文档库 最新最全的文档下载
当前位置:文档库 › 明钢管的管身应力分析及结构设计

明钢管的管身应力分析及结构设计

明钢管的管身应力分析及结构设计
明钢管的管身应力分析及结构设计

明钢管的管身应力分析及结构设计

一、明钢管的荷载

明钢管的设计荷载应根据运行条件,通过具体分析确定,一般有以下几种:

(1)内水压力。包括各种静水压力和动水压力,水重,水压试验和充、放水时的水压力。

(2)钢管自重。

(3)温度变化引起的力。

(4)镇墩和支墩不均匀沉陷引起的力。

(5)风荷载和雪荷载。

(6)施工荷载。

(7)地震荷载。

(8)管道放空时通气设备造成的负压。

钢管设计的计算工况和荷载组合应根据工程的具体情况参照钢管设计规范采用。

二、管身应力分析和结构设计

明钢管的设计包括镇墩、支墩和管身等部分。前二者在上节中已经讨论过,这里主要讨论管身设计问题。

明钢管一般由直管段和弯管、岔管等异形管段组成。直管段支承在一系列支墩上,支墩处管身设支承环。由于抗外压稳定的需要,在支承环之间有时还需设加劲环。直管段的设计包括管壁、支承环和加劲环、人孔等附件。

支承在一系列支墩上的直管段在法向力的作用下类似一根连续梁。根据受力特点,管身的应力分析可取如图13-14所示的三个基本断面:跨中断面1-1;支承环附近断面2-2和支承环断面3-3。以下介绍明钢管计算的结构力学方法。

图13-14 管身计算断面

(一)跨中断面(断面1-1)

管壁应力采用的坐标系如图13-15所示。以x表示管道轴向,r表示管道径向,θ表示管道切向,这三个方向的正应力以、、表之,并以拉应力为正。图中表明了管壁单元体的应力状态,剪应力r下标的第一个符号表此剪应力所在的面(垂直x轴者称x面,余同),第二个符号表示剪应力的方向,如表示在垂直x轴的面上沿e向作用的剪应力。

1.切向(环向)应力。

管壁的切向应力主要由内水压力引起。对于水平管段,管道横截面上的水压力如图13-16(a),它可看作由图13-16(b)的均匀水压力和图13-16(c)的满水压力组成。这两部分的水压力在管壁中引起的切向应力为

式中D、δ--管道内径和管壁计算厚度,cm;

γ--水的容重,0.001;

H--管顶以上的计算水头,㎝;

θ--管壁的计算点与垂直中线构成的圆心角,如图13-16(c)所示。

式(13-9)等号右端第一项系有均匀内水压力引起的切向应力,第二项为满水压力引起的切向应力。若令管道中心的计算水头为Hp,则Hp=H+D/2,式(13-9)成

对于倾斜的管道,若管轴与水平线的倾角为φ,则式(13-10)应写成

对于水电站的压力管道,上式等号右端的第二项是次要的,只有当(D/2)cosθcosφ>0.05Hp时才有计入的必要。

上式中未计入管壁自重引起的切向应力,此应力一般较小,内水压力引起的切向应力是管壁的主要应力,因此可利用上式来初步确定管壁的厚度。若钢材的容许应力为[σ],焊缝系数为Φ(Φ一般取0.90-0.95),以Φ[σ]代式(13-11)中的,则可初步确定管壁的计算厚度δ。由于式(13-11)未计入一些次要应力,用以确定管壁厚度时容许应力应降低15%。

考虑到钢板厚度的误差及运行中的锈蚀和磨损,实际采用的管壁厚度(结构厚度)应在计算厚度的基础上再加2mm的裕量。

压力管道的内水压力一般愈向下游端愈大,为了节约钢材,通常将管道分成若干段,每段采用不同度管壁厚度,按该段最低断面出的内水压力确定。

2.径向应力

管壁内表面的径向应力等于该出的内水压强,即

“-”表示压应力,“+”表示拉应力。管壁外表面=0。较小。

3.轴向应力

跨中断面的轴向应力由两部分组成,即由水重和管重引起的轴向弯曲应力及表13-2各轴向力引起的应力。

对于支承在一系列支墩上的管道,其跨中弯矩M可按多跨连续梁求出。轴向弯曲应力

式中,,在管顶和管底,θ=0°和180°,y=±D/2,

最大

管道各轴向力见表4-2,其合力为,由此引起的轴向力为

跨中断面剪应力为零。到此求出了全部应力分量。

(二)支承环附近断面(断面2-2)

断面2-2在支承环附近,但在支承环的影响范围之外,故仍为膜应力区。以后我们将会知道,支承环的影响范围是不大的。

断面2-2的应力分量、、、的计算公式与断面1-1相同。除此之外,断面2-2尚有管重和水重在管道横截面上引起的剪应力。管重和水重在支承环处引起的剪力可将管道视作连续梁求出,近似可取Q=(qLcosφ)/2,q为每米的管重和水重,L为支承环中心距,φ为管道倾角。在垂直x轴的截面上,此剪力Q在管壁中引起的θ向剪应力

式中S-某断面以上的管壁面积对中和轴的静矩,;

J-管壁的截面惯性矩,

r-管道半径;

b-受剪截面宽度,b=2

θ- 管顶至计算点的圆心角,当θ=0°和180°时,在管顶和管底,=0;当θ=90°和270°时,剪应力最大,。也因支承环的影响而改变。

(三)支承环断面(断面3-3)

1.轴向应力

支承环处的管壁由于支承环的约束,在内水压力的作用下发生局部弯曲,如图13-17所示。因此,与断面2-2相比,增加

切向应力。

了局部弯曲应力,

支承环在管壁中引起的局部弯曲应力随离开支承环的距离而很快衰减,因此影响范围是不大的(超过这个范围可忽略不计),其等效宽度

式中r、δ-管道半径和管壁的厚度;

μ-泊松比,钢材可取μ=0.3。

图13-17 管壁局部弯曲示意图

从图13-17(b)可以看出,支承环除直接承受一小部分内水压力外,主要是承受管壁传来的剪应力。在这些力的作用下,支承环的径向位移

式中为支承环的净截面(包括衔接段长a的管壁面积)。管壁在内水压力γHp的作用下,若无支承环的约束,则径向位移

加劲环处的管壁在剪力和弯矩的共同作用下,只能产生径向位移而不能转动(无角位移),可以证明,要满足这样的条件,必须

在上述和的共同作用下,该处管壁径向缩小

若不计支承环高度的变化,根据相容条件,并利用式(13-17)至式(13-20)得

和为沿圆周向单位长度管壁的剪力和弯矩。在管壁引起的局部应力(令μ=0.3)

由于,故

β的数值取决于支承环的截面积。当很大时,β接近于1,则局部弯曲应力为切向应力的1.82倍;若

支承环,,β=0,。

支承环处管壁的轴向应力=++。的影响范围为,离开支承环以外的管壁可忽略σx2。

2.剪应力

支承环的约束在管壁中引起的剪应力

式中得自式(13-21)。y为沿管壁厚度方向的计算点到管壁截面形心的距离。管壁的内外缘,,;管壁中点,y=0,剪应力最大

由管重和水重在管壁中引起的剪应力用式(13-15)计算。

3.切向应力

在断面3-3,作用在支承环上的主要何在有:

(1)由管重和水重引起的向下的建立。其沿支承环四周的分布规律由式(13-15)确定,因支承环两侧均承受剪力,故式(13-15)的结果应乘以2δ。

(2)在内水压力作用下,关闭对支承环的剪力,其值为,由式(13-21)求出。

(3)支承环直接承受的内水压力。

(4)支承环自重。

由(2)、(3)两项荷载在支承环中引起的切向应力

支承环自重引起的应力一般较小。下面研究第一项荷载引起的应力。

图13-18 第一项荷载作用下的计算简图

第一项荷载作用下的计算简图如图13-18所示。图中Q为半跨管重和水重在管轴法向的分力(水平管段即为半跨管重和水重)。反力R=Q。对于这种在对陈荷载作用下的圆环,用结构力学的“弹心法”求解较为简便。支承环中的力除与外荷载的大小

和支承环本身的几何尺寸有关外,还与比值有关,其中b为支承环断面形心的水平距离,为支承环断面形心的曲率半径。为了充分利用材料,b与的最合理比值是使支承环上不同断面的两个最大弯矩相等。研究证明,满足这一条件的

比值是,其相应的弯矩、轴力、剪力示于图13-19中。任意断面的计算公式见钢管设计规范或《水工手册》。

图13-19 弯矩、轴力和剪力示意图

支承环各断面上的应力

式中、、、分别为支承环的截面模量、断面积、断面惯性矩、某计算点以上的面积矩。计算以上各值时,应

包括管壁的有效长度在内。支承环的切向应力为。支承环附近管壁的切向应力等于支承环内缘的切向应力。

三个断面的应力计算公式汇总于表13-4中。

表13-4 各计算断面的应力公式总表

钢管的工作除与三维应力状态,强度交合的方法是求出计算应力并与容许应力作比较,而不是直接采用某一方向的应力与容许应力作比较。钢管的强度校核目前多采用第四强度理论,其强度条件为

式中Φ为焊缝系数,取0.90-0.95。由于一般较小,故上式可简化为

以上讨论的是钢管在正常运行是充满水的情况。在钢管冲水和防空过程中,钢管可能处于部分冲水状态,此时管壁可能产生较大的弯曲应力。在管径较大、管壁较薄和倾角较小的明钢管需校核这种情况。限于篇幅,这里不作详细讨论。

(四)外压稳定校核

钢管是一种薄壳结构,能承受较大的内水压力,但抵抗外压的能力较低。在外压的作用下,关闭易于失去稳定,屈曲成勃兴,过早地失去承载能力,如图13-20所示。因此,在按强度和构造初步确立管壁厚度之后,尚需进行外压稳定校核。钢管的外荷载有:明管防空是通气设备引起的负压;埋藏式钢管防空使得外水压力,浇筑混凝土的压力,灌浆压力等。

图13-20 管壁屈曲示意图

在不同的外压作用下,有多种管壁稳定问题。下面介绍的是明管在均匀径向外压作用下的稳定问题。对于水电站的钢管而言,这是一种主要情况。

对于沿轴向可以自由伸缩的无加劲环的明钢管,管壁的临界外压

对于平面形变问题,上式中的E应以代换。明钢管抗外压稳定安全系数取2.0。如不能满足抗外压稳定要求,设置加劲环一般比增加管壁厚度经济。

对设有加劲环的管壁,临界外压

式中l—加劲环的间距

n—屈曲波数。需假定不同的n,用试算法求出最小的。对应于最小之n值可按下式估算

其中D为管径。按式(13-34)求n,取相近的整数后代人式(13-33)求最小之。

以上二式适用于情况。当时,管壁将因压应力过大而丧失承载能力,这已经不是上面所讨论的弹性稳定问题了。

决定管壁厚度的步骤是:根据强度计算确定管壁的计算厚度δ,加2mm的裕度得管壁的结构厚度。并与规范规定的最小结构厚度相比较,取其大者;进行抗外压稳定校核(不计2mm裕度),如不满足要求,用设置加劲环的办法提高其抗外压能

力一般较为经济。

加劲环的间距根据管壁抗外压稳定的要求确定。图13-21列有加劲环三种不同的断面形式。

图13-21 加劲环的三种界面形式

加劲环自身稳定的临界外压在以下二式中取其小者

式中的符号同前。加劲环与支承环的不同之处是无管重和水重引起的剪力和支座反力,其主要的环向应力可用式(13-28)求解。

管道培训材料3doc-管道应力

3 管道应力 3.1 石油化工管道应力分析常用规范、标准有哪些? 答:石油化工管道应力分析常用规范、标准有: (1)《工业金属管道设计规范》(国标报批稿); (2)《石油化工企业管道柔性设计规范》(SHJ41-91); (3)《石油化工企业非埋地管道抗震设计通则》(SHJ39-91); (4)《石油化工企业管道设计器材选用通则》(SH3059-94); (5)《石油化工企业管道支吊架设计规范》(SH3073-95); (6) 化工管道设计规范(HG20695-1987); (7) 化工部设计标准《管架标准图》(HG/T21629-1991)。 3.2 管道应力分析主要包括哪些内容?各种分析的目的是什么? 答:管道应力分析分为静力分析和动力分析。 静力分析包括: (1) 压力荷载和持续荷载作用下的一次应力计算—防止塑性变形破坏; (2) 管道热胀冷缩以及端点附加位移等位移荷载作用下的二次应力计算—防止疲劳破坏; (3) 管道对设备作用力的计算—防止作用力太大,保证设备正常运行; (4) 管道支吊架的受力计算—为支吊架设计提供依据; (5) 管道上法兰的受力计算—防止法兰泄漏。 动力分析包括: (1) 管道自振频率分析—防止管道系统共振; (2) 管道强迫振动响应分析—控制管道振动及应力; (3) 往复压缩机(泵)气(液)柱频率分析—防止气柱共振; (4) 往复压缩机(泵)压力脉动分析—控制压力脉动值。 3.3 管道上可能承受的荷载有哪些? 答:管道上可能承受的荷载有: (1) 重力荷载,包括管道自重、保温重、介质重和积雪重等; (2) 压力荷载,压力荷载包括内压力和外压力; (3) 位移荷载,位移荷载包括管道热胀冷缩位移、端点附加位移、支承沉降等; (4) 风荷载; (5) 地震荷载; (6) 瞬变流冲击荷载,如安全阀启跳或阀门的快速启闭时的压力冲击; (7) 两相流脉动荷载; (8) 压力脉动荷载,如往复压缩机往复运动所产生的压力脉动;

钢管许用应力

钢管许用应力 钢管壁厚表示方法有管子表号、钢管壁厚尺寸和管子重量三种方法 Sch10s、Sch40s、Sch80s四个等级; 2)以钢管壁厚尺寸表示? 中国、ISO、日本部分钢管标准采用 3)是以管子重量表示管壁厚度,它将管子壁厚分为三种: A.标准重量管,以STD表示 B.加厚管,以XS表示 C.特厚管,以XXS表示。 对于DN≤250mn的管子,Sch40相当于STD,DN<200mm的管子,Sch80相当于XS。补充: 1、以管子表号(Sch.)表示壁厚系列 这是1938年美国国家怔准协会ANSIB36.10(焊接和无缝钢管)标准所规定的。 管子表号(Sch.)是设计压力与设计温度下材料的许用应力的比值乘以1000,并经圆 整后的数值。即 ????? Sch .=P/[ó]t×1000??? (1-2-1) 式中? P—设计压力,MPa;?? ????????? [ó]t—设计温度下材料的许用应力,MPa。 无缝钢管与焊接钢管的管子表号可查资料确定。 ANSI B36.10和JIS标准中的管子表号为;Sch10、20、30、40、60、80、100、120、140、160。 ANSI B36.19中的不锈钢管管子表号为:5S、10S、40S、80S。 ??? 管表号(Sch.)并不是壁厚,是壁厚系列。实际的壁厚,同一管径,在不同的管子表

号中其厚度各异。不同管子表号的管壁厚度,在美国和日本是应用计算承受内压薄壁管厚度 的Barlow公式计算并考虑了腐蚀裕量和螺纹深度及壁厚负偏差-12.5%之后确定的,如公式 (1-2-2)和(1-2-3)所示。??? tB=D0P/2[ó]t??????? (1-2-2)??????????????? t=[D0/2(1-0.125)×P/[ó]t]+2.54??? (1-2-3) 式中? tB 、t——分别表示理论和计算壁厚,mm D0————管外径,mm P——设计压力,MPa [ó]t——在设计温度下材料的许用压力,MPa 计算壁厚径圆整后才是实际的壁厚。 如果已知钢管的管子表号,可根据式(1-2-1)计算出该钢管所能适应的设计压力,即 ????? P=Sch..× [ó]t/1000??????????????? (1-2-4) 例如,Sch40,碳素钢20无缝钢管,当设计温度为350oC时给钢管所能适应 设计压力为: P=40×92/1000①=3.68 MPa 中国石化总公司标准SHJ405规定了无缝钢管的壁厚系列并Sch.5S②,? Sch.10, Sch.10s,Sch.20,Sch.20s,Sch.30,Sch.40,Sch。40s,Sch.60,Sch.80,Sch.100, Sch.120,Sch.140,Sch。160,如表1-2-9所示。 2、以管子重量表示管壁厚度的壁厚系列 美国MSS和ANSI规定的以管子重量表示壁厚方法,将管子壁厚分为;种: ??? (1)标准重量管以STD表示;

高压架空输电线路钢管杆结构优化设计研究 黄巧

高压架空输电线路钢管杆结构优化设计研究黄巧 发表时间:2018-10-17T14:38:20.407Z 来源:《电力设备》2018年第19期作者:黄巧 [导读] 摘要:随着电网的快速发展,输电线路建设水平也面临更高的要求。 (中国电力工程顾问集团新能源有限公司西安分公司陕西西安 710032) 摘要:随着电网的快速发展,输电线路建设水平也面临更高的要求。高压输电线路已经成为电网的主要组成部分,其直接影响电网的质量和电能供应质量。钢管杆在高压架空输电线路中广泛应用,为了进一步完善钢管杆的设计,实现节约材料、降低成本、减轻工作量的目的。我们对钢管杆结构设计进行优化,以保证钢管杆结构满足当下高压输电线路的要求。 关键词:高压线路;钢管杆结构;优化设计 1概述 1.1 高压架空输电线路 所谓高压架空输电线路是具有专业性较强,施工难度大,主要应用于基建行业领域的一种特殊线路。高压架空输电线路通常采用输电杆塔将导线与地线悬挂在控制,使导线与导线之间、导线与地线之间、导线与杆塔之间以及导线与地面障碍物之间保持安全距离,为完成输电任务奠定基础。高压架空输电线路具有成本低、维护施工方便的优点,因而被电网建设广泛应用。杆塔作为架空输电线路的重要组成部分,其设计的合理性直接影响其功能和作用,且对输电线路的施工速度、造价、运行、检修等均会造成影响。架空输电线路的杆塔型式很多,在实际选择中因地制宜是选择方案的基本原则。 1.2 钢管杆 钢管杆是架空输电线路杆塔的一种,从其断面型式上可以分为圆形钢管杆和多边形钢管杆,从结构型式上可分为单杆和双杆。其中圆形钢管杆不便采用套接,现场安装施工需要分段焊接,焊接接头在防腐性能方面存在缺陷。而多边形钢管杆通常由多段套接而成,可以实现分段热侵镀锌,具有良好的防腐效果,且现场安装方便。从外形上对比,多边形钢管杆尺寸紧凑、结构匀称、线条明快。所以,综合以上分析,多边形钢管杆是最合理的一种钢管杆。在实际中依据线路适用情况和导地线张力大小,合理选择单杆或双杆。通常情况下高压架空输电线路主要选用单杆结构。 2钢管杆结构特的优点 2.1结构简单 高压输电线路的钢管杆结构通常都比较简单,且器件较小,使钢管结构具有较低的风载体形系数。所以,作用于钢管杆结构本身的风荷载比铁塔小得多。此外,钢管杆结构具有良好的柔性,利于高压输电线路在强风作用的安全运行,保障了输电的稳定性。 2.2 占用空间少 城市建设的快速发展,土地资源日益缺乏,为了有效节约土地资源,城市土地规划允许在走廊或绿化带上架设高压输电线路。但是传统的铁打根宽度大,需要占用较大的土地空间,不适合在空间狭小的绿化带或走廊上铺设。而钢管杆占地面积小,杆径小,无拉线,占用土地空间较小,可满足小空间架设需求。同时钢管杆整体结构简单大方,于城市风貌相互协调,利于城市中建设高压输电线路的需求。 2.3 运送安装都很方便 高压输电线路钢管杆设计方式独特,在设计上是就采用分件形式,方便运输现场组装,从而钢管杆结构又有安装方便的特点。同时与传统的铁塔结构比较,钢管杆结构还有杆塔组装方便的特点,省去了塔位平降基工序等一些工序,这些都是传统铁塔无法比拟的。以上提到的优点可以充分说明钢管杆结构在高压输电线路施工中施工简单,有效提高了施工的效率,缩短了施工时间,有效节约了成本。 2.4 市容美观 城市建设中,城市的面容备受社会各界的关注和重视。钢管杆整体线条明快,整个结构比较的匀称,加之有机翼型的横担,显得十分的动感十足。如果涂上城市的主色调不但不会影响景观,反而对城市周围的景观会起到美化协调的作用。所以,钢管杆结构能够被广泛应用高压架空输电线路。但是当前使用的钢管杆结构钢材强度不大,不适用大容量多回路的输电线路。因此,尽量采用高强度、荷载大的钢管杆。输电线路建设中钢材费用占据了工程施工成本的主体,因此对于高压输电线路的钢管杆应用,多以城郊结合区域,有走廊限制的地带,不适宜在农村或走廊无限制的地区架设推广。 3高压架空输电线路钢管杆结构优化设计 高压输电线路钢管杆结构优化的目的是,设计方法在满足规定的各种荷载要求下,确保线路安全运行。具体从以下几个方面进行优化设计: 3.1气象条件的选择 通过多年的工作经验总结出,气象条件的选择应依据线路沿线气象资料和已有线路的运行经验进行确定。通常110kV-330kV输电线路及其大跨越重现期应取30年,500kV-750kV 输电线路及其大跨越重现期应取50年,实际使用中应该避免过大取用。 3.2材料选择 建议多回路、大截面导地线、分裂导线的杆塔采用高强度钢,这样也可以降低杆塔材料的用量。 3.3档距的优化 通过对各种导、地线最大使用张力的计算比较,选取合适的导、地线安全系数,一般取导线安全系数K=6.0-8.0,地线安全系数K=10.0-11.0,使用水平档距Lp=120m -150m,垂直档距Lv=200m -250m,最为经济合理。 3.4杆型选择 钢管杆杆型的选择是高压输电线路的关键,也是钢管杆结构优化的核心。合理区分线路中的直线杆和耐张杆,尽量避免直线杆承受导地线的拉力。合理规划杆塔使用转角度数,避免实际使用角度远小于设计角度,可以有效降低杆塔承受的荷载。对于终端杆应区分有无进线档的设计情况,对于分支、T接、π线路的杆塔,需要根据实际使用情况考虑荷载组合,避免所有杆塔都按最不利的因素考虑。 3.5杆头高度及呼称高 在满足电气间隙要求的基础上,尽量减小线路走廊宽度,优化杆头高度和横担长度。注意考虑城区线路、路灯和路边树木的交叉跨越高度要求,杆塔重量以最轻化为优化目标。单双回路杆塔呼称高的极差按3m考虑,多回路按2m考虑。通过减少杆塔高度,以降低杆塔的重

明钢管的管身应力分析及结构设计

明钢管的管身应力分析及结构设计 一、明钢管的荷载 明钢管的设计荷载应根据运行条件,通过具体分析确定,一般有以下几种: (1)内水压力。包括各种静水压力和动水压力,水重,水压试验和充、放水时的水压力。 (2)钢管自重。 (3)温度变化引起的力。 (4)镇墩和支墩不均匀沉陷引起的力。 (5)风荷载和雪荷载。 (6)施工荷载。 (7)地震荷载。 (8)管道放空时通气设备造成的负压。 钢管设计的计算工况和荷载组合应根据工程的具体情况参照钢管设计规范采用。 二、管身应力分析和结构设计 明钢管的设计包括镇墩、支墩和管身等部分。前二者在上节中已经讨论过,这里主要讨论管身设计问题。 明钢管一般由直管段和弯管、岔管等异形管段组成。直管段支承在一系列支墩上,支墩处管身设支承环。由于抗外压稳定的需要,在支承环之间有时还需设加劲环。直管段的设计包括管壁、支承环和加劲环、人孔等附件。 支承在一系列支墩上的直管段在法向力的作用下类似一根连续梁。根据受力特点,管身的应力分析可取如图13-14所示的三个基本断面:跨中断面1-1;支承环附近断面2-2和支承环断面3-3。以下介绍明钢管计算的结构力学方法。 图13-14 管身计算断面 (一)跨中断面(断面1-1) 管壁应力采用的坐标系如图13-15所示。以x表示管道轴向,r表示管道径向,θ表示管道切向,这三个方向的正应力以、、表之,并以拉应力为正。图中表明了管壁单元体的应力状态,剪应力r下标的第一个符号表此剪应力所在的面(垂直x轴者称x面,余同),第二个符号表示剪应力的方向,如表示在垂直x轴的面上沿e向作用的剪应力。 1.切向(环向)应力。 管壁的切向应力主要由内水压力引起。对于水平管段,管道横截面上的水压力如图13-16(a),它可看作由图13-16(b)的均匀水压力和图13-16(c)的满水压力组成。这两部分的水压力在管壁中引起的切向应力为 式中D、δ--管道内径和管壁计算厚度,cm; γ--水的容重,0.001;

钢管应力计算

第一章总则 第1.0.1条管道应力计算的任务是:验算管道在内压、自重和其它外载作用下所产生的一次应力和在热胀、冷缩及位移受约束时所产生的二次应力,以判明所计算的管道是否安全、经济、合理以及管道对设备的推力和力矩是否在设备所能安全承受的范围内。 第1.0.2条本规定适用于以低碳钢、低合金钢和高铬钢为管材的火力发电厂汽水管道的应力计算。 油、空气介质的管道应力计算,可参照本规定执行。 核电站常规岛部分管道应力计算,可参照本规定执行。 第1.0.3条管道的热胀应力按冷热态的应力范围验算。管道对设备的推力和力矩按在冷状态下和在工作状态下可能出现的最大值分别进行验算。 第1.0.4条恰当的冷紧可减少管道运行初期的热态应力和管道对端点的热态推力,并可减少管系的局部过应变。冷紧与验算的应力范围无关。 第1.0.5条进行管系的挠性分析时,可假定整个管系为弹性体。 第1.0.6条使用本规定进行计算的管道,其设计还应遵守《火力发电厂汽水管道设计技术规定》。管道零件和部件的结构、尺寸、加工等,应符合《火力发电厂汽水管道零件及部件典型设计》的要求。

第二章 钢材的许用应力 第2.0.1条 钢材的许用应力,应根据钢材的有关强度特性取下列三项中的最小值: σ b 20/3,σs t /1.5或σs t (0.2%)/1.5,σD t /1.5 其中 σb 20——钢材在20℃时的抗拉强度最小值(MPa ); σs t ——钢材在设计温度下的屈服极限最小值(MPa ); σ s t (0.2%)——钢材在设计温度下残余变形为0.2%时的屈服极限最小值(MPa ); σD t ——钢材在设计温度下105h 持久强度平均值。 常用钢材的许用应力数据列于附录A 。 国产常用钢材和附表中所列的德国钢材的许用应力按本规定的安全系数确定。 美国钢材的许用应力摘自美国标准ASME B31.1。 对于未列入附录A 的钢材,如符合有关技术条件可作为汽水管道的管材时,它的许用应力仍按本规定计算。

钢铁材料的许用应力

表1 普通碳钢及优质碳钢构件基本许用应力/MPa 材 料类型材料 标号 截面尺寸 /mm 热处 理 材料性能拉压弯曲扭转剪切 抗拉强度σb 屈服强度σs /MPa ⅠⅡⅢⅠⅡⅢⅠⅡⅢⅠⅡⅢ σlσlσlστnτnτnτττ 普通碳钢Q215 100 热 扎 σb335~410 σs185~215 145 125 90 175 95 90 60 100 90 60 Q235 σb375~460 σs205~235 160 140 100 190 160 120 105 σσ110 100 70 Q275 σb490~610 σs235~275 175 150 110 210 170 130 115 140 105 120 110 80 优质碳钢20 ≤100 正 火 σb410 σs245 175 145 105 210 165 125 115 105 70 120 105 75 25 σb450 σs275 195 160 115 230 175 135 125 115 75 135 120 80 35 σb530 σs315 210 180 125 250 200 150 135 120 80 145 120 85 调质σb550~750 σs320~370 210 185 130 250 205 155 135 125 85 145 120 85 45 正火σb600 σs355 230 200 145 270 220 170 150 135 90 160 140 95 调质σb630~800 σs370~430 250 215 150 300 235 180 160 150 100 175 150 100 50 ≤25 正火σb630 σs375 250 215 150 300 235 180 160 150 100 175 150 100 ≤100 调质σb>700 σs>400 265 235 165 310 260 195 170 155 105 180 160 110

第六节 明钢管的管身应力分析及结构设计

第六节明钢管的管身应力分析及结构设计 一、明钢管的荷载 明钢管的设计荷载应根据运行条件,通过具体分析确定,一般有以下几种: (1)内水压力。包括各种静水压力和动水压力,水重,水压试验和充、放水时的水压力。 (2)钢管自重。 (3)温度变化引起的力。 (4)镇墩和支墩不均匀沉陷引起的力。 (5)风荷载和雪荷载。 (6)施工荷载。 (7)地震荷载。 (8)管道放空时通气设备造成的负压。 钢管设计的计算工况和荷载组合应根据工程的具体情况参照钢管设计规范采用。 二、管身应力分析和结构设计 明钢管的设计包括镇墩、支墩和管身等部分。前二者在上节中已经讨论过,这里主要讨论管身设计问题。 明钢管一般由直管段和弯管、岔管等异形管段组成。直管段支承在一系列支墩上,支墩处管身设支承环。由于抗外压稳定的需要,在支承环之间有时还需设加劲环。直管段的设计包括管壁、支承环和加劲环、人孔等附件。 支承在一系列支墩上的直管段在法向力的作用下类似一根连续梁。根据受力特点,管身的应力分析可取如图13-14所示的三个基本断面:跨中断面1-1;支承环附近断面2-2和支承环断面3-3。以下介绍明钢管计算的结构力学方法。 图13-14 管身计算断面 (一)跨中断面(断面1-1) 管壁应力采用的坐标系如图13-15所示。以x表示管道轴向,r表示管道径向,θ表示管道切向,这三个方向的正应力以、、表之,并以拉应力为正。图中表明了管壁单元体的应力状态,剪应力r 下标的第一个符号表此剪应力所在的面(垂直x轴者称x面,余同),第二个符号表示剪应力的方向,如 表示在垂直x轴的面上沿e向作用的剪应力。 1.切向(环向)应力。 管壁的切向应力主要由内水压力引起。对于水平管段,管道横截面上的水压力如图13-16(a),它可看作由图13-16(b)的均匀水压力和图13-16(c)的满水压力组成。这两部分的水压力在管壁中引起的切向应力为

各种许用应力与抗拉强度、屈服强度的关系

各种许用应力与抗拉强度、屈服强度的关系 我们在设计的时候常取许用剪切应力,在不同的情况下安全系数不同,许用剪切应力就不一样。校核各种许用应力常常与许用拉应力有联系,而许用材料的屈服强度(刚度)与各种应力关系如下: <一> 许用(拉伸)应力 钢材的许用拉应力[δ]与抗拉强度极限、屈服强度极限的关系: 1.对于塑性材料[δ]= δs /n 2.对于脆性材料[δ]= δb /n δb ---抗拉强度极限 δs ---屈服强度极限 n---安全系数 轧、锻件n=1.2-2.2 起重机械n=1.7 人力钢丝绳n=4.5 土建工程n=1.5 载人用的钢丝n=9 螺纹连接n=1.2-1.7 铸件n=1.6-2.5 一般钢材n=1.6-2.5 注:脆性材料:如淬硬的工具钢、陶瓷等。 塑性材料:如低碳钢、非淬硬中炭钢、退火球墨铸铁、铜和铝等。 <二> 剪切 许用剪应力与许用拉应力的关系: 1.对于塑性材料[τ]=0.6-0.8[δ] 2.对于脆性材料[τ]=0.8-1.0[δ] <三> 挤压 许用挤压应力与许用拉应力的关系 1.对于塑性材料[δj]=1.5- 2.5[δ]

2.对于脆性材料[δj]=0.9-1.5[δ] 注:[δj]=1.7-2[δ](部分教科书常用) <四> 扭转 许用扭转应力与许用拉应力的关系: 1.对于塑性材料[δn]=0.5-0.6[δ] 2.对于脆性材料[δn]=0.8-1.0[δ] 轴的扭转变形用每米长的扭转角来衡量。对于一般传动可取[φ]=0.5°--1°/m;对于精密件,可取[φ]=0.25°-0.5°/m;对于要求不严格的轴,可取[φ]大于1°/m计算。 <五> 弯曲 许用弯曲应力与许用拉应力的关系: 1.对于薄壁型钢一般采取用轴向拉伸应力的许用值 2.对于实心型钢可以略高一点,具体数值可参见有关规范。

常用钢管标准比较

一.焊接钢管 在目前的石油化工生产装置中,大量使用的是无缝钢管,而焊接管子仅在一些介质条件比较低或者因管子直径比较大而无无缝方法供货的情况下才使用焊接钢管,这是因为焊接钢管质量比较差的缘故。随着现代工业技术的发展,焊接钢管的生产技术水平和质量在不断的提高,其应用范围也在不断地扩大。焊接钢管与无缝钢管相比,其价格便宜,材料利用率高,尺寸偏差小,设备投资也较少,尤其是在大直径(DN≥600)钢管的生产上,无缝钢管的生产已经比较困难。因此,目前新建的或改建的石油化工生产装置中,焊接钢管应用的越来越多,尤其是对一些不锈钢应用较多的装置,采用焊接钢管代替无缝钢管,投资可以节省1/4,这对工程建设者来说无异是一个较大的吸引力。 目前,常用的焊接钢管根据其生产时采用的焊接工艺不同可以分为连续护焊(锻焊)钢管、电阻焊钢管和电弧焊钢管三种。 1.连续护焊(锻焊)钢管 连续护焊(锻焊)钢管是在加热炉内对钢带进行加热,然后对已成型的边缘采用进行加压方法使其焊接在一起而形成的具有一条直缝的钢管。其特点是生产效率高,生产成本低,但焊接接头冶金结合不完全,焊缝质量差,综合机械性能差。目前护焊管在压力管道中仅用于水和压缩空气系统。 GB/T3091《低压流体输送用镀锌焊接钢管》、GB/T3092《低压流体输送用焊接钢管》标准的钢管一般为护焊钢管(有时也用电阻焊制造),它们除了流体输送用钢管的必检项目外,只附加了弯曲试验要求,故此类管子的制造、检验要求是比较低的。它们的规格范围为1/8”~6”,壁厚有普通级的和加厚级两种,材料牌号有Q195A、215QA、Q235A三种,适用于设计温度为0℃~100℃、设计压力不超过0.6MPa的水和压缩空气系统。 当输送介质为仪表用净化压缩空气时,因为仪表驱动芯子孔径比较小,若有较小的固体杂质进入就会引起操作故障,因此它采用的管子应为符合GB/T3091标准的镀锌管,而且其管道组成件应是螺纹连接而不是焊接。实际上这点是很难做到的,因为DN≥50的管子及其元件均采用螺纹连接是不合适的。通常,将仪表用净化压缩空气输送用的干管(一般DN≥50)采用无缝钢管,连接为焊接,而支管(一般DN≤40)则采用镀锌管,且支管从干管的上部引出,这样处理的结果基本上能保证仪表用净化压缩空气的干净度要求。 2.电阻焊钢管 电阻焊钢管是通过电阻焊和电感应焊接方法生产的、带有一条直焊缝的钢管,其特点是生产效率高,自动化程度高,焊接时不需要焊条和焊药,对母材损伤小,焊后的变形和残余应力也较小。但它的生产设备较复杂,设备投资高,对焊接接头的表面质量要求也比较高。由于接头处难免有杂质存在,所以接头处的塑性和冲击韧性较低,不宜用于高温高温情况下和重要场合。一般规定电阻焊钢管应使用在不超过200℃的名情况下。 常用的电阻焊钢管标准有SY/T5038《普通流体输送用螺旋缝高频焊钢管》等。SY/T5038标准的规格范围为DN150~DN500,壁厚从4.0mm~10mm共9种规格,材料牌号有Q195、Q215、Q235三种,适用介质为水、煤气、空气、采暖蒸汽等普通流体。 3.电弧焊钢管 电弧焊钢管是采用电弧焊焊接方法生产的钢管,它的特点是焊接接头达到完全的冶金结合,接头的机械性能能够完全达到或接近母材的机械性能。在经过适当的热处理和无损检查之后,电弧焊直缝钢管的使用条件可以达到无缝钢管的使用条件而取代无缝钢管。 根据焊缝形式的不同,电弧焊钢管可分为直缝管和螺旋焊缝管两种。根据焊接时采取的保护方法的不同,电弧焊钢管又可分为埋弧焊钢管融化极气体保护焊钢管两种。 螺旋缝焊接钢管是在焊接过程中,焊枪和焊缝处于旋转运动和直线运动结合的相对运动中,其焊缝呈螺旋形。与直缝钢管相比,其焊缝线度长,而且焊缝的受力为二维拉应力。

钢管许用应力

钢管许用应力Last revision on 21 December 2020

钢管许用应力 钢管壁厚表示方法有管子表号、钢管壁厚尺寸和管子重量三种方法 Sch10s、Sch40s、Sch80s四个等级; 2)以钢管壁厚尺寸表示中国、ISO、日本部分钢管标准采用 3)是以管子重量表示管壁厚度,它将管子壁厚分为三种: A.标准重量管,以STD表示 B.加厚管,以XS表示 C.特厚管,以XXS表示。 对于DN≤250mn的管子,Sch40相当于STD,DN<200mm的管子,Sch80相当于XS。补充: 1、以管子表号(Sch.)表示壁厚系列 这是1938年美国国家怔准协会(焊接和无缝钢管)标准所规定的。 管子表号(Sch.)是设计压力与设计温度下材料的许用应力的比值乘以1000,并经圆整后的数值。即 Sch .=P/[ó]t×1000 (1-2-1) 式中 P—设计压力,MPa; [ó]t—设计温度下材料的许用应力,MPa。 无缝钢管与焊接钢管的管子表号可查资料确定。 ANSI 和JIS标准中的管子表号为;Sch10、20、30、40、60、80、100、120、140、160。 ANSI 中的不锈钢管管子表号为:5S、10S、40S、80S。 管表号(Sch.)并不是壁厚,是壁厚系列。实际的壁厚,同一管径,在不同的管子表

号中其厚度各异。不同管子表号的管壁厚度,在美国和日本是应用计算承受内压薄壁管厚度 的Barlow公式计算并考虑了腐蚀裕量和螺纹深度及壁厚负偏差-12.5%之后确定的,如公式 (1-2-2)和(1-2-3)所示。 tB=D0P/2[ó]t (1-2-2) t=[D0/2()×P/[ó]t]+ (1-2-3) 式中 tB 、t——分别表示理论和计算壁厚,mm D0————管外径,mm P——设计压力,MPa [ó]t——在设计温度下材料的许用压力,MPa 计算壁厚径圆整后才是实际的壁厚。 如果已知钢管的管子表号,可根据式(1-2-1)计算出该钢管所能适应的设计压力,即 P=Sch..× [ó]t/1000 (1-2-4) 例如,Sch40,碳素钢20无缝钢管,当设计温度为350oC时给钢管所能适应 设计压力为: P=40×92/1000①= MPa 中国石化总公司标准SHJ405规定了无缝钢管的壁厚系列并Sch.5S②, Sch.10, Sch.10s,Sch.20,Sch.20s,Sch.30,Sch.40,Sch。40s,Sch.60,Sch.80,Sch.100, Sch.120,Sch.140,Sch。160,如表1-2-9所示。 2、以管子重量表示管壁厚度的壁厚系列 美国MSS和ANSI规定的以管子重量表示壁厚方法,将管子壁厚分为;种: (1)标准重量管以STD表示;

钢管局部承压计算

状况分析: 根据现场量测情况,最小壁厚为9.1mm,对该部位局部应力的计算过程及结果如下: (1)计算工况与以上钢管桩受力分析相同。 (2)钢管桩顶局部应力计算 取p=900/2=450KN作为计算荷载对钢管桩的局部应力进行验算。 1、仅考虑与钢管桩顶接触的工字钢腹板部分参与受压,工字钢腹板作用在钢管桩上的有效长度按从腹板计算高度边缘处往下45度角扩算计算,简图如下: 阴影部分长度即为作用长度:l=62mm。 故工字钢作用在钢护筒上面的整个受力面积如下图:

钢管桩和加劲肋按2mm 腐蚀进行计算,故钢管桩壁厚为8mm ,加劲肋壁厚为10mm 。 其中:22992mm A = 故:Mp Mp c 2154.15029924500001<=?=σ 故受力满足要求。 2、考虑整个翼缘板参与受力计算,则作用面积如下图:

钢管桩和加劲肋按2mm 腐蚀进行计算,故钢管桩壁厚为8mm ,加劲肋壁厚为10mm 。 其中:23920mm A = 故:Mp Mp c 2158.11439204500001<=?=σ 故受力满足要求。 从以上分析可知钢管桩顶受力在可接受范围以内,在完全不考虑工钢翼板部分参与受力的极端工况下钢管桩顶局部受力仅达到规范规定钢材极限压应力的70.0%,在考虑翼板参与受力的情况下钢管桩顶局部受力为规范规定钢材极限压力的53.4%。 根据现场实际情况,综合上述计算分析可见该部分受力情况安全可靠,无需进行整改。 三、结论

综上所述,除浪溅区钢管桩存在一定的锈蚀程度外,其他构件在外露情况下基本无锈蚀情况,且外表锈蚀的钢管桩经计算能够满足承载力要求。对于其他问题通过相应的措施整改完成后,栈桥仍可以投入正常使用。并在后期的施工过程中,通过限速、检查、防盗等措施加强栈桥的维护和保养,确保栈桥满足施工要求。

某工业厂房屋盖的钢管桁架结构设计

某工业厂房屋盖的钢管桁架结构设计 摘要本文综合分析探讨了现代厂房弧形屋面的管桁架的结构设计。关键词厂房屋盖;管桁架;结构设计 1 工程概况 空间钢管桁架作为屋盖结构具有很多优点,不仅满足了大跨度的要求,而且作为一种结构体系,营造了美学与力学的完美结合的设计理念。此类结构形式不仅在现代商业建筑如体育馆、展览馆、会场、航站楼等得到了广泛的应用,而且在现代工业厂房也具有强劲的发展势头。我院于20XX年设计的某公司项目是国内技术先进的高科技复合材料企业,其主厂房--复合材料生产厂房屋面采用羽翼造型,像一对张开飞起的翅膀,横向弧坡屋面,屋盖结构采用的就是钢管桁架结构。复合材料生产厂房建筑面积为 m2,其东西长 m,南北宽为 m,檐口处柱顶标高 m,东西对称,剖面见右图,室内外高差为 m。管桁架屋盖部分为多跨连续排架结构,计32榀。桁架下面为钢筋混凝土柱。 2 管桁架屋盖 复合材料生产厂房的建筑结构安全等级为二级,结构重要性系数。主体结构设计使用年限50年。抗震设防类别为丙类,抗震没防烈度为7度,抗震等级为三级,基本风压为kN/m2,场地类别为Ⅱ类,地面粗糙度为B类。管桁架跨度

为27*3+18 m,两侧悬挑分别为 m和 m,基本柱距9 m,最大柱距 m,根据建筑造型和结构分析管桁架采用等腰倒三角形渐变截面,三角形的基本高度为 m,等腰三角形的上边水平长度为 m,管桁架纵向为多跨连续弧线,20轴处柱顶标高为 m,弧线波峰处高出 m,弧线波谷处低于 m,上下最大高差 m。管桁架上、下弦杆选用较大外径和壁厚的圆钢管,从钢管节点的构造来保证弦杆外径大于腹杆外径,弦杆壁厚大于腹杆壁厚,上下腹杆节点间距均为 m错位布置,与檩条间距相同,钢管材质为Q345B的无缝钢管。弦杆与腹杆以及腹杆轴线问的夹角大于30o,同时在管桁架承受较大横向荷载的支座部位纵向和横向进行了加强。为了保证屋盖的几何稳定性,也为了保证屋盖的刚度和空间整体性,设置了三道上弦水平支撑,水平支撑为十字交叉钢管,十字交叉钢管和系杆均为Φ133x4无缝钢管,桁架梁之间在有混凝土柱处设置通长纵向支撑系统,纵向支撑也采用了三角形管桁架,这样便于与主桁架上下杆连接,同时也起到了主桁架平面外的支撑。 3 管桁架梁的结构计算 结构分析采用同济大学的空间结构设计软件3D3S,版本,同时用SAP20XX进行校对和补充计算。根据结构布置特点,假定屋面近似刚度无限大。考虑结构形式为排架结构,故建立模型为两个支撑单位间的构件。屋面恒载取 kN/m2,

钢管承受压力壁厚计算方式

钢管承受压力壁厚计算方式 碳钢、合金钢无缝钢管和焊接钢管在受内压时,共壁厚按下式计算: PD δ = ────── + C 200[σ]φ+P (2-1) 式中d——管璧厚度(毫米); P——管内介质工怍压力(公斤/厘米2);在压力不高时,式中分母的P值可取p=0,以简化计算; D——管子外径(毫米); φ——焊缝系数,无缝钢管φ=1,直缝焊接钢管φ=0.8,螺旋缝焊接钢管φ=0.6; [σ]——管材的许用应力(公斤/毫米2),管材在各种温度下的许用应力值详见表2-5; C——管子壁厚附加量(毫米)。 管子壁厚附加量按下式确定: C = C1 + C2 + C3 (2-2) 式中 C1——管子壁厚负偏差附加量(毫术)。 无缝钢管(YB231-70)和石油裂化用钢管(YB237-70)壁厚负偏差见表2-1。 冷拔(冷轧)钢管>1 -15 热轧钢管 3.5-20 -15 >20 -12.5 不锈钢、耐酸钢无缝钢管(YB 804-70)壁厚负偏差见表2-2。 冷拨(冷扎)钢管≤1-0.15毫米-0.10毫米>1-3 -15 -10 >3 -12.5 -10 热扎钢管≤10-15 -12.5 >10~20 -20 -15 >20 -15 -12.5

普通碳素结构钢和优质碳素结构钢厚钢板的厚度负偏差,按热轧厚钢板厚度负偏差(GB709-65)的规定,见表2-3。 4 -0.4 4.5~ 5.5 -0.5 -0.5 5~7 -0.6 -0.6 -0.6 8~10 -0.8 -0.8 -0.8 -0.8 11~25 -0.8 -0.8 -0.8 -0.8 26~30 -0.9 -0.9 -0.9 -0.9 C2——腐蚀裕度(毫米); 介质对管子材料的腐蚀速度≤0.05毫米/年时(包括大气腐蚀),单面腐蚀取C2=1.5毫米,双面腐蚀取C2=2~2.5毫米。 当管子外面涂防腐油漆时,可认为是单面腐蚀,当管子内外壁均有较严重的腐蚀时,则认为是双面腐蚀。 介质对管子材料的腐蚀速度大于0.05毫米/年时,由设计者根据腐蚀速度与设计寿命决定C2值。 C3——管子加工减薄量(毫米)。 车螺纹的管子,C3即为螺纹的深度;如管子不车螺纹,则C3=O.55°圆锥状管螺纹(YB822-57)的螺纹深度见表2-4。 ? 1.162 ? 1 1.479 1? 1? 2 2? 3 4 5 6

矩形钢管结构设计浅谈

矩形钢管结构设计浅谈 摘要:矩形钢管结构由于具有造型丰富、受力明确、用钢量省、施工方便等特点而被广泛地应用在建筑设施中。然而我国截至目前尚未形成独立的矩形钢管结构的设计规范和章程,一般在设计中都是以国内相关设计规范及设计经验参考进行的。本文从矩形钢管结构的概念入手,着重阐述了其有关设计方面的一些要点。 关键词:矩形钢管;结构设计;承载力 钢管结构以其承载能力强、延性和抗震性能高优势被广泛的应用在现代化各类工程项目中,尤其是在土木工程领域,这一结构应用更为广泛、地位尤为突出。然而就我国目前的钢管结构应用而言,其应用范围很广,特别是在一些高层、大跨度以及复杂结构中更为常见,作用也更加的明显。但是就矩形钢管结构体系这一概念而言,其尚未形成一个系统的设计流程。因此,在今后的工作中我们有必要就其设计环节深入分析,提出可靠的设计理论。 1 矩形钢管结构概述 近年来,随着科学技术的进步,国内建材市场也呈现出水涨船高之势,各种新材料、新设备不断的涌现了出来,为建筑事业的发展打下了坚实可靠的市场基础,也为节能、环保建筑理念的落实提供了科学的指导思想。钢管结构作为现代化工程项目中研究最多的结构体系之一,其伴随人们生活水平的提升也呈现出各种不同的发展力度和要求。矩形钢管结构便是基于这种时代背景下产生的一种结构形式,它的应用有效的解决了建筑结构呆板与缺乏变通问题。 1.1 矩形钢管 矩形钢管也统称为矩形管,是一种中间空、呈长条形或方形的一种钢管材料,它也被广泛的称之为扁管、方扁管等。在当今社会发展中,它被大量地用于建筑工程领域,当作主要的结构施工材料采用,同时也用于输送流体的管道,更有甚者被广泛的应用在机械生产制造领域。在目前的建筑工程领域,钢管材料主要可以分为热加工管和冷成型管两部分。 1.2 钢管结构 所谓的钢管结构主要指的是由圆管、矩形管、方管制作加工而形成的一种结构,这类结构在目前的建筑工程项目中可以当作独立的梁、柱构件,也可以结合其他的辅材等共同组成空间结构受力体系,如钢管桁架结构、网架结构。钢管结构体系节点连接形式多样,实际工程中主要采用管管相贯节点与球节点。钢管结构体系具有结构形式灵活、自身刚度大,用钢量小,施工方便,适用于复杂多变的建筑形式等特点,备受建筑师青睐。矩形钢管结构就是以矩形管为基本构件单元形成的钢管结构受力体系。

钢管压力标准

钢管压力标准 钢管压力标准 压力管道的组成件一般都是标准件,因此压力管道组成件的设计主要是其标准件的选用,管道压力等级的确定也就 是其标准件等级的确定。 管道的压力等级包括两部分: 以公称压力表示的标准管件的公称压力等级; 以壁厚等级表示的的标准管件的壁厚等级。 管道的压力等级:通常把管道中由标准管件的公称压力等级和壁厚等级共同确定的能反映管道承压特性的参数叫做 管道的压力等级。而习惯上为简化描述,常把管道中管件的公称压力等级叫做管道的压力等级。 压力等级的确定是压力管道设计的基础,也是设计的核心。它是压力管道布置、压力管道应力校核的设计前提条件, 也是影响压力管道基建投资和管道可靠性的重要因素。 5.1 设计条件 工程上,工艺操作参数不宜直接作为压力管道的设计条件,要考虑工艺操作的波动、相连设备的影响、环境的影响等因素,而在工艺操作参数的基础上给出一定的安全裕量作为设计条件。这里所说的设计条件主要是指设计压力和设计温 度。 管道的设计压力:应不低于正常操作时,由内压( 或外压)与温度构成的最苛刻条件下的压力。 最苛刻条件:是指导致管子及管道组成件最大壁厚或最高公称压力等级的条件。 设计压力确定:考虑介质的静液柱压力等因素的影响,设计压力一般应略高于由(或)外压与温度构成的最苛刻条件 下的最高工作压力。 a. 一般情况下管道元件的设计压力确定 一般情况下,为了操作上的方便,在此不妨采用压力容器的做法,即在相应工作压力的基础上增加一个裕度系数。 表5-1 一般情况下管道元件的设计压力确定

b. 管道中有安全泄压装置时, 管道中有安全泄压装置时预示着该管道在运行过程中有出现超出其正常操作压力的可能。设置安全泄压装置(如安全阀、爆破片等)的目的,就是在系统中出现超出其正常操作压力的情况时,能将压力自动释放而使设备、管道等系统的硬件得到保护。此时管道的设计压力应不低于安全泄压装置的设定压力。 c. 管道中有高扬程的泵 对于高扬程的泵,尤其是往复泵,在开始启动的短时间内,往往会在第一道切断阀之前的管道和泵内产生一个较高的封闭压力,有时这个封闭压力会达到一个很大的值。此时泵的出口管道,其设计压力应取泵的最大封闭压力值。 D. 真空系统 真空系统管道承受的压力就是其外部的大气压力,故其设计压力应取0.1MPa外压; e. 与塔或容器等设备相连的管道 与塔或容器等设备相连的管道其设计压力应不低于所连设备的设计压力。当管道内有较高的液体液柱时,还应考虑该液体静压头的影响。事实上,对于管道来说,其受力要比设备复杂,这是因为它除受介质载荷之外,还往往遭受到由于管道的热胀冷缩而产生的管系力等。因此,管道的设计压力一般应不低于设备的设计压力。 5.1.2设计温度

钢管许用应力

钢管许用应力 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

钢管许用应力 钢管壁厚表示方法有管子表号、钢管壁厚尺寸和管子重量三种方法 Sch10s、Sch40s、Sch80s四个等级; 2)以钢管壁厚尺寸表示中国、ISO、日本部分钢管标准采用 3)是以管子重量表示管壁厚度,它将管子壁厚分为三种: A.标准重量管,以STD表示 B.加厚管,以XS表示 C.特厚管,以XXS表示。 对于DN≤250mn的管子,Sch40相当于STD,DN<200mm的管子,Sch80相当于XS。 补充: 1、以管子表号(Sch.)表示壁厚系列 这是1938年美国国家怔准协会(焊接和无缝钢管)标准所规定的。 管子表号(Sch.)是设计压力与设计温度下材料的许用应力的比值乘以1000,并经圆 整后的数值。即 Sch .=P/[ó]t×1000 (1-2-1) 式中 P—设计压力,MPa; [ó]t—设计温度下材料的许用应力,MPa。 无缝钢管与焊接钢管的管子表号可查资料确定。 ANSI 和JIS标准中的管子表号为;Sch10、20、30、40、60、80、100、120、140、160。 ANSI 中的不锈钢管管子表号为:5S、10S、40S、80S。

管表号(Sch.)并不是壁厚,是壁厚系列。实际的壁厚,同一管径,在不同的管子表 号中其厚度各异。不同管子表号的管壁厚度,在美国和日本是应用计算承受内压薄壁管厚度 的Barlow公式计算并考虑了腐蚀裕量和螺纹深度及壁厚负偏差-12.5%之后确定的,如公式 (1-2-2)和(1-2-3)所示。 tB=D0P/2[ó]t (1-2-2) t=[D0/2()×P/[ó]t]+ (1-2-3) 式中 tB 、t——分别表示理论和计算壁厚,mm D0————管外径,mm P——设计压力,MPa [ó]t——在设计温度下材料的许用压力,MPa 计算壁厚径圆整后才是实际的壁厚。 如果已知钢管的管子表号,可根据式(1-2-1)计算出该钢管所能适应的设计压力,即 P=Sch..× [ó]t/1000 (1-2-4) 例如,Sch40,碳素钢20无缝钢管,当设计温度为350oC时给钢管所能适应 设计压力为: P=40×92/1000①= MPa 中国石化总公司标准SHJ405规定了无缝钢管的壁厚系列并Sch.5S②, Sch.10, Sch.10s,Sch.20,Sch.20s,Sch.30,Sch.40,Sch。40s,Sch.60,Sch.80,Sch.100,

大跨度钢管桁架结构设计分析

大跨度钢管桁架结构设计分析 [摘要] 近些年来,随着经济的发展,钢产量的提升。大跨度结构迅速发展,钢管结构以其力学性能优,造型适应性好,建筑表现力佳而越来越受到建筑师和结构师的青睐。由于生产工艺及空间的要求,厂房的屋面也开始采用大跨度结构,钢管桁架屋面梁由于可以充分利用材料的特性,本文结合某工业厂房为例,对管桁架结构设计和施工进行了阐述,仅供同仁参考。 关键词:钢管桁架设计施工吊装 一、钢结构厂房设计的要点 1钢结构厂房设计采用的结构体系 钢结构厂房因为工艺布置的要求,一般都需要大空间,结构通常采用框架结构,在层数较多、工艺条件许可的情况下也可以采用框剪结构。结构布置的原则是:尽量使柱网对称均匀布置,使房屋的刚度中心与质量中心相近,以减小房屋的空间扭转作用,结构体系要求简捷、规则、传力明确。避免出现应力集中和变形突变的凹角和收缩,以及竖向变化过多的外挑和内收,力求沿竖向的刚度不突变或少突变。由于多层厂房跨度方向尺寸较大,柱子少;而柱距方向尺寸较小,柱子多。一般都是横向控制,使纵横向的抗震能力大致相同,不仅有利于抗震,也使设计更为经济合理。 2框架结构的节点设计 连接节点的设计是钢结构设计中重要的内容之一,“三强”设计原则中有两条涉及到节点的设计.在结构分析前就应对节点的形式有充分思考与确定,最终设计的节点与结构分析模型应与使用形式完全一致.按传力特性不同,节点分刚接、铰接和半刚接. 节点设计主要包括以下内容:①焊接.对焊接焊缝的尺寸及形式等,规范有强制规定,应严格遵守,焊条的选用应和被连接金属材质适应,E43对应Q235,E50对应Q345,Q235与Q345连接时应该选择低强度的E43,而不是E50.焊接设计中不得任意加大焊缝,焊缝的重心应尽量与被连接构件重心接近.②栓接.普通螺栓抗剪性能差,可在次要结构部位使用.高强螺栓使用日益广泛,常用8.8级和10.9级两个强度等级,根据受力特点分承压型和磨擦型,两者计算方法不同,高强螺栓最小规格M12,常用M16~M24,超大规格的螺栓性能不稳定,设计中应慎重使用. ③连接板.可简单取其厚度为梁腹板厚度加4mm,然后验算净截面抗剪等. ④梁腹板.应验算栓孔处腹板的净截面抗剪,承压型高强螺栓连接还需验算孔壁局部承压. ⑤节点设计必须考虑安装螺栓、现场焊接等的施工空间及构件吊装顺序等,此外,还应尽可能使工人能方便地进行现场定位与临时固定. ⑥节点设计必须考虑制造厂的工艺水平,比如钢管连接节点的相贯线的切口需要

相关文档
相关文档 最新文档