镜广泛应用于断裂失效分析、产品缺陷原因分析、镀层结构和厚度分析、涂料层次与厚度分析、材料表面磨损和腐蚀分析、耐火材料的结构与蚀损分析[1]中。透射电镜的电子衍射能够在同一试样上将形貌观察与结构分析结合起来[2]。这就使得电子衍射在应用中有着举足轻重的地位。

在透射电镜的衍射花样中,对于不同的试样,采用不同的衍射方式时,可以观察到多种形式的衍射结果。如单晶电子衍射花样,多晶电子衍射花样,非晶电子衍射花样,会聚束电子衍射花样,菊池花样等。而且由于晶体本身的结构特点也会在电子衍射花样中体现出来,如有序相的电子衍射花样会具有其本身的特点。另外,由于二次衍射等原因会使电子衍射花样变得更加复杂。

选区衍射的特点是能把晶体试样的像与衍射图对照进行分析,从而得出有用的晶体学数据,例如微小沉淀相的结构、取向及惯习面,各种晶体缺陷的几何学特征等[3]。2.选区电子衍射的原理及特点

2.1选区电子衍射的原理

为了得到晶体中某一个微区的电子衍射花样,一般用选区衍射的方法,将选区光阑放置在物镜像平面(中间镜成像模式时的物平面),而不是直接放在样品处。

选区电子衍射借助设置在物镜像平面的选区光阑,可以对产生衍射的样品区域进行选择,并对选区范围的大小加以限制,从而实现形貌观察和电子衍射的微观对应。选区电子衍射的基本原理[4]见图4-1。选区光阑用于挡住光阑孔以外的电子束,只允许光阑孔以内视场所对应的样品微区的成像电子束通过。使得在荧光屏上观察到的电子衍射花样,它仅来自于选区范围内的晶体的贡献。实际上,选区形貌观察和电子衍射花样不能完全对应,也就是说选区衍射存在一定误差,所选区域以外样品晶体对衍

射花样也有贡献。因此,选区范围不宜太小,否则将带来太大的误差。对于100kV 的透射电镜,最小的选区衍射范围约0.5μm;加速电压为1000kV时,最小的选区范围可达0.1μm。

图1 选区电子衍射原理示意图

2.2选区衍射的特点

选区电子衍射花样的优点是电子衍射能在同一试样上将形貌观察与结构分析结合起来;电子波长短,单晶的电子衍射花样就如同晶体倒易点阵的一个二维截面在底片上的放大投影,从底片上的电子衍射花样可以直观地辨认出一些晶体的结构和对称性等特点,使晶体结构的研究比通过X射线的研究简单;物质对电子的散射能力强,约为X射线一万倍,曝光时间短。

但是它也存在着不足,电子衍射强度有时几乎与透射束相当,以致两者产生交互作用,从而导致电子衍射花样,特别是强度分析变得复杂,不能像X射线那样从测量衍射强度来广泛的测定结构;散射强度高导致电子透射能力有限,要求试样薄,这就使试样制备工作较X射线复杂;另外在精度方面也远不如X射线法。

3.选区电子衍射花样的分析与应用

3.1获得选区衍射花样的步骤

为了确保得到的衍射花样来自所选的区域,应当遵循如下操作步骤:

(1)按成像操作得到清晰的图像;

(2)加入选区光阑将需观测的区域围起来,调节中间镜电流使光阑边缘的像在荧光屏上清晰,这就使得中间镜的物面与选区光阑的平面相重叠;

(3)调整物镜电流使选区光阑内的像清晰,这就使得物镜的像面与选区光阑及中间镜的物面相重叠,从而保证了选取区的准确;

(4)抽出物镜光阑,减弱中间镜电流,使中间镜物平面上移到物镜背焦面处,这时在荧光屏上就会看到衍射花样的放大像。在许多电子显微镜中(H-800,EM400,

CM12等)只要把旋钮拨到事先固定好的“衍射”位置上即可粗略地达到此目的,再稍微调整中间镜电流使中心斑点变得既小又圆;

(5)减弱聚光镜电流以减小入射电子束的孔径角,得到更趋近于平行的电子束,这样可以进一步减小焦斑尺寸。

只有严格按上述步骤操作,才会保证选区衍射的精确度。

3.2选区电子衍射的分析

单晶电子衍射花样[5]可以直观地反映晶体二维倒易平面上阵点的排列,而且选区衍射和形貌观察在微区上具有对应性,因此选区电子衍射一般有以下几个方面的应用。

(1) 根据电子衍射花样斑点分布的几何特征,可以确定衍射物质的晶体结构;再利用电子衍射基本公式Rd=Lλ,待求得d之后与标准d值[6]进行对比从而可以进行物相鉴定;

(2) 确定晶体相对于入射束的取向;

(3) 在某些情况下,利用两相的电子衍射花样可以直接确定两相的取向关系;

(4) 利用选区电子衍射花样提供的晶体学信息,并与选区形貌像对照,可以进行第二相和晶体缺陷的有关晶体学分析[7]。如测定第二相在基体中的生长惯习面、位错的柏氏矢量等。

以下仅介绍其中两个方面的应用。

A.镍基合金特征平面的取向分析

特征平面是指片状的第二相、惯习面、层错面、滑移面、孪晶面等平面。特征平面的取向分析(即测定特征平面的指数)是透射电镜分析工作中经常遇到的一项工作。利用透射电镜测定特征平面的指数[8]。其根据是选区衍射花样与选区内组织形貌的微区对应性。这里特别介绍一种最基本、较简便的方法。该方法的基本要点为,使用双倾台或旋转台倾转样品,使得特征平面平行于入射束方向,在此位向下获得的衍射花样中将会出现该特征平面的衍射斑点。把这个位向下拍照的形貌像和相应的选区衍射花样对照,经过磁转角校正后,即可确定特征平面的指数。其具体操作步骤如下:

(1)利用双倾台来倾转样品,使特征平面处于与入射束平行的方向;

(2)拍摄包含有特征平面的形貌像,以及该视场内的选区电子衍射花样;

(3)标定选区电子衍射花样,经过磁转角校正后,将特征平面在形貌像中的迹线画在衍射花样中;

(4)由透射斑点作迹线的垂线,该垂线所通过的衍射斑点的指数,即为特征平面的指数。

镍基合金中的片状δ-Ni3Nb相通常沿基体(面心立方结构)的某些特定平面生长[9]。当片状δ相表面相对入射束倾斜一定角度时,在形貌像中片状相的投影宽度较大(见

图2(a));如果倾斜样品使片状相表面逐渐趋近平行于入射束,其在形貌像中的投影宽度将不断减小;当入射束的方向与片状相表面平行时,片状相在形貌像中显示最小的宽度(图2(b))。图2(c)是入射电子束与片状δ相表面平行时,拍照的基体衍射花样。由图2(c)所示的衍射花样的标定结果,可以确定片状δ相的生长惯习面为基体的(111)面,通常习惯用基体的晶面表示第二相的惯习面[10]。

图2 镍基合金中片状δ相的分布形态及选区衍射花样

(a) δ相在基体中的分布形态(b) δ相表面平行入射束时的形态

(c) 基体[110]晶带衍射花样

图3是镍基合金基体中孪晶的形貌像及相应的选区衍射花样。图3中的形貌像和衍射花样是在孪晶面处于平行入射束的位向下拍照的。将孪晶的形貌像与选区衍射花样相对照,很容易确定孪晶面为(111)。

图3 镍基合金中孪晶的形貌像及选区衍射花样

(a) 孪晶的形貌像(b) [10]M、[01]T晶带衍射花样

B.选区衍射在Si-B-C-N 陶瓷材料析晶过程中的应用

不同前驱体制备的Si基陶瓷材料由于其晶化机制和聚合机制的不同而有着复杂

的性能。采用透射电镜等多种先进分析手段,对Si-B-C-N材料从1000℃< T <1400℃的晶化过程进行了系统性研究观测。通过对比不同温度下的结晶情况进一步探究该陶瓷材料的晶化机制和聚合机制[11]。

以聚硼硅氮烷(boron modified poly(vinyl) silazane, BPVS)材料(编号为T2-1)作为前驱体[12]经过一系列处理过程获得陶瓷块体样品。通过不同的热解过程生成不同的

PDC样品。进行实验观察的样品分别是:T1400(以60℃/h的速率加热到1400℃保温2h,然后以300℃/h冷却获得);T1000(以60℃/h的速率加热到500℃保温12h,再以10℃/h的速率加热到1000℃保温1h然后以300℃/h的速率降到室温获得);T1000+1400(T1000样品加热到1400后退火获得的样品)。

样品制备完毕采用分辨率为0.17nm的JEOL4000EX观察;而SAED(选区电子衍射Selected-Area Electron Diffraction) 结果则通过JEOL2000FX获得。以下是透射电镜观察到的不同温度下的热解显微结构。

图4 T1400的选区衍射(a 、b)高分辨图像(c、d) 图5 T1000选区衍射及高分辨图像

图6 T1000+1400选区衍射(a)及高分辨图像(b)

对样品T1400的微结构观察发现基体中的结晶分布很不均匀。在同一样品中的不同观察区域,出现了不同的析晶情况。SAED结果表明,C-SiC、石墨化团簇和BCN 相普遍地分布在基体中(图4(a)), 然而部分区域还出现了明显的Si3N4衍射斑点(图4(b)). 高分辨像的观察结果更为直观地显示了T1400中的不均匀结晶状况. 图4(c)是(a)的高分辨图像,其左下角为相应晶粒的FFT(Fast Fourier Transforms),由图知等轴晶体在基体中均匀分布。由图4(a)的SAED结果表明,这一区域仅存在立方SiC晶体。同样由图4(b)的SAED结果表明,该对应区域中存在六方Si3N4,在图4(d)中长条状晶粒应该对

应于Si3N4,还出现了可能为石墨化团簇(Cg)或BCN相的层状结构。

样品T1000的选区衍射(图5(a))只显示非晶结构,而其高分辨像也表明非晶结构很均匀,仅有部分区域出现了有序化趋势(图5(b))。图中所指的可能是石墨化团簇形成的区域。

样品T1000+1400(图6(a))与样品T1400(图4(a)和(b))的选区衍射明显不同。虽然经过1400℃的退火后,样品T1000+1400也出现了晶化现象,但是SAED衍射环的标定结果表明,样品中结晶相仅是C-SiC[13]。此外,样品中的自由碳也更明显地出现了石墨化的趋势。由于另一种可能出现的析晶相h-BN的衍射环完全与石墨相重叠,因此不能判断BN是否已经结晶。与样品T1400不同,样品T1000+1400中没有发现任何Si3N4晶相。T1000+1400的高分辨照片也与SAED标定结果相一致,从中可以清晰分辨出等轴SiC晶粒和有序化团簇(图6(b))。

4.透射电镜及选区衍射的发展趋势

利用EELS精细结构研究电子结构[14];利用Z衬度,真正实现原子的化学成份的分辨;结合正、倒空间信息,进行三维重构,实现原子水平的空间分辨本领。最新进展:德国科学家利用计算机技术实现了对磁透镜进行球差矫正,可以实现零球差,以及负球差,从而大大提高了透射电镜的空间分辨本领,目前的最高点分辨率可以达到0.1纳米,估计5年内可以提升0.05纳米的。此外,通过在电子束照明光源上加装单色仪,可以大大提高电镜的能量分辨率,目前最高可以获得70毫电子伏特的水平。清华大学朱静院士率先在北京建立了基于球差矫正的高性能透射电镜的北京国家电镜中心,显示中国在这方面努力的信心。

随着透射电镜的不断向前发展,选区衍射会随着透射电镜分辨率的提高而不断的进步。目前,应努力解决电子衍射强度有时几乎与透射束相当,以致两者产生交互作用而导致衍射分析困难等问题;要解决因散射强度高而要求试样薄,难制备等问题;另外在精度方面也需要极大的提高。

参考文献

[1] Kamino T,Kishita K,Arai S,Saka H.Development of environmental TEM techniques and its

application[J].Kenbikyo,2008,43:15~19.

[2] 郭可信,叶恒强,吴玉琨:“电子衍射图”,1987.

[3] 郭可信,叶恒强,吴玉琨:电子衍射图在晶体学中的应用[M],北京:科学出版社1983.414-415

[4] 郭可信,叶恒强,吴玉琨:“电子衍射图”,1987.

[5] 边为民,邓江宁:电子衍射花样综合分析应用程序[J].电子显微学报,2004,23(4):426-426

[6] JCPDS International Centre for Diffraction Data. Powder diffraction file. USA: JCPDS International

Centre for Diffraction Data ,1980. 3-400

[7] 宋宝来:复杂电子衍射花样标定的方法-Carine法[J],中国铸造装备与技术,2008(4):44-46

[8] 张启海:单晶电子衍射花样的标定用微机程序的编制[J],稀有金属,1996,20(3):198-201

[9] 傅恒志,先进材料定向凝固[M],北京:科学出版社.2008

[10] 崔忠圻,覃耀春等.金属学与热处理[M],北京,机械工业出版社,2007

[11] 李凌燕,顾辉, Bill Joachim.前驱体制备Si-B-C-N 陶瓷材料析晶过程的透射电镜研究[J],无

机材料学报,2010(10):1076-1079

[12] Kumar R, Cai Y, Gerstel P, et al. Processing, crystallization and characterization of polymer

derived nano-crystalline Si-B-C-N ceramics .J. Mater . Sci., 2006, 41(21): 7088?7095.

[13] Li Z, Bradt R C. Thermal expansion of the cubic (3C) poly type of SiC. J. Mater. Sci., 1986, 21(12):

4366?4368.

[14] 张金民,王建顺:钢中夹杂物的透射电镜研究[J],物理测试,2010(1),26-28.

TEM-透射电镜习题答案及总结

电子背散射衍射:当入射电子束在晶体样品中产生散射时,在晶体内向空间所有方向发射散射电子波。如果这些散射电子波河晶体中某一晶面之间恰好符合布拉格衍射条件将发生衍射,这就是电子背散射衍射。 二、简答 1、透射电镜主要由几大系统构成各系统之间关系如何 答:三大系统:电子光学系统,真空系统,供电系统。 其中电子光学系统是其核心。其他系统为辅助系统。 2、照明系统的作用是什么它应满足什么要求 答:照明系统由电子枪、聚光镜和相应的平移对中、倾斜调节装置组成。它的作用是提供一束亮度高、照明孔经角小、平行度好、束流稳定的照明源。它应满足明场和暗场成像需求。 3、成像系统的主要构成及其特点、作用是什么 答:主要由物镜、物镜光栏、选区光栏、中间镜和投影镜组成. 1)物镜:强励磁短焦透镜(f=1-3mm),放大倍数100—300倍。 作用:形成第一幅放大像 2)物镜光栏:装在物镜背焦面,直径20—120um,无磁金属制成。 作用:a.提高像衬度,b.减小孔经角,从而减小像差。C.进行暗场成像3)选区光栏:装在物镜像平面上,直径20-400um, 作用:对样品进行微区衍射分析。 4)中间镜:弱压短透镜,长焦,放大倍数可调节0—20倍 作用a.控制电镜总放大倍数。B.成像/衍射模式选择。 5)投影镜:短焦、强磁透镜,进一步放大中间镜的像。投影镜内孔径较小,使电子束进入投影镜孔径角很小。 小孔径角有两个特点: a.景深大,改变中间镜放大倍数,使总倍数变化大,也不影响图象清晰度。 焦深长,放宽对荧光屏和底片平面严格位置要求。 4、分别说明成像操作与衍射操作时各级透镜(像平面与物平面)之间的相对位置关系,并 画出光路图。 答:如果把中间镜的物平面和物镜的像平面重合,则在荧光屏上得到一幅放大像,这就是电子显微镜中的成像操作,如图(a)所示。如果把中间镜的物平面和物镜的后焦面重合,则在荧光屏上得到一幅电子衍射花样,这就是电子显微镜中的电子衍射操作,如图(b)所示。

单晶电子衍射谱标定入门朱玉亮

钢铁研究总院特殊钢研究所不锈钢研究室 单晶电子衍射谱 标定入门编写:朱玉亮

前言 作为材料分析的重要手段,透射电镜电子显微分析具有能够将材料的晶体结构分析与其微观形貌观察相结合的优点,因而在材料的研究中得到了广泛的应用。但也正是因为涉及到材料结构问题,使得电子衍射分析不同于常规的扫描电镜等材料微观形貌分析手段,研究者必须具备一定的理论基础知识。 电子衍射分析涉及到的基础理论涵盖晶体学、衍射学等内容,其中包括倒易点阵、结构因子等诸多概念。对于初次接触电子衍射的研究者而言,这些理论往往难以在短时间内掌握。但运用电子衍射的目的主要是为了确定某些物相,而确定物相的过程主要是对单晶电子衍射谱进行标定,相对而言这是较为容易掌握的。并且掌握这一技能也有助于进一步理解电子衍射的基本理论。 电子衍射标定物相的依据在于,对于某种物相,其特定指数晶面具有特定的晶面间距;而不同的物相其同一晶面指数的晶面间距是不同的。在标定单晶电子衍射谱之前,需要明确两点:1、衍射谱中每一个衍射斑代表晶体中的一个衍射晶面,衍射谱的中央最亮斑点为透射斑,其余斑点为衍射斑;2、衍射谱中由透射斑指向任一衍射斑构成一个向量,该向量的方向与其所对应的一组平行晶面的方向相同,其长度与该晶面组中相邻晶面的间距成反比。 本文适于作为初学电子衍射标定的基础参考资料。对于电子衍射具体理论的学习,有大量可供参考的文献专著,本文在最后也列出了部分可供参考的相关文献及著作。由于编者知识水平有限,对于文中出现的错误,敬请谅解。

图2 扫描仪扫描出来的透射照片 a 原始扫描照片;b 反相处理后 图1 电子衍射花样形成原理 1. 电子衍射基本公式 电子衍射花样形成原理图如1所示,图中OO*为电子入射 方向,O 点为透射试样所在位置。球O 是半径为1/λ的反射球 (也叫爱瓦尔德球,Ewald Sphere )。O*G*为满足布拉格方程 的衍射面所对应的倒易矢量。O’为照相底片中的透射斑,G’ 为OG*衍射线投影在底片上的衍射斑。由于在电子衍射中的衍 射角2θ(∠O*OG*)非常小,所以可以近似认为O*G*∥O ’G ’。 从而根据三角形相似得到电子衍射的基本公式如下: Rd=λL R :底片中衍射斑点G ’到透射斑点O ’的距离; d :晶面间距;对于每种晶系,其(hkl)晶面间距与其点阵常 数都有固定关系;如对于立方晶系有 。 λ:电子波长;由电镜的加速电压决定,如当加速电压为 200V 时,电子波长为0.0251?。 L :相机长度;可理解为试样距离底片的距离。 K=λL :称为相机常数。在同一次实验中K 是固定的。 2. 透射照片 通常,在透射电镜实验中,我们拿到的是冲洗出来的 底片。这种底片经扫描仪扫描后,就得到了电子照片,如 图2所示。图中央最亮的斑点为透射斑。除去中央透射斑, 图中还有两种亮度不同的斑点。一般而言,在做析出相的 选区电子衍射照片下,当析出像较小时(小于300nm ),选 区衍射电子打出的斑点同时包括基体和析出相的两套斑点。其中较亮的斑点为基体斑点;而较暗的斑点为析出相的斑 点。 图2给出的是一种镍基合金中细小析出相的衍射斑点,于是我们可以推测其中较亮的斑点为基体的斑点,而较暗 的斑点为析出相的斑点。 b

透射电子显微镜的原理与应用

透射电子显微镜的原理及应用 一.前言 人的眼睛只能分辨1/60度视角的物体,相当于在明视距离下能分辨0.1mm 的目标。光学显微镜通过透镜将视角扩大,提高了分辨极限,可达到2000A 。。光学显微镜做为材料研究和检验的常用工具,发挥了重大作用。但是随着材料科学的发展,人们对于显微镜分析技术的要求不断提高,观察的对象也越来越细。如要求分表几十埃或更小尺寸的分子或原子。一般光学显微镜,通过扩大视角可提高的放大倍数不是无止境的。阿贝(Abbe )证明了显微镜的分辨极限取决于光源波长的大小。在一定波长条件下,超越了这个极限度,在继续放大将是徒劳的,得到的像是模糊不清的。 图1-1(a )表示了两个点光源O 、P 经过会聚透镜L ,在平面上形成像O ,、P ,的光路。实际上当点光源透射会聚成像时,由于衍射效应的作用在像平面并不能得到像点。图1-1(b )所示,在像面上形成了一个中央亮斑及周围明暗相间圆环所组成的埃利斑(Airy )。图中表示了像平面上光强度的分布。约84%的强度集中在中央亮斑上。其余则由内向外顺次递减,分散在第一、第二……亮环上。一般将第一暗环半径定义为埃利斑的半径。如果将两个光源O 、P 靠拢,相应的两个埃利斑也逐渐重叠。当斑中心O ,、P ,间距等于案例版半径时,刚好能分辨出是两个斑,此时的光点距离d 称为分辨本领,可表示如下: α λs in 61.0d n = (1-1) 式中,λ为光的波长,n 为折射系数,α孔径半角。上式表明分辨的最小距离与波长成正比。在光学显微镜的可见光的波长条件下,最大限度只能分辨2000A 。。于是,人们用很长时间寻找波长短,又能聚焦成像的光波。后来的X

透射电子显微镜的结构、原理和衍衬成像观察

透射电子显微镜的结构、原理和衍衬成像观察实验报告 一、实验目的 1、了解透射电子显微电镜的基本结构; 2、熟悉透射电子显微镜的成像原理; 3、了解基本操作步骤。

二、实验内容 1、了解透射电子显微镜的结构; 2、了解电子显微镜面板上各个按钮的位置与作用; 3、无试样时检测像散,如存在则进行消像散处理; 4、加装试样,分别进行衍射操作、成像操作,观察衍射花样和图像; 5、进行明场、暗场和中心暗场操作,分别观察明场像、暗场像和中心暗场像。 三、实验设备和器材 JEM-2100F型TEM透射电子 显微镜 四、实验原理 (一)、透射电镜的基本结构 透射电镜主要由电子光学系统、电源控制系统和真空系统三大部分组成,其中电子光学系统为电镜的核心部分,它包括照明系统、成像系统和观察记录系统组成。 (1)照明系统 照明系统主要由电子枪和聚光镜组成。

电子枪就是产生稳定的电子束流的装置,电子枪发射电子形成照明光源,根据产生电子束的原理的不同,可分为热发射型和场发射型两种。 图1 热发射电子枪图2 场发射电子枪 聚光镜是将电子枪发射的电子会聚成亮度高、相干性好、束流稳定的电子束照射样品。电镜一般都采用双聚光镜系统。 图3 双聚光镜的原理图 (2)成像系统 成像系统由物镜、中间镜和投影镜组成。 物镜是成像系统中第一个电磁透镜,强励磁短焦距(f=1~3mm),放大倍数Mo一般为100~300倍,分辨率高的可达0.1nm左右。物镜的质量好坏直接影响到整过系统的成像质量。物镜未能分辨的结构细节,中间镜和投影镜同样不能分辨,它们只是将物镜的成像进一步放大而已。提高物镜分辨率是提高整个系统成像质量的关键。

透射电镜的选区电子衍射

透射电子显微镜的选区衍射 摘要:本文主要是以透射电子显微镜的选区电子衍射为主题来说明透射电镜在材料学中的应用。 关键词:透射电镜;电子衍射谱;选区电子衍射;应用 Selected-Area Electron Diffraction of TEM Abstract: The Selected-Area Electron Diffraction of TEM is mainly talked about in this paper, And it tell us the application of the TEM in materials science. Key words:Transmission electron microscope; Electron diffraction spectrum; Selected-Area Electron Diffraction; application 1.透射电镜的电子衍射概论 透射电镜的电子衍射是透射电镜的一个重要应用,而透射电镜广泛应用于断裂失效分析、产品缺陷原因分析、镀层结构和厚度分析、涂料层次与厚度分析、材料表面磨损和腐蚀分析、耐火材料的结构与蚀损分析[1]中。透射电镜的电子衍射能够在同一试样上将形貌观察与结构分析结合起来[2]。这就使得电子衍射在应用中有着举足轻重的地位。 在透射电镜的衍射花样中,对于不同的试样,采用不同的衍射方式时,可以观察到多种形式的衍射结果。如单晶电子衍射花样,多晶电子衍射花样,非晶电子衍射花样,会聚束电子衍射花样,菊池花样等。而且由于晶体本身的结构特点也会在电子衍射花样中体现出来,如有序相的电子衍射花样会具有其本身的特点。另外,由于二次衍射等原因会使电子衍射花样变得更加复杂。 选区衍射的特点是能把晶体试样的像与衍射图对照进行分析,从而得出有用的晶体学数据,例如微小沉淀相的结构、取向及惯习面,各种晶体缺陷的几何学特征等[3]。2.选区电子衍射的原理及特点 2.1选区电子衍射的原理 为了得到晶体中某一个微区的电子衍射花样,一般用选区衍射的方法,将选区光阑放置在物镜像平面(中间镜成像模式时的物平面),而不是直接放在样品处。 选区电子衍射借助设置在物镜像平面的选区光阑,可以对产生衍射的样品区域进行选择,并对选区范围的大小加以限制,从而实现形貌观察和电子衍射的微观对应。选区电子衍射的基本原理[4]见图4-1。选区光阑用于挡住光阑孔以外的电子束,只允许光阑孔以内视场所对应的样品微区的成像电子束通过。使得在荧光屏上观察到的电子衍射花样,它仅来自于选区范围内的晶体的贡献。实际上,选区形貌观察和电子衍射花样不能完全对应,也就是说选区衍射存在一定误差,所选区域以外样品晶体对衍

透射电子显微镜的原理

透射电子显微镜的原理 XXX (大庆师范学院物理与电气信息工程学院2008级物理学200801071293黑龙江大庆163712) 摘要:透射电子显微镜在成像原理上与光学显微镜类似。它们的根本不同点在于光学显微镜以可见光作照明束,透射电子显微镜则以电子为照明束。在光学显微镜中将可见光聚焦成像的玻璃透镜,在电子显微镜中相应的为磁透镜。由于电子波长极短,同时与物质作用遵从布拉格(Bragg)方程,产生衍射现象,使得透射电镜自身在具有高的像分辨本领的同时兼有结构分析的功能。 关键词:第一聚光镜;第二聚光镜;聚光镜阑;物镜光阑;选择区光阑;中间镜 作者简介:XXX(1988-),黑龙江省绥化市绥棱县,物理与电气信息工程学院学生。 0引言: 工业多相催化剂是极其复杂的物理化学体系。长期以来,工业催化剂的制备很大程度上依赖于经验和技艺,而难以从原子分子水平的科学原理方面给出令人信服的形成机制。为开发更高活性、选择性和稳定性的新型工业催化剂,通过各种表征技术对催化剂制备中的过程产物及最终产品进行表征是一个关键性的基础工作。在当前各种现代表征手段中,透射电子显微镜尤其是高分辨透射电子显微镜,可以在材料的纳米、微米区域进行物相的形貌观察、成分测定和结构分析,可以提供与多相催化的本质有关的大量信息,指导新型工业催化剂的开发。 为什么透射电子显微镜有如此高的分辨率那?本文阐述了透射电子显微镜的工作原理。 1透射电子显微镜的定义/组成 1.1定义 在一个高真空系统中,由电子枪发射电子束, 穿过被研究的样品,经电子透镜聚焦放大,在荧光 屏上显示出高度放大的物像,还可作摄片记录的一 类最常见的电子显微镜称为透射电子显微镜。[1] 1.2组成 透射电子显微镜由照明系统、成像系统、记录 系统、真空系统和电器系统组成。(如图1) 2透射电子显微镜的照明系统 照明系统的作用是提供亮度高、相干性好、束 流稳定的照明电子束。它主要由发射并使电子加速 的电子枪和会聚电子束的聚光镜组成。图1透射电子显微镜结

透射电镜的明场像和暗场像的成像原理

透射电子显微镜是一种具有高分辨率、高放大倍数的电子光学仪器,被广泛应用于材料科学等研究领域。透射电镜以波长极短的电子束作为光源,电子束经由聚光镜系统的电磁透镜将其聚焦成一束近似平行的光线穿透样品,再经成像系统的电磁透镜成像和放大,然后电子束投射到主镜简最下方的荧光屏上而形成所观察的图像。在材料科学研究领域,透射电镜主要可用于材料微区的组织形貌观察、晶体缺陷分析和晶体结构测定。 明暗场成像原理:晶体薄膜样品明暗场像的衬度(即不同区域的亮暗差别),是由于样品相应的不同部位结构或取向的差别导致衍射强度的差异而形成的,因此称其为衍射衬度,以衍射衬度机制为主而形成的图像称为衍衬像。如果只允许透射束通过物镜光栏成像,称其为明场像;如果只允许某支衍射束通过物镜光栏成像,则称为暗场像。有关明暗场成像的光路原理参见图2-1。就衍射衬度而言,样品中不同部位结构或取向的差别,实际上表现在满足或偏离布喇格条件程度上的差别。满足布喇格条件的区域,衍射束强度较高,而透射束强度相对较弱,用透射束成明场像该区域呈暗衬度;反之,偏离布喇格条件的区域,衍射束强度较弱,透射束强度相对较高,该区域在明场像中显示亮衬度。而暗场像中的衬度则与选择哪支衍射束成像有关。如果在一个晶粒内,在双光束衍射条件下,明场像与暗场像的衬度恰好相反。 a) 明场成像 b) 中心暗场成像 明暗场成像是透射电镜最基本也是最常用的技术方法,其操作比较容易,这里仅对暗场像操作及其要点简单介绍如下: (1) 在明场像下寻找感兴趣的视场。 (2) 插入选区光栏围住所选择的视场。

(3) 按“衍射”按钮转入衍射操作方式,取出物镜光栏,此时荧光屏上将显示选区域内晶体产生的衍射花样。为获得较强的衍射束,可适当的倾转样品调整其取向。 (4) 倾斜入射电子束方向,使用于成像的衍射束与电镜光铀平行,此时该衍射斑点应位于荧光屏中心。 (5) 插入物镜光栏套住荧光屏中心的衍射斑点,转入成像操作方式,取出选区光栏。此时,荧光屏上显示的图像即为该衍射束形成的暗场像。(衍射使用选区光阑,成像使用物镜光阑) 通过倾斜入射束方向,把成像的衍射束调整至光轴方向,这样可以减小球差,获得高质量的图像。用这种方式形成的暗场像称为中心暗场像。在倾斜入射束时,应将透射斑移至原强衍射斑(hkl)位置,而(hkl)弱衍射斑相应地移至荧光屏中心,而变成强衍射斑点,这一点应该在操作时引起注意。 利用暗场像观测析出相的尺寸、空间形态及其在基体中的分布,是衍衬分析工作中一种常用的实验技术。 利用层错明暗场像外侧条纹的衬度,可以判定层错的性质。 2-2 显示钨合金晶粒形貌的衍衬像 a) 明场像 b) 暗场像

透射电镜电子衍射在晶体结构分析中的应用

透射电镜电子衍射在晶体结构分析中的应用 晶体材料由于具有有序结构而表现出许多独特的性质,成为特定的功能材料,制成器件广泛应用于微电子、自动控制、计算通讯、生物医疗等领域。功能晶体材料的的微观结构决定其性能,因此对其微观结构的解析一直是科学研究的热点之一。研究晶体结构通常的方法是X-射线单晶衍射技术(SXRD, Single crystal X-ray diffraction)和X-射线粉末衍射技术(PXRD, Powder X-ray diffraction),科学家们应用此两项技术已经解析了数目非常庞大的晶体结构。然而X-射线衍射技术对于解析的晶体大小有限制,即使是应用同步辐射光源也只能解析大于微米级的晶体,无法对纳米晶体的结构进行解析。相对于X-射线,电子束由于具有更短的波长以及更强的衍射,因此电子衍射应用于纳米晶体的结构分析具有特别的意义,透射电镜不仅可对纳米晶体进行高分辨成像而且可进行电子衍射分析,已成为纳米晶体材料不可或缺的研究方法,包括判断纳米结构的生长方向、解析纳米晶体的晶胞参数及原子的排列结构等。 1、判断已知纳米结构的生长方向 在研究晶体结构时,很多情况下需要判断其优势生长面及生长方向,尤其是纳米线、纳米带等。晶体的电子衍射图是一个二维倒易平面的放大,同时透射电镜又能得到形貌,分别相当于倒易空间像与正空间像,正空间的一个晶面族(hkl)可用倒空间的一个倒易点hkl来表示,正空间的一个晶带[uvw]可用倒空间的一个倒易面(uvw)*来表示,对应关系如图1所示,在透射电镜中,电子束沿晶带轴的反方向入射到晶体中,受晶面族(h1k1l1)的衍射产生衍射斑(h1k1l1),那么衍射斑与透射斑的连线垂直于晶面族(h1k1l1),据此可判断晶体的优势生长面及生长方向。具体的方法是:首先拍摄形貌像,并且在同一位置做电子衍射,在形貌像上找出优势生长面,与电子衍射花样对照,找出与透射斑连线垂直于此晶面的透射斑,并进行标定,根据晶面指数换算出生长方向。如图2所示是判断一维纳米线的生长方向,首先对电子衍射进行标定,纳米线的优势生长面为与纳米线垂直的面,在电子衍射图上找出与此面垂直的透射斑与衍射斑的连线,确定优势生长面是(0-11)面,由于该物质是四方晶系,根据四方晶系的正倒易转换矩阵,将(0-11)

第2章 电子衍射谱的标定

第二章 电子衍射谱的标定 2. 1透射电镜中的电子衍射 透射电镜中的电子衍射基本公式为: λL Rd = R 为透射斑到衍射斑的距离(或衍射环半径),d 为晶面间距,λ为电子波长,L 为有效相机长度。 p i M M f L 0= 0f 为物镜的焦距,i M 中间镜放大倍数,p M 投影镜的放大倍数,在透射电镜 的工作 中,有效的相机长度L ,一般在照相底板中直接标出,各种类型的透射电镜标注方法不同,λ为电子波长,由工作电压决定,工作电压一般可由底板标注确定,对没有标注的早期透射电镜在拍摄电子衍射花样时,记录工作时的加速电压,由电压与波长对应表中查出λ。 K L =λ K 为有效机相常数,单位 A mm ,如加速电压U =200仟伏,则 A 2 1051.2-?=λ,若有 效相机长度mm L 800=,则 A mm K 08.2010 51.28002 =??=- 透射电镜的电子衍射有效相机常数确定方法: 电子衍射有效相机常数确定方法,一般有三种方法 ①按照相底片直接标注计算: H -800透射电镜的电子衍射底片下方有一列数字,如: 0.80 91543 4A 90.5.21; 0.80表示有效相机长度mm M L 8008.0==,91543为片号,4A 其A 表示工作电压200千伏查表知电子波长 A 2 10 51.2-?=λ则有效相机常数K 为: A mm L K 08.201051.28002 =??==-λ H -800透射电镜中,电子衍射底片第一个数字为相机长度如:0.80,0.40,……第三个数字为工作电压U ,分别为4A ,4b ,4c ,4d ,相对应的工作电压分别为200,175,150,100千伏,对应的电子波长分别为:2 2 2 2 10 70.3,10 95.2,10 71.2,10 51.2----????埃。 由电镜有关参数确定的相机常数是不精确的,常因电镜中电气参数变化而改变,产生一些误差,电镜工作者常要根据经验作些修正。 ②用金Au 多晶环状花样校正相机常数 例如喷金Au 多晶样品在H -800透射电镜下拍摄多晶环状花样,如照片上标注为

透射电子显微镜实验讲义

一、实验名称 透射电子显微镜用于无机纳米材料的检测。 二、实验目的 1.认知透射电子显微镜的基本原理,了解有关仪器的主要结构; 2.学习利用此项电子显微技术观察、分析物质结构的方法,主要包括:常规成 像、高分辨成像、电子衍射和能谱分析等; 3.重点帮助学生掌握纳米材料等的微观形貌和结构测试结果的判读,主要包括: 材料的尺寸、大小均匀性、分散性、几何形状,以及材料的晶体结构和生长取向等。 三、实验原理 透射电子显微技术自20世纪30年代诞生以来,经过数十年的发展,现已成为材料、化学化工、物理、生物等领域科学研究中物质微观结构观察、测试十分重要的手段,尤其是近20多年来,纳米材料研究的快速发展又赋予这一电子显微技术以极大的生命力,可以这样说,没有透射电子显微镜,就无法开展纳米材料的研究。 透射电子显微镜在成像原理上与光学显微镜是类似的,所不同的是光学显微镜以可见光做光源,而透射电子显微镜则以高速运动的电子束为“光源”。在光学显微镜中,将可见光聚焦成像的是玻璃透镜;在电子显微镜中,相应的电子聚焦功能是电磁透镜,它利用了带电粒子与磁场间的相互作用。 在真空系统中,由电子枪发射出的电子经加速后,通过磁透镜照射在样品上。透过样品的电子被电子透镜放大成像。成像原理是复杂的,可发生透射、散射、吸收、干涉和衍射等多种效应,使得在相平面形成衬度(即明暗对比),从而显示出透射、衍射、高分辨等图像。对于非晶样品而言,形成的是质厚忖度像,当入射电子透过此类样品时,成像效果与样品的厚度或密度有关,即电子碰到的原子数量越多,或样品的原子序数越大,均可使入射电子与原子核产生较强的排斥作用——电子散射,使面通过物镜光阑参与成像的电子强度降低,忖度像变淡。另外,对于晶体样品而言,由于入射电子波长极短,与物质作用满足布拉格

TEM 分析中电子衍射花样标定

TEM分析中电子衍射花样的标定原理 第一节 电子衍射的原理 1.1 电子衍射谱的种类 在透射电镜的衍射花样中,对于不同的试样,采用不同的衍射方式时,可以观察到多种形式的衍射结果。如单晶电子衍射花样,多晶电子衍射花样,非晶电子衍射花样,会聚束电子衍射花样,菊池花样等。而且由于晶体本身的结构特点也会在电子衍射花样中体现出来,如有序相的电子衍射花样会具有其本身的特点,另外,由于二次衍射等会使电子衍射花样变得更加复杂。 上图中,图a和d是简单的单晶电子衍射花样,图b是一种沿[111]p方向出现了六倍周期的有序钙钛矿的单晶电子衍射花样(有序相的电子衍射花样);图c是非晶的电子衍射结果,图e和g是多晶电子的衍射花样;图f是二次衍射花样,由于二次衍射的存在,使得每个斑点周围都出现了大量的卫星斑;图i和j是典型的菊池花样;图h和k是会聚束电子衍射花样。 在弄清楚为什么会出现上面那些不同的衍射结果之前,我们应该先搞清楚电子衍射的产

生原理。电子衍射花样产生的原理与X 射线并没有本质的区别,但由于电子的波长非常短,使得电子衍射有其自身的特点。 1.2 电子衍射谱的成像原理 在用厄瓦尔德球讨论X射线或者电子衍射的成像几何原理时,我们其实是把样品当成了一个几何点,但实际的样品总是有大小的,因此从样品中出来的光线严格地讲不能当成是一支光线。之所以我们能够用厄瓦尔德来讨论问题,完全是由于反射球足够大,存在一种近似关系。如果要严格地理解电子衍射的形成原理,就有必要搞清楚两个概念:Fresnel(菲涅尔)衍射和Fraunhofer(夫朗和费)衍射。所谓Fresnel(菲涅尔)衍射又称为近场衍射,而Fraunhofer(夫朗和费)衍射又称为远场衍射.在透射电子显微分析中,即有Fresnel(菲涅尔)衍射(近场衍射)现象,同时也有Fraunhofer(夫朗和费)衍射(远场衍射)。 Fresnel(菲涅尔)衍射(近场衍射)现象主要在图像模式下出现,而Fraunhofer(夫朗和费)衍射(远场衍射)主要是在衍射情况下出现。 小孔的直接衍射成像(不加透镜)就是一个典型的Fresnel(菲涅尔)衍射(近场衍射)现象。在电镜的图像模式下,经常可以观察到圆孔的菲涅尔环。 Fraunhofer(夫朗和费)衍射是远场衍射,它是平面波在与障碍物相互作用后发生的衍射。严格地讲,光束之间要发生衍射,必须有互相叠加,平行光严格意义上是不能叠加的,所以在没有透镜的前提下,夫朗和费衍射只是一种理论上的概念。但是在很多情况下,可以将衍射当成夫朗和费衍射来处理,X射线衍射就是这样一种情况。虽然X射线是照射在晶体中的不同晶面上,但是由于晶面间距的值远远小于厄瓦尔德球(X射线波长的倒数),即使测试时衍射仪的半径跟晶面间距比也是一个非常大的值,所以X射线衍射可以当成夫朗和费衍射处理,因为此时不同晶面上的X射线叠加在一点上时,它们

透射电子显微镜基本结构及功能

透射电子显微镜部分结构及功能 在光学显微镜下无法看清小于0.2µm的细微结构,这些结构称为亚显微结构(s ubmicroscopic structures)或超微结构(ultramicroscopic structures;ultrastructur es)。要想看清这些结构,就必须选择波长更短的光源,以提高显微镜的分辨率。1 932年Ruska发明了以电子束为光源的透射电子显微镜(transmission electron mi croscope,TEM),电子束的波长要比可见光和紫外光短得多,并且电子束的波长与发射电子束的电压平方根成反比,也就是说电压越高波长越短。目前TEM的分辨力可达0.2nm。 电子显微镜与光学显微镜的成像原理基本一样,所不同的是前者用电子束作光源,用电磁场作透镜。另外,由于电子束的穿透力很弱,因此用于电镜的标本须制成厚度约50nm左右的超薄切片。这种切片需要用超薄切片机(ultramicrotome)制作。电子显微镜的放大倍数最高可达近百万倍、由电子照明系统、电磁透镜成像系统、真空系统、记录系统、电源系统等5部分构成,如果细分的话:主体部分是电子透镜和显像记录系统,由置于真空中的电子枪、聚光镜、物样室、物镜、衍射镜、中间镜、投影镜、荧光屏和照相机。 电子显微镜是使用电子来展示物件的内部或表面的显微镜。高速的电子的波长比可见光的波长短(波粒二象性),而显微镜的分辨率受其使用的波长的限制,因此电子显微镜的分辨率(约0.1纳米)远高于光学显微镜的分辨率(约200纳米)。 透射式显微镜的结构与原理 透射式电子显微镜(TEM)与投射式光学显微镜的原理很相近,它们的光源、透镜虽不相同,但照放大和成像的方式却完全一致。 在实际情况下无论是光镜还是电镜,其内部结构都要比图示复杂得多,图中的聚光镜(condonser lens)、物镜(object lens)和投影镜(projection lens)为光路中的主要透镜,实际制作中它们往往各是一组(多块透镜构成),在设计电镜时为达到所需的放大率、减少畸变和降低像差,又常在投影镜之上增加一至两级中间镜(in temediate lens)。 透射式电子显微镜的总体结构包括镜体和辅助系统两大部分,镜体部分包含:①照明系统(电子枪G,聚光镜C1、C2),②成像系统(样品室,物镜O,中间镜I1、

透射电子显微镜原理

第二章透射电子显微镜 【教学内容】 1.透射电子显微镜的构造与成像原理 2.透射电镜图像的成像过程 3.透射电镜主要性能 4.表面复型技术 5.透射电镜观察内容 【重点掌握内容】 1.透射电子显微镜构造 2.表面复型技术 3.复型电子显微镜图像的分析。 【教学难点】 表面复型技术 2.1 透射电子显微镜的结构与成像原理 透射电子显微镜是以波长极短的电子束作为照明源,用电磁透镜聚焦成像的一种高分辨率、高放大倍数的电子光学仪器。 There are four main components to a transmission electron microscope: 1.an electron optical column 2. a vacuum system 3.the necessary electronics (lens supplies for focusing and deflecting the beam and the high voltage generator for the electron source) 4.software 电子光学系统(镜筒)(an electron optical column)是其核心,它的光路图与透射光学显微镜相似,如图所示,包括:照明系统,成像系统,观察记录系统。

图2-1 投射显微电镜构造原理和光路 2.1.1 照明系统 组成:由电子枪、聚光镜(1、2级)和相应的平移对中、倾斜调节装置组成。 作用:提供一束亮度高、照明孔径角小、平行度高、束斑小、束流稳定的照明源。为满足明场和暗场成像需要,照明束可在20-30范围内倾斜。 1. 电子枪 电子枪是电镜的电子源。其作用是发射并加速电子,并会聚成交叉点。目前电子显微镜使用的电子源有两类: 热电子源——加热时产生电子,W丝,LaB6 场发射源——在强电场作用下产生电子,场发射电镜FE 热阴极电子源电子枪的结构如图2-2所示,形成自偏压回路,栅极和阴极之间存在数百伏的电位差。电子束在栅极和阳极间会聚为尺寸为d0的交叉点,通常为几十um。栅极的作用:限制和稳定电流。 图2-2 电子枪结构

第一节 电子衍射的原理

第一节电子衍射的原理 1.1 电子衍射谱的种类 在透射电镜的衍射花样中,对于不同的试样,采用不同的衍射方式时,可以观察到多种形式的衍射结果。如单晶电子衍射花样,多晶电子衍射花样,非晶电子衍射花样,会聚束电子衍射花样,菊池花样等。而且由于晶体本身的结构特点也会在电子衍射花样中体现出来,如有序相的电子衍射花样会具有其本身的特点,另外,由于二次衍射等会使电子衍射花样变得更加复杂。 上图中,图a和d是简单的单晶电子衍射花样,图b是一种沿[111]p方向出现了六倍周期的有序钙钛矿的单晶电子衍射花样(有序相的电子衍射花样);图c 是非晶的电子衍射结果,图e和g是多晶电子的衍射花样;图f是二次衍射花样,由于二次衍射的存在,使得每个斑点周围都出现了大量的卫星斑;图i和j是典型的菊池花样;图h和k是会聚束电子衍射花样。 在弄清楚为什么会出现上面那些不同的衍射结果之前,我们应该先搞清楚电子衍射的产生原理。电子衍射花样产生的原理与X 射线并没有本质的区别,但由于电子的波长非常短,使得电子衍射有其自身的特点。

1.2 电子衍射谱的成像原理 在用厄瓦尔德球讨论X射线或者电子衍射的成像几何原理时,我们其实是把样品当成了一个几何点,但实际的样品总是有大小的,因此从样品中出来的光线严格地讲不能当成是一支光线。之所以我们能够用厄瓦尔德来讨论问题,完全是由于反射球足够大,存在一种近似关系。如果要严格地理解电子衍射的形成原理,就有必要搞清楚两个概念:Fresnel(菲涅尔)衍射和Fraunhofer(夫朗和费)衍射。所谓Fresnel(菲涅尔)衍射又称为近场衍射,而Fraunhofer(夫朗和费)衍射又称为远场衍射.在透射电子显微分析中,即有Fresnel(菲涅尔)衍射(近场衍射)现象,同时也有Fraunhofer(夫朗和费)衍射(远场衍射)。 Fresnel (菲涅尔)衍射(近场衍射)现象主要在图像模式下出现,而Fraunhofer(夫朗和费)衍射(远场衍射)主要是在衍射情况下出现。 小孔的直接衍射成像(不加透镜)就是一个典型的Fresnel(菲涅尔)衍射(近场衍射)现象。在电镜的图像模式下,经常可以观察到圆孔的菲涅尔环。 Fraunhofer(夫朗和费)衍射是远场衍射,它是平面波在与障碍物相互作用后发生的衍射。严格地讲,光束之间要发生衍射,必须有互相叠加,平行光严格意义上是不能叠加的,所以在没有透镜的前提下,夫朗和费衍射只是一种理论上的概念。但是在很多情况下,可以将衍射当成夫朗和费衍射来处理,X射线衍射就是这样一种情况。虽然X射线是照射在晶体中的不同晶面上,但是由于晶面间距的值远远小于厄瓦尔德球(X射线波长的倒数),即使测试时衍射仪的半径跟晶面间距比也是一个非常大的值,所以X射线衍射可以当成夫朗和费衍射处理,因为此时不同晶面上的X射线叠加在一点上时,它们的衍射角仍然会非常接近布拉格角。

TEM的衍射花样分析

版面很多网友由于刚接触TEM的衍射花样,所以有一些基础问题觉得需要这里讲一下,简单衍射花样的标定,所谓简单,就是各个晶系里面的单晶衍射花样,没有缺陷,没有超结构,没有厚样品造成的高阶劳埃带,只是物质的纯相造成的衍射花样。有了这个基础,理解了一些,往下才能做的扎实。 1. 一般的物质衍射花样都是已知的物质,顶多也就是已知的几种里面的一个。所以在确定哪几个物种之后,去找一下相关物质的PDF卡片,网上有一个软件PCPDFWIN,可以方便查讯电子版的PDF卡,下载位置,看看这个帖子,24楼里面我提到了下载的具体目录: https://www.wendangku.net/doc/209729057.html,/bbs/shtml/20060418/398715/ 2. 找到了相应的PDF卡,那么就是要测量衍射花样了。衍射花样的拍摄要严格按照操作规程来,尤其要注意在拍摄时样品聚焦尽量准确。另外,无论底片拍摄还是CCD拍摄,一定要保证用标准样品做了校正。 3. 接下来就是测量衍射点对应的d值。对于底片来说就是测量衍射点到中心透射斑的实际距离R,然后根据d = (L×电子波长)/R,其中L是相机常数,底片上写着,单位是cm,电子波长一般的电镜书上都有,200 kV电镜是0.00251 nm。代入计算即可得到相应的d值。选取两个相邻且最靠近中心斑点的衍射点,二衍射斑点以夹角接近或者等于90度为好。选取测量d值之后,二者同中心斑点连线的夹角也要测量一下。对于CCD相机拍摄的衍射花样,对应的都有标尺,d值测量就是量取衍射点到透射斑的距离后取倒数即可。角度测量可以通过量取衍射点到中心斑连线对应control对话框的R值(角度),二者相减即得。 4. 将计算的d值和PDF卡相对应,看最接近哪个面的数值,querida说过,这个测量会有一定的误差,有相近值时,需要通过夹角来确定。方法是,选取两个比较可能的面,然后代入相应晶系对应的公式,计算夹角,如果和测量值很接近,就算是找对了。Ustb版主说过,计算值和测量值应该相差很小,0.1-0.2度的范围。 至于计算两个面夹角的公式,可以去找郭可信先生写的那本《电子衍射图在晶体学中的应用》,Page104-105上有具体的公式,其中的hkl值都是你要计算的面对应的值,abc是你确定晶相的晶胞参数,PDF卡上都有,r1*r2*分别指的是两个面的d值倒数。 5. 确定了两个方向的衍射点,那么接下来就是确定投射方向,也就是面的法线方向是什么带轴,这个querida朋友已经写了,我这里引用一下: “FFT后的一个斑点对应这正空间一族晶面,这一族晶面和这个斑点的矢量方向垂直,当一张图片上任意不在同一直线上的2个斑点知道后,那么入射电子束也就是带轴的方向就知道了,具体可用

单晶多晶的电子衍射标定注意事项

单晶多晶的电子衍射标定注意事项 衍射花样的标定注意点 接下来说说衍射花样的标定,这个其实我前面所说的资料里面已经有很充分的阐述,一般看了那些资料的相关章节后,都不会有太多问题,我这里讲一些新手经常有的问题: 1. 底片的测量:因为很多老电镜没有配备CCD相机,所以拿到的都是底片,那么这里就有一个如何测量,或者如何将底片转换为电子格式再测量的问题。 首先要看一下底片,底片上一般会给出电子衍射所用的相机长度,比如80 cm,60 cm等,一般只给出数字,这就表示,底片上的1cm就代表了80 cm。然后用以mm或0.5mm为最小单位的尺子测量衍射点或者衍射环到中心透射斑的实际距离R,然后根据dR=LA,其中L 是相机长度,A是电子波长,一般的电镜书上都有,比如200 kV电镜是0.00251 nm。代入计算即可得到相应的d值。建议测量用对称两点测量,这样比较准确一些。 如果有人觉得这样不习惯,喜欢用电子版的,那么可以用底扫扫描到电脑里。 只是将1cm定义为1cm/ LA,如果L取80 cm,A取0.0025 nm,那么这个1cm代表的就是5 nm-1,这样你量取R值之后,比如是1.2 cm,那么对应的d值=1/(1.2*5)=0.167 nm。如果是0.8 cm,那么d = 1/(0.8*5) = 0.25 nm。 单晶花样需要角度的测量,可以用量角器直接在底片上测量,也可以先扫描到电脑里,用DigitalMicrograph这个软件测量,可以将衍射点与中心斑连线,之后在control对话框的会出现一个theta值,两个衍射点之间的面夹角就等于它们与中心斑的两条连线之间的theta角之差。如果有人说找不到control对话框,那么到菜单里依次找到windows-floating windows -点击show all即可。 2. 数码照片的测量:这要分几种情况: a) 如果有dm3格式的源文件,而且标尺是倒易空间标尺(1/nm),那么很简单,就用DigitalMicrograph这个软件读取,用ROI tools里面的虚线或者实线工具,拉线测量衍射点到中心斑点的长度,这个时候control对话框里面的L就是对应值,取倒数就是对应点的d值。 b) 如果是dm3格式的源文件,但标尺还是正空间标尺,那么需要将这个标尺转换为倒易空间标尺,一般的电镜室都有这样的校正文件,转换一下即可。其余步骤同a) c) 如果没有dm3源文件,只是有tiff或者jpeg这种格式,但标尺已经是倒易空间标尺,那么也很简单,测量标尺长度S,记下数值(无需单位),而后测量目标距离R,如果倒易空间标尺是5 1/nm,那么d值就是1/(R/S*5) d) 没有dm3源文件,只是有tiff或者jpeg这种格式,标尺也同样没有校正,这个也有一个方法,就是找到和你在同一机器同样条件下得到的标样的衍射照片,把已知d值的衍射点量一下距离,和相应d值取一个比值,这样就可以作为临时标尺计算,不过这是应急的方法,最好还是用已经校正好的dm3格式文件来做。 e) 角度测量同底片的DM测量方法。 其他标定点 3. 注意标定时晶带轴确定的右手定则,这个可以看看《分析电子显微学导论》的3.6章节或者电子显微分析 4.5章节,里面有充分的论述。 4. 无论底片还是数码照片,即使经过严格的标样校正和标准的拍摄程序,d值的测量都不是特别准确,误差在3-5%都是很正常的,所以对应于标准PDF卡都会有一些不同,因此要完全定下一个晶带轴,还是需要晶面夹角(就是两个衍射点与中心斑点之间形成的夹角)来确认:定好两个衍射面的hkl值后,带入相应的晶系公式(不同晶系的面夹角公式在那份资料里,分析电子显微学导论的附录里面都有),就可以得到一个理论夹角值,比较理论值与测量值的差异,一般能优于0.5度的误差,就可以认定是准确的。

透射电子显微镜原理

透射电子显微镜原理 透射电子显微镜(transmission electron microscope, TEM)是利用透射电子成像,因而要求样品极薄(加速电压100kV时,样品厚度不能超过100nm)。其结构包括三大部分:电子学系统、真空系统和电子光学系统。电子光学系统提供电子束,在高真空条件下照射到样品上,经过成像系统中的物镜成像,再经过中间镜和投影镜的进一步放大,获得的图像记录在CCD上。TEM使用油扩散泵(Diffuse Pump)来实现高真空。由于油扩散泵的启动和关闭都需要30分钟,导致TEM开机和关机都至少需要30分钟。TEM发射出的高能电子束轰击到光路元器件上以及样品上,会产生以X-ray为主的等等其他射线辐射,因此建议孕妇等过敏性体质者尽量避免接触TEM。 由于平台现有TEM的加速电压为100kV,是一台生物电镜,因此无法满足材料科学上要求的高放大倍数(30万倍以上)、高分辨、衍射花样等实验要求,有这方面需求的科研人员请与武大、地大等单位联系。 TEM是研究结构生物学的有力工具。除了电镜之外,现在尚没有一种仪器能使人们用肉眼直接观察到亚细胞结构、蛋白大分子(直径20nm以上)的排列结构形态。利用电镜观察超微结构的形态和位置,可以研究解决部分形态和功能的问题。 TEM是研究超微结构必须的工具之一,但它存在一些缺点:(1)TEM的价格昂贵,维护费用及其配件、耗材都在几百甚至上千美元以上。(2)TEM的维护和使用均要求较高的技术,也是一个精细、繁琐的过程。TEM每3天要做一次维护和电子光路调整,每次调整和维护至少需要2个小时。(3)TEM不能像光镜那样随时可用,受到很多限制。TEM放大倍数有很多,再加上切片的限制,因此无法实现始终同一放大倍数的拍摄。(4)TEM样品必须置于真空中,因此对活体标本的观察是不可能的。(5)TEM样品取材及制备存在局限性。TEM取材要求只有1mm3大小块状,而且观察面更小,如果把一个厚6μm的细胞核切成60nm的超薄切片,可以且100张,而一般光镜的石蜡切片厚度即为6μm。如果要得到一张光镜样品切片的信息,就不得不记录下100张超薄切片的信息,工作量就要增加了100倍。(6)TEM的观察视野较小,只有6μm×9μm,当放大10 000倍时,要想记录1 mm2的标本信息,就需要拍摄18 500张照片。因此在进行电镜观察研究时,必须要有选择性、有代表性地严格选择样品。 使用TEM前,首先要树立一个概念:TEM不是光镜的再放大,TEM的研究对象不是组织,而是细胞器,是以细胞为整体研究细胞内部结构的工具。组织切片能解决问题的没有做TEM的必要!

TEM透射电镜衍射斑点标定深入浅出

TEM透射电镜衍射斑点标定深入浅出 衍射斑点的标定目的是什么呢?这是大家首先遇到的问题。作为骨灰级的TEM爱好者,我告诉你,目前段位的虫友可以通过衍射标定达到以下两个目的:1装X。2辅助进行物相鉴定。 装X是很容易理解的,目前的文章要是少了透射实验那也是被别人甩了好几条街,审稿人没兴趣,同行看不起,很没面子。因为凡涉及到TEM都显得高大上。也许第二个目的才是大家真正关心的问题。注意我这里说的是“辅助”进行物相鉴定,之所以是“辅助”是由于物相鉴定是一个相当复杂的且技术含量高的工作。鉴定的难度来源于以下几个方面。1、微观层面的物相太小,如果用打能谱分析元素的办法,很可能打到的区域会有偏离或区域偏大,能谱的结果不够准确。2、物相太小又无法做XRD(X射线衍射,照顾一下小白虫友)。3、通过相貌观查判断,这个太主观,而且经验要求极高,不从事个十来年的研究很难做出准确的推断。所以物相鉴定非常困难,不能凭借上面一种手段给出有说服力的证明。所以就有了多种手段辅助联合证明提升说服力的策略。衍射斑点标定也是众多辅助手段中的一种,它也不能作为鉴定物相一招制敌的法宝,是因为,标定过程中会引入多种误差(拍摄系统误差,测量误差,计算误差),没法百分百保证标定的精度,所以结果也就是在误差范围内参考。看了这些,你是不是感觉很泄气,不过没关系,圈内人士都会有一个约定俗称的共识,也就是说,只要你从多个方面联合这证明物相,达到80%的说服力,也就默认你的证明是对的了。审稿人也一般确实这么做的。 接下来的问题是我该怎么标定我的衍射斑点呢?这是一个大问题,咱先从宏观上对这个问题进行把握。打一个简单的比方,警察要查找犯罪嫌疑人是谁,在犯罪现场找到了作案者的小拇指的指纹,要查到此人的信息就需要将该小拇指指纹拿到公安局的数据库中进行比对,一旦该小拇指与其中一个人的小拇指指纹对上了,很可能就是这个人作案。衍射斑点标定的过程与此相同,也是利用物相留下的衍射斑点得到晶面数据,再和标准物相库进行对比,在物相库里面如果有比较吻合的晶面数据,就很可能是这个物相了。

相关文档
相关文档 最新文档