文档库 最新最全的文档下载
当前位置:文档库 › 信号配时计算

信号配时计算

信号配时计算
信号配时计算

信号配时计算方法

1、计算信号配时常用公式

(1)信号周期:各相位信号灯轮流显示一次所需时间的总和,可用式(4-1)表示: Y

L C -+=

155.10 式(4-1) 其中:C 0 ——信号最佳周期(秒); L ——周期总损失时间(秒),其计算如式(4-2):

∑=-+=n

i i i i A I l L 1)( 式(4-2)

其中:l ——车辆启动损失时间,一般为3秒;

I ——绿灯间隔时间,即黄灯时间加全红灯清路口时间,一般黄灯为3秒,全

红灯为2-4秒;

A ——黄灯时间,一般为3秒;

n ——所设相位数;

Y ——组成周期全部相位的最大流量比之和,即

∑==n

i i i Y Y Y 1),m a x ( 式(4-3)

Y i ——第i 个相位的最大流量比,即

i i i s q Y /= 式(4-4) q i ——第i 相位实际到达流量(调查得到);

s i ——第i 相位流向的饱和流量(调查得到)。

(2)绿信比:各相位所占绿灯时间与周期时间之比。

Y

Y Y M A X G g i i e el ),(1

= 式(4-5) 式中:g el ——有效绿灯时间(秒);

G e ——C 0 –L ; G e1 ——第一相位有效绿灯时长,用上式也可求得其他相位有效绿灯时长。 各相位实际显示绿灯时间:

L A g g e +-= 式(4-6) 每一相位换相时四面清路口全红时间:

i i i A I r -= 式(4-7)

r i ——第i 相全红时间(秒); I i ——第i 相绿灯间隔时间(秒); A i ——第i 相黄灯时间(秒)。

信号配时设计说明书

东二环路--六合路交叉口信号配时 设计说明书

目录 1交叉口现状调查与分析 (2) 1.1交叉口现状车道分布 (2) 1.2交叉口几何尺寸调查 (2) 1.3交叉口现状信号相位及配时 (3) 1.4各进口道各流向的交通量 (3) 1.5交叉口现状的延误 (6) 1.6问题分析 (6) 1.7解决问题 (7) 2渠化设计与信号配时 (7) 2.1第一次试算 (7) 2.2第二次试算 (13) 2.3第三次试算 (20) 3方案确定,完成信号配时设计 (25) 3.1渠化后的交叉口 (25) 3.2相位图 (26) 3.3延误与服务水平 (26)

1交叉口现状调查与分析 1.1交叉口现状车道分布 金鸡路口位于桂林市七星区,路口为东二环路与金鸡路、六合路的十字交叉,设计形状畸形。其现状车道分布如下图: 北 东 西 南 1.2交叉口几何尺寸调查 由实地测量的交叉口现状的几何尺寸得:

1.3交叉口现状信号相位及配时 由实际测量的交叉口现状的信号相位及其配时方案得: 1.4各进口道各流向的交通量 由调查的某日交叉口17:00至18:00高峰小时流量,通过车辆换算系数,将各类机动车型换算成标准小汽车,将各类非机动车车型换算成自行车,得到各进口道各流向的机动车高峰小时Qmn以及各进

口道自行车交通量,车辆换算系数如下: 各类机动车型换算成标准小汽车的系数: 各类非机动车换算成自行车的系数: 由此得到配时时段中各进口道各流向的高峰小时中最高15min 的流率,由公式: q dnm=4*Q15mn 得到各进口道各流向的机动车最高15min流率换算的小时交通量,以及各进口道自行车最高15min交通量的平均流率。

信号检测与估计理论第一章习题讲解

1-9 已知随机变量X 的分布函数为 2 0, 0(),01 1,1 X x F x kx x x ? 求:①系数k ; ②X 落在区间(0.3,0.7)内的概率; ③随机变量X 的概率密度。 解: 第①问 利用()X F x 右连续的性质 k =1 第②问 {} {}{}()()0.30.70.30 .70.70 .3 0.7P X P X F P X F =<< =<≤-=- 第③问 201()()0 X X x x d F x f x else dx ≤

1-10已知随机变量X 的概率密度为()()x X f x ke x -=-∞<<+∞(拉 普拉斯分布),求: ①系数k ②X 落在区间(0,1)内的概率 ③随机变量X 的分布函数 解: 第①问 ()1 1 2 f x d x k ∞ -∞==? 第②问 { }()( )()2 1 1 221x x P x X x F x F x f x d x <≤ =-=? 随机变量X 落在区间12(,]x x 的概率12{}P x X x <≤就是曲线()y f x =下的曲边梯形的面积。 {}{}()() 1 0101011 12 P X P X f x dx e -<<=<≤==-? 第③问 ()102 10 2 x x e x f x e x -?≤??=? ?>?? ()00()1100 2 2 111010 2 22 x x x x x x x x F x f x dx e dx x e x e dx e dx x e x -∞ -∞---∞=??≤≤??? ?==????+>->????? ???

信号强度问题

路测过程中的问题分析 ——信号强度问题 在路测过程中,可能会出现很多问题,而其中信号强度弱、信号强度不稳定、信号干扰严重等问题是非常常见,其在路测过程中所表现的特征也是非常容易发现的,先来看看以下几种情况: 情况1:信号强度弱,话音质量差。 上图中信号强度平均在-100dBm以下,并引起话音质量差,误码率升高,最终也会导致掉话。这种情况主要是当地信号覆盖不好引起的,我们可以有这样的处理办法: A、首先要观察测试点与最近基站的距离,如果距离较远,结合话务状况可建议加建新 站或直放站。 B、其次,测试当天该站是否关闭了,如果当天刚好是作调整,则只属意外情况。 C、然后观察附近地理情况,信号是否被遮挡,这个情况在市区或山区会比较多见。

情况2:小区信号强度不稳定。 这种情况很主要是硬件有问题: A、如果一个小区内所有TCH都是如此,则可能是发射天线问题 B、关掉跳频和功率控制,逐个TCH测试,如果总是某个TCH不稳定的话,则这个载 波有问题。 情况3:信号强,干扰严重。 强信号质差,很主要原因是有干扰: A、频率干扰,查看相邻小区是否存在同频或临频。

B、查看周围地形,是否由于地形复杂导致的自身干扰,由于信号反射过多导致干扰, 例如在桥上,水面对信号的质量影响就很大。 C、是否选用了距离较远的小区信号,因为覆盖范围过大,所受的干扰也相对较大。 D、其他无线电波的干扰,这个一般都比较难找出干扰源。 情况4:小区的所有邻区都无法解出BSIC。 这种情况当前小区信号较强,质量也很好,但所有相邻小区的BSIC都不可解,可能是谐波,至于解决方法我也不太清楚(^_^)。 下面,让我们来看看几个具体例子,以及它们的分析和处理方法:

数字信号处理试题和答案

一. 填空题 1、一线性时不变系统,输入为 x(n)时,输出为y(n);则输入为2x(n)时,输出为 2y(n) ;输入为x(n-3)时,输出为 y(n-3) 。 2、从奈奎斯特采样定理得出,要使实信号采样后能够不失真还原,采样频率fs与信号 最高频率f max 关系为: fs>=2f max 。 3、已知一个长度为N的序列x(n),它的离散时间傅立叶变换为X(e jw),它的N点离散傅立叶变换X(K)是关于X(e jw)的 N 点等间隔采样。 4、有限长序列x(n)的8点DFT为X(K),则X(K)= 。 5、用脉冲响应不变法进行IIR数字滤波器的设计,它的主要缺点是频谱的交叠所产生的现象。 6.若数字滤波器的单位脉冲响应h(n)是奇对称的,长度为N,则它的对称中心是(N-1)/2 。 7、用窗函数法设计FIR数字滤波器时,加矩形窗比加三角窗时,所设计出的滤波器的过渡带比较窄,阻带衰减比较小。 8、无限长单位冲激响应(IIR)滤波器的结构上有反馈环路,因此是递归型结构。 9、若正弦序列x(n)=sin(30nπ/120)是周期的,则周期是N= 8 。 10、用窗函数法设计FIR数字滤波器时,过渡带的宽度不但与窗的类型有关,还与窗的采样点数有关 11.DFT与DFS有密切关系,因为有限长序列可以看成周期序列的主值区间截断,而周期序列可以看成有限长序列的周期延拓。 12.对长度为N的序列x(n)圆周移位m位得到的序列用x m (n)表示,其数学表达式为x m (n)= x((n-m)) N R N (n)。 13.对按时间抽取的基2-FFT流图进行转置,并将输入变输出,输出变输入即可得到按频率抽取的基2-FFT流图。 14.线性移不变系统的性质有交换率、结合率和分配律。 15.用DFT近似分析模拟信号的频谱时,可能出现的问题有混叠失真、泄漏、栅栏效应和频率分辨率。 16.无限长单位冲激响应滤波器的基本结构有直接Ⅰ型,直接Ⅱ型,串联型和并联型四种。

EMI辐射信号强度计算

EMI辐射信号强度计算 嘉兆科技 需要距离辐射源多远才能使辐射信号不干扰系统呢?要想知道这个问题的答案,需要思考下面两个问题:1)辐射源的辐射能量大小;2)系统的EMI 保护电路性能如何。本文中,我们将首先讨论第一个问题。呈辐射状的电磁干扰(EMI) 信号会从辐射源传播至某个接收单元。根本而言,这些信号的功率或者电压强度在“触及”敏感的电路时,取决于发送器的功率/天线增益以及辐射源和接收器之间的距离(请参见图1)。 图1 辐射源和接收器之间的EMI 电场和功率密度关系 在进行EMI 评估时,可能会利用电场强度或者辐射功率密度参数。电场强度量化了辐射源干扰电压的大小。这种窄带或者宽带EMI 信号测量单位为伏每米(V/m)。您可以根据喜好,对这种电场强度单位进行修改,将它们转换成dBμV/m,其中dBμV = 20 log (V) + 120μV。 窄带EMI 信号一般为重复信号或者脉冲序列。利用图1 所示简单公式,可以在距离EMI 辐射源的某个地方,迅速计算出辐射电压的极端估计情况Er。宽带EMI 信号一般为单个脉冲,例如:闪电、一次ESD 事件或者火花隙。这些脉冲类型事件都包含多个频率。宽带信号难以测量,因为它们不重复且速度快。

辐射功率密度单位也可用于描述窄带事件。EMI 窄带的测量单位(辐射功率密度)可以为瓦特每平方米,即W/m2。通信工程师使用功率密度表示EMI 信号,用于解决其窄带EMI 问题。可以将辐射功率密度单位转换成dBm/m2,其中dBm (dB milliwatts) = 10 log (W)。 在实验室中,可以在时域和频域中对EMI信号进行预分析。使用一台示波器对信号进行时域观察,然后再使用一台频谱分析仪对信号进行频域评估。但是,通过联邦通信委员会(FCC) 和欧洲国际特别委员会(CISPR) 无线电干扰认证的一些公司,必须在产品上市以前就进行所有辐射EMI 测量。这种要求可以确保测试结果完全符合FCC 和/或CISPR 规定。测试方法包括使用环境测试,并使用经过校准的EMI 测试设备和天线。FCC 和CISPR 要求设备发射的辐射信号必须在规定值以下。FCC 和CISPR 相关文件包括EN 55011、EN 55013、EN 55014、EN 55015、EN 55022和EN 50081-1.2(通用辐射标准)。 图2 FCC 和CISPR 辐射限制—30MHz到1GHz,测量距离10m 图2 中,A 类限制针对商业、工业或者企业环境下使用的电子设备。B 类限制针对家用电子设备。A 类限制也可能适用于家用电子设备。B 类限制更加严格,因为这类设备可能会靠近TV和无线电接收设备放置。

数字信号处理习题集(附答案)

第一章数字信号处理概述 简答题: 1.在A/D变换之前和D/A变换之后都要让信号通过一个低通滤波器,它们分别起什么作用? 答:在A/D变化之前为了限制信号的最高频率,使其满足当采样频率一定时,采样频率应大于等于信号最高频率2倍的条件。此滤波器亦称为“抗混叠”滤波器。 在D/A变换之后为了滤除高频延拓谱,以便把抽样保持的阶梯形输出波平滑化,故又称之为“平滑”滤波器。 判断说明题: 2.模拟信号也可以与数字信号一样在计算机上进行数字信号处理,自己要增加一道采样的工序就可以了。 () 答:错。需要增加采样和量化两道工序。 3.一个模拟信号处理系统总可以转换成功能相同的数字系统,然后基于数字信号处理理论,对信号进行等效的数字处理。() 答:受采样频率、有限字长效应的约束,与模拟信号处理系统完全等效的数字系统未必一定能找到。因此数字信号处理系统的分析方法是先对抽样信号及系统进行分析,再考虑幅度量化及实现过程中有限字长所造成的影响。故离散时间信号和系统理论是数字信号处

理的理论基础。 第二章 离散时间信号与系统分析基础 一、连续时间信号取样与取样定理 计算题: 1.过滤限带的模拟数据时,常采用数字滤波器,如图所示,图中T 表示采样周期(假设T 足够小,足以防止混叠效应),把从)()(t y t x 到的整个系统等效为一个模拟滤波器。 (a ) 如果kHz T rad n h 101,8)(=π截止于,求整个系统的截止频 率。 (b ) 对于kHz T 201=,重复(a )的计算。 采样(T) () n h () n x () t x () n y D/A 理想低通T c πω=() t y 解 (a )因为当0)(8=≥ω πωj e H rad 时,在数 — 模变换中 )(1)(1)(T j X T j X T e Y a a j ωω=Ω= 所以)(n h 得截止频率8πω=c 对应于模拟信号的角频率c Ω为 8 π = ΩT c 因此 Hz T f c c 625161 2==Ω= π

信号检测与处理计算题

信号检测与处理 1、设在某二元通信系统中,有通信信号和无通信信号的先验概率分别为:P(H 1)=0.8,P(H 0)=0.2。若对某观测值x 有条件概率分布f(x|H 1)=0.25和f(x|H 0)=0.45,试用最大后验概率准则对该观测样本x 进行分类。 2、在存在加性噪声的情况下,测量只能为2v 或0v 的直流电压,设噪声服从均值为0、方差为 2 σ的正态分布,设似然比门限值为0l ,试对测量结果进行分类(10分) 3、设二元假设检验的观测信号模型为: H0:x=-1+n H1:x=1+n 其中n 是均值为零、方差为1/2的高斯观测噪声。若两种检验都是等先验概率的,而代价因子为: C 00=1 ,C 10=4, C 11=2 C 01=8。试求Bayes 判决表示式,并画出bayes 接收机形式。 4、设x1,x2,…xn 是统计独立的方差为2σ的高斯随机变量,在H1假设下均值为a1,H0假设下均值为a0,似然比门限为0l ,试对其进行判决,并求两种错误概率。(20分) 5、在二元数字通信系统中,时间间隔T 秒内,发送一个幅度为d 的脉冲信号,即s 1=d,代表1;或者不发送信号,即s 0=0,代表0。加性噪声服从均值为0,方差为1的高斯分布,当先验概率未知,正确判决不花代价,错误判决的代价相等且等于1时,采用极大极小准则计算其极大极小风险为多大,相应的q 0为多少? 6、在加性噪声背景下,测量0V 和1v 的直流电压在P(D1|H0)=0.1的条件下,采用Neyman-Pearson 准则,对一次测量数据进行判决。假定加性噪声服从均值为0,方差为2的正态分布。(已知erf(0.9)=0.7969) 第四章 1、已知发送端发送的信号分别为???≤≤-=≤≤=T t t A t s T t t A t 0,sin )(0,sin )(s 1 0ωω 试利用最小错误概率准则设计一台接收机,对如下假设做出判决,并画出接收机的结构形式。 ???+=+=) ()()(:H )()()(:H 1100t n t s t x t n t s t x ,n(t)服从均值为0功率谱密度为N 0/2的高斯白噪声。 2、已知发送端发送的信号分别为???≤≤=≤≤=T t t A t s T t t A t 0,2sin )(0,sin )(s 1 0ωω 试利用最小错误概率准则设计一台接收机,对如下假设做出判决,并画出接收机的结构形式。 ???+=+=)()()(:H )()()(:H 11 00t n t s t x t n t s t x ,n(t)服从均值为0功率谱密度为N 0/2的高斯白噪声。 3、已知发送端发送的信号分别为???≤≤=≤≤=T t t A t s T t t 0,sin )(0,0)(s 1 0ω 试利用最小错误概率准则设计一台接收机,对如下假设做出判决,并画出接收机的结构形式。 ???+=+=)()()(:H )()()(:H 11 00t n t s t x t n t s t x ,n(t)服从均值为0功率谱密度为N 0/2的高斯白噪声。

实验12 信号强度实验(RSSI)

实验三信号强度实验(RSSI) 一实验目的 通过改变两个802.15.4/Zigbee通讯模块之间的距离,观察信号强度随距离变化的情况,了解RSSI 二实验设备 ●PC机一台 ●802.15.4/Zigbee模块两个 ●仿真器一个 ●串口延长线一根 ●IDC10仿真排线一根 三实验说明 RSSI(receive signal strength indicator):即为信号强度指示,是真实的接收信号强度与最优接收功率等级间的差值。 LQI [2-4](link quality indicator):是链路质量指示,表征接收数据帧的能量与质量。其大小基于信号强度以及检测到的信噪比(SNR),由MAC(media access control)层计算得到并提供给上一层,一般与正确接收到数据帧的概率有关口[3]。 RSSI值和LQI值在802.15.4/ZigBee收发模块每接收一个数据帧时都可以得到,及时反映信号强度的变化和受到的干扰的变化。LQI的动态范围比RSSI大,有更高的分辨率。 四实验步骤 1.连接实验设备 首先把仿真器和2430 学习板连接好,再用USB 线把仿真器和电脑连接起来 2.下载程序 按照实验二中的方法,将“实验三信号强度实验(RSSI)\spptest\App_Ex\cc2430\IAR_files \appEx_cc2430.ewp添加到IAR工程中,然后分别将RX和TX下载到两个模块中 3. 模块加电测试 给两个802.15.4/Zigbee模块加电,如果两个模块组网成功,则模块上的两个LED灯交替闪烁 4. 打开协议分析软件Packet sniffer for CC2430 IEEE 802.1 5.4,然后改变两个 802.15.4/Zigbee模块之间的距离,观察RSSI/LQI值的变化情况,如图15:

期末数字信号处理练习题

此题为考试题型提示及部分复习范围,全部考试范围为最后讲义及课堂所讲有关内容, 一、填空题(本题共10小题,每小题4分,满分40分) 1. The sample rate is fs, the analysis frequencies of m-th bin in N-point DFT is ( )Hz 2. Using function of window can reduce the ripple level, but the ( ) is widened 3. Frequency sampling filters can be consider as a ( ) and more complex ( ) in cascade. 4. The terms FIR filter coefficients and ( ) are synonymous. 5. Half-band FIR filter stop pass f f =( ). 6. We hope to have more flexibility in trading off between, a window's main lobe width and (sidelobe levels ) in FIR filter designing 7. The number of complex multiplications, for an N-point FFT, is approximately ( ). 8. The spectrum of real signal is symmetrical about (zero ) Hz 9. FIR filter design technique include (Window Design ) Method and (Optimum )Method. 10. bandpass sampling is known as ( ) sampling, ( ) sampling, ( ) sampling, and ( ) sampling. 11. A sudden change in the values of the coefficient sequence, causes ripples, or (sidelobes), in the frequency response. 12. Decreasing the sampling rate is known as (decimation ),increasing the sampling rate is known as (interpolation ). 13. To upsample xold(n) by a factor of four, we typically insert (three zeros )between each sample. 14. In quadrature processing, by convention, the real part of the spectrum is called the ( ) component and the imaginary part of the spectrum is called the ( ) component.

信号强度DB

关于手机信号强度单位db和dBm【转帖】 (2010-05-21 13:51:51) 转载▼ 标签: it 关于手机信号强度单位db和dBm 最近做android开发,在wifi模块遇到手机信号的问题,设计到强度的计算,于是就有了db和dbm两个单位。 dB,dBm 都是功率增益的单位,不同之处如下: dB 是一个表征相对值的值,纯粹的比值,只表示两个量的相对大小关系,没有单位,当考虑甲的功率相比于乙功率大或小多少个dB时,按下面的计算公式:10log (甲功率/乙功率),如果采用两者的电压比计算,要用20log(甲电压/乙电压)。[例] 甲功率比乙功率大一倍,那么10lg(甲功率/乙功率)=10lg2=3dB。也就是说,甲的功率比乙的功率大3 dB。反之,如果甲的功率是乙的功率的一半,则甲的功率比乙的功率小3 dB。 dBm dBm是一个表示功率绝对值的值(也可以认为是以1mW功率为基准的一个比值),计算公式为:10log(功率值/1mw)。 [例] 如果功率P为1mw,折算为dBm后为0dBm。 [例] 对于40W的功率,按dBm单位进行折算后的值应为: 10log(40W/1mw)=10log (40000)=10log4+10log10000=46dBm。 总之,dB是两个量之间的比值,表示两个量间的相对大小,而dBm则是表示功率绝对大小的值。在dB,dBm计算中,要注意基本概念,用一个dBm减另外一个dBm时,得到的结果是dB,如:30dBm - 0dBm = 30dB。 手机上显示的数字的单位是dBm(可以用ALT+NMLL就可以让手机显示出当前的接收信号值了).这个值是负的,也就是说手机会显示比如 -67(dBm),那就说明信号很强了.这里还说一个小知识:中国移动的规范规定,手机接收电平>=(城市取 -90dBm;乡村取-94dBm) 时,则满足覆盖要求,也就是说此处无线信号强度满足覆盖要求.-67dBm要比-90dBm信号要强20多个dB,那么它在打电话接通成功率和通话过程中的话音质量都会好的多(当然也包括EDGE/GPRS上网的速度那些 ). 所以,那个值越大信号就越好,因为那是个负值,而且在你手里的时候它永远是负值 ,如果你感兴趣且附近有无线基站的天线的话,你也可以把你的手机尽量接近天线面板,那么值就越来越大,如果手机跟天线面板挨到一起,那么它可能十分接近于 0了(0是达不到的,这里的0的意思也不是说手机没信号了)

信号配时计算过程

本次设计选择的路段上有四个交叉口,其中两个T字交叉口、两个十字交叉口。四个交叉口均属于定时信号配时。国际上对定时信号配时的方法较多,目前在我国常用的有美国的HCM法、英国的TRRL法(也称Webster法)、澳大利亚的ARRB法(也称阿克赛利克方法)、中国《城市道路设计规》推荐方法、停车线法、冲突点法共六种方法。本次设计运用的是比较经典的英国的TRRL 法,即将F·韦伯斯特—B·柯布理论在信号配时方面的使用。对单个交叉口的交通控制也称为“点控制”。本节中使用TRRL法对各个交叉口的信号灯配时进行优化即是点控制中的主要容。在对一个交叉口的信号灯配时进行优化时,主要的是根据调查所得的交通流量先确定该点的相位数和周期时长,然后确定各个相位的绿灯时间即绿信比。 柯布(B.M.Cobbe)和韦伯斯特(F.V.Webester)在1950年提出TRRL法。该配时方法的核心思想是以车辆通过交叉口的延误时间最短作为优化目标,根据现实条件下的各种限制条件进行修正,从而确定最佳的信号配时方案。 其公式计算过程如下: 1.最短信号周期C m 交叉口的信号配时,应选用同一相位流量比中最大的进行计算,采用最短信号周期C m时,要求在一个周期到达交叉口的车辆恰好全部放完,即无停滞车辆,信号周期时间也无富余。因此,C m恰好等于一个周期损失时间之和加上全部到达车辆以饱和流

量通过交叉口所需的时间,即: 1212 n m m m m n V V V C L C C C S S S =+ +++ (4-8) 式中:L ——周期损失时间(s ); ——第i 个相位的最大流量比。 由(4-8)计算可得: 111m n i L L C Y y = = --∑ (4-9) 式中:Y ——全部相位的最大流量比之和。 2.最佳信号周期C 0 最佳周期时长C 0是信号控制交叉口上,能使通车效益指标最佳的交通信号周期时长。若以延误作为交通效益指标,使用如下的Webster 定时信号交叉口延误公式: 1 22(25) 32(1)0.65()2(1)2(1)C x C d x x q x q λλλ+-=+--- (4-10) 式中:d ——每辆车的平均延误; C ——周期长(s ); λ——绿信比。 则总延误时间为: D=qd (4-11) 若使总延误最小,则: ()0d D dC = (4-12) i i V S

dB的详细解释和计算方法

dBm 百科名片 dBm意即分贝毫X,可以表示分贝毫伏,或者分贝毫瓦。电压或电场E(mV) 与 U'(dBm) 的换算公式为:U'dBm=20lgE;功率与P(瓦特)换算公式:P'dBm=30+10lgP (P:瓦;P':单位为dbm)。 纯计数单位 首先, DB 是一个纯计数单位:对于功率,dB = 10*lg(A/B)。对于电压或电流,dB = 20*lg(A/B).dB的意义其实再简单不过了,就是把一个很大(后面跟一长串0的)或者很小(前面有一长串0的)的数比较简短地表示出来。如: X=1000000000000000 (多少个了?) 10lgX=150dB X=0.000000000000001 10lgX=-150 dB dBm 定义的是 miliwatt。 0 dBm=10lg1mw; dBw 定义 watt。 0 dBw = 10lg1 W = 10lg1000 mw = 30 dBm。 DB在缺省情况下总是定义功率单位,以 10lg 为计。当然某些情况下可以用信号强度(Amplitude)来描述功和功率,这时候就用 20lg 为计。不管是控制领域还是信号处理领域都是这样。比如有时候大家可以看到 dBmV 的表达。 动态缓冲管理 还有一种意思是:

动态缓冲管理Dynamic Buffer Management(DBM),在库存管理中又叫动态缓冲库存管理 Dynamic Buffer--Inventory Managemen。 在配送系统和补给系统变动频繁的情况之下,动态缓冲管理是一种好的库存管理方法。 具体操作是首先把库存分成三个区:绿区(高库存)、黄区(适当库存)、红区(低库存),分区的大小依希望达到的管理水平而定,如果条件允许,最好把三个区划成相同的大小。 如果经常只剩下红区的物料了,就意谓着要提高红区库存指标;如果大部分时候物料都堆放在绿区,就要调整库存的最高限数据;如果物料只剩下红区的了,就要发出一个警示,并下达采购订单。 计算方法 注意基本概念 在dB,dBm计算中,要注意基本概念。比如前面说的 0dBw = 10lg1W = 10lg1000mw = 30dBm;又比如,用一个dBm 减另外一个dBm时,得到的结果是dB。如:30dBm - 0dBm = 30dB。 dB和dB之间只有加减 一般来讲,在工程中,dB和dB之间只有加减,没有乘除。而用得最多的是减法:dBm 减 dBm 实际上是两个功率相除,信号功率和噪声功率相除就是信噪比(SNR)。dBm 加 dBm 实际上是两个功率相乘,这个已经不多见(我只知道在功率谱卷积计算中有这样的应用)。dBm 乘 dBm 是什么,1mW 的 1mW 次方?除了同学们老给我写这样几乎可以和歌德巴赫猜想并驾齐驱的表达式外,我活了这么多年也没见过哪个工程领域玩这个。

数字信号处理试题

一、单项选择题 1. 序列x(n)=Re(e jn π/12 )+I m (e jn π/18 ),周期为( )。 A. 18π B. 72 C. 18π D. 36 2. 设C 为Z 变换X(z)收敛域的一条包围原点的闭曲线,F(z)=X(z)z n-1 ,用留数法求X(z)的反变换时( )。 A. 只能用F(z)在C 的全部极点 B. 只能用F(z)在C 外的全部极点 C. 必须用收敛域的全部极点 D. 用F(z)在C 的全部极点或C 外的全部极点 3. 有限长序列h(n)(0≤n ≤N-1)关于τ= 2 1 -N 偶对称的条件是( )。 A. h(n)=h(N-n) B. h(n)=h(N-n-1) C. h(n)=h(-n) D. h(n)=h(N+n-1) 4. 对于x(n)= n )21(u(n)的Z 变换,( )。 A. 零点为z=21,极点为z=0 B. 零点为z=0,极点为z=21 C. 零点为z=21,极点为z=1 D. 零点为z=2 1 ,极点为z=2 5、)()(101n R n x =,)()(72n R n x =,用DFT 计算二者的线性卷积,为使计算量尽可能的少,应使DFT 的长度N 满足 。 A.16>N B.16=N C.160,Z 变换的收敛域为( )。 A. 0<|z|<∞ B. |z|>0 C. |z|<∞ D. |z|≤∞ 9.在对连续信号均匀采样时,要从离散采样值不失真恢复原信号,则采样角频率Ωs 与信号最高截止频率Ωc 应满足关系( ) A. Ωs>2Ωc B. Ωs>Ωc C. Ωs<Ωc D. |Ωs<2Ωc 10.下列系统(其中y(n)为输出序列,x(n)为输入序列)中哪个属于线性系统?( ) A.y(n)=y(n-1)x(n) B.y(n)=x(n)/x(n+1) C.y(n)=x(n)+1 D.y(n)=x(n)-x(n-1) 11.已知某序列Z 变换的收敛域为5>|z|>3,则该序列为( )

信号检测与估计试题——答案(不完整版)

一、概念: 1. 匹配滤波器。 概念:所谓匹配滤波器是指输出判决时刻信噪比最大的最佳线性滤波器。 应用:在数字信号检测和雷达信号的检测中具有特别重要的意义。在输出信噪比最大准则下设计一个线性滤波器是具有实际意义的。 2. 卡尔曼滤波工作原理及其基本公式(百度百科) 首先,我们先要引入一个离散控制过程的系统。该系统可用一个线性随机微分方程(Linear Stochastic Difference equation)来描述: X(k)=A X(k-1)+B U(k)+W(k) 再加上系统的测量值: Z(k)=H X(k)+V(k) 上两式子中,X(k)是k时刻的系统状态,U(k)是k时刻对系统的控制量。A和B是系统参数,对于多模型系统,他们为矩阵。Z(k)是k时刻的测量值,H是测量系统的参数,对于多测量系统,H为矩阵。W(k)和V(k)分别表示过程和测量的噪声。他们被假设成高斯白噪声(White Gaussian Noise),他们的covariance 分别是Q,R(这里我们假设他们不随系统状态变化而变化)。 对于满足上面的条件(线性随机微分系统,过程和测量都是高斯白噪声),卡尔曼滤波器是最优的信息处理器。下面我们来用他们结合他们的covariances 来估算系统的最优化输出(类似上一节那个温度的例子)。 首先我们要利用系统的过程模型,来预测下一状态的系统。假设现在的系统状态是k,根据系统的模型,可以基于系统的上一状态而预测出现在状态: X(k|k-1)=A X(k-1|k-1)+B U(k) (1) 式(1)中,X(k|k-1)是利用上一状态预测的结果,X(k-1|k-1)是上一状态最优的结果,U(k)为现在状态的控制量,如果没有控制量,它可以为0。 到现在为止,我们的系统结果已经更新了,可是,对应于X(k|k-1)的covariance还没更新。我们用P表示covariance: P(k|k-1)=A P(k-1|k-1) A’+Q (2) 式(2)中,P(k|k-1)是X(k|k-1)对应的covariance,P(k-1|k-1)是X(k-1|k-1)对应的covariance,A’表示A的转置矩阵,Q是系统过程的covariance。式子1,2就是卡尔曼滤波器5个公式当中的前两个,也就是对系统的预测。 现在我们有了现在状态的预测结果,然后我们再收集现在状态的测量值。结合预测值和测量值,我们可以得到现在状态(k)的最优化估算值X(k|k): X(k|k)= X(k|k-1)+Kg(k) (Z(k)-H X(k|k-1)) (3) 其中Kg为卡尔曼增益(Kalman Gain): Kg(k)= P(k|k-1) H’ / (H P(k|k-1) H’ + R) (4)

wifi 信号强度单位dBm

wifi 信号强度单位dBm 总结一下: 简单的说dBm值肯定是负数的,越接近0信号就越好,但是不可能为0的ASU的值则相反,是正数,也是值越大越好 按规定,只要城市里大于-90,农村里大于-94就是正常的,记住负数是-号后面的值越小就越大 具体情况就是:-81dBm的信号比-90dBm的强,-67dBm的信号比-71dBm 的强低于-113那就是没信号了 关于dBm和ASU换算的关系是dBm=-113+2乘以ASU 比如我们看到信号为-67dBm 23ASU的时候, 他们的关系就是-113+2*23ASU=-67dBm 反之就是{-113-(-67dBm)}/2 =23ASU 有错误大家及时更正啊 第一篇: 关于手机信号强度单位db和dBm 最近做android开发,在wifi模块遇到手机信号的问题,设计到强度的计算,于是就有了db和dbm两个单位。 dB,dBm 都是功率增益的单位,不同之处如下: dB 是一个表征相对值的值,纯粹的比值,只表示两个量的相对大小关系,没有单位,当考虑甲的功率相比于乙功率大或小多少个dB时,按下面的计算公式:10log (甲功率/乙功率),如果采用两者的电压比计算,要用20log(甲电压/乙电压)。[例] 甲功率比乙功率大一倍,那么10lg(甲功率/乙功率)=10lg2=3dB。也就是说,甲的功率比乙的功率大3 dB。反之,如果甲的功率是乙的功率的一半,则甲的功率比乙的功率小3 dB。 dBm dBm是一个表示功率绝对值的值(也可以认为是以1mW功率为基准的一个比值),计算公式为:10log(功率值/1mw)。 [例] 如果功率P为1mw,折算为dBm后为0dBm。 [例] 对于40W的功率,按dBm单位进行折算后的值应为:10log (40W/1mw)=10log(40000)=10log4+10log10000=46dBm。 总之,dB是两个量之间的比值,表示两个量间的相对大小,而dBm则是表示功率绝对大小的值。在dB,dBm计算中,要注意基本概念,用一个dBm减另外一个dBm时,得到的结果是dB,如:30dBm - 0dBm = 30dB。 手机上显示的数字的单位是dBm(可以用ALT+NMLL就可以让手机显示出当前的接收信号值了).这个值是负的,也就是说手机会显示比如-67(dBm),那就说明

信号检测计算题

第三章 1、 设在某二元通信系统中,有通信信号和无通信信号的先验概率分别为:P(H 1)=0.8, P(H 0)=0.2。若对某观测值x 有条件概率分布f(x|H 1)=0.25和f(x|H 0)=0.45,试用最大后验概率准则对该观测样本x 进行分类。 2、在存在加性噪声的情况下,测量只能为2v 或0v 的直流电压,设噪声服从均值为0、方差为 2σ的正态分布,设似然比门限值为0l ,试对测量结果进行分类(10分) 3、设二元假设检验的观测信号模型为: H0:x=-1+n H1:x=1+n 其中n 是均值为零、方差为1/2的高斯观测噪声。若两种检验都是等先验概率的,而代价因子为: C 00=1 ,C 10=4, C 11=2 C 01=8。试求Bayes 判决表示式,并画出bayes 接收机形式。 4、设x1,x2,…xn 是统计独立的方差为2σ的高斯随机变量,在H 1假设下均值为a1,H0假设下均值为a0,似然比门限为0l ,试对其进行判决,并求两种错误概率。(20分) 5、在二元数字通信系统中,时间间隔T 秒内,发送一个幅度为d 的脉冲信号,即s 1=d,代表1;或者不发送信号,即s 0=0,代表0。加性噪声服从均值为0,方差为1的高斯分布,当先验概率未知,正确判决不花代价,错误判决的代价相等且等于1时,采用极大极小准则计算其极大极小风险为多大,相应的q 0为多少? 6、在加性噪声背景下,测量0V 和1v 的直流电压在P(D1|H0)=0.1的条件下,采用Neyman-Pearson 准则,对一次测量数据进行判决。假定加性噪声服从均值为0,方差为2的正态分布。(已知erf(0.9)=0.7969) 第四章 1、已知发送端发送的信号分别为???≤≤-=≤≤=T t t A t s T t t A t 0,sin )(0,sin )(s 10ωω 试利用最小错误概率准则设计一台接收机,对如下假设做出判决,并画出接收机的结构形式。 ???+=+=) ()()(:H )()()(:H 1100t n t s t x t n t s t x ,n(t)服从均值为0功率谱密度为N 0/2的高斯白噪声。 2、已知发送端发送的信号分别为???≤≤=≤≤=T t t A t s T t t A t 0,2sin )(0,sin )(s 10ωω 试利用最小错误概率准则设计一台接收机,对如下假设做出判决,并画出接收机的结构形式。 ???+=+=)()()(:H )()()(:H 11 00t n t s t x t n t s t x ,n(t)服从均值为0功率谱密度为N 0/2的高斯白噪声。 3、已知发送端发送的信号分别为???≤≤=≤≤=T t t A t s T t t 0,sin )(0,0)(s 1 0ω 试利用最小错误概率准则设计一台接收机,对如下假设做出判决,并画出接收机的结构形式。 ???+=+=)()()(:H )()()(:H 11 00t n t s t x t n t s t x ,n(t)服从均值为0功率谱密度为N 0/2的高斯白噪声。

(完整word版)数字信号处理题库(附答案)

数字信号处理复习题 一、选择题 1、某系统)(),()()(n g n x n g n y =有界,则该系统( A )。 A.因果稳定 B.非因果稳定 C.因果不稳定 D. 非因果不稳定 2、一个离散系统( D )。 A.若因果必稳定 B.若稳定必因果 C.因果与稳定有关 D.因果与稳定无关 3、某系统),()(n nx n y =则该系统( A )。 A.线性时变 B. 线性非时变 C. 非线性非时变 D. 非线性时变 4.因果稳定系统的系统函数)(z H 的收敛域是( D )。 A.9.0z D. 9.0>z 5.)5.0sin(3)(1n n x π=的周期( A )。 A.4 B.3 C.2 D.1 6.某系统的单位脉冲响应),()21()(n u n h n =则该系统( C )。 A.因果不稳定 B.非因果稳定 C.因果稳定 D.非因果不稳定 7.某系统5)()(+=n x n y ,则该系统( B )。 A.因果稳定 B.非因果稳定 C.因果不稳定 D.非因果不稳定 8.序列),1()(---=n u a n x n 在)(z X 的收敛域为( A )。 A.a z < B. a z ≤ C. a z > D. a z ≥ 9.序列),1()21()()31()(---=n u n u n x n n 则)(z X 的收敛域为( D )。 A.21z C. 21>z D. 2 131<

信号配时计算过程

信号配时计算过程

本次设计选择的路段上有四个交叉口,其中两个T字交叉口、两个十字交叉口。四个交叉口均属于定时信号配时。国际上对定时信号配时的方法较多,目前在我国常用的有美国的HCM法、英国的TRRL法(也称Webster法)、澳大利亚的ARRB法(也称阿克赛利克方法)、中国《城市道路设计规范》推荐方法、停车线法、冲突点法共六种方法。本次设计运用的是比较经典的英国的TRRL法,即将F·韦伯斯特—B·柯布理论在信号配时方面的使用。对单个交叉口的交通控制也称为“点控制”。本节中使用TRRL法对各个交叉口的信号灯配时进行优化即是点控制中的主要内容。在对一个交叉口的信号灯配时进行优化时,主要的是根据调查所得的交通流量先确定该点的相位数和周期时长,然后确定各个相位的绿灯时间即绿信比。 柯布(B.M.Cobbe)和韦伯斯特(F.V.Webester)在1950年提出TRRL法。该配时方法的核心思想是以车辆通过交叉口的延误时间最短作为优化目标,根据现实条件下的各种限制条件进行修正,从而确定最佳的信号配时方案。 其公式计算过程如下: 1.最短信号周期C m 交叉口的信号配时,应选用同一相位流量比中最大的进行计算,采用最短信号周期C m时,要求在一个周期内到达交叉口的车辆恰好全部放完,即无停滞车辆,信号周期时间也无富余。因此,C m恰好等于一个周期内损失时间之和加上全部到达车辆以

饱和流量通过交叉口所需的时间,即: 1212n m m m m n V V V C L C C C S S S =+ +++L (4-8) 式中:L ——周期损失时间(s ); ——第i 个相位的最大流量比。 由(4-8)计算可得: 111m n i L L C Y y = = --∑ (4-9) 式中:Y ——全部相位的最大流量比之和。 2.最佳信号周期C 0 最佳周期时长C 0是信号控制交叉口上,能使通车效益指标最佳的交通信号周期时长。若以延误作为交通效益指标,使用如下的Webster 定时信号交叉口延误公式: 1 22(25) 32(1)0.65()2(1)2(1)C x C d x x q x q λλλ+-=+--- (4-10) 式中:d ——每辆车的平均延误; C ——周期长(s ); λ——绿信比。 则总延误时间为: D=qd (4-11) 若使总延误最小,则: ()0d D dC = (4-12) i i V S

相关文档