文档库 最新最全的文档下载
当前位置:文档库 › 实体建模技术

实体建模技术

实体建模技术
实体建模技术

实体建模技术

提示:

1.实体零件的后缀名为.prt 。

2.零件名称只能输入英文字母、汉语拼音、阿拉伯数字和一些带下划线的名称等,不能输入汉字和一些特殊字符,如“/、,、。、?、< >”等。

3.模型模板有英制和公制,英制inlbs_part_solid(默认英制模板,ecad为英制的 ecad模板),表示其长度为英寸(in),质

量为磅(ibm),时间为秒(s);公制 mmns_part_solid,表示

其长度为毫米(mm),质量为牛顿(N),时间为秒(s);一般选

择公制单位。

三维产品建模中常用的创建特征方法有基础特征、基准特征、工程特征等。

一、基础特征

是最常用的创建特征的方法,包括拉伸、旋转、扫描、混合,是零件建模的根本,也是进一步学习高级特征的基础。其中,拉伸完成零件的80% 建模工作,15%使用旋转功能,扫描和混合约占5%左右。1.1零件造型菜单介绍

一)零件环境模式进入

主菜单文件(File)下拉菜单新建(New)→零件(Part)→Solid 注意:将“缺省”复选框前的“√”去掉,在模板对话框中选择“mmns_part_solid”选项,即选择公制单位。

二)文件格式及文件名要求

文件保存成.Prt格式,并且文件名只能是英文字符、数字等组成,不能含汉字,最好以能说明零件用途的字符来命名。

三)零件造型菜单

实体建模命令中基础特征主要包括拉伸、旋转、扫描、混合等。1.2基础特征常用的造型方法介绍

三维实体建模的一般流程:

进入实体建模环境创建实体特征并进行编辑(一般先绘2D图形、再通过相关命令创建三维实体图形、最后对特征进行编辑,如抽壳/镜像/倒圆角等)。

一)拉伸(Extrude)

1.拉伸的特点

将封闭的二维截面或剖面图形沿垂直草绘平面方向延伸至指定距离来拉伸成柱体,当截面有内环时,特征将拉伸成孔。可创建实体、曲面,可填加或移除材料。

2.拉伸特征的创建步骤

单击命令→单击“放置”选项→“定义“内部草绘(或在绘图区按右键,选”定义内部草绘“)→草绘对话框中确定“草绘平面”和“参照平面(包括绘图方向和参照方向)。“→草绘环境绘制草绘截面→完成后”√“(”╳“退出草绘)→确定拉伸高度→”√“确认,生成实体。

3.拉伸操控板

1)放置上滑面板:定义和修改拉伸草绘截面;

注意:拉伸前的草绘截面图形一定是封闭的。

提示:绘制截面草图时可使用参照命令来设置绘图时的参照位置及尺寸标注的参照。

用拉伸生成的实体,沿拉伸方向上的各截面特征是相同的。

左图草绘相关尺寸如下:

拉伸高度为30mm。

草绘平面以及参照平面的选取:

不同草绘截面及参照面选取对比: (1)一步生成实体

(2)两步生成实体(方法多种)

(3)三步生成实体

提示:绘制草绘图形,图形形状不要太复杂,否则生成实体时易失败。2)选项上滑面板:定义草绘平面两侧的特征深度,对曲面可选择端面是否封闭;其选项内容和操控板中深度类型的选择有关。

定义特征生成深度类型有以下几种方法;

从上到下依次为:

(1)从草绘平面以指定深度拉伸;

(2)双向拉伸,所定义值为两侧长度之和;

(3)拉伸至下一曲面;

(4)拉伸至与所有曲面相交;

(5)拉伸至与选定曲面相交;

(6)拉伸至选定点、曲面、曲线或平面;

拉伸深度类型的不同效果

(3)定义拉伸特征生成方向

①拉伸深度方向

左边第一个图标,效果如图所示。

②材料拉伸(去除)方向(选择去除材料或薄壁选项)

右边第一个图标,效果如图所示。

注意:箭头指向去除材料一侧。

3)属性上滑面板:设置拉伸特征的名称,查看当前特征信息。4)拉伸特征类型

拉伸可生成实体或曲面,通过图标分别来实现。

拉伸实体拉伸曲面

技巧:

1)用Crtl+D可使参照平面重新摆正。

2)在零件实体环境中,Shift+鼠标中键(按住)可平移图形;

滚动中键可缩放图形;按住中键可旋转图形。

要点:

4) 特征编辑

特征创建完成后,需要修改可在模型树中右键单

击特征,选择“编辑定义“选项,即可对草绘截面及

拉伸参数进行重新设置和编辑。

技巧:在三维环境中,最好将系统颜色设置为 pro/e wildfire方案,以便于对曲面特征的观察。

设置方法:

效果显示:

如图所示三维造型,其中右边一圆柱体为实体,左边为曲面特征,在两种不同的系统颜色下其显示对比如图所示。

在左图中,白色表示实体;粉色为封闭曲面;黄色表示破面。

4.练习素材

1)

图1 造型步骤参考:

图2

2)

创建流程

基于特征建模(搭积木)流程----参考 步骤一 创建底板

步骤二创建顶部圆柱特征

步骤三创建支撑板

步骤四创建加强筋

注意:此筋特征可以通过“筋”命令生成,也可以通过拉伸方式生成,但要注意拉伸时草绘线要超过圆柱底面,一面出现连接不上的问题。

步骤五底部开槽

模型树特征如图所示。

二、旋转(Revolve)

1.旋转特点

旋转特征具有轴对称特性,由封闭的断面(截面)图形绕与其平行的轴回转而成。

2.旋转特征的创建步骤

单击命令→单击“放置”选项→“定义“内部草绘(或在绘图区按右键,选”定义内部草绘“)→草绘对话框中确定“草绘平面”和“参照平面(包括绘图方向和参照方向)。“→草绘环境绘制草绘截面和旋转中心→完成后”√“(”╳“退出草绘)→确定旋转角度→”√“确认,生成实体。

注意:

1)旋转必须有旋转轴,且剖面外形需全部落在中心线一方,不许跨越中心线;

2)如为了草绘需要建立了数条中心线,系统会选用第一条中心线作为旋转轴;

3)若为实体类型,截面必须封闭,且允许有多重回路外形;若为曲面,截面可为封闭或开口型。

旋转轴的定义方法:

1)内部中心线:使用草绘截面中心线作为旋转轴,若包含多条中心线默认将第一条中心线作为旋转轴。

2)外部参照:使用现有的有有效几何零件,旋转轴必须位于截面的草绘平面,且只能选择基准轴、边、坐标轴作为旋转轴。

3.旋转角度选择方式

1)可变的:角度范围为0~360o;

2)至选定的点、平面或曲面,且旋转中心线必须落在该平面上;5.用举例

1)螺母

注意:拉深深度选项的选取会影响到旋转镜像面的设置。

建模流程:

①生成六棱柱

②旋转

③镜像

2)方向盘

3)咖啡杯

4.练习素材

三、零件特征修改方法

Pro/E的参数化功能使得实体模型的修改非常简便容易。

1)在模型树中点选任意特征,按鼠标右键,在快捷菜单中选取“编辑定义“,可重定义所有参数并修改模型;

2)在模型树中点选任意特征,按鼠标右键,在快捷菜单中选取“编辑“,在模型树中双击任意特征,显示尺寸参数,可对尺寸参数进行修改,然后在菜单管理器中选取再生(Regenerate),可修改模型大小及位置。

二、基准特征

在进行3D几何设计时可作为草绘平面、参考面、模型的定位参考等。

包括基准平面(Datum Plane)、基准轴(Datum axis)、基准点(Datum point)、基准坐标系(Datum coordinate system)基准曲线(Datum curve)。

一)基准平面

创建基准平面前必须首先考虑能否完全描述和限制产生唯一平面的必要条件,系统会自动产生符合条件的基准平面。

示例

练习素材

1.

三维实体建模与设计

三维实体建模与设计 课程编码:202561课程英文译名:3D Solid Design and Construction 课程类别:学科基础选修课 开课对象:机械工程机自动化专业开课学期:5 学分:2学分;总学时:328学时;理论课学时:16学时; 上机学时:16学时 先修课程:工程图学、机械原理、机械设计 教材:Solid Works 2005机械设计及实例解析.胡仁喜等.北京:机械工业出版社,2005 参考书:【1】机械设计课程设计图册.龚溎义等.北京:高等教育出版社,1989,第三版.【2】SolidWorks 原厂培训手册实威科技.北京:中国铁道出版社,2004 一、课程的性质、目的和任务 本课程是面向机械工程等各专业开设的一门课程,是学习利用三维CAD软件进行零部件造型设计及制图的实践性课程。课程的目的是使学生掌握用Solid Works软件进行产品的零件造型设计、部件装配设计以及工程图绘制的基本技能,初步学习基于三维的产品开发设计,掌握自下而上的设计方法,自上而下的设计方法以及两种方法结合使用的设计过程。 课程的主要任务: 1.学习掌握三维CAD的特征造型方法; 2.学习掌握三维CAD下的零件造型与部件装配方法; 3.初步掌握三维CAD下基于装配的设计方法; 4.学习掌握三维CAD的二维工程图绘制方法; 5.初步学习利用三维CAD软件Solid Works进行产品设计的方法。 二、课程的基本要求 通过课堂讲授与上机实践,使学生: 1.了解三维CAD的发展历史、现状及软硬件配置条件; 2.了解三维CAD的发展历史、现状及软硬件配置条件; 3.了解利用三维CAD软件进行设计、制图的基本思路与方法; 4.掌握利用Solid Works进行三维立体造型设计的实现方法; 5.掌握利用Solid Works下的零件造型与部件装配方法; 6.初步掌握Solid Works下自上而下的设计方法以及自下而上和自上而下相结合 的方法; 7.掌握Solid Works的二维工程图绘制技术; 8.具有一定的实践体会和相关的应用能力。 三、课程的基本内容及学时分配 第一章Solid Works 2005 概述(1学时) 1.工作窗口 2.菜单简介 3.工具栏简介 第二章零件建模的特征分类(2学时) 1.基于特征的零件建模的基本过程 2.Solid Works的设计思想

模型的逆向工程实体建模技术

基于STL模型的逆向工程实体建模技术 内容摘要:摘要:针对以STL数据表示的零件模型,在分析结构件模型几何特点的基础上,提出了一种以几何体素分离与拓扑关系重建为基础的STL模型逆向工程实体建模技术。通过对三角面片的合并实现平面、柱面、锥面等基本几何体素的分离,并利用Parasolid系统完成体素重构,进一步提取几何体素之间的布尔关系,从而实现含拓扑关系的产品模型重构。利用这一方法,可以实现RE/RP系统与通用CAD系统之间的快速集成,实现产品数据在不同系统之间顺畅传递。模型重建1逆向工程CAD技术与STL模型逆向工程CAD技术一般以数字化测量设备的输出数据为原始信息来源[1]。 摘要:针对以STL数据表示的零件模型,在分析结构件模型几何特点的基础上,提出了一种以几何体素分离与拓扑关系重建为基础的STL模型逆向工程实体建模技术。通过对三角面片的合并实现平面、柱面、锥面等基本几何体素的分离,并利用Parasolid系统完成体素重构,进一步提取几何体素之间的布尔关系,从而实现含拓扑关系的产品模型重构。利用这一方法,可以实现RE/RP系统与通用CAD系统之间的快速集成,

实现产品数据在不同系统之间顺畅传递。 关键词:STL;逆向工程;实体建模;模型重建 1 逆向工程CAD技术与STL模型 逆向工程CAD技术一般以数字化测量设备的输出数据为原始信息来源[1]。由于测量方式的不同,数字化测量设备可以分为接触式和非接触式。随着测量技术的发展,不论何种测量方式,产生的测量数据都是非常多的,尤其是非接触式的激光测量,可以产生几十万甚至上百万测量点的测量数据。我们将这种数据称为“点云”数据。一般来说,数字化测量设备都带有数据处理软件。这个软件的主要功能是对测量设备输出的数据进行初步处理,如去除明显噪声点、多块数据拼合、数据格式转换等。一般的测量设备除了按照自定义格式输出数据外,都提供IGES 格式的数据输出。随着软件功能的加强,目前很多测量设备可以在输出测量数据的同时输出三角网格数据(即经过三角化以后的数据)或者STL格式数据。但是这些STL格式数据一般没有经过测试(如不保证封闭性,可能存在裂隙等),不能直接用于逆向工程建模或RP制造。由测量设备输出的STL数据必须经过修补、纠错处理,才能用来进行逆向工程CAD建模。因此,逆向工程中重要的一个环节就是数据的预处理。

第三章 产品建模技术

第三章机械CAD/CAM建模技术 ?3.1 几何建模概述 ?3.2 三维几何建模技术 ?3.3 特征建模技术 ?3.4 产品结构建模

3.1 几何建模概述 一、机械CAD/CAM几何建模概述 1. 几何建模的概念 CAD的几何建模(Geometry Modehelling):是以计算机能够理解的方式,对实体进行确切的定义,赋予一定的数学描述,再以一定的数据结构来描述几何实体,从而在计算机内部构造一个实体模型。 包含:几何信息、拓补信息和其它属性数据

几何建模的方法:将对实体的描述和表达建立在几何信息和拓扑信息的基础上。 建模:把人们对的三维事物的认识描述到计算机内部,让计算机理解的过程大致可以分为三个阶段,即几何建模、产品建模和产品结构建模。

2. 几何建模技术的发展 线框模型(Wireframe Model) 20世纪60年代中期表面模型(Surface Model) 20世纪70年代中期实体模型(Solid Model) 20世纪70年代后期

几何建模的发展初期(线框建模时代),CAD技术主要用于计算机绘图。表面(曲面)建模和实体建模的出现,使用户基于统一的产品的数字化模型可生成工程分析的工程模型和供数控加工的工艺模型,实现CAD/CAE/CAM集成化。 产品结构建模是近年来出现的一种面向装配的建模技术,它包含了产品从零件、部件到总成的完整信息。

二、机械CAD/CAM几何建模技术的基本知识1)几何信息和拓扑信息 1.几何信息:指物体在空间的形状、尺寸及位置的描述。 用数学表达式来描述。但是数学表达式的几何元素是无界的,在实际应用中需要把数学表达式和边界条件相结合。 几何元素:点、直线或曲线、平面或曲面 组成几何模型的主要部分,可用合适的数据结构进行组织并存储在计算机内,供CAD/CAM使用。

实体建模技术

实体建模技术 提示: 1.实体零件的后缀名为.prt 。 2.零件名称只能输入英文字母、汉语拼音、阿拉伯数字和一些带下划线的名称等,不能输入汉字和一些特殊字符,如“/、,、。、?、< >”等。 3.模型模板有英制和公制,英制inlbs_part_solid(默认英制模板,ecad为英制的 ecad模板),表示其长度为英寸(in),质 量为磅(ibm),时间为秒(s);公制 mmns_part_solid,表示 其长度为毫米(mm),质量为牛顿(N),时间为秒(s);一般选 择公制单位。 三维产品建模中常用的创建特征方法有基础特征、基准特征、工程特征等。 一、基础特征 是最常用的创建特征的方法,包括拉伸、旋转、扫描、混合,是零件建模的根本,也是进一步学习高级特征的基础。其中,拉伸完成零件的80% 建模工作,15%使用旋转功能,扫描和混合约占5%左右。1.1零件造型菜单介绍 一)零件环境模式进入 主菜单文件(File)下拉菜单新建(New)→零件(Part)→Solid 注意:将“缺省”复选框前的“√”去掉,在模板对话框中选择“mmns_part_solid”选项,即选择公制单位。

二)文件格式及文件名要求 文件保存成.Prt格式,并且文件名只能是英文字符、数字等组成,不能含汉字,最好以能说明零件用途的字符来命名。 三)零件造型菜单 实体建模命令中基础特征主要包括拉伸、旋转、扫描、混合等。1.2基础特征常用的造型方法介绍 三维实体建模的一般流程: 进入实体建模环境创建实体特征并进行编辑(一般先绘2D图形、再通过相关命令创建三维实体图形、最后对特征进行编辑,如抽壳/镜像/倒圆角等)。 一)拉伸(Extrude) 1.拉伸的特点 将封闭的二维截面或剖面图形沿垂直草绘平面方向延伸至指定距离来拉伸成柱体,当截面有内环时,特征将拉伸成孔。可创建实体、曲面,可填加或移除材料。 2.拉伸特征的创建步骤 单击命令→单击“放置”选项→“定义“内部草绘(或在绘图区按右键,选”定义内部草绘“)→草绘对话框中确定“草绘平面”和“参照平面(包括绘图方向和参照方向)。“→草绘环境绘制草绘截面→完成后”√“(”╳“退出草绘)→确定拉伸高度→”√“确认,生成实体。 3.拉伸操控板

三维建模技术

计算机三维建模及其应用 作者:刘胜平 指导老师: 南昌航空大学航空制造工程学院 摘要:为了更好的应用计算机三维建模技术,本文讲述了计算机三维建模的含义,描述了三维建模的发展历史,说明了三维曲面建模和三维实体建模的主要方法与应用、数据交换接口、三维建模技术的发展趋势。 关键字:三维建模技术 1 引言 为了能够在计算机环境下更逼真地模拟现实世界的人和物及其运动形态, 必须在三维空间系统中利用已有的三维建模技术,精确地描绘这些事物以实现三维物体的真实再现,进而为用户创造一个身临其境、形象逼真的环境。对现实世界的事物进行建模和模拟,就是根据研究的目标和重点, 在三维空间中对其形状、色彩、材质、光照、运动等属性进行研究,以达到3D 再现的过程。因而, 对三维实体的图形图像处理及其模型建模研究显得尤为必要。 2三维建模技术的定义、发展历史 三维建模技术是研究在计算机上进行空间形体的表达、存储和处理的技术,在CAD技术发展初期,CAD仅限于计算机辅助绘图,随着三维建模技术的发展,CAD技术才从二维平面绘图发展到三维产品建模,随之产生了三维线框模型、曲面模型和实体造型技术等。 线框模型:20世纪60年代末开始研究线框和多边形构造三维实体,这样的模型被人称为线框模型。三维物体是由他的全部顶点以及边的集合来描述。

精选文库曲面模型:曲面模型是在线框模型的数据结构基础上,增加可形成立体面的各相关数据后构成的。 实体造型技术:实体模型在表面看来往往类似于经过消除隐藏线的线框模型在线框模型或经过消除隐藏面的曲面模型;但实体模型上如果挖一个孔,就会自动生产一个新的表面,同时自动识别内部和外部;实体模型可以使物体的实体特性在计算机中得到定义。 特征参数化技术:参数化造型的主体思想是用几何约束、工程方程与关系来说明产品模型的形状特征,从而达到设计一系列在形状或功能上具有相似性的设计方案。 变量化技术:我们在进行机械设计和工艺设计时,总是希望零部件能够让我们随心所欲地构建,可以随意拆卸,能够让我们在平面的显示器上,构造出三维立体的设计作品,而且希望保留每一个中间结果,以备反复设计和优化设计时使用。 3 三维曲面建模和三维实体建模的主要方法与应用

常用快速成型基本方法简介

常用快速成型基本方法简介 1前言 快速成型(Rapid Prototyping)是上世纪80年代末及90 年代初发展起来的高新制造技术,是由三维CAD模型直接驱动的快速制造任意复杂形状三维实体的总称。它集成了CAD技术、数控技术、激光技术和材料技术等现代科技成果,是先进制造技术的重要组成部分。由于它把复杂的三维制造转化为一系列二维制造的叠加,因而可以在不用模具和工具的条件下生成几乎任意复杂的零部件,极大地提高了生产效率和制造柔性。 与传统制造方法不同,快速成型从零件的CAD几何模型出发,通过软件分层离散和数控成型系统,用激光束或其他方法将材料堆积而形成实体零件。通过与数控加工、铸造、金属冷喷涂、硅胶模等制造手段相结合,已成为现代模型、模具和零件制造的强有力手段,在航空航天、汽车摩托车、家电等领域得到了广泛应用。 2 快速成型的基本原理 快速成型技术采用离散/堆积成型原理,根据三维CAD模型,对于不同的工艺要求,按一定厚度进行分层,将三维数字模型变成厚度很薄的二维平面模型。再将数据进行一定的处理,加入加工参数,产生数控代码,在数控系统控制下以平面加工方式连续加工出每个薄层,并使之粘结而成形。实际上就是基于“生长”或“添加”材料原理一层一层地离散叠加,从底至顶完成零件的制作过程。快速成型有很多种工艺方法,但所有的快速成型工艺方法都是一层一层地制造零件,所不同的是每种方法所用的材料不同,制造每一层添加材料的方法不同。 快速成型的基本原理图 快速成型的工艺过程原理如下:

(1)三维模型的构造:在三维CAD设计软件中获得描述该零件的CAD文件。一般快速成型支持的文件输出格式为STL模型,即对实体曲面做近似的所谓面型化(Tessellation)处理,是用平面三角形面片近似模型表面。以简化CAD模型的数据格式。便于后续的分层处理。由于它在数据处理上较简单,而且与CAD系统无关,所以很快发展为快速成型制造领域中CAD系统与快速成型机之间数据交换的标准,每个三角面片用四个数据项表示。即三个顶点坐标和一个法向矢量,整个CAD模型就是这样一个矢量的集合。在一般的软件系统中可以通过调整输出精度控制参数,减小曲面近似处理误差。如Pre/1E软件是通过选定弦高值(ch-chordheight)作为逼近的精度参数。

(完整版)建模技术的发展史

建模技术的发展史 三维建模技术是研究在计算机上进行空间形体的表示、存贮和处理的技术。实现这项技术的软件称为三维建模工具。本课程主要培养运用Pro/Engineer软件表示和设计空间形体的能力。 三维建模技术是利用计算机系统描述物体形状的技术。如何利用一组数据表示形体,如何控制与处理这些数据,是几何造型中的关键技术。 三维建模技术的研究和发展 在CAD技术发展初期,CAD仅限于计算机辅助绘图,随着三维建模技术的发展,CAD技术 才从二维平面绘图发展到三维产品建模,随之产生了三维线框模型、曲面模型和实体造型技术。而如今参数化及变量化设计思想和特征模型则代表了当今CAD技术的发展方向。三维建模技术是伴随CAD技术的发展而发展的! 三维建模技术的发展史 1 线框模型(Wire Frame Model) : 20世纪60年代末开始研究用线框和多边形构造三维实体,这样地模型被称为线框模型。三维物体是由它的全部顶点及边的集合来描述,线框由此得名,线框模型就像人类的骨骼。 优点: 有了物体的三维数据,可以产生任意视图,视图间能保持正确的投影关系,这为生产工程图带来了方便。此外还能生成透视图和轴侧

图,这在二维系统中是做不到的;构造模型的数据结构简单,节约计算机资源;学习简单,是人工绘图的自然延伸。缺点:因为所以棱线全部显示,物体的真实感可出现二义解释;缺少曲线棱廓,若要表现圆柱、球体等曲面比较困难;由于数据结构中缺少边与面、面与面之间的关系的信息,因此不能构成实体,无法识别面与体,不能区别体内与体外,不能进行剖切,不能进行两个面求交,不能自动划分有限元网络等等。 2曲面模型(Surface Model) 曲面模型是在线框模型的数据结构基础上,增加可形成立体面的各相关数据后构成的。曲面模型的特点 与线框模型相比,曲面模型多了一个面表,记录了边与面之间的拓扑关系。曲面模型就像贴付在骨骼上的肌肉。 优点:能实现面与面相交、着色、表面积计算、消隐等功能,此外还擅长于构造复杂的曲面物体,如模具、汽车、飞机等表面。 缺点: 只能表示物体的表面及边界,不能进行剖切,不能对模型进行质量、质心、惯性矩等物性计算 第二次技术革命——实体造型系统 进入20世纪80年代,CAD价格依然令一般企业望而却步,这使得CAD技术无法拥有更广阔的市场。 由于表面模型技术只能表达形体的表面信息,难以准确表达零件的其它特性,如质量、重心、惯性矩等,对CAE十分不利。基于对

零件三维建模实验

目录 实验一零件的三维建模实验 (2) 实验二从零件的CAD数据模型自动生成数控加工代码和加工仿真实验 (7) 实验三集成化CAD/CAPP系统实验 (16)

实验一零件三维建模实验 一、实验目的 1、了解特征设计在CAD/CAM集成中的意义; 2、熟悉特征的种类的划分及特征拼合的基本方法,了解参数化设计方法。 3、了解各种计算机绘图软件的同时,掌握计算机绘图的系统知识,培养独 立上机绘制二维、三维图形的能力, 二、实验原理 图形是人类传递信息的一种方法,从二维平面图到三维立体图,人类经常要绘制各式各样的图纸。零件特征是零件们某一部分形状和属性的信息集合,如孔、槽台和基准等,一方面它能方便地描述零件的几何形状;另一方面,它能为加工、分析及其它工程应用提供必要和充分的信息。基于特征的设计是CAD技术的发展,它克服了传统CAD的缺陷。传统CAD只能表达底层的零件几何定义信息,如线架、边界表示(B-rep)和实体结构几何(CSG)的信息,点、线、面、体等,无法表达高层语义和功能信息,也不能对整个产品的外形进行抽象描述,更无法表达产品非几何信息,如工艺信息(公差装配等)、精度信息、材料信息、功能信息等。特征是完整描述产品信息的方法,也是系统的灵活性和产品间数据交换的实现途径,特征已成为设计、制造、分析等各种应用之间传递信息的媒体。 特征设计是在设计阶段捕捉除几何信息以外的设计与加工信息,从而避免了特征提取与识别。基于特征的设计系统使用参数化特征,并通过各类属性来描述零件的几何形状以及它们之间的功能关系,系统通常提供特征库,通过布尔运算等操作来生成零件的特征表示,但特征是孤立的信息,只有约束才能把它串联起来,形成产品。因而把约束定义为产品生命周期内各环节对产品模型的类型、属性、语义和行为的限制,它是维持产品模型有效性的手段,它决定着产品的有效性和可实现性,具有一定的定义、识别、分类。 特征的分类方法很多,其严格依赖于特征定义,兼顾抽象、语义和形状因素。形状特征的分类具有严格的教学形式,并符合已有实践和认识,对于特征库的建立,具有指导意义。从应用观点出发,特征分类有: 1、按对待特征技术的研究划分:特征识别、特征造型、特征映射。 2、按产品设计—制造过程划分:设计特征、分析特征、公差特征、制造特 征、检验特征、机器特征等。 3、按特征性质:形状特征、精度特征、材料特征、工艺特征及装配特征。

三维实体建模技术

第一章 三维实体建模技术 学习重点 了解三维实体建模设计的特点和一般过程; 熟释NX 3.0的各个功能面板,建模方式以及模型分析功能; 掌握NX 3.0 关于草图绘制,零件设计,装配设计,工程图设计的基本操作。 1.1 概述 三维建模设计不同于二维绘图设计,二维绘图设计在一个平面上即可完成,而三维建模设计是在三维空间中进行,建立的模型具有长度,高度,宽度三个方向的尺寸。在三维建模设计中,首先建立在工作空间的坐标系(包括原点,坐标轴和基准平面),然后在草绘平面绘制模型的特征截面或扫描轨迹,并根据参照平面放置特征截面的各图形元素,对二维特征截面进行拉伸,旋转,扫描等操作,可生成三维模型的基础特征。特征是构成三维模型的基础,各中各样的三维模型就是由不同的特征按照一定的设计要求进行组合所形成的集合体。 NX 3.0 软件系统是美国UGS 公司研制的一套由设计到制造的一体化三维软件,是新一代的产品造型系统。本章所有操作界面,设计流程以及模型均在NX 3.0环境中进行。 1.2 实训1——机械零件实体模型建立 1.2.1问题描述 零件设计是机械设计的基础,通过对零件进行实体设计,可以使设计过程更加直观,并 尽量多地获取零件的体信息。零件实体建模的基本技术是基于特征的,任何零件的建立都离不开特征的建立,而参数化 绘制是创建各种零件特征的基础,贯穿整个零件建模过程。熟悉掌握特征截面的参数化草图绘制技术,进而由截面草图生成零件特征的操作技术,是进行 三维设计 的基本功。 本章以机械设计中常用零件轴,键,半联轴器的设计为例,简要说明在NX 3.0环境中进行零件设计,装配体设计和工程图设计的建模过程。 1.2.2实训目的 熟悉NX 3.0 的操作界面,了解个功能面板;了解用NX 3.0进行零件三维实体建模的 设计过程,初步实验用NX 3.0进行计算机辅助机械设计的强大功能。 图1-1 轴、键和半联轴器的实体模型

Solidworks实体建模技巧教程

Solidworks实体建模技巧教程之创建正多面体 作者:无维网w_hs 我是SW板块的“不老”,看了冰大关于正多面体的帖子也想说几句。由于本人不懂pro/e,而SW与pro/e在模型制作上和名称术语上也 有诸多不同,故在下面的贴图只提供思路,无法提供模型,希见谅。 一、关于正多面体的种类 多面体的欧拉定理是对任意多面体(不限于正多面体,甚至不必限制其面为平面或其棱为直线段等)都适用的,一般教材中很少去证明它,其实用初等的数学方法就可以容易的得到。 冰大在帖子中证明了正多面体的五种形式,通常在教科书中只是给出结果,这里我从另外一个角度给一个证明。 由欧拉定理: 顶点数+面数=棱数+2 (1) 由于是正多面体,假定每个面有n条边,每个顶点有m条相接的棱,如果我们遍列每一个面计算边的总数,由于每一条棱与两个面相接,因此显然每条棱被重复计算了一次,立即可得到: n*面数=棱数*2 (2) 同样我们遍列每个顶点计算棱的总数,由于每一条棱与两个顶点相接,因此显然每条棱也被被重复计算了一次,故同样有: m*顶点数=棱数*2.............................................. . (3) 代入欧拉定理有:

棱数*2/m+棱数*2/n=棱数+2 化简得: 棱数=2mn/(2m+2n-mn) (4) 由于棱数必大于零,所以有: 2m+2n-mn>0 即 (m-2)*(n-2)<4 考虑到m、n都为大于等于3的正整数,所以能够实现的(m,n)组合只有以下五种: 3、3, 3、4, 4、3, 3、5, 5、3 利用式(2)、(3)、(4)可得到: 正四面体每面边数=3,每顶点棱数=3,棱数= 6,面数= 4,顶点数=4 正六面体每面边数=4,每顶点棱数=3,棱数=12,面数= 6,顶点数=8 正八面体每面边数=3,每顶点棱数=4,棱数=12,面数= 8,顶点数=6 正十二面体每面边数=5,每顶点棱数=3,棱数=30,面数=12,顶点数=20 正二十面体每面边数=3,每顶点棱数=5,棱数=30,面数=20,顶点数=12 有趣的是我们设想将任一个正多面体的面(正多边形)中心点作为顶

(新)基于STL模型的逆向工程实体建模技术_

基于STL模型的逆向工程实体建模技术内容摘要:摘要:针对以STL数据表示的零件模型,在分析结构件模型几何特点的基础上,提出了一种以几何体素分离与拓扑关系重建为基础的STL模型逆向工程实体建模技术。通过对三角面片的合并实现平面、柱面、锥面等基本几何体素的分离,并利用Parasolid系统完成体素重构,进一步提取几何体素之间的布尔关系,从而实现含拓扑关系的产品模型重构。利用这一方法,可以实现RE/RP系统与通用CAD系统之间的快速集成,实现产品数据在不同系统之间顺畅传递。模型重建1逆向工程CAD技术与STL模型逆向工程CAD技术一般以数字化测量设备的输出数据为原始信息来源[1]。 摘要:针对以STL数据表示的零件模型,在分析结构件模型几何特点的基础上,提出了一种以几何体素分离与拓扑关系重建为基础的STL模型逆向工程实体建模技术。通过对三角面片的合并实现平面、柱面、锥面等基本几何体素的分离,并利用Parasolid系统完成体素重构,进一步提取几何体素之间的布尔关系,从而实现含拓扑关系的产品模型重构。利用这一方法,可以实现RE/RP 系统与通用CAD系统之间的快速集成,实现产品数据在不同系统之间顺畅传递。 关键词:STL;逆向工程;实体建模;模型重建 1逆向工程CAD技术与STL模型 逆向工程CAD技术一般以数字化测量设备的输出数据为原始信息来源[1]。由于测量方式的不同,数字化测量设备可以分为接触式和非接触式。随着测量技术的发展,不论何种测量方式,产生的测量数据都是非常多的,尤其是非接触式的激光测量,可以产生几十万甚至上百万测量点的测量数据。我们将这种数据称为“点云”数据。一般来说,数字化测量设备都带有数据处理软件。 这个软件的主要功能是对测量设备输出的数据进行初步处理,如去除明显噪声点、多块数据拼合、数据格式转换等。一般的测量设备除了按照自定义格式输出数据外,都提供IGES格式的数据输出。随着软件功能的加强,目前很多测量设备可以在输出测量数据的同时输出三角网格数据(即经过三角化以后的数据)或者STL格式数据。但是这些STL格式数据一般没有经过测试(如不保证封闭

Tekla基本建模流程

Tekla基本建模流程 一、作业流程 1、设置轴线; 2、设置或建立工作视图; 3、3a产生初步布置图;建立主构件、次构件; 4、建立节点或细部; 5、执行编号; 6、修改布置图,产生构件图及零件图; 7、产生报表; 8、输出CAD图档或PDF档。 二、注意事项 1、设置轴线: a、依据设计图详细正确判读每一相邻轴线距离并遵照XSTEEL软件轴线设置,键入正确数据建立之。 b、检查动作: 输出一初步之轴线平面布置图并标注轴线距离或高程,打印图面并检查数据及轴线名是否正确。 c、事前准备:详细阅读设计图,对于较不明确处要仔细推敲演算。 2、设置或建立工作视图:

a、选用适当之视图属性设置,运用XSTEEL格子线视图功能产生所有相关之主要工作视图,或自行设置条件,产生无法自动生成之工作视图。 b、检查动作: ①检查视图属性设置是否合适。(含过滤条件是否设置合理) ②查看工作视图命名是否正确。 ③查看视深是否正确。 ④查看平面与立体设置是否恰当等。 c、事前准备: ①详细阅读设计图各平立面之最大纵深以利选用适合之视深数据。 ②判断平立面欲表达之构件内容以利布置图之调用。 3、建立主构件: a、详细阅读设计图所有构件规格、材质、位置、高程、工作点表面处理等重要信息,按规格大小、类别等因素排序,再设定素材代号以利模型之输入;输入时一般要须遵守构件与零件编号原则且接由左而右、由下而上之方向要求绘制。 b、检查动作: — c、事前准备: 详细判读设计图中各相关数据差异性,并针对差异性思考合适对策,利于日后变更修改等操作。

3a产生初步布置图: a、依据项目特性设置相应条件之图纸属性及图纸视图属性,产生布置图;布置图产生须考虑视深之控制、图面比例、图面布局、字体大小、线条颜色、图签、注解、规格表、图标签、方位符号等细节之设置是否搭配合理适当。 b、检查动作: 须确实与设计图相应数据仔细核对,并依据正确校核方法将正确、不正确及须修正数据标示于图面中,如有不明确之部位须要求再产生更多的剖视图,利于视图。 c、事前准备: 详阅设计图并以各别颜色予以区分,方便日后视图,对于较细微处应自行将其放大打印作为自己的工作数据保证工作能较有效率的 完成。 4、建立节点或细部: a、使用XSTEEL各节点程序将已归类之节点数据设置成节点应用参数并储存,方便点选应用;如不能一次性由程序直接完成之节点或细部,则选用较接近之节点式样处理再进一步修改或设定成自定义节点再行点选应用。操作时须保证相同的接头能运用同一节点参数,提高正确性,并利于变更修改。 b、检查动作:

三维实体建模技术

第一章三维实体建模技术 学习重点 了解三维实体建模设计的特点和一般过程; 熟释NX 3.0的各个功能面板,建模方式以及模型分析功能; 掌握NX 3.0 关于草图绘制,零件设计,装配设计,工程图设计的基本操作。 1.1概述 三维建模设计不同于二维绘图设计,二维绘图设计在一个平面上即可完成,而三维建模设计是在三维空间中进行,建立的模型具有长度,高度,宽度三个方向的尺寸。在三维建模设计中,首先建立在工作空间的坐标系(包括原点,坐标轴和基准平面),然后在草绘平面绘制模型的特征截面或扫描轨迹,并根据参照平面放置特征截面的各图形元素,对二维特征截面进行拉伸,旋转,扫描等操作,可生成三维模型的基础特征。特征是构成三维模型的基础,各中各样的三维模型就是由不同的特征按照一定的设计要求进行组合所形成的集合体。 NX 3.0 软件系统是美国UGS公司研制的一套由设计到制造的一体化三维软件,是新一代的产品造型系统。本章所有操作界面,设计流程以及模型均在NX 3.0环境中进行。 1.2实训1——机械零件实体模型建立 1.2.1问题描述 零件设计是机械设计的基础,通过对零件进行实体设计,可以使设计过程更加直观,并尽量多地获取零件的体信息。零件实体建模的基本技术是基于特征的,任何零件的建立都离不开特征的建立,而参数化绘制是创建各种零件特征的基础,贯穿整个零件建模过程。熟悉掌握特征截面的参数化草图绘制技术,进而由截面草图生成零件特征的操作技术,是进行 三维 设计 的基图1-1 轴、键和半联轴器的实体模型 本功。本章以机械设计中常用零件轴,键,半联轴器的设计为例,简要说明在NX 3.0环境中进行零件设计,装配体设计和工程图设计的建模过程。 1.2.2实训目的 熟悉NX 3.0的操作界面,了解个功能面板;了解用NX 3.0进行零件三维实体建模的设计过程,初步实验用NX 3.0进行计算机辅助机械设计的强大功能。

三维建模方案

CAD 三维建模技术的发展 摘要:随着现代先进机械设计方法的快速发展,受CIMS 计算机集成制造系统、并行工程(Concurrent Engineering,CE)、敏捷制造(Agile Manufacturing,AE)的影响,对CAD 三维建模方法提出了新的要求,文章着重介绍了三维设计的优点及其发展历程。 关键词:CAD;三维建模方法;发展趋势 1 CAD 技术的概念 CAD(Computer Aided Design)是利用计算机 强大的图形处理能力和数值计算能力,辅助工程 技术人员完成工程或产品的设计和分析的一种技 术。自1950 年诞生以来,已广泛应用于机械、电子、建筑、化工、航空航天以及能源交通等相关 领域。随着产品设计效率的飞速提高,现已将计 算机辅助制造技术(Computer Aided Manufacturing ,CAM) 和产品数据管理技术(Product Data Management,PDM)、计算机集成制 造系统(Computer Itegrated manufacturing system,CIMS) 及计算机辅助测试(Computer Aided Testing,CAT)融于一体。文为开始,CAD 三维建模技术至今已经历了线框模型、表面模型、实体模型方法,以及正在发展中的特征建模、行为建模方法。 2.1线框模型(wire-frame model) 线框模型是指用多边形线框来描述三维形体的轮廓得到的模型;采用数据结构:顶点表+边表;其优点在于简单,仅需要端点信息;缺点:信息不完整,有二义性,不能用于NC 加工等。 2.2表面模型(surface model) 表面模型是指用有序连接的棱边围成的有限区域来定义立体的表面,再由表面的集合来定义立体所得到的三维模型。 表面造型是在线框造型的基础上发展起来的,它的产生应归因于航空业与汽车业的迅猛发展。由于飞机及汽车制造中遇到的大量自由曲面问题,在当时只能用多截面视图和特征纬线的方法来表达,在制造上依赖于用油泥模型来近似模拟曲面,因而人们开始研究新的更先进的描述手段——光滑曲面,由于表面造型比线框造型增加了有关 面边(环边)信息以及表面特征、棱边的连接方向等内容,从而可以满足曲面求交、线面消隐、明暗色彩图、数控加工等应用,使在CAD 阶段建立的模型数据在CAM 阶段可用。表面造型在工程中得到广泛的应用,但曲面模型只能表达形体的表面信息,对有限元及零件的物性计算等方面无从 开展,满足不了工程优化设计的需求。 2.3实体模型(solid model) 2 CAD 三维建模方法的发展 自上世纪70 年由MIT 林肯实验室的 I.E.Sutherland 发表的人机通信的图形系统博士论实体模型:随着技术的进步,计算机辅助工程

计算机三维建模技术

计算机三维建模技术及其应用 摘要:三维建模是利用三维数据将现实中的三维物体或场景在计算机中进行重建,最终实现在计算机上模拟出真实的三维物体或场景。而三维数据就是使用各种三维数据采集仪采集得到的数据,它记录了有限体表面在离散点上的各种物理参量。三维建模逐渐在各个领域中发挥着越来越重要的作用。 关键字:曲面建模、实体建模 1.三维建模的含义 三维建模在现实中非常常见,雕刻、制作陶瓷艺术品等,都是三维建模的过程。人脑中的物体形貌在真实空间再现出来的过程,就是三维建模的过程。广义地讲,所有产品制造的过程,无论手工制作还是机器加工,都是将人们头脑中设计的产品转化为真实产品的过程,都可称为产品的三维建模过程。狭义地说:三维建模是指在计算机上建立完整的产品三维数字几何模型的过程。一般来说,三维建模必须借助软件来完成,这些软件常被称为三维建模系统。 三维建模有以下特点:三维建模呈现立体感,具有动画演示产品的动作过程,直观、生动、形象;三维建模的图形、特征元素之间通过参数化技术保持数据一致,尺寸和几何关系可以随时调整,更改方便;三维建模的造型方法多样,较好的适应工程需要,支持工程应用,支持标准化、系列化和设计重用,提供对产品数据管理、并行工程等的支持。 三维建模方法从原理上可以分为几何建模和特征建模两大类,而几何建模又可以分为线框建模、曲面建模和实体建模等几种方法。 2.三维曲面建模 三维曲面建模是通过对物体的各个表面或曲面进行描述而构成曲面的一种 建模方法。建模时,先将复杂的外表面分解成若干个组成面,这些组成面可以使构成一个个基本的曲面元素。然后通过这些曲面元素的拼接,就构成了所要的曲面。在计算机内部,曲面建模的数据结构只需要在线框建模的基础上建立一个面表,即曲面是由哪些基本曲线构成。一般常用的曲面生成方法:线性拉伸面、直纹面、旋转面、扫描面等。 曲面模型主要适用于表面不能用简单的数学模型进行描述的复杂物体型面,如汽车、飞机、传播、水利机械等产品外观设计以及地形、地貌、石油分布等资源描述中。三维曲面模型是将物体曲表面划分为若干曲面片再进行光顺拼接。在曲面模型的构建中,通常是采用曲面图素来拼接,曲面图素可以分为基本曲面、规则曲面、自由曲面和派生曲面等。 (1)基本曲面是指构成物体的最基本曲面,如圆柱面、球向等,要求具有典型性且数量最少。基本曲面也可以通过拉伸、回转、扫描等造型方法生成。 (2)规则曲面是指能按照一定规律生成的曲面,如直纹面、回转面等。 (3)自由曲面。常见的有Bezier曲面、B样条曲面等 (4)派生曲面,是指在已存在的曲面或实体上生成的曲面,如圆角曲面、过渡曲面等。 3.三维实体建模 三维实体建模信息丰富,除了能实现表面模型的功能外,还能满足物理性

三维实体建模技术

三维实体建模技术第一章学习重点了解三维实体建模设计的特点和一般过程; NX 3.0的各个功能面板,建模方式以及模型分析功能;熟释 NX 3.0 关于草图绘制,零件设计,装配设计,工程图设计的基本操作。掌握 概述1.1 而三维建模二维绘图设计在一个平面上即可完成,三维建模设计不同于二维绘图设计, 宽度三个方向的尺寸。在三维建模高度,设计是在三维空间中进行,建立的模型具有长度,,然后在草绘平面设计中,首先建立在工作空间的坐标系(包括原点,坐标轴和基准平面)对二维特征并根据参照平面放置特征截面的各图形元素,绘制模型的特征截面或扫描轨迹,特征是构成三维模型的基可生成三维模型的基础特征。截面进行拉伸,旋转,扫描等操作,础,各中各样的三维模型就是由不同的特征按照一定的设计要求进行组合所形成的集合体。是新一公司研制的一套由设计到制造的一体化三维软件,软件系统是美国UGS NX 3.0 NX 3.0环境中进行。代的产品造型系统。本章所有操作界面,设计流程以及模型均在1——机械零件实体模型建立1.2实训 1.2.1问题描述零件设计是机械设计的基 础,通过对零件进行实体设计,可以使设计过程更加直观,并任何零件的建立都离零件实体建模的基本技术是基于特征的,尽量多地获取零件的体信息。绘制是创建各种零件特征的基础,贯穿整个零件建模过程。熟不开特征的建立,而参数化是进行进而由截面草图生成零件特征的操作 技术,悉掌握特征截面的参数化草图绘制技术, 维三计设基的轴、键和半联轴器的实体模型1-1 图本功。环境中进行本章以机械设计中常用零件轴,键,半联轴器的设计为例,简要说明在NX 3.0零件设计,装配体设计和工程图设计的建模过程。实训目的1.2.2进行零件三维实体建模的3.0的操作界面,了解个功能面板;了解用3.0熟悉NX NX 进行计算机辅助机械设计的强大功能。NX 3.0设计过程,初步实验用. 1.2.3结果演示NX 3.0环境下对轴、键及半联轴器零件进行三维实体建模,完成后的结果如图在实训步骤1.2.4

相关文档
相关文档 最新文档