文档库 最新最全的文档下载
当前位置:文档库 › 雨刮器设计DOC

雨刮器设计DOC

雨刮器设计DOC
雨刮器设计DOC

前言

汽车工业是国民经济发展的支柱产业之一,现代汽车正从一种单纯的交通工具朝着满足人们需求、安全、节能和环保的方向发展。为了满足人们对汽车日益提高的要求,汽车研发及生产机构必然要将越来越多的电子产品引入到汽车上,智能控制系统也成为汽车革新的主要内容。

雨刮器属汽车附件,是汽车安全行驶的重要部件,用于消除挡风玻璃、后窗玻璃及大灯玻璃上的雨雪、灰尘和水泥等,以保证玻璃透明清晰。

第一个发明电动刮水器的是德国博世公司,博世将它作为“博世最年幼的产品”加入到博世的产品家族。自那以后,这个婴儿逐渐成长,从单纯的刮片发展到二十一世纪初的风窗玻璃之星——无支架的刮水器。在汽车的驾驶史上,对风窗玻璃的清洁问题解决开始得比较晚。汽车从只有平添驾驶发展到成为全天候的驾驶。技术变化最大是在二战以后伴随着大规模机械的出现。风窗玻璃洗涤器、间歇开关、后窗刮水器和可加热喷水器保证了驾驶时的视野清晰与行车安全。伴随着其他一些技术革新,比如雨滴传感器、可变位刮水臂、刮水器的出现,就更扩大了刮拭的范围,刮水器成为了一个复杂的系统。

目前传感器在汽车上的应用已经相当广泛,汽车传感器作为汽车电子控制系统的信息源,是汽车电子控制系统的关键部件,也是汽车电子技术领域研究的核心内容之一。在对于汽车雨刮器的研究上,智能雨滴传感器自然成了智能刮水器系统的重要组成部分。智能化传感器是具有智能功能的高档传感器,它具有检测、信息处理功能、自动进行各种误差补偿、精度高、量程覆盖范围大、稳定性好、输出信号大、信噪比高、传输中抗干扰性能好,可远距离输送信号,有的还带有自检功能。在汽车智能雨刮系统中由于两个雨刮电机的转速不可能完全一样,就存在两个雨刮摆动不同步的问题。本文在分析了模糊控制理论及雨刮同步摆动规则的基础上,提出了一种基于模糊控制的汽车智能雨刮系统。该系统将转速偏差和转速偏差变化量模糊化为模糊控制器的输入语言变量,根据所制定的一套模糊控制规则来选择控制PWM的输出语言变量,并以此通过脉宽调制技术来驱动直流电机,使两个雨刮同步摆动。光源发射器将红外光以固定角度投射到挡风玻璃上,经由挡风玻璃棱镜反射回到红外线接收器;在挡风玻璃清晰的情况下,红外接收器收到的红外线总量与红外线发射器发出的红外线总量基本相等。当有雨滴落在挡风玻璃上时,部分红外线会因雨滴的折射而分散到外部,导致红外接收器接收到的红外线总量小于发射器发出的红外线总量。通过对红外线总量的检测,判断雨量的大小,进而发出刮水请求到雨刷控制器,完成不同档位的刮水行为。

1.总体设计方案

1.1 雨刮器要求

a)雨量检测

b)利用单片机检测雨刷故障(检测电流等)

c)喷水电机、雨刮器电机转速PWM控制(实现间歇、快速1、快速2、点动等控制)

d)通过检测雨量构成自适应控制

e)刮水器关闭,刮片自动返回初始位置

f)刮片要具有耐久性

g)雨滴检测雨刮器,将雨滴传感器检出的雨量变成电信号,根据电信号的大小,控制刮

雨器动作。

1.2 雨刮器方案

本设计中的雨滴传感器选用红外雨滴传感器,属于光量变化原理雨滴传感器的一种由光(本设计中选用红外线)发射元件发射出的红外光以全反射角度在挡风玻璃的外表面反射,其角度必须在42°(玻璃-水)和63°(玻璃-空气)之间。如果在挡风玻璃上有雨雨量越大,反射回来的光越多。从发射元件发出的光反射到接收装置的挡风玻璃区域被称之为传感器的“敏感区域”,仅当雨水滴到这个区域时,才可以被探测出来。为使系统灵敏可靠,挡风玻璃区域和灵敏区域之间必须要有一个较好的比例[1]。雨滴传感器的原理图[6],如图1所示。

图1 雨滴传感器原理图

2.系统功能

本雨刮器可以实现以下的具体功能

a)具有高速和低速两个档位的雨刮电机来同时控制两个雨刮,雨刮器不工作时,两个雨

刮都停在风挡玻璃的左侧位置,即雨刮电机复位位置。

b)两电极复位端的时间偏差E及偏差变化为输入变量,PWM脉宽调制信号占空比增量U

为输出量。

c)消除系统稳态误差的性能比较差,尤其在变量分级不够多的情况下,还可能会在平衡

点附件产生小幅震荡。

d)可以在控制过程中采用改变量化因子和比例因子的方法,来调整整个控制过程中不同

阶段上的控制特性,使其对复杂过程控制收到良好的控制效果。这种形式的控制器称为自调整比例因子模糊控制器

e)能够测出雨刮器的耐久性

f)求系统给定值与反馈值的误差e。微机通过采样获得系统被控量的精确值,然后将其

与给定值比较,得到系统的误差。

3.系统设计

3.1原理图设计

根据要求,雨刮控制电路设计可分为几个模块:故障检测电路、雨量检测电路、电机驱动电路、雨刮工作模式显示电路以及电路设计中的复位电路和时钟电路两个基本模块下面,具体介绍各模块电路的设计原理。

单片机在启动时都需要复位,以使CPU及系统各部件处于确定的初始状态,并从初态开始工作。ST89C52单片机的复位信号是从RST引脚输入到芯片内的施密特触发器中的。当系统处于正常工作状态时,且振荡器稳定后,如果RST引脚上有一个高电平并维持2个机器周期(24个振荡周期)以上,则CPU就可以响应并将系统复位。单片机系统的复位方式有:手动按钮复位和上电复位。本设计中复位电路采用手动按钮复位方式。

手动按钮复位需要人为在复位输入端RST上加入高电平(图一)。一般采用的办法是在RST端和正电源Vcc之间接一个按钮。当人为按下按钮时,则Vcc的+5V电平就会直接加到RST端。手动按钮复位的电路如所示。由于人的动作再快也会使按钮保持接通达数十毫秒,所以,完全能够满足复位的时间要求。单片机在启动时都需要复位,以使CPU及系统各部件处于确定的初始状态,并从初态开始工作[12]。

图2 单片机复位电路

3.2雨刷故障检测电路

在雨刷工作状态中,最常见的故障便是雨刷电机堵转。当电机出现堵转现象时,流过电机线圈电流会急剧上升,如果堵转现象不能得到及时解决可能会导致电机线圈烧毁。具体解决方法如下:

在电机与接地之间连接一个小电阻,将比较器的正端给定略大于电机正常运行时小电

阻两端的电压值,而比较器负端则接在小电阻的高电位上。

电机正常运行情况下,电阻的端电压较小,比较器正端电压会大于或等于负端电压而当电机堵转时,由于电流急剧上升,所接小电阻端电压急剧变大,从而导致比较器正端电压小于负端电压的现象出现。我们利用比较器的特性,通过比较器的正负端电压来判断电机是否出现堵转故障:若在一定时间内,比较器正端电压与负端电压相差不大,则表明电机正常运转;若在一定时间内,比较器正端电压低于负端电压[3],见下图。

图3 雨刷故障检测电路

3.2.1雨量检测电路

在自动雨刷系统中,控制器通过雨量检测装置检测降雨量大小,进而控制雨刷器摆动速度。此次设计采用红外式雨量检测装置。

3.2.2红外雨量监测装置工作原理

雨量检测装置由玻璃棱镜、红外线光源发射器和红外线光源接收器等部件组成。红外线光源发射器将红外光以固定角度投射到挡风玻璃上,经由挡风玻璃、棱镜反射回到红外线接收器;在挡风玻璃清晰的情况下,红外接收器收到的红外线总量与红外线发射器发出的红外线总量基本相等。当有雨滴落在挡风玻璃上时,部分红外线会因雨滴的折射而分散到外部,导致红外接收器接收到的红外线总量小于发射器发出的红外线总量。通过对红外线总量的检测,判断雨量的大小,进而发出刮水请求到雨刷控制器,完成不同档位的刮水行为[20]。原理图见图4。

图4 雨量检测原理图

3.2.3 红外发送电路

雨量检测的发送装置采用的是红外发射二极管(TSAL6200),它将周期的电信号转变成一定频率的红外信号。如果给红外发射端提供频率为38KHZ的方波信号,那么发射端就会发射出相应频率的红外信号。

3.2.4 红外接收电路

HS0038B是一种能够接收红外信号的小型接收器件,不需要加红外过滤装置。当HS0038B在没有接收到红外光时,输出端处于高电平;当接收端有红外光输入时,输出端为低电平。

实际应用中,由于雨量大小的不同,实际应用中,由于雨量大小的不同,玻璃的反射率就会有所不同,红外光的反射数量也就不同,红外光接收器输出地脉冲频率也会有相应的变化。通过单片机的P2.6管脚的捕捉功能,连续捕捉脉冲的两个上升沿,算出脉冲频率值,通过处理就能得到雨量大小变化。

玻璃的反射率就会有所不同,红外光的反射数量也就不同,红外光接收器输出地脉冲频率也会有相应的变化。通过单片机的P2.6管脚的捕捉功能,连续捕捉脉冲的两个上升沿,算出脉冲频率值,通过处理就能得到雨量大小变化。

3.2.5 电机驱动电路

电机驱动电路中,由单片机输出一定频率的脉冲,通过三极管驱动继电器工作,当继电器闭合时,直流电机两端承受正向电压,电机启动。为了保护继电器,我们在继电器两

端并联一个反向二极管,起到续流的作用[13],电路图如下。

图5 电机驱动电路

3.3雨刮器工作模式显示

雨刮工作模式显示由单片机和数码管共同完成,雨刮工作时,单片机将判断雨刮出于何种工作模式,并有由单片机P0口各引脚和P1口的低四位输出对应的高低电平,控制数码管显示[12],电路连接如下。

图6 工作模式显示

3.4雨刮控制电路原理图

图7 雨刮控制电路原理图

3.5仿真图设计

仿真图如下图:

图8 雨刮控制仿真图

3.6制程序编写

图9 程序流程图

4.设计总结

紧张的课程设计即将结束了,这期间让我学到了许多知识,让我懂得了对待科学要严谨、认真的道理。这将是我在今后工作学习中的一笔宝贵财富。

本文在查阅了大量文献的基础上,结合实际应用问题,对智能雨刮系统进行了研究目前的雨刮系统大多是机械连杆结构的,采用雨滴感应式的智能雨刮系统只是在少数高级轿车上有应用,因为目前使用的光电雨滴传感器大都是由国外厂商一统天下,因而,价格比较昂贵,很难普及。本文所研究的红外雨滴传感器及智能雨刮系统,由于成本低廉,性能稳定,可靠性高,易于在大客车和低档轿车上普及应用,有广泛的市场应用前景。关于红外雨滴传感器及模糊控制器的设计,还有一些特殊情况未在本文所研究之内,仍有待进一步研究。

在汽车智能雨刮系统中由于两个雨刮电机的转速不可能完全一样,就存在两个雨刮摆动不同步的问题。本文在分析了模糊控制理论及雨刮同步摆动规则的基础上,提出了一种基于模糊控制的汽车智能雨刮系统。该系统将转速偏差和转速偏差变化量模糊化为模糊控制器的输入语言变量,根据所制定的一套模糊控制规则来选择控制PWM的输出语言变量并以此通过脉宽调制技术来驱动直流电机,使两个雨刮同步摆动。

课程设计是对我们大学三年学习生活的实践和总结。让我们把学会把理论运用到实际中。整个设计中都倾注了苏老师大量的心血,对我的设计思路,设计方案的决定、构思都给予了重要的指导,使得我少走了不少弯路,我的课程设计才能按时、顺利的完成。同时还要感谢帮助过我的同学们,谢谢你们在设计中给我的支持与动力。

最后感谢所有教过我的老师们,有了你们的孜孜不倦的教导,才有今天的我,我才有能力去为明天的理想奋斗!

课程设计中用到了软件来分别设计原理图和仿真图,同时也用到了软件来编写运行控制程序。在解决设计过程中所遇到的各种问题的过程中,在一定程度上加深了对以上软件的认识与理解,也加强了对这些软件的运用和掌握。

此次课程设计中运用到了模拟电子技术、单片机技术、自动控制原理等专业基础课程中的内容,是对我们在大学里面所学习的知识的一个考察与检测,同时,也是在为即将参加工作的同学们提供一次整体知识回顾与运用的机会。

综合设计题目来源于生活,让我们在大学期间学习的理论知识显得并不是那么空洞得到了很好的实践,也使得对自己的发展方向更加明确。

参考文献:

[1] 秦前清,杨宗凯.实用小波分析[M].西安:西安电子科技大学出版社,1994.4.p125-p133

[2] 赵岩.汽车智能雨刮系统的研究〔D〕.北京:哈尔滨理工大学,2007.6.p110-p121

[3] 邹寿彬.电子技术基础[M].北京:高等教育出版社,1987.8.p347-p373

[4] 孙在信.环境对555红外线发射系统的影响[J].大连交通大学学报,2007.11.p94-p96

[5] 张国雄.测控电路[M].北京:机械工业出版社,2006.2.p91-p118

[6] 赵岩,訾鸿.汽车雨滴传感器的设计[J].佳木斯大学学报,2007.2.p801-p803

[7] 程国钢.单片机keil cx51应用开发技术[M].北京:人民邮电出版社,2007.4.p115-p131

[8] 潘新民,王燕芳.微型计算机控制技术[M].北京:电子工业出版社,2003.6.p135-p142

[9] 邹庆超.多速雨刮器的控制电路[J].北京汽车,1994.2.p42-p43

[10] 李全福.模糊PID控制算法在电动舵机控制中的应用[J].微电机,2007.5.p28-p47

[11] 刘曙光,魏俊民.模糊控制技术[M].北京:中国纺织出版社出版,2001.12.p59-p84

[12] 贾玉英.基于单片机控制的PWM直流调速系统[J].包头钢铁学院报,

2005.8.p334-p337

[13] 李勇.基于模糊控制的直流电机PWM调速系统[J].大电机技术,2006.2.p66-p68

[14] 岑木峰.汽车雨刮器的改进[J].湖北汽车工业学院报,2007.3.p74-p78

[15] 谢飞.基于微分平坦的双电机雨刮控制器研究〔D〕.吉林:吉林大学,2007.11.p111-p123

[16] 郭立书,郑殿旺.雨滴感知型间接刮水控制系统[J].汽车电器,1996.2.p8-p9

[17] 吴勇.汽车智能化技术[J].上海汽车,2004.4.p37-p39

[18] 李东生.Protel 99SE电路设计教程[M].北京:电子工业出版社,2007.2.p19-p125

[19] 廉小亲.模糊控制技术[M].北京:中国电力出版社,2003.6.p10-p50

[20] 戎月莉.计算机控制原理及应用[M].北京:北京大学出版社,1998.3.p123-p150

[21] 陈杰,黄鸿.传感器与检测技术[M].北京:高等教育出版社,2002.1.p132-p140

[22] 唐钰,葛龙.红外光电散射式感烟探测器的研制[J].四川大学学报,

2004.2.p117-p120

[23] 臧英杰.电气传动的脉宽调制控制技术[M].北京:机械工业出版社,1997.1.p87-p112

附录:源程序

#include

#define_MHZ_12 /设置单片机使用的晶振频率unsigned int count=0,precount,Maichong;

void t1 (void); /t1定时子函数

void int1(void) interrupt1; /中断服务子函数void Yudi(void); /判断雨量多少子函数sbit Q7=p3^3;

sbit int1=p3^3;

main()

{

t1(); /调用定时子程序while(precount!=0)

{

Yudi();

P0=Maichong; /调用雨量多少子程序

t1();

}

}

void t1 (void);

{

TMOD=0x10; /定时器1工作在方式1,即为16位计数器

TH1=0X01; /设置60ms定时时间的初值

TL1=0XA0;

TR1=1; /启动T1

IT1=1; /设置INTR1中断方式为边沿触发方式,负跳变时产生中断EA=1;

ET1=1; /允许定时器1中断

EX1=1; /允许外部中断1中断

EA=1; /CPU开放中断

count=0;

}

void int1(void) interrupt1; /外部中断1处理函数TR1=0;

TH1=0X15;

TL1=0XA0;

while (int1==0);

count ++;

precount=count;

TR1=1;

}

void Yudi(void); /雨滴传感器子程序

{

if(precount>=3&&precount<12)

{Maichong=04H;

else if (precount>=12&&precount<20)

{Maichong=0FH;}

else Maichong=00H

Maichong=P0;

}

第二片用于电机控制的单片机程序:

#include

#include

float pwmcycle, pwmcycle1,pwmcycle2;

char E(k)[8],Ec(k)[8];

sbit pwm1=P0.0;

sbit pwm1=P0.1;

sbit pwm2=P0.3;

sbit pwm2=P0.4;

void delay(unit m); /声明延时函数

void dianji(void);

void timer1(void)interrupt 0 using 1;

void timer2(void)interrupt 1 using 1;

void shijiancha(void);

void Tongbu(void);

void gengxin(void);

main

{

P1=P0;

dianji();

shijiancha();

tongbu();

dengxin();

if(timer1!=timer2)

{dianji();}

}

void delay(unit m) /延时1ms子程序{ uchar i;

while(m--)

for(i=125;i>0;i--)

}

void dianji(void) /电机双向子程序{

while (Maichong==4)

{if(SA1==1 or SA3==1)

{P0=09H;}

else if(SA0==1or SA2==1)

{P0=12H;}

pwmcycle=40%

delay(20);

P0=00H;

delay(30);

while (Maichong==16)

{if(SA1==1 or SA3==1)

{P0=09H;}

else if(SA0==1or SA2==1)

{P0=12H;}

pwmcycle=60%

delay(30);

P0=00H;

delay(20);

}

void shijiancha(void)

{

TMOD=0x11; /定时方式,工作在方式1 TH0=0xff;

TL0=0xff;

TH1=0xff;

TL1=0xff;

IT0=1;

IT1=1;

EA=1;

ET0=1;

ET1=1;

TR0=1;

TR1=1;

}

void timer1(void)interrupt 0 using 1

{

unsigned char tmp1,tmp2;

do

{

tmp1=TH0;

tmp2=TL0;

timer1=256*tmp1+tmp2;

TH0=0;

TL0=0;

}

void timer2(void)interrupt 1 using 1

{unsigned char tmp3,tmp4;

do

{

tmp3=TH1;

tmp4=TL1;

timer2=256*tmp3+tmp4;

}

TH0=0;

TL0=0;

}

void Tongbu(void) /两电机同步子程序{

int e(k),ec(k);

for(k=0;;k++)

{ e(k)=timer1(k)-timer2(k);

ec(k)=E(k)-E(k-1);

}

if(e(k)>25ms)

{e(k)=25ms;}

else if(e(k)<-25ms)

{e(k)=-25ms;}

if (ec(k)>50ms)

{ec(k)=50ms;)

else if(ec(k)<-50ms)

{ec(k)=-50ms;}

if(e(k)>15ms) /时间误差置位规律 {E(k)[0]=1;}

else if (e(k)>8ms&&e(k)<=15ms)

{E(k)[1]=1;}

else if (e(k)>0&&e(k)<=8ms)

{E(k)[2]=1;}

else if (e(k)==0)

{E(k)[3]=1;}

else if (e(k)>-8ms&&e(k)>0)

{E(k)[4]=1;}

else if(e(k)>=-15ms&&e(k)<-8ms)

{E(k)[5]=1;}

else if (e(k)<-15ms)

{E(k)[6]=1;}

if(ec(k)>16&&ec(k)<=30) /时间误差变化置位规则{Ec(k)[0]=1;}

else if (ec(k)>0&&ec(k)<=16)

{Ec(k)[1]=1;}

else if(ec(k)==0)

{Ec(k)[2]=1;}

else if(ec(k)>-16&&ec(k)<0)

{Ec(k)[3]=1;}

else if(ec(k)>=-30&&ec(k)<=-16)

{Ec(k)[4]=1;}

while(E(k)[6]=1) /查表{

if(Ec(4)=1)

{U=-3;}

else if(Ec(3)=1)

{U=-2;}

else if(Ec(2)=1) {U=-2;}

else if(Ec(1)=1) {U=-1;}

else if(Ec(0)=1) {U=0;}

}

while(E(k)[5]=1) {

if(Ec(4)=1)

{U=-3;}

else if(Ec(3)=1) {U=-2;}

else if(Ec(2)=1) {U=-2;}

else if(Ec(1)=1) {U=-1;}

else if(Ec(0)=1) {U=0;}

}

while(E(k)[4]=1) {

if(Ec(4)=1)

{U=-3;}

else if(Ec(3)=1) {U=-2;}

else if(Ec(2)=1) {U=-1;}

else if(Ec(1)=1) {U=0;}

else if(Ec(0)=1)

{U=2;}

}

while(E(k)[3]=1)

{

if(Ec(4)=1)

{U=-3;}

else if(Ec(3)=1)

{U=-2;}

else if(Ec(2)=1)

{U=0;}

else if(Ec(1)=1)

{U=2;}

else if(Ec(0)=1)

{U=3;}

}

while(E(k)[2]=1)

sbit Fl=P1^0; //喷水电机控制位

sbit Off=P1^1; //停止电机控制位

sbit Int=P1^5; //间歇转

sbit Hi1=P1^3; //电机高速1

sbit Hi2=P1^4; //电机高速2

sbit diankong=P1^2;

sbit Hi_motor=P3^0; //雨刷电机

sbit Fl_motor=P3^1; //喷水电机

sbit WE1= P3^4;

sbit WE2= P3^5;

sbit WE3= P3^6;

sbit WE4= P3^7; //数码管位选

sbit led= P3^3;

uint num=0,k=0,delta=5,time=0,temp;

uint k1,k2,k3,k4;

uint flag=0;

uchar code dtable[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0xc8}; //共阳数码管码表

uchar code lable[]={0xbf,0xc0,0x8e,0xf9,0xab,0x87,0xc7,0x89,0xa4};//"-OFIntLH" 字符编码void delay(uint z)

{

uint x,y;

for(x=15;x>0;x--)

for(y=z;y>0;y--);

}

/**********电机、IO口函数************/

void init(void)

{

Hi_motor=0;

Fl_motor=0;

P1=0xef;

WE1=0;

WE2=0;

WE3=0;

WE4=0;

P0=0x00;

}

/**********定时器0初始化函数************/

void Init_timer0()

{

TMOD=0x01; //工作模式1

TH0=(65536-100)/256;

汽车雨刮器的自动控制系统设计及实现

汽车雨刮器的自动控制系统设计与实现 设计总说明 本次设计的汽车自动雨刷省去了人为手动操作雨刷的问题,能够自动感应雨量并进行相应的工作。自动雨刷用雨滴传感器作为检测器来感应雨量的大小,把感应信号传给单片机,通过软件的控制驱动芯片自动调节电机的正反转与转动频率。此次设计采用40引脚的单片机AT89S52,设计中运用ULN2003AN驱动芯片来驱动步进电机的运转,克服了电机在低频工作时的噪音大,震动大的缺点。本次设计在一定的程度上为驾驶者提供了舒适性和安全性的保障,避免了由于驾驶者手动操作雨刷的不当而带来的交通安全问题,同时也大大的提高了汽车雨刷的全面性与可靠性。 在汽车智能雨刮系统中由于两个雨刮电机的转速不可能完全一样,就存在两个雨刮摆动不同步的问题。本文在分析了模糊控制理论及雨刮同步摆动规则的基础上,提出了一种基于模糊控制的汽车智能雨刮系统。该系统将转速偏差和转速偏差变化量模糊化为模糊控制器的输入语言变量,根据所制定的一套模糊控制规则来选择控制PWM的输出语言变量,并以此通过脉宽调制技术来驱动直流电机,使两个雨刮同步摆动。 关键词:雨滴传感器;步进电机;单片机;雨刮器

Car Wiper Blade Design and Implementation of Automatic Control System Design Description The design of the automatic wipers is improved further in the traditional manual based on. Automatic wiper with rain sensor as the detector size induced precipitation, the induction signal is sent to the single chip microcomputer. reversing and turning frequency automatic adjusting motor through the control of the software driver. The design is based on the 40pin of the mic AT89S52. That use of ULN2003AN to drive the stepper motor driver chip design operation. The pulse width modulation’s chopper driver mode. Thus greatly overcome the noise when the motor work in the low frequency , vibration faults. Provide comfort and safely guarantee this design in a certain extent for the driver, to avoid the traffic safety problem caused by the driver manually operated wiper improper. At the same time also greatly improve the comprehensiveness and reliability of automobile windshield wiper. In intelligent windscreen wiper system of automobile, As the problem of technics, rotate speed of two electro motors are not the same completely, so there are the problems that two wiper blades swing ansynchronous. In the thesis, a intelligent windscreen wiper system of automobile based on fuzzy control is presented, by analyzing fuzzy control theory and synchronous swing rules of windscreen wiper. The speed

汽车雨刷器设计

机械原理设计任务书 学生姓名C25 班级学号 设计题目:福克斯汽车风窗刮水器机构设计 一、设计题目简介 挡风玻璃雨刮器是重要的安全件,它必须能有效地清除雨水、雪和污,一副好的雨刮也会为驾驶人士带来极大的方便。因此雨刮器设计具有很重要的地位。本题目就是依据目前福克斯汽车前挡风玻璃尺寸,按照最大化原则设计进行雨刮器机构进行设计。 二、设计数据与要求 福克斯前挡风玻璃尺寸: 长:1463.3mm,宽:1023.3mm,厚:6.3 mm, 中高:95.7mm 对角:158.7mm 三、设计任务 1、根据目前所用的单双臂的情况,进行分析选择一种类型作为设计基础,然后在最大刮水面积和对驾驶员最有利的位置要求的前提下提出雨刮器工作机构方案并进行对比确定最合适的刮水器机构方案,绘制机构简图;

2、根据所提供的工作参数,对刮雨器机构尺度综合,确定机构各个杆件的长度;应有计算过程及步骤 3、在机械基础实验中心机械原理实验室(2号楼一层)搭建机构运动模型,检验机构的有效性,并测量相关尺寸,写出其实验及测试过程; 4、用软件(VB、MATLAB、ADAMS或SOLIDWORKS等均可)对执行机构进行可视化仿真,并画出输出机构的位移、速度、和加速度线图。 5、进行动力学计算,确定各个构件受力及工作阻力等; 6、编写设计计算说明书,其中应包括设计思路、计算及运动模型建立过程以及 效果分析等。 完成日期:年月日指导教师

刮水器的功用 为了保证汽车在雪雨天有良好的视野,各种车辆均配有刮水器,它利用连杆运动机构将电机连续旋转运动化为刮片的往复挂刷运动,清除车窗上的水滴或污垢,保持清晰的视野。 刮水器的机构简介及运动原理 汽车风窗刮水器是利用汽车刮水的驱动装置,刮水器工作时,由电动机带动齿轮装置,传至曲柄摇杆装置,将电动机单向连续转动,转化为刷片做往复摆动,其左右摆动的平均速度相同. 机构简介 汽车风窗刮水器是用于汽车刮水刷的驱动装置。如图1所示,风窗刮水器工作时,由电动机带动齿轮装置,传至曲柄摇杆装置。电动机单向连续转动,刮水杆作左右往复摆动,要求左右摆动的平均速度相同。 图1

汽车雨刮电机控制系统设计与仿真

汽车雨刮电机控制系统设计与仿真 一、实验目的 1、掌握汽车雨刮电机总成的结构和工作原理。 2、掌握protus软件和keilμVsion软件的使用方法。 3、学习使用protus软件进行电路原理图设计并进行仿真。 二、实验设备 安装有protus软件和keilμVsion软件的PC机一台。 三、实验原理及内容 1、汽车雨刮的结构和工作原理 雨刮器是重要的安全件,它必须能有效地清除雨水、雪和污垢;能在高温(摄氏零上80度)和低温下(摄氏零下30度)工作;能抗酸、碱、盐等有害物质腐蚀;使用寿命达到15万次刮刷循环(乘用车)。 汽车雨刮的主要组成部分为雨刮电机总成,四连杆机构,雨刷总成。 当司机按下雨刮器的开关时,电动机启动,电动机的转速经过蜗轮蜗杆的减速增扭作用驱动摆臂,摆臂带动四连杆机构,四连杆机构带动安装在前围板上的转轴左右摆动,最后由转轴带动雨刮片刮扫挡风玻璃。 一般情况下在汽车组合开关手柄上有雨刮器控制旋扭,设有低速、高速、间歇3个档位。手柄顶端是洗涤器按键开关,按下开关有洗涤水喷出,配合雨刮器洗涤档风玻璃。 雨刮器的动力源来自电动机,它是整个雨刮器系统的核心。雨刮器电动机的质量要求是相当高的。它采用直流永磁电动机,安装在前档风玻璃上的雨刮器电动机一般与蜗轮蜗杆机械部分做成一体。蜗轮蜗杆机构的作用是减速增扭,其输出轴带动四连杆机构,通过四连杆机构把连续的旋转运动改变为左右摆动的运动。 司机关闭雨刮器时,雨刮臂往往不停在适当的位置,阻碍司机的视线。为解决这一问题,雨刮器设有一个回位开关,它控制雨刮器电机,当雨刮臂停在档风玻璃下的适当位置时,电机才会停止运转。 现今的雨刮器已经普遍采用快档、慢档和间歇控制档。其中间歇控制档一般是利用电机的回位开关触点与电阻电容的充放电功能使雨刮器按照一定周期刮扫,即每动作一次停止2-12秒时间,对司机的干扰更少。 有些雨刮臂还附带胶水管,水管接至洗涤器上,按一下开关会有水注喷向前档风玻璃。在一些中高级轿车上,不但前后档风玻璃有雨刮器,就是前大灯也有一支小小的雨刮片,用以清除前灯玻璃上的尘埃。 有些车辆的雨刮器还装有电子调速器,该调速器附带感应功能,能根据雨量的大小自动调节雨臂的摆动速度,雨大刮水臂转得快,雨小刮水臂转得慢,雨停刮水臂也停。 2、基于51单片机的雨刮电机控制器的功能和结构 (1)控制器输入:1个4档位旋转式开关,1个喷水控制按钮。 (2)控制器:用51单片机作为控制器。 (3)控制器输出:①雨刮电机停止、间歇式低速、低速、高速旋转4种输出状态,再加上喷水电机旋转同时雨刮电机高速旋转,共5种状态的输出。②用LED数码管显示Off、Int、Lo、Hi、FL共5种状态指示。 Off——雨刮电机停止旋转。

汽车雨刮器设计

汽车雨刮器设计 案场各岗位服务流程 销售大厅服务岗: 1、销售大厅服务岗岗位职责: 1)为来访客户提供全程的休息区域及饮品; 2)保持销售区域台面整洁; 3)及时补足销售大厅物资,如糖果或杂志等; 4)收集客户意见、建议及现场问题点; 2、销售大厅服务岗工作及服务流程 阶段工作及服务流程 班前阶段1)自检仪容仪表以饱满的精神面貌进入工作区域 2)检查使用工具及销售大厅物资情况,异常情况及时登记并报告上级。 班中工作程序服务 流程 行为 规范 迎接 指引 递阅 资料 上饮品 (糕点) 添加茶水工作1)眼神关注客人,当客人距3米距离侯客迎询问客户送客户

注意事项 15度鞠躬微笑问候:“您好!欢迎光临!”2)在客人前方1-2米距离领位,指引请客人向休息区,在客人入座后问客人对座位是否满意:“您好!请问坐这儿可以吗?”得到同意后为客人拉椅入座“好的,请入座!” 3)若客人无置业顾问陪同,可询问:请问您有专属的置业顾问吗?,为客人取阅项目资料,并礼貌的告知请客人稍等,置业顾问会很快过来介绍,同时请置业顾问关注该客人; 4)问候的起始语应为“先生-小姐-女士早上好,这里是XX销售中心,这边请”5)问候时间段为8:30-11:30 早上好11:30-14:30 中午好 14:30-18:00下午好 6)关注客人物品,如物品较多,则主动询问是否需要帮助(如拾到物品须两名人员在场方能打开,提示客人注意贵重物品); 7)在满座位的情况下,须先向客人致

待; 阶段工作及服务流程 班中工作程序工作 要求 注意 事项 饮料(糕点服务) 1)在所有饮料(糕点)服务中必须使用 托盘; 2)所有饮料服务均已“对不起,打扰一 下,请问您需要什么饮品”为起始; 3)服务方向:从客人的右面服务; 4)当客人的饮料杯中只剩三分之一时, 必须询问客人是否需要再添一杯,在二 次服务中特别注意瓶口绝对不可以与 客人使用的杯子接触; 5)在客人再次需要饮料时必须更换杯 子; 下班程 序1)检查使用的工具及销售案场物资情况,异常情况及时记录并报告上级领导; 2)填写物资领用申请表并整理客户意见;3)参加班后总结会; 4)积极配合销售人员的接待工作,如果下班

汽车雨刮器设计

目录 一.设计任务书 (1) 1.1刮水器的功用 (1) 1.2 刮水器的机构简介及运动原理 (1) 1.3刮水器的运动简图 (2) 二.设计数据 (2) 三.刮水器机构相关数据的计算及分析 (3) 3.1 计算极位夹角 (3) 3.2 计算BC的长度 (3) 3.3 计算AB杆和CD杆的关系 (4) 四.加速度,速度多边形的计算分析 (4) 4.1 方案一的速度加速度分析: (7) 4.2 方案二速度和加速度分析: (9) 五.动态静力分析 (9) 5.1对两方案进行受力分析 (9) 六. MAD仿真建模分析速度与加速度 (10) 6.1仿真运动轨迹 (12) 6.2分析速度与加速度图线 (13) 七.心得体会 (14) 八.参考文献 (16)

一.设计任务书 1.1刮水器的功用 为了保证汽车在雪雨天有良好的视野,各种车辆均配有刮水器,它利用连杆运动机构将电机连续旋转运动化为刮片的往复挂刷运动,清除车窗上的水滴或污垢,保持清晰的视野。 1.2 刮水器的机构简介及运动原理 汽车风窗刮水器是利用汽车刮水的驱动装置,如运动简图所示:风窗刮水器工作时,由电动机带动齿轮装置1-2,传至曲柄摇杆装置2'-3-4,将电动机单向连续转动,转化为刷片4做往复摆动,其左右摆动的平均速度相同。

1.3刮水器的运动简图 二.设计数据 设计 内容 曲柄摇杆机构设计及运动分析曲柄摇杆机构动态静力分析符号n1k φL AB x L DS4G4JS4M1 单位r∕ min (°)mm mm mm N㎞·㎡N·㎜ 数据 30 1 120 60 180 100 150.01500 30 1 120 80180 100 150.01500

轿车雨刮器结构设计方案

轿车雨刮器结构设计方案 1.1虚拟样机技术 虚拟样机技术是一种崭新的产品开发方法,它足一种基于产品的计算机仿真模型的数字化设计方法。这些数字模型即虚拟样机(virtual prototype),将不同工程领域的开发模型结台在一起,它从外观、功能和行为上模拟真实产品.支持并行工程方法学。虚拟样机技术涉及多体系统运动学与动力学建模理论及其技术实现,是基于先进的建模技术、多领域仿真技术、信息管理技术、交互式用户界面技术和虚拟现实技术的综合应用技术[21]。 虚拟样机技术是在CAx(如CAD、CAM、CAE等)/DFx(如DFA、DFM等)技术基础卜的发展,它进一步融合信息技术、先进制造技术和先进仿真技术,将这些技术应用于复杂系统全生命周期、全系统、并对它们进行综合管理,从系统的层面来分析复杂系统,支持“由上至下”的复杂系统开发模式。 虚拟样机技术不仅是计算机技术在工程领域的成功应用,更是一种全新的机械产品设计理念。一方面与传统的仿真分析相比,传统的仿真一般是针对单个子系统的仿真,而虚拟样机技术则是强调整体的优化,它通过虚拟整机与虚拟环境的耦合,对产品多种设计方案进行测试、评估,并不断改进设计方案,直到获得最优的整机性能。另一方面,传统的产品设计方法是一个串行的过程,各子系统(如:整机结构、液压系统、控制系统等)的设计都是独立的,忽略了各子系统之间的动态交互与协同求解,因此设计的不足往往到产品开发的后期才被发现,造成严重浪费。运用虚拟样机技术可以快速地建立包括控制系统、液压系统、气动系统在内的多体动力学虚拟样机,实现产品的并行设计,可在产品设计初期及时发现问题、解决问题,把系统的测试分析作为整个产品设计过程的驱动。

乘用车挡风玻璃刮水器系统设计汇总

乘用车挡风玻璃刮水器系统 前言:该标准已作过修改以符合SAE技术标准局的格式。在第二部分已添加了参照标准,第三部分中的定义已更改。所有其它部分的编号已作了修改。 1.范围 该SAE推荐操作规程的建议是为了乘用车、轻卡和多功能车带(GVM)或4100kg(100001b)或更小。 a)挡风玻璃刮水器系统的最低性能标准。 b)试验方法,可由商业试验机构在统一的试验设备上进行试验的 方法。 c)前刮系统特性和现象的统一术语以及工程结构研究使用的特 性值来评价系统性能。 d)功能、使用等的设计和系统零部件的位置的指南。 在该文件中的试验方法和最低的性能标准,外形是基于当前可用的工程数据。在前刮系统性能发展后,必须阶段性地检查和修改文件以添加数据。 2.参照标准 3.定义 3.1 挡风玻璃刮水器系统 3.2 刮板 3.3 刮水板胶条 3.4 刮臂 3.5 连杆组件 3.6 刮水器控制开关

3.7 刮刷区域 3.8 视野 3.9 有效刮刷模式3.10 循环 3.11 串接模式 3.12 相向模式 3.13 单臂模式 3.14 抖动 3.15 气泡 3.16 细线 3.17 波皱 3.18 水带 3.19 水雾 3.20 雪负荷 3.21 电机堵转力矩3.22 系统力矩 3.23 湿干 3.24 潮湿 3.25 相对空气速度3.26 日光入口 3.27 功能 3.28 多层挡风玻璃3.29 打边 3.30 翻边

3.31 橡胶沉积 3.32 每分钟循环数 3.33 风抬升 3.34 偏角 3.35 刃口负荷 3.36 刮臂的拱形或弧形 3.37 挂勾 3.38 绘图器 3.39 底端 3.40 顶端 4.一般性能 4.1 挡风玻璃刮水器系统 4.1.1视线区 视线区在挡风玻璃上规定为三个特定的区域。这三个区域用负荷汽车发展成为制造商的主要设计负荷,在表1中标为区域A、B和C。每个区域用表1中的角度表示升在图6中应用。在侧视图中,区域的上下边界是两个平面的交叉形成的,这看起来就是视野上下边沿的切线。这些平面由上述的角和下述的XX线确定。在平面图上,区域的左和右边界是由玻璃表面的与左和右边沿的垂直切面确定的。平面由角度和XX线的左和右来确定的。在刮刷区域确定的比例中使用的区域是玻璃外表面上在日光进口边缘25mm以外的区域。比例为刮刷区域与规定区域之比。采用5.1中的试验方法,刮试比例见表1。

雨刮器设计DOC

前言 汽车工业是国民经济发展的支柱产业之一,现代汽车正从一种单纯的交通工具朝着满足人们需求、安全、节能和环保的方向发展。为了满足人们对汽车日益提高的要求,汽车研发及生产机构必然要将越来越多的电子产品引入到汽车上,智能控制系统也成为汽车革新的主要内容。 雨刮器属汽车附件,是汽车安全行驶的重要部件,用于消除挡风玻璃、后窗玻璃及大灯玻璃上的雨雪、灰尘和水泥等,以保证玻璃透明清晰。 第一个发明电动刮水器的是德国博世公司,博世将它作为“博世最年幼的产品”加入到博世的产品家族。自那以后,这个婴儿逐渐成长,从单纯的刮片发展到二十一世纪初的风窗玻璃之星——无支架的刮水器。在汽车的驾驶史上,对风窗玻璃的清洁问题解决开始得比较晚。汽车从只有平添驾驶发展到成为全天候的驾驶。技术变化最大是在二战以后伴随着大规模机械的出现。风窗玻璃洗涤器、间歇开关、后窗刮水器和可加热喷水器保证了驾驶时的视野清晰与行车安全。伴随着其他一些技术革新,比如雨滴传感器、可变位刮水臂、刮水器的出现,就更扩大了刮拭的范围,刮水器成为了一个复杂的系统。 目前传感器在汽车上的应用已经相当广泛,汽车传感器作为汽车电子控制系统的信息源,是汽车电子控制系统的关键部件,也是汽车电子技术领域研究的核心内容之一。在对于汽车雨刮器的研究上,智能雨滴传感器自然成了智能刮水器系统的重要组成部分。智能化传感器是具有智能功能的高档传感器,它具有检测、信息处理功能、自动进行各种误差补偿、精度高、量程覆盖范围大、稳定性好、输出信号大、信噪比高、传输中抗干扰性能好,可远距离输送信号,有的还带有自检功能。在汽车智能雨刮系统中由于两个雨刮电机的转速不可能完全一样,就存在两个雨刮摆动不同步的问题。本文在分析了模糊控制理论及雨刮同步摆动规则的基础上,提出了一种基于模糊控制的汽车智能雨刮系统。该系统将转速偏差和转速偏差变化量模糊化为模糊控制器的输入语言变量,根据所制定的一套模糊控制规则来选择控制PWM的输出语言变量,并以此通过脉宽调制技术来驱动直流电机,使两个雨刮同步摆动。光源发射器将红外光以固定角度投射到挡风玻璃上,经由挡风玻璃棱镜反射回到红外线接收器;在挡风玻璃清晰的情况下,红外接收器收到的红外线总量与红外线发射器发出的红外线总量基本相等。当有雨滴落在挡风玻璃上时,部分红外线会因雨滴的折射而分散到外部,导致红外接收器接收到的红外线总量小于发射器发出的红外线总量。通过对红外线总量的检测,判断雨量的大小,进而发出刮水请求到雨刷控制器,完成不同档位的刮水行为。

基于单片机的汽车智能雨刮器设计

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

轿车雨刮器结构设计方案

轿车雨刮器结构设计方案 1.1 虚拟样机技术 虚拟样机技术是一种崭新的产品开发方法,它足一种基于产品的计算机仿真模型的数字化设计方法。这些数字模型即虚拟样机(virtual prototype),将不同工程领域的开发模型结台在一起,它从外观、功能和行为上模拟真实产品.支持并行工程方法学。虚拟样机技术涉及多体系统运动学与动力学建模理论及其技术实现,是基于先进的建模技术、多领域仿真技术、信息管理技术、交互式用户界面技术和虚拟现实技术的综合应用技术[21]。 虚拟样机技术是在CAx(如CAD、CAM、CAE等)/DFx(如DFA、DFM等)技术基础卜的发展,它进一步融合信息技术、先进制造技术和先进仿真技术,将这些技术应用于复杂系统全生命周期、全系统、并对它们进行综合管理,从系统的层面来分析复杂系统,支持“由上至下”的复杂系统开发模式。 虚拟样机技术不仅是计算机技术在工程领域的成功应用,更是一种全新的机械产品设计理念。一方面与传统的仿真分析相比,传统的仿真一般是针对单个子系统的仿真,而虚拟样机技术则是强调整体的优化,它通过虚拟整机与虚拟环境的耦合,对产品多种设计方案进行测试、评估,并不断改进设计方案,直到获得最优的整机性能。另一方面,传统的产品设计方法是一个串行的过程,各子系统(如:整机结构、液压系统、控制系统等)的设计都是独立的,忽略了各子系统之间的动态交互与协同求解,因此设计的不足往往到产品开发的后期才被发现,造成严重浪费。运用虚拟样机技术可以快速地建立包括控制系统、液压系统、气动系统在内的多体动力学虚拟样机,实现产品的并行设计,可在产品设计初期及时发现问题、解决问题, 把系统的测试分析作为整个产品设计过程的驱动。

汽车雨刮器设计全解

汽车风扇刮水器 课程设计说明书 设计者: 班级: 学号: 指导老师: 2013年12月27日 1

目录 一.设计题目 (1) 1.1课程设计目的和任务 (1) 1.2课程设计内容与基本要求 (2) 1.3机构简介......................................................................... 错误!未定义书签。 二. 设计方案比较 (5) 2.1设计方案一 (5) 2.2最终设计方案 (6) 2.3原始数据 (6) 三、刮水器机构相关数据的计算及分析 (6) 四.虚拟样机实体建模与仿真 (11) 4.1ADAMS/V IEW 的样机建模 (11) 五.虚拟样机仿真结果分析 (12) 5.1位移仿真曲线 (12) 5.2速度仿真曲线 (12) 5.3加速度仿真曲线 (12) 六. 课程设计总结 (13) 6.1机械原理课程设计总结 (13) 6.2设计过程 (13) 6.3设计展望 (14) 6.4设计工作分工表 (14) 6.5参考文献 (15)

一.题目:汽车风扇刮水器 1.1课程设计目的和任务 机械原理课程设计能够培养机械类专业学生创新能力,是学生综合运用机械原理课程所学理论知识和技能解决实际问题,获得工程技术训练的必不可少的实践性教学环节。 机械原理课程设计教学所要达到的目的是: 1、培养学生理论联系实际的设计思想,训练学生综合运用机械原理课程的理论知识,并结合生产实际来分析和解决工程问题的能力。 2、通过制定设计方案、合理选择机构的类型、正确地对机构的运动和受力进行分析和计算,让学生对机构设计有一个较完整的概念。 3、训练学生收集和运用设计资料以及计算、制图和数据处理及误差分析的能力,并在此基础上利用计算机基础理论知识,初步掌握编制计算机程序并在计算机上计算来解决机构设计问题的基本技能。 机械原理课程设计教学的任务是:机械原理课程设计通常选择一般用途的机构为题目,根据已知机械的工作要求,对机构进行选型与组合,设计出几种机构方案,并对其加以比较和确定,然后对所选定方案中的机构进行运动和动力分析,确定出最优的机构参数,绘制机构运动性能曲线。 1

雨刮器设计软件 算法

雨刮器设计软件算法 第一章雨刮器轴的布置算法(五分钟之内完成X±0.01 确定值攻击角轴的布置) 第二章雨刮器刮角的确定 第三章雨刮器曲柄、摇臂和连杆长度的算法(有了曲柄的长度,五分钟内完成其它尺寸计算)第四章雨刮器的运动分析 (1) 4.1运动的约束条件 (1) 4.2攻击角和抬高角的优化设计 (3) 4.2.1玻璃的曲率分析和刮刷方法分析 (3) 4.2.2 攻击角方案的优化设计 ...................................................................... 错误!未定义书签。 4.2.3 压力角的方案的优化设计 .................................................................. 错误!未定义书签。 4.3压力角的优化设计 (6) 4.4刮片角加速度曲线的验证 (7) 4.5连杆和摇臂平面变化范围的验证 (8) 感兴趣联系:928315305@https://www.wendangku.net/doc/2111667716.html,

第四章雨刮器的运动分析 4.1 运动的约束条件 实际的设计需要考虑生产的工艺性和经济性,在传动结构的每个连接部位采用球头和球碗连接形式,这样的优点就是球头和球碗标准化生产,节约成本,同时又满足了雨刮器的功能要求。 (1) 传动机构的自由度 因为实际曲柄和摇臂运动不在一个平面上,所以运动时空间的运动。空间每个零件有6个自由度,左右支座限制了4个自由度(限制了两个轴向的移动和两个轴向的旋转),因为左右摆轴有轴向挡圈,所有又限制了一个轴向的移动自由度,在左右支座处共限制了5个自由度。球头球碗的连接属于点接触,限制3个自由度(限制沿三个坐标轴的移动自由度)。 传动机构的构建数:5个(曲柄组件、左右连杆组件和左右摇臂组件)。 传动机构的低副数:3个(曲柄组件和左右摇臂组件,每个限制5个自由度)。 传动机构的高副数:4个(左右连杆两段各有两个点约束,限制自由度3个)。 传动机构的自由度: F = 6n-5P L-3P H =6x5-5x3-3x4 = 3 当F大于1时,理论上传动机构的运动不唯一。理论上存在两个连杆绕其球心连线的旋转运动,但实际运动过程中因为没有驱使这个运动产生的力,所以就没有这两个运动。即使自由度大于1,依然可以满足雨刮器的功能要求。

汽车雨刮器设计

汽车雨刮器设计 目录 一,设计任务 书 ..................................................................... .. (1) 1.1刮水器的功 用 ..................................................................... .. (1) 1.2 刮水器的机构简介及运动原 理 ..................................................................... 1 1.3刮水器的运动简 图 ..................................................................... ..................... 2 二,设计数 据 ..................................................................... ....................2 三,刮水器机构相关数据的计算及分 析 (3) 3.1 计算极位夹 角 ..................................................................... . (3) 3.2 计算,:的长 度 ..................................................................... (3)

3.3 计算AB杆和:,杆的关系...................................................................... .... 4 四.加速度,速度多边形的计算分析 (4) 4.1 方案一的速度加速度分 析, .................................................................... (7) 4.2 方案二速度和加速度分 析, .................................................................... ..... 9 五.动态静力分 析 ..................................................................... . (9) 5.1对两方案进行受力分 析 ..................................................................... ............. 9 六. ,,,仿真建模分析速度与加速 度 (10) ,.,仿真运动轨 迹 ..................................................................... (13) ,.,分析速度与加速度图 线 ..................................................................... ........14 七.心得体会...................................................................... .................... 15 八,参考文

机械原理课程设计汽车风窗刮水器

机械原理 课程设计说明书 设计题目:汽车风窗刮水器机构设计与分析学院: 班级: 设计者: 指导老师: 时间:

目录 一、机构简介及设计数据 (4) 1.1机构简介及设计数据 .................................... 错误!未定义书签。 1.2设计容 (3) 二、刮水器机构相关数据的计算及分析 ................ 错误!未定义书签。 2.1机构尺寸、即为家教、传动角的计算 ........ 错误!未定义书签。 2.2加速度,速度多边形的计算与分析 ............ 错误!未定义书签。 2.3曲柄摇杆机构动态静力分析 (13) 三、课程设计总结 (15) 3.1机械原理课程设计总结 (15) 3.2收获与感想 (15) 3.3参考文献 (15)

一.机构简介及设计数据 1.1机构简介与设计数据 (1)机构简介 汽车风窗刮水器是用于汽车刮水刷的驱动装置。如图1- (a)所示,风窗刮水器工作时,由电动机带动齿轮装置1-2,传至曲柄摇杆装置2'-3-4。电动机单向连续转动,刮水杆4作左右往复摆动,要求左右摆动的平均速度相同。其中,刮水刷的工作阻力矩如图1- (b)所示。 图1 汽车风窗刮水器 (a )机动示意图;(b )工作阻力矩曲线 (2)设计数据 设计参考数据见表1所示 容 曲柄摇杆机构设计及运动分析 曲柄摇杆机构动态静力分析 符号 1n K ? AB l 1x 4DS L 4G 4S J 1M 单位 r/min ()? mm N 2m kg ? mm N ? 数据 30 1 120 60 180 100 15 0.01 500

机械原理课程设计——汽车前风窗雨刮器设计

目录 前言 .........................................................错误!未定义书签。 1.课程设计目的和任务......................................错误!未定义书签。 2.设计说明书的格式要求:..................................错误!未定义书签。 一、机械原理课程设计任务和简介...............................错误!未定义书签。 设计任务..................................................错误!未定义书签。 设计题目及其简介..........................................错误!未定义书签。 雨刮器设计的基本要求.....................................错误!未定义书签。 二、方案分析和比较............................................错误!未定义书签。 概述......................................................错误!未定义书签。 方案比较..................................................错误!未定义书签。 最终方案选定..............................................错误!未定义书签。 三、基本尺寸的确定............................................错误!未定义书签。 前风窗玻璃的尺寸..........................................错误!未定义书签。 雨刮器雨刮臂尺寸确定......................................错误!未定义书签。 雨刮器电机原理及参数的选定................................错误!未定义书签。 四、雨刮器运动分析............................................错误!未定义书签。 五、设计总结..................................................错误!未定义书签。 设计感悟..................................................错误!未定义书签。 设计过程..................................................错误!未定义书签。 设计的优化思路和展望......................................错误!未定义书签。 六、参考文献..................................................错误!未定义书签。

机械原理课程设计——汽车前风窗雨刮器设计

目录 前言 (2) 1.课程设计目的和任务 (2) 2.设计说明书的格式要求: (2) 一、机械原理课程设计任务和简介 (3) 1.1设计任务 (3) 1.2设计题目及其简介 (3) 1.3 雨刮器设计的基本要求 (5) 二、方案分析和比较 (7) 2.1概述 (7) 2.2方案比较 (7) 2.3最终方案选定 (9) 三、基本尺寸的确定 (10) 3.1前风窗玻璃的尺寸 (10) 3.2雨刮器雨刮臂尺寸确定 (11) 3.3雨刮器电机原理及参数的选定 (12) 四、雨刮器运动分析 (14) 五、设计总结 (16) 5.1设计感悟 (16) 5.2设计过程 (16) 5.3设计的优化思路和展望 (17) 六、参考文献 (18)

前言 1.课程设计目的和任务 机械原理课程设计能够培养机械类专业学生创新能力,是学生综合运用机械原理课程所学理论知识和技能解决实际问题,获得工程技术训练的必不可少的实践性教学环节。 机械原理课程设计教学所要达到的目的是: 1、培养学生理论联系实际的设计思想,训练学生综合运用机械原理课程的理论知识,并结合生产实际来分析和解决工程问题的能力。 2、通过制定设计方案、合理选择机构的类型、正确地对机构的运动和受力进行分析和计算,让学生对机构设计有一个较完整的概念。 3、训练学生收集和运用设计资料以及计算、制图和数据处理及误差分析的能力,并在此基础上利用计算机基础理论知识,初步掌握编制计算机程序并在计算机上计算来解决机构设计问题的基本技能。 机械原理课程设计教学的任务是:机械原理课程设计通常选择一般用途的机构为题目,根据已知机械的工作要求,对机构进行选型与组合,设计出几种机构方案,并对其加以比较和确定,然后对所选定方案中的机构进行运动和动力分析,确定出最优的机构参数,绘制机构运动性能曲线。 2.设计说明书的格式要求: (1)说明书一般用A4纸打印,要求步骤清楚、叙述简明、文句通顺、书写端正。 (2)对每一自成单元的内容,都应有大小标题,使其醒目突出,建议加上目录。 (3)通过课程设计说明书的编写,学生应该学会整理设计数据、绘制图表和简图,用工程术语表达设计成果的方法。 (4)对所用公式和数据,应标明来源——参考资料的编号和页次。 (5)说明书应加上封面,并与图纸一起装订成册。

汽车雨刮器的机构毕业设计

目录 摘要.................................................. I 关键词................................................. I Abstract.............................................. II Key Words............................................ III 1. 前言. (1) 1.1 选题的目的和意义 (1) 1.2 选题的研究现状及发展趋势 (1) 2. 设计题目:汽车雨刮器 (3) 2.1 设计内容及步骤 (3) 2.2 机构简介 (4) 3. 设计方案比较 (5) 3.1 设计方案一 (5) 3.2 设计方案二 (6) 3.3 设计方案三 (7) 3.4 设计方案四 (8) 4.设计的数据及运动分析 (9) 4.1 整体工作流程 (9)

4.2 工作部分即齿轮组 (10) 4.3 摇杆滑块机构 (11) 4.4 方案最终效果 (12) 5. 设计综述 (14) 结束语 (15) 参考文献 (16) 致谢 (17)

摘要 雨刷是最早发明于1910年.从1900年就有正规生产汽车在道路上,这意味着汽车没有雨刷在道路上遭受各种天气行驶至少10年!雨刷的构想产生于美国特瑞科公司的董事长在下雨天驾车,由于天气模糊,无法看清道路,导致撞倒了一个骑自行车的男孩。虽然男孩没有受很大的伤,但是驾驶者被他的经历所震惊。为他所震惊的是驾驶的危险是在没有完全看清道路的情况下发生的,这引起了雨刷的产生。在我们熟悉的电动雨刷系统出现以前一系列不同的方法都尝试过。最早的雨刷设计是一个塑料刀片在挡风玻璃上手动旋转。虽然这使挡风玻璃变干净,前方的视野变清晰,但操作者的手很快就累了,于是这种设计被放弃了。另一个的设计是由一个真空驱动泵所引发的。不幸的是这种设计被操作速度随车速改变的事实所困扰。这次失败最终导致连接一个电机到雨刮臂,这种本质一直沿用到今天。 关键词:雨刷;发明;电动雨刷;

汽车雨刮器设计报告

目录 目录................................................................................... 错误!未定义书签。摘要 (1) 第一章汽车雨刮器设计的价值及意义 (3) 第二章汽车雨刮器机构的原理 (4) 2.1雨刮器的运作原理 (4) 2.2工作原理图 (5) 2.3性能与技术要求 (7) 第三章设计方案确定......................................................... 错误!未定义书签。第四章分析设计及计算. (11) 4.1电机的参数 (11) 4.2连杆机构分析 (11) 第五章雨刮器的使用方法 (15) 第六章本次设计心得体会 (17) 6.1设计总结 (17) 6.2设计展望 (17) 参考文献 (19)

摘要 汽车雨刮器是用来清扫汽车风窗玻璃上的雨雪和尘埃的装置,是汽车不可缺少的重要部件。很多汽车制造企业将雨刮器列为汽车的安全部件,并将雨刮器的一些功能特性(如刮刷频率)列为安全特性,其目的是要求雨刮器在工作时既能及时刮清汽车风窗玻璃上雨雪杂物,又不能影响驾驶员的视线;除此以外,汽车雨刮器在停止状态还有一个关键功能要求自动复位功能,即雨刮器在停止工作时,雨刮器的刮刷子系统(由刮杆和刮片组成)自动停止在汽车风窗玻璃下沿的规定区域,其目的也是为了不阻挡驾驶员的视线。 关键词:雨刮器;功能;自动复位;安全性

一.汽车雨刮器设计的价值及意义最早的雨刮器是由一个摇臂与夹有橡皮刮片的臂组成,由司机手工操作。后来为了看位的需要,在左右两侧都装上了刮水臂,用连杆连接,成为手动双刮水片,也就是今天汽车雨刮器的原始型。 后来的雨刮器用气压差来代替人力,称为真空雨刮器。用一根管子接到发动机,利用发动机的真空度来驱动雨刮器里面的活塞,推动摇臂转动,雨刮器就可以动作了。40年代初期,汽车上陆续安装了电动雨刮器取代真空雨刮器。不过,直到80年代初,我国一些客车和货车仍然使用真空雨刮器。现在,汽车已经全部使用电动雨刮器了。 雨刮器看似简单,实际上构造并不简单,雨刮器总成含有电动机、减速机、四连杆机构、刮水臂心轴、刮水片总成等。当司机按下雨刮器的开关时,电动机启动,电动机的转速经过蜗轮蜗杆的增扭作用驱动摇臂,摇臂带动四连杆机构,四连杆机构带动安装在前围板上的转轴左右摆动,最后由转轴带动雨刮片刮扫挡风玻璃。 雨刮器是汽车本身系统的重要组成部分之一,关系到汽车雨天行车安全性。据统计,全世界雨天行车7%的交通事故是由驾驶员手动操作雨刮器引起的。当司机关闭雨刮器时,雨刮臂往往不停在适当的位置,阻碍司机的视线。为解决这一问题,雨刮器设有一个回位开关,它控制雨刮器电机,当雨刮臂停在挡风玻璃下的适当位置时,电机才会停止运转。 现今的雨刮器已经普遍采用快档、慢档、间歇控制档。其中间歇控制档一般是利用电机的回位开关触点与电阻电容的充放电功能使雨刮器按照一定周期刮扫,即每动作一次停止2-12秒时间,对司机的干扰更少。有些车辆的雨刮器还装有电子调速器,该调速器附带感应功能,能根据雨量的大小自动调节雨臂的摆动速度。雨大刮水臂转得快,雨小刮水臂转得慢,雨停刮水臂也停。 雨刮臂是重要的安全件。它必须能有效的清楚雨水、雪和污垢;能在高温(摄氏零上80度)和低温(摄氏零下30度)下工作;能抗酸、碱、盐等有害物质腐蚀。使用寿命达到15万次挂刷循环。

相关文档
相关文档 最新文档