文档库 最新最全的文档下载
当前位置:文档库 › 蒙脱土纳米复合材料

蒙脱土纳米复合材料

蒙脱土纳米复合材料
蒙脱土纳米复合材料

聚合物/蒙脱土纳米复合材料

Polymer/ Montmorillonite Nanocomposites

(姓名班级学号)

摘要:介绍了蒙脱土的结构和特点,以及什么是聚合物/蒙脱土纳米复合材料及其制备方法和分类。讨论了聚合物/蒙脱土纳米复合材料的性能特点和应用。聚合物/蒙脱土纳米复合材料具有优异的性能,是目前材料学科的研究热点之。

关键词:蒙脱土;聚合物纳米复合材料;制备分类;性能应用

一、综述

纳米复合材料的概念最早是由Rustun Roy于1984年提出的,它是指分散相尺寸至少有1种小于100 nm 的复合材料[1]。由于纳米粒子有独特的“表面效应”、“体积效应”和“量子效应”,使纳米复合材料表现出独特的化学和物理性质,因此引起了人们的广泛关注。

聚合物基纳米复合材料包括聚合物基有机纳米复合材料和聚合物基无机纳

米复合材料。聚合物基无机纳米复合材料是集有机组分和无机纳米组分于一体的新型功能高分子材料。目前,聚合物基无机纳米复合材料的制备方法主要有3种:即溶液-凝胶法、嵌入法和纳米微粒填充法[2]。

聚合物/蒙脱土纳米复合材料是目前新兴的一种聚合物基无机纳米复合材料。与常规复合材料相比,具有以下特点:只需很少的填料 <5% (质量分数),即可使复合材料具有相当高的强度、弹性模量、韧性及阻隔性能;具有优良的热稳定性及尺寸稳定性;其力学性能有优于纤维增强聚合物系,因为层状硅酸盐可以在二维方向上起增强作用;由于硅酸盐呈片层平面取向,因此膜材有很高的阻隔性;层状硅酸盐蒙脱土天然存在有丰富的资源且价格低廉。故聚合物/蒙脱土纳米复合材料成为近年来新材料和功能材料领域中研究的热点之一。

二、蒙脱土的结构和性能

纳米蒙脱土系蒙皂石粘土(包括钙基、钠基、钠-钙基、镁基蒙粘土)经剥片分散、提纯改型、超细分级、特殊有机复合而成,平均晶片厚度小于25 nm,蒙脱石含量大于 95%。具有良好的分散性能,可以广泛应用高分子材料行业作为纳米聚合物高分子材料的添加剂,提高抗冲击、抗疲劳、尺寸稳定性及气体阻隔性能等,从而起到增强聚合物综合物理性能的作用,同时改善物料加工性能。在聚合物中的应用可以在聚合物时添加,也可以在熔融时共混添加(通常采用螺杆共混)。

蒙脱土的化学式为:M n+x/n[Al4.0-xMg x](Si8.0)O20(OH)4·yH2O,属于2:1型层状硅酸盐,即每个单位晶胞由2个硅氧四面体晶片间夹带一个铝氧八面体晶片构成三明治状结构[3],二者之间靠共用氧原子连接,每层厚度约为1 nm。

由于硅氧四面体中的部分Si4+和铝氧八面体中的部分Al3+被Mg2+所同晶置换,

因此在这些1 nm厚的片层表面产生了过剩的负电荷。为了保持电中性这些过剩的负电荷通过层间吸附阳离子来补偿。蒙脱土片层间通常吸附有Na+、K+、Ca2+、Mg2+等水合阳离子,它们很容易与有机或无机阳离子进行交换,使层间距发生变化。研究表明:层间可交换的阳离子数即离子交换容量(CEC)并不是越高越好。蒙脱土的片层中间的CEC通常在60~120 mEq/100 g的范围内,这是一个比较合适的离子交换容量。交换有机阳离子可使硅酸盐表面从亲水性变为亲油性,降低硅酸盐的表面能,提高其和聚合物基体及单体的相容性,而且有机阳离子可以带有各种官能团,这些官能团和聚合物反应,从而提高了无机物和聚合物基体之间的粘接性[4]。适宜的离子交换容量,优良的力学性能及低廉的价格,使得蒙脱土成为制备聚合物纳米复合材料的理想矿物。

三、聚合物/蒙脱土纳米复合材料的制备方法及其分类

插层复合(Intercalation Compounding)是制备此类纳米复合材料的最重要的方法之一,它是将聚合物插层于层状结构的填料中从而获得纳米量级的复合材料。它主要有原位插层聚合法和聚合物插层法2种方式。聚合物插层法又可分为聚合物溶液插层、聚合物熔融插层、聚合物乳液插层3种。此外有人用超声波法制备此类纳米复合材料,而且紫外光固化法也有可能成为制备此类复合材料的一种方法[5]。

原位插层聚合法是把适合的单体插层到已改性的粘土层中,然后进行聚合反应,其特点是可以将聚合物单体引入到粘土层中制备那些大分子链不易直接插入粘

土层间的复合材料。聚合物溶液插层法是先把离子交换过的粘土分散在合适的溶液中,然后把其和聚合物溶液混合并搅拌生成杂化物溶液,然后蒸发掉溶剂,在N2的保护下加热到一定的温度和一定的时间来制备聚合物/蒙脱土纳米复合材料,其特点是操作简单。聚合物乳液插层法是粘土在强烈的搅拌下分散于水中,加入胶乳和少许的助剂,共混均匀,用稀盐酸絮凝,水洗,烘干,得蒙脱土/聚合物纳米复合材料。聚合物熔融插层法是首先把聚合物和层状硅酸盐混合,然后再加热到聚合物软化点以上温度进行反应,此方法的特点是不用溶剂,对环境有利并更经济方便,而且提供了常规技术研究在二维空间受限制聚合物的理想体系。

根据聚合物纳米复合材料的微观结构,可以将聚合物/蒙脱土纳米复合材料分为插层型纳米复合材料和剥离型纳米复合材料[5]。

在插层型复合物中,聚合物不仅进入蒙脱土颗粒,而且插层进入硅酸盐晶片层间,使蒙脱土的片层间距明显增大,但还保留原来的方向,片层仍然具有一定的有序性;在剥离型复合物中,蒙脱土的硅酸盐片层完全被聚合物打乱,无规则的分散在聚合物基体中的是一片一片的硅酸盐片层,此时蒙脱土片层与聚合物可以混合均匀。在插层型纳米复合材料中,高分子链在层间受限空间与层外自由空间的运动有很大差异,因此此类复合物材料可作各向异性的功能材料;而剥离型纳米复合材料具有很强的增强效应,是理想的韧性材料。[6]

四、聚合物/蒙脱土纳米复合材料的性能和应用

聚合物/蒙脱土纳米复合材料的应用大体分为两大类,即作为工程材料和气体阻隔材料。此种纳米复合材料的抗张强度、抗张模量与聚合物基体相比有大幅度提高,这是一般用填料填充的聚合物体系所无法比拟的。同时阻燃性、热变形温度、耐溶剂性能等都大幅度提高。黏土用量仅为1%-5%,透明性不受影响,但

有时对气体的渗透性可下降一个数量级。

在聚合物/蒙脱土纳米复合材料中,存在四个相:硅酸盐片层相,改性表面相,未束缚聚合物相、纯聚合物相。这些相的体积分数及其性质决定了整个复合材料的性质,包括阻隔性能和其它性能。

具体应用包括如下六个方面[7]:

(1) 应用于阻燃材料

聚合物/蒙脱土纳米复合材料具有优异的自熄性;其原理为:燃烧过程中,纳米复合材料结构塌陷,形成了多层碳质/硅酸盐结构。该结构作为一种传质和传热的阻隔体,阻隔挥发物的产生和聚合物的分解。由于聚合物/蒙脱土纳米复合材料表现出良好的综合性能,如热稳定性、高强度、模量高、气体阻隔性高、膨胀系数低等优点,且密度仅为一般复合材料的 65-75%,广泛用于航空、汽车、家电、电子行业作为高性能工程塑料。

(2) 应用于导电和光学器件

将导电聚合物嵌入层状无机物的夹层中形成纳米复合材料,因在层状坑道中分子的整齐排列,所得的导电聚合物的结构规整,具有各向异性,在电子、光学、和电化学等方面将显示出新的特性,可以用于制备导电与半导电材料、发光材料、变色材料和非线性光学材料。将PPV的半导体荧光性质和粘土的气体阻隔性结合起来,可用于制作发光二极管等光学器件。将PEO/锂蒙脱土纳米复合材料的高导电性和优异的力学性能可用于制造锂电池。

(3) 应用于耐磨材料

聚合物无机物纳米复合材料具有优异的力学和热学性能,可以制备出耐热、高强度的耐磨材料,应用于汽车工业和航空工业等领域。如聚合物/层状硅酸盐纳米复合材料,聚合物/碳纳米管纳米复合材料,及聚合物/二氧化硅/纳米复合材料等等。

(4) 应用于纳米复合材料

纳米粒子用于传统涂料中得到一类具有抗辐射、抗老化与剥离性能的新型纳米涂料。传统的涂料包括醇酸树脂涂料、丙烯酸树脂涂料及用于建筑、船舶、汽车、卷钢、家电等领域的涂料。它们均不同程度地存在“颜料悬浮”,稳定性差,触变性差和抗老化性性等问题。纳米涂料使传统涂料产生质变。我们所熟知的二氧化钛纳米粒子粒径1-100 nm,对入射光基本无散射作用,具有很强的屏蔽紫外线能力和优异的透明性。将这种纳米和云母珠光颜料并用时,作为效应颜料可以产生十分迷人的精美双色效应,这种效应颜料的神秘色彩和独特的光学性能,很受汽车涂料商的欢迎,已广泛应用于汽车涂料。

(5) 应用于阻隔材料

由于聚合物链受限于层状无机物的纳米片层之间,聚合物层状无机物纳米复合材料具有高长径比的无机物片层阻碍了气体的扩散,增加了材料的阻隔性。应用比较多的是各类包装行业,PP、PE、PET及PA-6与层状硅酸盐的纳米复合材料广泛应用啤酒包装及机械包装等领域,简化了生成工艺,降低包装成本。

(6) 应用于生物功能复合材料

目前,层状无机物与聚合物的复合已从普通高分子拓展到生物高分子。将蛋白质分子比如血红蛋白和酶固定在α-ZrP 的层间,以改善酶的催化活性,有利于制备生物复合材料和生物传感器。将抗癌药氨甲叶酸通过离子交换到ZnAl-LDH 层间合成了生物功能性纳米复合材料,在改善药物的生物相容性的同时,改善药物的释放速率以增强药效。

五、结束语

聚合物/蒙脱土纳米复合材料因其特殊的结构和优异的性能展现出诱人的应用前景。但该技术刚刚兴起,尚处在探索阶段,很多项目还局限在实验室的研究,离工业化还有很大距离。目前需解决的问题主要有:(1)纳米材料精细结构的表征和纳米复合材料中纳米相的表征;(2)纳米复合聚合物的力学性能、热性和阻燃性改善机理的研究;(3)纳米粒子在聚合物基体中的聚集问题。随着技术进步及新工艺、新方法的不断研究开发,必将实现对纳米复合材料微观结构的优化设计和对纳米粒子形态、尺寸和分布的有效控制,最终开发出性能更好、功能更强的聚合物/蒙脱土纳米复合材料。[8]

参考文献:

[1] Roy R. Ceramics by the Solution-Sol-Gel Route.[J] Science,

1987,238(4834):1644~1669.

[2] 马家举,徐国财.聚合物纳米复合材料的制备方法[J].现代化工,

2001,21:15~17.

[3] Pinnavaia TJ. Intercalated clay catalysts.[J] Science,

1983,220(4995):365~371.

[4] 王新宇,漆宗能,王佛松,等.聚合物-层状硅酸盐纳米复合材料制备及应用

[J]. 工程塑料应用, 1999,27:1~5.

[5] 李春生,周春晖,李庆伟,等.聚合物/蒙脱土纳米复合材料的研究进展[J].

现代塑料加工应用, 2010(11):22~26.

[6] 武卫莉,李海平.聚合物纳米复合材料的研究进展[J].纳米科技, 2009,

6(4):71-73.

[7] 张玉龙.纳米复合材料手册[M].北京:中国石化出版社,2005:169-286.

[8] 廖才智.聚合物/蒙脱土纳米复合材料的研究进展[J].广东化工, 2010,

37(8):16-18.

纳米复合材料最新研究进展与发展趋势

智能复合材料最新研究进展与发展趋势 1.绪论 智能复合材料是一类能感知环境变化,通过自我判断得出结论,并自主执行相应指令的材料,仅能感知和判断但不能自主执行的材料也归入此范畴,通常称为机敏复合材料。智能复合材料由于具备了生命智能的三要素:感知功能(监测应力、应变、压力、温度、损伤) 、判断决策功能(自我处理信息、判别原因、得出结论) 和执行功能(损伤的自愈合和自我改变应力应变分布、结构阻尼、固有频率等结构特性) ,集合了传感、控制和驱动功能,能适时感知和响应外界环境变化,作出判断,发出指令,并执行和完成动作,使材料具有类似生命的自检测、自诊断、自监控、自愈合及自适应能力,是复合材料技术的重要发展。它兼具结构材料和功能材料的双重特性。 在一般工程结构领域,智能复合材料主要通过改变自身的力学特性和形状来实现结构性态的控制。具体说就是通过改变结构的刚度、频率、外形等方面的特性,来抑制振动、避免共振、改善局部性能、提高强度和韧性、优化外形、减少阻力等。在生物医学领域,智能复合材料可以用于制造生物替代材料和生物传感器。在航空航天领域,智能复合材料已实际应用于飞机制造业并取得了很好的效果,航天飞行器上也已经使用了具有自适应性能的智能复合材料。智能复合材料在土木工程领域中发展也十分迅速。如将纤维增强聚合物(FRP)与光纤光栅(OFBG)复合形成的FRP—OFBG 复合筋大大提高了光纤光栅的耐久性。将这种复合筋埋入混凝土中,可以有效地检测混凝土的裂纹和强度,而且它可以根据需要加工成任意尺寸,十分适于工业化生产。本文阐述了近年来发展起来的形状记忆、压电等几种智能复合材料与结构的研究和应用现状,同时展望了其应用前景。 2.形状记忆聚合物(Shape-Memory Polymer)智能复合材料的研究 形状记忆聚合物(SMP)是通过对聚合物进行分子组合和改性,使它们在一定条件下,被赋予一定的形状(起始态),当外部条件发生变化时,它可相应地改变形状并将其固定变形态。如果外部环境以特定的方式和规律再次发生变化,它们能可逆地恢复至起始态。至此,完成“记忆起始态→固定变形态→恢复起始态”的循环,聚合物的这种特性称为材料的记忆效应。形状记忆聚合物的形变量最大可为200%,是可变形飞行器

蒙脱土纳米复合材料

聚合物/蒙脱土纳米复合材料 Polymer/ Montmorillonite Nanocomposites (姓名班级学号) 摘要:介绍了蒙脱土的结构和特点,以及什么是聚合物/蒙脱土纳米复合材料及其制备方法和分类。讨论了聚合物/蒙脱土纳米复合材料的性能特点和应用。聚合物/蒙脱土纳米复合材料具有优异的性能,是目前材料学科的研究热点之。 关键词:蒙脱土;聚合物纳米复合材料;制备分类;性能应用 一、综述 纳米复合材料的概念最早是由Rustun Roy于1984年提出的,它是指分散相尺寸至少有1种小于100 nm 的复合材料[1]。由于纳米粒子有独特的“表面效应”、“体积效应”和“量子效应”,使纳米复合材料表现出独特的化学和物理性质,因此引起了人们的广泛关注。 聚合物基纳米复合材料包括聚合物基有机纳米复合材料和聚合物基无机纳 米复合材料。聚合物基无机纳米复合材料是集有机组分和无机纳米组分于一体的新型功能高分子材料。目前,聚合物基无机纳米复合材料的制备方法主要有3种:即溶液-凝胶法、嵌入法和纳米微粒填充法[2]。 聚合物/蒙脱土纳米复合材料是目前新兴的一种聚合物基无机纳米复合材料。与常规复合材料相比,具有以下特点:只需很少的填料 <5% (质量分数),即可使复合材料具有相当高的强度、弹性模量、韧性及阻隔性能;具有优良的热稳定性及尺寸稳定性;其力学性能有优于纤维增强聚合物系,因为层状硅酸盐可以在二维方向上起增强作用;由于硅酸盐呈片层平面取向,因此膜材有很高的阻隔性;层状硅酸盐蒙脱土天然存在有丰富的资源且价格低廉。故聚合物/蒙脱土纳米复合材料成为近年来新材料和功能材料领域中研究的热点之一。 二、蒙脱土的结构和性能 纳米蒙脱土系蒙皂石粘土(包括钙基、钠基、钠-钙基、镁基蒙粘土)经剥片分散、提纯改型、超细分级、特殊有机复合而成,平均晶片厚度小于25 nm,蒙脱石含量大于 95%。具有良好的分散性能,可以广泛应用高分子材料行业作为纳米聚合物高分子材料的添加剂,提高抗冲击、抗疲劳、尺寸稳定性及气体阻隔性能等,从而起到增强聚合物综合物理性能的作用,同时改善物料加工性能。在聚合物中的应用可以在聚合物时添加,也可以在熔融时共混添加(通常采用螺杆共混)。 蒙脱土的化学式为:M n+x/n[Al4.0-xMg x](Si8.0)O20(OH)4·yH2O,属于2:1型层状硅酸盐,即每个单位晶胞由2个硅氧四面体晶片间夹带一个铝氧八面体晶片构成三明治状结构[3],二者之间靠共用氧原子连接,每层厚度约为1 nm。

磁电复合材料研究进展.

《复合材料学》课程论文 题目:磁电复合材料的研究进展 学生姓名:李名敏 学号: 051002109 学院:化学工程学院 专业班级:材料化学101 电子邮箱: 904721996@https://www.wendangku.net/doc/2111238441.html, 2013年 6 月

磁电复合材料的研究进展 摘要:本文介绍磁电复合材料的研究现状和合成工艺,讨论了磁电复合材料性能的影响因素,最后提出了其目前存在的问题及对今后的展望。 关键词:磁电复合材料铁电相铁磁相纳米材料合成工艺性能 1 引言 材料在外加磁场作用下产生自发极化或者在外加电场作用下感生磁化强度的效应称为磁电效应,具有磁电效应的材料称为磁电材料[1]。而磁电复合材料,它由两种单相材料—铁电相与铁磁相经一定方法复合而成。磁电复合材料的磁电转换功能是通过铁电相与铁磁相的乘积效应实现的, 这种乘积效应即磁电效应。磁电复合材料不仅具有前者的压电效应和后者的磁致伸缩效应,而且还能产生出新的磁电转换效应。这种材料能够直接将磁场转换成电场,也可以把电场直接转换为磁场。这种不同能量场之间的转换一步而成,不需要额外的设备,因此转换效率高、易操作。磁电复合材料不但具有较高的尼尔和居里温度,磁电转换系数大等诸多优点,而且还可被用于微波、高压输电、宽波段磁探测,磁场感应器等领域,尤其是在微波泄露、高压输电系统中的电流测量方面有着很突出的优势。此外,磁电复合材料在智能滤波器、磁电传感器、电磁传感器等领域也潜在着巨大的的应用前景[2]。目前, 磁电复合材料作为一种非常重要的功能材料,已成为当今铁电、铁磁功能材料领域的一个新的研究热点。 2 磁电复合材料的研究现状 2.1 磁电复合材料的历史 1894年法国物理学家居里首先提出并证明了一个不对称的分子体在外加磁场的影响下有可能直接被极化,磁电材料概念就此被提出。随后,一些科学家又指出了从对称性角度来考虑,在磁有序晶体中可能存在与磁场强度成正比的电极化以及与电场强度成正比的磁极化即线性磁电效应。直到20世纪80年代,已经发现50多种具有磁电效应的化合物,以及几十种具有此性能的固溶体。虽然发现了一系列具有磁电效应的单相材料,而这类材料虽然既具有铁电性(或反铁电性),又具有铁磁性(或反铁磁性),然而这些材料的居里温度大都远远低于室温,并且只有在居里温度以下这些材料才会表现出微弱的磁电效应。当环境温度上升到居里温度以上时,磁电系数就迅速下降为零,磁电效应也就随之消失。因此,难以利用单相磁电材料开发出具有实际应用价值的器件。这些局限性使得材料科学工作者们又将目光转移到复合材料上,Van Suchtelen首先提出通过复合材料的乘积效应来获得磁电效应,为制备高性能磁电材料开辟了一条新途径。1978

复合材料的最新研究进展

复合材料的最新研究进展 季益萍1, 杨云辉2 1天津工业大学先进纺织复合材料天津市重点实验室 2天津工业大学计算机技术与自动化学院, (300160) thymeping@https://www.wendangku.net/doc/2111238441.html, 摘要:本文主要介绍了当前复合材料的最新发展情况,主要集中在复合材料的增强纤维、加工技术、智能材料和非破坏性检测技术等方面。希望能抛砖引玉,激发研究人员更有价值的创意。 关键词:复合材料,最新进展 1. 引言 人类社会正面临着诸多的问题和需求,如矿物能源、资源的枯竭、环境问题、信息技术以及生活质量等,这推动了复合材料的发展,也促进了各种高新技术的发展。但目前人们已不仅仅局限于新材料的创造、发现和应用上,科学研究已进入一个各种材料综合使用的新阶段,即向着按预定的性能或功能设计新材料的方向发展。并且,在复合材料性能取得飞速发展的同时,其应用领域不断拓宽,性能持续优化,加工工艺不断改善,成本不断降低。 复合材料的独特之处在于其可提供单一材料难以拥有的性能,其最大的优势是赋予材料可剪切性,从而优化设计每个特定技术要求的产品,最大限度地保证产品的可靠性、减轻重量和降低成本。近年以来,复合材料在加工领域中取得了一系列重要的进展,由于计算机辅助设计工具的介入和先进加工技术的开发,使复合材料的市场竞争力有了很大的提高,应用领域不断扩大,除用于结构复合材料外,还大量的进入了功能材料市场。我们观察到,复合材料的发展趋势是[1]: (1)进一步提高结构型先进复合材料的性能; (2)深入了解和控制复合材料的界面问题; (3)建立健全复合材料的复合材料力学; (4)复合材料结构设计的智能化; (5)加强功能复合材料的研究。 近年来,复合材料在增强纤维、加工技术、智能材料和非破坏性检测技术等方面研究较多,并且不断有新的市场应用,能够代表复合材料的最新发展方向。 2. 增强纤维环保化[2] 目前,增强纤维的发展趋势主要是强度、模量和断裂伸长的提高。但随着全球环保意识的风行,复合材料产品也逐渐受到环保方面要求的压力,尤其欧洲地区已有相关规定,热固性复材产品由于无法回收再利用而不易销往欧洲。在树脂之外,复材产品中的增强纤维迄今绝大部分都是无法回收再利用的,包括玻璃纤维、碳纤维、芳纶等,全都是如此。 最近有一种新型增强纤维-玄武岩纤维(Basalt Filament),是由火山岩石所提炼而成的,堪称100% 天然且环保,预期在不久的未来,将会取代相当比例的各种纤维,而加入复合 - 1 -

十一氨基十一酸改性蒙脱土的制备及其表征

第38卷第3期2010年3月化 工 新 型 材 料N EW CH EMICAL MA TERIAL S Vol 138No 13 ?77? 作者简介:郝黎霞(1984-),女,在读硕士,研究方向,尼龙/蒙脱土纳米复合材料研究。联系人:胡国胜,教授,博士生导师。 十一氨基十一酸改性蒙脱土的制备及其表征 郝黎霞 王标兵 胡国胜3 (中北大学高分子与生物工程研究所,太原030051) 摘 要 以阳离子表面活性剂—十一氨基十一酸对钠基蒙脱土(Na 2MM T )进行了改性。对制得的阳离子有机蒙脱 土(OMM T )进行了红外光谱(IR )、XRD 分析以及粒径分布测试,分析结果表明,阳离子表面活性剂已进入蒙脱土的片层间,将蒙脱土片层间距撑大,并且OMM T 由亲水性变为了亲油性,这为聚合物/层状硅酸盐纳米复合材料和防沉剂的开发提供了一个新的方向。 关键词 十一氨基十一酸,有机蒙脱土,纳米复合材料,表征 Preparation and characterization of the organic montmorillonite with 112aminoundecanoic acid Hao Lixia Wang Biaobing Hu Guosheng (Instit ute of Macromolecules &Bioengineering ,Nort h University of China ,Taiyuan 030051)Abstract The organic montmorillonite was prepared by incorporating cationic surfactant 112aminoundecanoic acid to the commericial sodium montmorillonite.The spectra of IR 、XRD and granularmetric analysis showed that the organic a 2gent had intercalated into the layers of MM T ,interlayerspacing was enhanced.In addition ,the organic montmorillonite had better dispersibility in the organic solvent .This study provided a new direction to development of polymer/layered silicate nanocomposites (PL SNs )and antisettle agent. K ey w ords 112aminoundecanoic acid ,organic montmorillonite ,nanocomposite ,characterization 纳米蒙脱土是2∶1型层状硅酸盐粘土矿物,其单位晶胞由1个铝氧八面体夹在2个硅氧四面体中间,层间吸附一些阳离子,有很高的离子交换活性,其整个结构片层厚约 1nm [1]。蒙脱土与聚合物在纳米尺度的复合使材料具有比重 轻、耐热性好、阻隔性、耐老化性及阻燃性优良等特点,并且复合材料具有较好的尺寸稳定性和透明性[2]。但是由于蒙脱土表面的亲水性,不利于其在有机相中分散以及被有机相润湿,限制了它的应用,为克服此性状,必须使蒙脱土表面呈疏水性[3]。 蒙脱土片层表面有过剩的负电荷,能够吸附阳离子;而蒙脱石的端面带有可变电荷,可变电荷随p H 值的变化而变化,这是天然蒙脱石物化性质呈现多样性的关键因素,它源于晶体中O H 2基团在碱性介质中H + 的解离 [4] ,这就使得其在一定的条件下可以吸附阴离子[5]。因此,研究新型表面活性剂改性蒙脱土的插层效果,从而筛选出性价比优良的表面活性剂制备有机蒙脱土,是一个值得研究的课题。 1 实验部分 111 材料与仪器 (1)原料:钠基蒙脱土(Na 2MM T )YH 2E ,浙江宇宏粘土 化工有限公司;阳离子交换容量90mmol ?(100g )-1 、112氨基十一酸,纯度>96%,中北大学高分子研究所自制;无水乙醇 (分析纯)以及一些其它化学常用试剂。 (2)仪器:电子分析天平(BS124S 型,德国Sartorius 公 司);傅立叶变换红外光谱仪(FTIR 28400S 型,Shimadzu 公 司);X 2射线衍射仪(D/max 2RB 型,日本理学电机株式会社);超声波粒度分析仪(美国Brookhaven 90Plus 型)。 112 试验制备 称取与纳基蒙脱土离子交换容量两倍相当的十一氨基十 一酸3.6mmol ,用35%浓盐酸(摩尔比为1∶1~1∶2)在80℃下带搅拌质子化1h [6],然后将其加入100mL 体积比为50∶50无水乙醇与去离子水[7]溶胀的2g 纳基蒙脱土的圆底烧瓶中,水浴加热控制在80℃恒温3h ,搅拌速度一直控制为600r/ min 。 最后趁热过滤有机蒙脱土,并用80℃的去离子水洗涤除去未插层的改性剂和氯离子,直至用AgNO 3检测无AgCl 沉淀析出,至少洗涤10次左右,最后用无水乙醇洗涤两次,再将所得产物在50~60℃普通烘箱中预烘2h ,再在80℃真空烘箱中烘干24h ,研磨粉碎,过200目筛备用。 113 测试方法 XRD 分析:采用日本理学电机株式会社的D/max 2RB 型X 射线衍射仪,Cu.Ka 辐射((=011542nm ),管电压40kV ,管 电流100mA ,连续记谱扫描(扫描速度为1°/min ,扫描范围为 1~10°。蒙脱土层间距由Bragg 方程计算。

有机改性蒙脱土对氧化乐果的吸附

有机改性膨润土在有机磷农药废水处理中的应用研究 杨性坤,岳闪闪,尚成江 (信阳师范学院化学化工学院,河南信阳464000) 摘要:以钙基膨润土为原料,经提纯钠化后用十二烷基三甲基溴化铵(DTAB)进行有机改性,制得有机膨润土。采用批量平衡实验,研究了阳离子表面活性剂DTAB改性的有机膨润土及厡土对有机磷农药氧化乐果的吸附性能,并考察了pH、温度、吸附时间以及有机蒙脱土的用量对吸附的影响。结果表明,改性膨润土对水中氧化乐果的去除能力优于厡土,对50mL浓度为0.8g/L的氧化乐果溶液,在pH值为3.0、温度25℃、吸附时间30min、有机膨润土的加入量10g/L.条件下,对氧化乐果的去除率可达80.6%。 关键词:有机膨润土;十二烷基三甲基溴化铵;吸附;去除率 Study on the Sorption of Omethoate from Water by Organobentonite YANG Xing-kun ,YUE Shan-shan,SHANG Cheng-jiang (College of Chemical Engineering,Xinyang Normal University,Xinyang 464000,China) Abstract: DTAB-bentonite was synthesized by inserting dodecyltrimenthylammonium bromide(DTAB) into the interlayer of bentonite mineral that had been purified and Na-modified. The sorption of organophosphorus pesticide omethoate by natural and DTAB modified bentonite was investigated using a batch equilibrium technique, and the effect of pH, temperature, contact time and dosage of modified bentonite were also observed. The results show that the sorption capacity of those modified to remove omethoate from aqueous solution seems to be more effective than unmodified sample, the omethoate removal rate reached 80.6% at a omethoate concentration of 0.8g/L in the water under the conditions of pH value 3.0, contact temperature of 25℃, contact time of 30min, and dosage of modified bentonite of10g/L. Keywords:organobentonite;DTAB; adsorption; removal rate 引言 农药的使用促进了农业的增产增收,同时也对地下水及地表水造成污染,破坏了生态平衡,严重影响人类的健康和生存。因此,研究农药废水的治理有着重要意义。膨润土中主要矿物成分是蒙脱石,具有较强的亲水特性和吸附性能,但对水溶液中的有机物的吸附能力较差[1]。经改性后制得的有机膨润土对水中非离子有机物吸附能力显著增强,且随着改性剂碳链的增长而显著增加[2-6]。朱利中等[7-9]比较深入地研究了各种有机膨润土吸附水中非极性、弱极性、强极性及离子型有机污染物的性能、机理和规律。也有有学者研究了改性膨润土对不同农药的吸附特性及其去除效果[10-11]。本文研究了以DTAB改性制得的有机膨润土对氧化乐果的吸附性能,确立了吸附最佳工艺条件。 1 材料与方法 1.1仪器与实验材料 主要实验仪器:D8/Advance型多晶X-射线衍射仪,德国Bruker公司;立鹤牌电热恒温干燥箱,山东潍坊医药集团股份有限公司医疗器械厂;KM快速研磨机,湘潭湘仪仪器有限公司;8411电动振筛机,湘潭湘仪仪器有限公司;FA2004电子天平,上海上平仪器公司;D2KW-4电子恒温水浴锅,

聚丙烯酰胺_蒙脱土复合材料结构研究

第21卷第4期高分子材料科学与工程Vo l.21,N o.4 2005年7月POLYM ER M ATERIALS SCIENCE AND ENGIN EERING Jul.2005聚丙烯酰胺/蒙脱土复合材料结构研究X 高德玉1,RB-海曼2,B-托马斯2,李 红3,刘宇光1, 侯 静1,郑 辉1,倪靖滨1 (1.黑龙江省科学院技术物理研究所,黑龙江哈尔滨150086; 2.德国弗莱堡矿业大学; 3.黑龙江大学,黑龙江哈尔滨150080) 摘要:用红外(F T-I R),X射线衍射(X RD),核磁共振(NM R,13C,27A l,29Si)对电子束和紫外辐照制备的纳米结构聚丙烯酰胺/蒙脱土复合材料进行了表征。结果表明,丙烯酰胺以双分子层嵌入蒙脱土层间形成复合体,使蒙脱土层距由1.25nm增大到2.09nm。在复合材料中丙烯酰胺有三种形式:嵌入蒙脱土层间,通过氢键结合在蒙脱土表面和“自由”聚合物。 关键词:蒙脱土;聚丙烯酰胺;纳米复合材料 中图分类号:T B383 文献标识码:A 文章编号:1000-7555(2005)04-0201-04 蒙脱土由于其特有的层状结构,目前被广泛用于纳米材料的制备[1~5]。关于聚丙烯酰胺和蒙脱土复合材料的制备及应用已有很多研究[6~10]。制备蒙脱土/聚合物插层复合材料通常有两种方法,一种是将聚合物直接嵌入蒙脱土;另一种是将单体先嵌入蒙脱土然后进行原位聚合。本文使用仪器分析方法对第二种方法制备的聚丙烯酰胺/蒙脱土复合材料结构进行了初步研究。 1 实验部分 1.1 试样制备 试剂:丙烯酰胺(AM),丙烯酸钠(AANa),苯乙烯磺酸钠(SSNa),乙烯磺酸钠(VSNa),以上试剂均为分析纯,Fluka Chem ie,瑞士产品;蒙脱土:分析纯,S D-CHEMIE,德国产品。 SAP/蒙脱土复合试样(SAPC)的制备:将蒙脱土(30%质量比)悬浮在蒸馏水中,与含有丙烯酰胺及添加剂的水溶液混合(30%),然后使用电子束或紫外线照射完成聚合过程[6,7]。 1.2 结构表征 红外(FT-IR)光谱分析使用Nicolet510 FT-IR分光光度计,NM R(13C,27Al和29Si)分析使用Bruker M SL300核磁共振(NM R)分光计,X光衍射(XRD)分析使用Rigaku Ru-200B 测定。 Fig.1 FT-IR spectra of A:AM/AANa(1∶1),B: AM/mont-morillonite(1∶1),C:AM/AANa/ montmorillonite(1∶3∶4),D:AM/AANa/ montmorillonite(1∶1∶2)and montmorillonite 2 结果与讨论 2.1 FT-IR分析 在Fig.1中,试样A是AM和A ANa共聚物(AM/AANa=1∶1),试样B是AM/蒙脱土 X收稿日期:2004-02-02;修订日期:2004-05-24  基金项目:德国联邦政府教育科学研究技术部(BM BF)(WT Z CHN346-97)及黑龙江省自然科学基金资助项目(E0024) 作者简介:高德玉(1954-),男,博士,研究员.

蒙脱土改性

超支化有机插层剂对蒙脱土的结构及性能影响研究 041206107 高雅琴 摘要:目前,蒙脱土(MMT)由于其独特的结构优势、来源广、价格低而成为制备聚合物/粘土纳米复合材料最重要的粘土矿物之一。为增加蒙脱土与有机相的相容性,制备有机蒙脱土,并观察蒙脱土的层状结构及性能在有机化前后的变化,以无机蒙脱土为原料,用超支化季铵盐作为有机插层剂对蒙脱土进行改性,制备出一系列有机蒙脱土。通过红外、热失重等测试结果对其结构及性能进行表征,并论述了不同实验情况下改性的蒙脱土结构及性能上的差异。 关键词:蒙脱土超支化季铵盐插层结构性能 前言 蒙脱土是一种由纳米厚度的硅酸盐片层构成的粘土,因其来源广泛,价格低廉且具有独特的层状结构和良好的力学性能,已成为制备新型高性能聚合物/粘土纳米复合材料的重要无机原料。 蒙脱土的基本结构单元是由一片铝氧八面体夹在两片硅氧四面体之间,靠共用氧原子而形成的层状结构。在这些片层表面有过剩的负电荷,致使蒙脱土片层通常吸附有Na+,K+,Ca2+,Mg2+等水合阳离子,这种亲水的微环境不利于亲油的单体和聚合物插入。所以制备聚合物/粘土纳米复合材料时必须对蒙脱土表面进行改性。对于表面改性,国内外报道较多的是利用有机季胺盐阳离子与蒙脱土层间的阳离子进行离子交换后,阳离子部分附着在硅酸盐片层上,有机部分留在层间,从而使层间距增大,同时改善了层间微环境,使蒙脱土层间由亲水疏油性变为亲油疏水性,提高复合材料中有机相与无机相的相容性,利于单体或聚合物插入蒙脱土层间形成复合材料[1]。 近年来人们对蒙脱土的有机改性进行了大量的研究[2],蒙脱土的有机化处理一般采用插层剂。大量实验表明:在制备层复合纳米材料过程中,插层剂的选择和使用是关键,因此必须加强插层剂的合成、筛选及插层工艺的研究。常用的插层剂是烷基季铵盐,本文就采用了双羟乙基十二烷基三甲基氯化铵,试图对其进行超支化改性,并研究其不同质量配比对插层蒙脱土的结构及性能的影响,从而找出性能最好的有机蒙脱土插层剂。 1.超支化 近年来,具有特殊分子构造从而具有独特性质的树枝状与超支化聚合物受到了广泛的关

复合材料加工研究进展

复合材料加工技术的最新研究进展 摘要:本主要综述了陶瓷基、树脂基这两种主要的非金属基复合材料的加工技术。通过对传统加工和新型加工技术的比较,认为今后研究非金属基复合材料加工工艺参数的优化,工艺过程中关键步骤的改进,新技术的研究,生产设备自动化、智能化程度的提高,生产线的规模化、专业化、可控制化,是其加工技术发展的关键。 关键词:陶瓷基、树脂基、复合材料加工 复合材料是由两种或两种以上不同化学性能或不同组织结构的材料,通过不同的工艺方法组成的多相材料,主要包括两相:基体相和增强相。20世纪40年代,因航空工业需要而发展了玻璃纤维增强塑料,是最早出现的复合材料,从此以后,陆续发展了碳纤维、石墨纤维和硼纤维等高强度和高模量纤维。70年代出现了芳纶纤维和碳化硅纤维。这些高强度、高模量纤维与合成树脂、碳、石墨、陶瓷、橡胶等非金属基体或铝、镁、钛等金属基体复合,构成了格局特色的复合材料。复合材料由于其具有各方面独特的性质,广泛应用与军事工业,汽车工业、医疗卫生、航空、航海以及日常生活的各个方面。对于复合材料的加工技术的研究,将是扩大其适用范围的关键之一[1]。 1 陶瓷基复合材料的加工 由于陶瓷材料同时具有高硬度、高脆性和低断裂韧性等特点,使得其加工、特别是成形加工,至今仍非常困难。在陶瓷材料加工中,使用金刚石工具的磨削加工仍然是目前最常用的加工方法,占所有加工工艺的80%。而陶瓷材料磨削加工不仅效率低,而且在加工中很容易产生变形层、表面/亚表面微裂纹、材料粉末化、模糊表面、相变区域、残余应力等缺陷,这对于航空、航天、电子等高可靠性、高质量要求的产品是决不允许的。陶瓷精密元件的加工费用一般占总成本的30%~60%,有的甚至高达90%。因此,通过新的陶瓷加工制造技术的探索,能够很好的提高产品制造精度和降低生产成本[2]。 1.1新型加工技术 1.1.1 放电加工 放电加工(EDM)是一种无接触式精细热加工技术,当单相或陶瓷/陶瓷、陶瓷/金属复合材料的电阻小于100Ω.m时,陶瓷材料可以进行放电加工。首先将形模(刻丝)和加工元件分别作为电路的阴、阳极,液态绝缘电介质将两极分开,通过悬浮于电介质中的高能等离子体的刻蚀作用,表层材料发生熔化、蒸发或热剥离而达到加工

复合材料研究进展讲述

铝基复合材料的制备和增强技术的研究进展 摘要本文简单介绍了铝基复合材料的一些基本的制备方法。对于纳米相和碳化硅颗粒增强的铝基复合材料,它们也有不同的制备方法。 关键词铝基复合材料纳米相碳化硅颗粒 0前言 复合材料是应现代科学发展需求而涌现出的具有强大生命力的材料,它由两种或两种以上性质不同的材料通过各种工艺手段复合而成。金属基复合材料基体主要是铝、镍、镁、钛等。铝在制作复合材料上有许多特点,如质量轻、密度小、可塑性好,铝基复合技术容易掌握,易于加工等。此外,铝基复合材料比强度和比刚度高,高温性能好,更耐疲劳和更耐磨。同其他复合材料一样,它能组合特定的力学和物理性能,以满足产品的需要。因此,铝基复合材料已成为金属基复合材料中最常用的、最重要的材料之一。本文主要讲述铝基复合材料的制备方法以及增强技术的发展情况。 1 铝基复合材料的制备工艺 1.1 无压浸渗法 无压浸渗法是Aghaianian 等于1989 年在直接金属氧化工艺的基础上发展而来的一种制备复合材料的新工艺[1],将基体合金放在可

控气氛的加热炉中加热到基体合金液相线以上温度,在不加压力和没有助渗剂的参与下,液态铝或其合金借自身的重力作用自动浸渗到颗粒层或预制块中,最终形成所需的复合材料。 Aghajanian 等[2]撰文指出,要使自发渗透得以进行,需具备两个必要条件:①铝合金中一定含有Mg元素;②气氛为N2环境。影响该工艺的主要因素为:浸渗温度、颗粒大小和环境气氛种类。无压渗透工艺的本质是实现自润湿作用,通过适当控制工艺条件,如合金成分、温度、保温时间和助渗剂等,可取得良好的润湿,使自发浸渗得以进行。 1.2 粉末真空包套热挤压法 采用快速凝固技术与粉末冶金技术相结合制备高硅含量铝基复合材料。由于Al 活性很高,在快速凝固制粉时不可避免地会形成一层氧化膜,导致在致密化过程中合金元素的相互扩散受到阻碍,难以形成冶金粘结。因此,采用了粉末真空包套热挤压这一特殊的致密化工艺[3]。 1.3 喷射沉积法 喷射沉积技术是一种新的金属成形工艺,由Singer 教授于1968 年提出,后经发展逐步形成了Osprey工艺、液体动态压实技术和受控喷射沉积工艺等。 喷射沉积的基本原理是:熔融金属或合金经导流管流出,被雾化

A-P-025_蒙脱土的有机化改性及其在吸水树脂中的应用

蒙脱土的有机化改性及其在吸水树脂中的应用 谷庆风,宫峰,谭海英,何培新 湖北大学化学化工学院,湖北 武汉 430062 关键词:钠基蒙脱土 有机蒙脱土 有机化改性 超吸水树脂 随着纳米材料的出现及其研究的深入,利用层状硅酸盐制备聚合物/粘土纳米复合材料成为高分子研究领域的一大热点[1,2,3] ,其中蒙脱土因其资源丰富、价格低廉而成为最具有工业化前景的无机纳米材料。 蒙脱土是亲水疏油的无机硅酸盐矿物,在制备吸水树脂时,很难与有机单体复合,大多形成蒙脱土的混杂材料。利用蒙脱土层间阳离子的可交换性,可以制备有机蒙脱土,使层间变为亲油疏水性,提高了复合材料中有机相与无机相的相容性,更有利于高聚物的插层复合。本文选用自制的N,N’-二甲基,N-十二烷基甲基丙烯酰氧乙基溴化铵(DMAEA-DB )[4]作为插层剂,通过离子交换反应来制备有机蒙脱土(OMMT )。 用反相悬浮聚合法分别合成聚合物 [P(AA-AM/OMMT)]和P(AA-AM) [5]。 本实验采用过滤法测试超吸水树脂的吸水吸盐率,用袋滤法测试其吸水速率,用60℃时热保水率法来评价聚合物的保水率。并用x 射线衍射实验、红外光谱进行表征。 图1是用20%的插层剂蒙脱土改性前后以及用改性后的OMMT 制成的复合材料的XRD 曲线,由图可知,改性后,蒙脱土的衍射角移向低角度,根据Bragg 衍射方程可算得,蒙脱土片层间距由改性前的1.28nm 扩大到1.81 nm ,说明有机阳离子已插层进入蒙脱土的硅酸盐片层间,达到了蒙脱土有机化改性的目的。而用制得的OMMT 与AA 和AM 合成的高吸水树脂,已基本看不见衍射峰,说明它们共聚后形成了纳米复合材料。 2468100 50 100 150 200 F ig 1:T h e X R D o f (a )N a +-M M T (b )O M M T (c )P (A A -A M /O M M T ) 2 T h e ta a b c 通过X 射线测得的不同含量的插层剂处理蒙脱土时的层间距变化的情况,

金属基复合材料的研究进展及发展趋势(DOC)

金属基复合材料界面的研究进展及发展趋 势 周奎 (佳木斯大学材料科学与工程学院佳木斯 154007)摘要本文介绍了目前金属基复合材料界面的研究现状,存在的问题及优化的有效途径。重点阐述了金属基复合材料在各个领域的应用情况。最后在综述金属基复合材料界面的研究进展与应用现状的基础上,对学者未来研究呈现的趋势进行了简述并对其发展趋势进行了展望。 关键词金属基复合材料界面特性应用发展趋势 The research progress of metal matrix composites interface and development trend ZHOU Kui (jiamusi university school of materials science and engineering jiamusi 154007) Abstract:Interface of metal matrix composites are introduced in this paper the current research status, existing problems and the effective ways to optimize. Expounds the metal matrix composites and its application in various fields. Finally in this paper the research progress and application of metal matrix composites interface status quo, on the basis of research for scholars in the future the trend of the present carried on the description and its development trend is prospected. Keywords: metal matrix composites application Interface features the development trend 1前言 金属基复合材料(MMCS)是以金属、合金或金属间化合物为基体,含有增强成分的复合材料。 研究金属基复合新材料是当代新材料技术领域中的重要内容之一。金属基复合材料的品种繁多,有碳(石墨)、硼、碳化硅、氧化铝等高性能连续纤维增强铝基、镁基、钦基等复合材料,碳化硅晶须、碳化硅、氧化铝颗粒、氧化铝短纤维增强铝基、镁基复合材料,以及牡钨丝增强超合金等高温金属基复合材料等.但它们的发展和应用并不迅速。主要原因是存在界面问题,制备方法较复杂,成本高。学者们在金属基复合材料的有效制备方法、金属基体与增强体之间的界面反应规律、控制界面反应的途径、界面结构、性能对材料性能的影响、界面结构与制备工艺过程的关系等进行了大量的研究工作,取得了许多重要成果,推动了金属基复合材料的发展和应用。但随着金属基复合材料要求的使用性能和制备技术的发展,界面问题仍然是金属基复合材料研究发展中的重要研究方向。特别是界面精细结构及性质、界面优化设计、界面反应的控制以及界面对性能的影响规律等。尚需结合材料类型、使用性能要求深入研究。

sPS PET SsPS 蒙脱土复合材料的力学性能研究

sPS/PET/SsPS/蒙脱土复合材料的力学性能研究 王进1,2*,祝方明2,林尚安2 (1. 株洲时代橡塑股份有限公司技术中心,湖南 株洲,412007) (2. 广州中山大学高分子研究所, 广州,510275) 摘要:熔体插层法制备了新型的间规聚苯乙烯(sPS)/聚对苯二甲酸乙二醇酯(PET)/磺化间规聚苯乙烯(SsPS-H )及其锌盐(SsPS-Zn)/11-氨基酸改性蒙脱土(MTA)复合材料,该材料的综合力学性能较未填充材料显著提高。加入2份MTA 时,sPS/PET/SsPS-H/MTA (质量比为85/15/4/2)和sPS/PET/SsPS-Zn/MTA (质量比为85/15/2/2)复合材料的冲击强度达到最大值,分别为15.6 kJ/m 2和14.7 kJ/m 2,约是纯sPS 的3.5倍,是未填充材料的1.5 倍。同时,拉伸强度和弯曲强度也相应提高,与未填充材料相比,都接近提高了30MPa 。 关键词:间规聚苯乙烯,磺化间规聚苯乙烯锌盐,蒙脱土,复合材料 纳米复合材料是80年代初由Roy 等提出来的,由于其能在纳米级尺寸范围内将聚合物和无机材料的结构、物理化学特性充分结合起来,所以具有优良的热性能、力学性能、电性能和加工性能等,成为近年来在新材料和功能材料领域中研究的热点之一。 蒙脱土由厚度约为1nm 、层间距一般在0.96-2.1nm 的硅酸盐片层组成,并且片层中间吸附有可交换的K +、Na +、Ca 2+、Mg 2+等离子。但由于聚合物分子的空间结构较大,很难插入其片 层间,所以必须通过预先嵌入有机小分子,使片 层间距扩大,氨基酸和季铵盐。能、下嵌入到蒙脱土的片层间。由于蒙脱土的层间表面积较大,使得与聚合物间的接触面或相互作用点增加,因此反应热热较大,有利于聚合物的嵌入。该法不需任何溶剂,工艺简单,易于工业化应用。近年来开发的聚合物/蒙脱土纳米复合材料主要有PA6/蒙脱土、环氧树脂/蒙脱土、聚酯/蒙脱土、PS/蒙脱土、PP/蒙脱土和硅橡胶/蒙脱土[1-6] 等单一聚合物嵌入蒙脱土纳米复合材料,对 于多组分聚合物基体的蒙脱土纳米复合材料的 研究尚未见报道。 间规聚苯乙烯(sPS )是一种新型的结晶型 工程塑料,具有强度高,耐热性好,耐化学腐蚀 性优良等特点,因而进一步提高其综合力学性 能,尤其是抗冲击性,对于拓展其应用领域具有 重要意义。目前报道的sPS 复合材料多为玻纤填 充材料[8],但由于玻纤的分散性差,导致加工困 难。本文采用熔体插层方法制备了综合性能较好 的sPS/PET/SsPS/蒙脱土复合材料,并对其力学性能进行了研究。 1 实验部分 1.1 主要原料 sPS :采用新型茂钛催化剂苯乙烯的本体聚 合法合成[7],分子量为32×104,间规度超过95%,熔点约为270℃,使用前需在70℃下真空干燥; SsPS :由本实验室采用乙酰磺酸为磺化剂合成[8-10],其磺化度(n 值)经酸碱滴定法和元素SsPS 的磺化1摩尔苯乙烯结构; : 汕头海洋(集团)公司聚酯切片厂,牌号8065,水(%):0.4,黄色指数:3,特性粘度:0.65 dL ?g -1。 蒙脱土(MT):上海试剂四厂,cp ,pH(25℃):8-10.5,粒径<200目,其100g 阳离子交换容量为96mmol ;11-氨基酸:ACROS ORGANICS USA ,Mw :201.31。 1.2复合材料的制备 材料由上海轻机模具厂生产的XSS-300转矩流变仪熔融共混得到。先加入11-氨基酸插层处理的蒙脱土(MTA )和PET 及抗氧剂1010在230℃下共混5min ,控制转速32r/min ,然后迅速升温至250℃,并加入sPS 和SsPS ,共混5min 。样条由吉林大学科学仪器厂生产的WZM-1型微型注模机压制。SsPS-Zn-5.45用量固定为2份,SsPS-H-5.45用量固定为4份, sPS/PET 的质量比固定为85/15。

国内外复合材料研究现状

国内外高性能复合材料发展概况 2004-06-24 https://www.wendangku.net/doc/2111238441.html,来源: 作者:佚名点击数:2406次 玻璃市场将缓慢复苏 | 2015年中国有望进入光伏平价消费时代 | 玻璃:需求渐缓,价格逐稳 由于高性能复合材料包含于整个复合材料之中,且高性能是相对而言的,因此叙述国内外发展概况宜论述整个复合材料为好。复合材料根据基体种类可分为树脂基复合材料、金属基复合材料、陶瓷基复合材料、水泥基复合材料等。 一、树脂基复合材料树脂基复合材料是最先开发和产业化推广的,因此应用面最广、产业化程度最高。根据基体的受热行为可分为热塑性复合材料和热固性复合材料。 1、热固性树脂基复合材料热固性树脂基复合材料是指以热固性树脂如不饱和聚酯树脂、环氧树脂、酚醛树脂、乙烯基酯树脂等为基体,以玻璃纤维、碳纤维、芳纶纤维、超高分子量聚乙烯纤维等为增强材料制成的复合材料。 树脂基复合材料自1932年在美国诞生之后,至今已有近70年的发展历史。1940~1945年期间美国首次用玻璃纤维增强聚酯树脂、以手糊工艺制造军用雷达罩和飞机油箱,为树脂基复合材料在军事工业中的应用开辟了途。1944年美国空军第一次用树脂基复合材料夹层结构制造飞机机身、机翼;1946年纤维缠绕成型在美国获得专利;1950年真空袋和压力袋成型工艺研究成功并试制成功直升飞机的螺旋桨;1949年玻璃纤维预混料研制成功,利用传统的对模法压制出表面光洁的树脂基复合材料零件;20世纪60年代美国用纤维缠绕工艺研制成功"北极星A"导弹发动机壳体。为了提高手糊成型工艺的生产率,在此期间喷射成型工艺得到了发展和应用,使生产效率提高了2-4倍。1961年德国研制成功片状模塑料(SMC),使模压成型工艺达到新水平(中压、中温、大台面制品);1963年树脂基复合材料板材开始工业化生产,美、法、日等国先后建起了高产量、大宽幅连续生产线,并研制成功透明复合材料及其夹层结构板材;1965年美国和日本用SMC压制汽车部件、浴盆、船上构件等;拉挤成型工艺始于20世纪50年代,60年代中期实现了连续化生产,除棒材外还生产细管、方形、工字形、槽形等型材,到了70年代,拉挤技术有了重大突破,目前美国生产拉挤成型机组最先进,其制品断面达76×20cm2,并设计有环向缠绕机构;进入70年代,树脂反应注射成型(RRIM)研究成功,改善了手糊工艺,使产品两面光洁,已用于生产卫生洁具、汽车零件等。70年代初热塑性复合材料得到发展,其生产工艺主要是注射成型和挤出成型,只用于生产短纤维增强塑料。1972年美国PPG公司研制成功玻璃纤维毡增强热塑性片状模塑料(GMT),1975年投入生产,其最大特点是成型周期短,废料可回收利用。80年代法国研究成功湿法生产热塑性片状模塑料(GMT)并成功地用于汽车制造工业。离心浇铸成型工艺于20世纪60年代始于瑞士,80年代得到发展,英国用此法生产10m。长复合材料电线杆,而用离心法生产大口径压力管道用于城市给水工程,技术经济效果十分显著。到目前为止,树脂基复合材料的生产工艺已有近20种之多,而且新的生产工艺还在不断的出现。

玄武岩纤维及其复合材料的研究进展

玄武岩纤维及其复合材料的研究进展 摘要:本文介绍了玄武岩纤维的成分及其结构,详细列举了玄武岩纤维的特点,阐述了玄武岩纤维的生产方法和设备开发现状及其研究进展以及用玄武岩纤维作复合材料的应用现状及其研究进展。 关键词玄武岩纤维复合材料进展 玄武岩纤维的原料是天然玄武岩,将玄武岩破碎后加入熔窑中,在1400~1500℃熔融后,通过拉伸成纤维,并以此纤维为增强体制成的新型复合材料。因玄武岩纤维是采用单组分矿物原料熔体制备而成,在耐高温性、化学稳定性、耐腐蚀性、导热性、绝缘性、抗摩擦性等许多技术指标优于玻璃纤维,同时,因碳纤维的严重短缺,玄武岩纤维在部分应用中可替代昂贵的碳纤维,并且不产生环境问题。所以玄武岩纤维原料成本低、能耗少、生产过程清洁,是一种生态环境材料[1],深受各国学者的关注[2]。 目前利用玄武岩纤维制备复合材料的用途国外报道得很多,而国内研究较少。玄武岩纤维不仅应用于工业、农业、建筑业,还用于航空、造纸、化工、医疗、交通和军事等方面。随着人们对玄武岩纤维的深入研究,它还将广泛应用于尖端技术领域的高强度、耐高温、防辐射等复合材料的制备,值得我们关注[3]。 1 玄武岩纤维概述 1.1 玄武岩纤维的化学成分和结构 玄武岩纤维在原料的选择上要求玄武岩熔化温度、成形温度、析晶上限温度必须在一定可操作范围内,这就需对玄武岩矿物做一定的筛选。制造纤维的玄武 岩要求SiO 2含量大于50%,Al 2 O 3 含量在18%左右,这种成分赋予玄武岩熔体于高 粘度的特性。此外,玄武岩成分中要求FeO和Fe 2O 3 含量高达9%~14%,高含量的 铁使熔体呈黑棕色,透热性只为普通浅色玻璃透热性的1/5。玄武岩要求含有一 定量的K 2O、MgO和TiO 2 ,对提高纤维防水性能和耐腐蚀性能起到了重要的作用。 随着现代表征技术的发展,玄武岩纤维的结构日益明朗。目前,业内人士普遍认为:内部玄武岩纤维为非晶态物质,具有近程有序、远程无序的结构特征主, 要由[SiO 4]四面体形成骨架结构,四面体的两个顶点互相连接成连[SiO 3 ]n链, 铝原子可以取代硅氧四面体中的硅,也可以氧八面体的形式存在于硅氧四面体的空隙中。链的侧方由钙、镁、铁、钾、钠、钛等金属阳离子进行连接。处于玄武岩纤维表面的金属离子因配位数未能满足而从空气和水中缔合质子或羟基,导致

相关文档