文档库 最新最全的文档下载
当前位置:文档库 › 概率统计客观题

概率统计客观题

概率统计客观题
概率统计客观题

概率论与数理统计客观题

一. 填空题(每空3分,共30分)

1. 如果 P (A )=0.4, P (B )=0.3, P (A ∪B )=0.5, 则P (A B )=_________.

2. 设A 、B 、C 是三个事件,且P (A )=P (B )=P (C )=1/4,P (AB )=P (BC )=0,

P (AC )=1/8,则A 、B 、C 至少发生一个的概率为___________.

3. 设随机变量 X 的分布函数为:

F (x ) = ???

?

??

?

≤<≤<≤--<.

)3(1

),31(7.0),11(3.0,)1(0时当时当时当时当x x x x

则 X 的概率分布律为___________________________.

4. 已知D ( X ) = 4, D (Y ) = 9, D ( X -Y ) = 12, 则X 与Y 间的相关系数为

ρ =___________.

5. 设随机变量X 与Y 相互独立,且服从同一分布,X 的分布律为

P ( X = 0 ) = P ( X = 1 ) = 1/2,则Z = max ( X, Y ) 的分布律为

_________________________________________.

6. 设X 、Y 相互独立,且都服从标准正态分布,则Z =2

Y

X 服从

___________分布 (同时要写出分布的参数) .

7. 设X 1, X 2, …, X 20 是来自总体N (μ, σ2

)的样本,则∑μ-σ

=20

1

i 2

i 2

)X (1 服

从________分布 (同时写出分布的参数).

8. 设X 1、X 2、X 3为从总体X 中抽取的容量为3的样本,总体均值为θ,

总体方差为σ2. 记3

2

112

13

16

1?X X

X +

+

=

θ, 3

2

12

3

13

13

1?X

X

X +

+

=

θ,

3

2

134

12141?X

X

X +

+

=

θ分别为未知参数θ 的估计,则____________为θ

的无偏估计,且此三个估计中___________最有效.

9. 如果一个假设检验问题的显著性水平为0.05,那么犯第一类错误的

概率是_________________.

02197概率论与数理统计(二)(试题+答案)-201204

页眉内容 2012年4月全国自考概率论与数理统计(二)参考答案 ()()()()() ()()()()()() (){}{}{}{}{} ()()()()() {}{}()()()() ()()()()()[]()()()()()()()()()()()() n x D n x C x B x A x X x x x N X D C B A X Y X D X D X D C B A p n X D X E p n B X y f x f D y f x f C y f x f B y f x f A Y X y f x f Y X D C B A Y X Y X D C B A X P X P N X x x e X F D x x e X F C x x e X F B x x e X F A X X X P D X P C X P B X P A X P x x f X AB P B P A P D AB P B P A P C AB P A P B B P A P A B A P B A A D A C B B B A A AB B A B A n XY Y X Y X Y X Y X Y X x x x x 92 .32.92.32 ....32~.102.1.0.1-.0.98.03.3.08.4.06.6.04. 44.14.2~.8.2 1..21. .75,1.5,0.1,1.10.~ 12.684.0.68.0.32.0.16.0.084.042~.5.0001..0001..0001..000..472.53.54.21.43. 06331.3....2.....12122-----=>==+++-≤=≤???≤>+=???≤>-=???≤>-=???≤>=≤<≤<≤<≤<≤

概率论大作业讲解

现实生活中的大数定理及中心值定理的应用 电子工程学院

目录 摘要........................................... 错误!未定义书签。第一章引言...................................... 错误!未定义书签。第二章大数定律 (2) 2.1大数定律的发展历史 (2) 2.2大数定律的定义 (3) 2.3几个常用的大数定律 (3) 第三章大数定律的一些应用 (6) 3.1大数定律在数学分析中的一些应用 (6) 3.2大数定律在保险业的应用 (6) 3.3大数定律在银行经营管理中的应用 9结论 (11) 参考文献 (12)

对于随机现象而言,其统计规律性只有在基本相同的条件下进行大量的重复试验才能显现出来.本文主要是通过大数定律来讨论随机现象最根本的性质——平均结果稳定性的相关内容.大数定律,描述当试验次数很大时所呈现的概率性质的定律,是随机现象统计规律性的具体表现. 本文首先介绍了大数定律涉及的一些基础知识,以便于对文中相关知识的理解.通过比较,就不同条件下存在的大数定律做了具体的分析,介绍了几种较为常见的大数定律和强大数定律,总结了大数定律的应用,主要有大数定律在数学分析中的应用,大数定律在生产生活中的应用,大数定律在经济如:保险、银行经营管理中的应用等等,将理论具体化,将可行的结论用于具体的数学模型中,使大家对大数定律在实际生活中的应用价值有了更深的认识.

概率论与数理统计是研究随机现象的统计规律的科学,而随机现象的统计规律性只有在相同条件下进行大量重复试验或观察才呈现出来.在随机事件的大量重复出现中,往往呈现几乎必然的规律,这个规律就是大数定律.大数定律是概率论中一个非常重要的课题,而且是概率论与数理统计之间一个承前启后的重要纽带.大数定律阐明了大量随机现象平均结果具有稳定性,证明了在大样本条件下,样本平均值可以看作总体平均值,它是“算数平均值法则”的基本理论,通俗地说,这个定理就是在试验不变的条件下,重复试验多次,随机事件的频率以概率为稳定值. 在现实生活中,经常可以见到这一类型的数学模型,比如,我们向上抛一枚硬币,硬币落下后哪一面朝上本来是偶然的,但当我们向上抛硬币的次数足够多时,达到上万次甚至几十万几百万次之后,我们会发现,硬币向上的次数约占总次数的二分之一,偶然中包含着必然.又如:在分析天平上称重量为a 的物品,若以12,,x x 3,...,n x x 表示n 次重复称量的结果,经验告诉我们,当n 充分大时,它们的算术平均值1 1n i i X n =∑与a 的偏差就越小.这种思想,不仅在整个概率论中起着重要00作用,而且在其他数学领域里面也占据着相当重要的地位. 大数定律的发展与研究也经历了很长一段时间,伯努利是第一个研究这一问题的数学家,他于1713年首先提出后人称之为“大数定律”的极限定理.现在,大数定律的相关模型已经被国内外广大学者所研究,特别是应用在实际生活中,如保险业得以存在并不断发展壮大的两大基石的一个就是大数定律.许多学者也已经在此领域中研究出了许多有价值的成果,讨论了在统计,信息论,分析、数论等方面的应用.在许多数学领域中,广大学者对某些具有特定类型的数学模型,都能利用大数定律的思考方式总结其代表性的性质及结论,使得这些类型的数学模型在进行讨论的时候大大简化了繁琐的论证过程,方便了研究.大数定律作为概率论的重要内容,其理论成果相对比较完善,这方面的文章较多,结果也比较完美,但对大数定律的应用问题的推广也是一项非常有价值的研究方向,通过对这些问题的应用推广,不仅能加深对大数定律的理解,而且能使之更为有效的服务于各项知识领域中.下面文中就通过对大数定律的讨论,给出了各大数定律之间的关系,归结出一般性结论.最后列举了一些能用大数定律来解决的实例,希望能通过这些实例,来进一步阐明大数定律在各个分支学科中的重要作用,以及在实际生活中的应用价值,加深大家对大数定律的理解.

概率论与数理统计知识点总结!

《概率论与数理统计》 第一章随机事件及其概率 §1.1 随机事件 一、给出事件描述,要求用运算关系符表示事件: 二、给出事件运算关系符,要求判断其正确性: §1.2 概率 古典概型公式:P (A )= 所含样本点数 所含样本点数 ΩA 实用中经常采用“排列组合”的方法计算 补例1:将n 个球随机地放到n 个盒中去,问每个盒子恰有1个球的概率是多少?解:设A : “每个盒子恰有1个球”。求:P(A)=?Ω所含样本点数:n n n n n =???... Α所含样本点数:!1...)2()1(n n n n =??-?-?n n n A P ! )(=∴ 补例2:将3封信随机地放入4个信箱中,问信箱中信的封数的最大数分别为1、2、3的概率各是多少? 解:设A i :“信箱中信的最大封数为i”。(i =1,2,3)求:P(A i )=? Ω所含样本点数:6444 443==?? A 1所含样本点数:24234=?? 8 36424)(1== ∴A P A 2所含样本点数: 363423=??C 16 9 6436)(2== ∴A P A 3所含样本点数:443 3 =?C 16 1644)(3== ∴A P 注:由概率定义得出的几个性质: 1、0

P(A 1+A 2+...+ A n )= P(A 1) + P(A 2) +…+ P(A n ) 推论2:设A 1、 A 2、…、 A n 构成完备事件组,则 P(A 1+A 2+...+ A n )=1 推论3: P (A )=1-P (A ) 推论4:若B ?A ,则P(B -A)= P(B)-P(A) 推论5(广义加法公式): 对任意两个事件A 与B ,有P(A ∪B)=P(A)+P(B)-P(A B) 补充——对偶律: n n A A A A A A ???=???......2121 n n A A A A A A ???=??? (2121) §1.4 条件概率与乘法法则 条件概率公式:P(A/B)= )()(B P AB P (P(B)≠0)P(B/A)= ) () (A P AB P (P(A)≠0) ∴P (AB )=P (A /B )P (B )= P (B / A )P (A ) 有时须与P (A+B )=P (A )+P (B )-P (AB )中的P (AB )联系解题。 全概率与逆概率公式: 全概率公式: ∑==n i i i A B P A P B P 1 )/()()( 逆概率公式: ) () ()/(B P B A P B A P i i = ),...,2,1(n i = (注意全概率公式和逆概率公式的题型:将试验可看成分为两步做,如果要求第二步某事件的概率,就用全概率公式;如果求在第二步某事件发生条件下第一步某事件的概率,就用逆概率公式。) §1.5 独立试验概型 事件的独立性: )()()(B P A P AB P B A =?相互独立与 贝努里公式(n 重贝努里试验概率计算公式):课本P24 另两个解题中常用的结论—— 1、定理:有四对事件:A 与B 、A 与B 、A 与B 、A 与B ,如果其中有一对相互 独立,则其余三对也相互独立。 2、公式:)...(1)...(2121 n n A A A P A A A P ???-=??? 第二章 随机变量及其分布

《概率论与数理统计》期末考试试题及解答

一、填空题(每小题3分,共15分) 1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发 生的概率为__________. 答案:0.3 解: 3.0)(=+B A B A P 即 )(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+= 所以 1.0)(=AB P 9.0)(1)()(=-==AB P AB P B A P . 2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______. 答案: 161-e 解答: λλ λ λλ---= =+==+==≤e X P e e X P X P X P 2 )2(, )1()0()1(2 由 )2(4)1(==≤X P X P 知 λλλ λλ---=+e e e 22 即 0122 =--λλ 解得 1=λ,故 16 1)3(-= =e X P 3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2 X Y =在区间)4,0(内的概率 密度为=)(y f Y _________. 答案: 04,()()0,. Y Y X y f y F y f <<'===? 其它 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 2 ()()())))Y X X F y P Y y P X y y y y y =≤=≤ =≤- - 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故

2概率论与数理统计试卷及答案

第1页 第2页 概率论与数理统计试卷(20170225) 一、单项选择(每小题3分,共30分,答案按左侧学号规则连线成数码数字,不可涂改,否则影响自动评分 ) 1.每次试验的成功概率为)10(<

ε,下列不等式中正确的是( ) (1) 98)91(≥<X P ,则=a ( ) (1) 5 (2) 7 (3) 8 (4) 6 8. 设321,,X X X 为取自同一总体X 的简单随机样本,下列统计量中方差最小的是( ) (1) 321535252X X X ++ (2)321213161X X X ++ (3)32114914371X X X ++ (4)3213 13131X X X ++ 9. 设随机变量ΛΛn X X X ,,,21相互独立且同分布,它的期望为μ,方差为2 σ,令∑==n i i n X n Z 1 1,则 对任意正数ε,有{}= ≥-∞ →εμn n Z P lim ( ) (1)0.5 (2) 1 (3) 0 (4) 上述都不对 10. 设随机变量21,X X 独立,{}5.00==i X P ,{}5.01==i X P ,2,1=i ,下列结论正确的是( ) (1)21X X = (2)1}{21==X X P (3)5.0}{21==X X P (4)以上都不对 二、填空(每小题3分,共18分,右侧对应题号处写答案) 1. 设事件A 与B ,7.0)(=A P ,3.0)(=-B A P ,则=)(AB P ① . 2.已知离散型随机变量X 分布律为{},k P X k C == 1,2,k N =L ,则=C ② ______ 3.总体2~(,)X N μσ,其中2σ已知,则均值μ的置信度为1α-置信区间为 ③ ____________________________________________________________________ 4. 设X 表示10次独立重复射击命中目标的次数,每次射中目标的概率为0.4,则2X 的数学期望)(2X E 为④_________________ 5. 设(621,,,X X X Λ)是来自正态分布)1,0(N 的样本,26 4 2 3 1 )()(∑∑==+=i i i i X X Y , 若 cY 服从2χ分布,则C=⑤_______ 6. 从数1,2,3,4中任取一个数,记为X ,再从X ,,1Λ中任取一个数,记为Y ,则 ==}2{Y P ⑥ (7分)三、 某厂有三条流水线生产同一产品,每条流水线的产品分别占总量的40%,35%,25%,又这三条流水线的次品率分别为0.02, 0.04,0.05。现从出厂的产品中任取一件,问恰好取到次品的概率是多少? (7分)四、 设随机变量X 的密度函数为()f x X ,1+=X Y ,求Y 的概率密度函数. (8分)五. 注意:学号参照范例用铅笔工整书写和填涂,上方写学号,下方填涂,一一对齐;每六点连线确定一个数字,连线不间断,不得涂改;数字1可连左边或右边,请认真完成。本卷共4页,须在虚线框内完成作答。选择题通过填涂选项编号数字作答。 右侧为选择题答案填涂区(答案选项用铅笔连成数字) ,其中选第1项涂1, 选第2项涂2, 以此类推;填涂规 则见学号范例, 六点一个数字,数字1可连接左边或右边三点。注意:框架内只填涂答案,不可书写其他内容,不涂改。

最新统计概率文科题型总结

精品文档 统计和概率高考题型总结 题型一、频率分布直方图 1.对某校高三年级学生参加社区服务次数进行统计, 随机抽取M 名学生作为样本,得到这M 名学生参加社区服务的次数. 根据此数据作出了频数与频率的统计表和频率分布直方图如下: (Ⅰ)求出表中,M p 及图中a 的值; (Ⅱ)若该校高三学生有240人,试估计该校高三学生参加社区服务的次数在区间[10,15) 内的人数; (Ⅲ)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间 [25,30)内的概率. 题型二、古典概型 2.某日用品按行业质量标准分成五个等级,等级系数X 依次为1,2,3,4,5.现从一批该日用品中随机抽取20件,对其等级系数进行统计分析,得到频率分布表如下: (I )若所抽取的20件日用品中,等级系数为4的恰有3件,等级系数为5的恰有2件,求a ,b ,c 的值; (Ⅱ)在(I )的条件下,将等级系数为4的3件日用品记为x 1,x 2,x 3,等级系数为5的2件日用品记为y 1,y 2,现从x 1,x 2,x 3,y 1,y 2这5件日用品中任取两件(假定每件日用品被取出的可能性相同),写出所有可能的结果,并求这两件日用品的等级系数恰好相等的概率. 题型三、回归方程 3.某研究性学习小组对春季昼夜温差大小与某花卉种子发芽多少之间的关系进行研究,他们分别记录了3月1日至3月5

精品文档 (I )从3月1日至3月5日中任选2天,记发芽的种子数分别为,,求事件“,均小于25”的概率; (II )请根据3月2日至3月4日的数据,求出y 关于x 的线性回归方程???y bx a =+; (III )若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方 程是可靠的,试问(II )所得的线性回归方程是否可靠? (参考公式:回归直线方程式???y bx a =+,其中1 2 2 1 ???,n i i i n i i x y nx y b a y bx x nx ==-==--∑∑) 题型四、独立性检验 4. 为了解学生喜欢数学是否与性别有关,对50个学生进行了问卷调查得到了如下的列联表: (1(2(参考公式:2 () ()()()() n a d b c K a bc d a cb d -=+ +++,其中na b cd =+++ ) 题型五、茎叶图 5.随机抽取某中学甲、乙两班各10名同学,测量它们的身高(单位:cm ),获得身高数据的茎叶图如图所示。 甲班 乙班 2 18 1 9 9 1 0 17 0 3 6 8 9 8 8 3 2 16 2 5 8 8 15 9 (1) 根据茎叶图判断哪两个班的平均身高较高; (2) 计算甲班的样本方差; (3) 现从乙班这10名同学中随机抽取两名身高不低于173cm 的同学,求身高为176cm 的同学被抽中的概率。 题型六、分层抽样 已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19. (1) 求x 的值;

概率统计大题总结

概率与统计大题总结 一、 知识点汇编: 1.线性回归分析 (1)函数关系是一种确定性关系,而相关关系是一种非确定性关系.回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法. (2)线性回归分析:方法是画散点图,求回归直线方程,并用回归直线方程进行预报.其回归方程的截距和斜率的最小二乘估计公式分别为: 回归模型中,R 2表示解释变量对于预报变量变化的贡献率.R 2越接近于1,表示回归的效果越好.如果对某组数据可能采取几种不同的回归方程进行回归分析,也可以通过比较几个R 2,选择R 2大的模型作为这组数据的模型. 说明:r 只能用于线性模型,R 2则可用于任一种模型. 对线性回归模型来说,2 2 =R r . 3、独立性检验 (1)对于性别变量,其取值为男和女两种.这种变量的不同“值”表示个体所属的不同类 别,像这类变量称为分类变量. (2)假设有两个分类变量X 和Y ,它们的值域分别为{}11x ,y 和{}12y ,y 其样本频数列联表

称为 y 1 y 2 总计 x 1 a b a +b x 2 c d c +d 总计 a +c b +d a + b + c +d (3)构造随机变量()()()()()() 2 2 +++-= ++++a b c d ad bc K ,a b c d a c b d 利用K 2的大小可以确定在多大程度上可以认为“两个分类变量有关系”,这种方法称为 如:如果k >7.879,就有99.5%的把握认为“X 与Y 有关系”. 4、概率 事件的关系: ⑴事件B 包含事件A :事件A 发生,事件B 一定发生,记作B A ?; ⑵事件A 与事件B 相等:若A B B A ??,,则事件A 与B 相等,记作A=B ; ⑶并(和)事件:某事件发生,当且仅当事件A 发生或B 发生,记作B A ?(或B A +) ; ⑷并(积)事件:某事件发生,当且仅当事件A 发生且B 发生,记作B A ?(或 AB ) ; ⑸事件A 与事件B 互斥:若B A ?为不可能事件(φ=?B A ),则事件A 与互斥;

概率论与数理统计期末考试题及答案

创作编号: GB8878185555334563BT9125XW 创作者: 凤呜大王* 模拟试题一 一、 填空题(每空3分,共45分) 1、已知P(A) = 0.92, P(B) = 0.93, P(B|A ) = 0.85, 则P(A|B ) = 。 P( A ∪B) = 。 3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率: ;没有任何人的生日在同一个月份的概率 ; 4、已知随机变量X 的密度函数为:, ()1/4, 020,2 x Ae x x x x ??

8、设总体~(0,)0X U θθ>为未知参数,12,,,n X X X 为其样本, 1 1n i i X X n ==∑为样本均值,则θ的矩估计量为: 。 9、设样本129,, ,X X X 来自正态总体(,1.44)N a ,计算得样本观察值10x =, 求参数a 的置信度为95%的置信区间: ; 二、 计算题(35分) 1、 (12分)设连续型随机变量X 的密度函数为: 1, 02()2 0, x x x ??≤≤?=???其它 求:1){|21|2}P X -<;2)2 Y X =的密度函数()Y y ?;3)(21)E X -; 2、(12分)设随机变量(X,Y)的密度函数为 1/4, ||,02,(,)0, y x x x y ?<<??

概率论与数理统计(二)试题及答案

概率论与数理统计B 一.单项选择题(每小题3分,共15分) 1.设事件A 和B 的概率为12 () ,()23 P A P B == 则()P AB 可能为()(A) 0; (B) 1; (C) 0.6; (D) 1/6 2. 从1、2、3、4、5 这五个数字中等可能地、有放回地接连抽取两个数字,则这两个数字不相同的概率为() (A) 12; (B) 225; (C) 4 25 ; (D)以上都不对 3.投掷两个均匀的骰子,已知点数之和是偶数,则点数之和为6的概率为( )(A) 518; (B) 13; (C) 1 2 ; (D)以上都不对 4.某一随机变量的分布函数为()3x x a be F x e += +,(a=0,b=1)则F (0)的值为( )(A) 0.1; (B) 0.5; (C) 0.25; (D)以上都不对 5.一口袋中有3个红球和2个白球,某人从该口袋中随机摸出一球,摸得红球得5分,摸得白球得2分,则他所得分数的数学期望为( ) (A) 2.5; (B) 3.5; (C) 3.8; (D)以上都不对 二.填空题(每小题3分,共15分) 1.设A 、B 是相互独立的随机事件,P (A )=0.5, P (B )=0.7, 则()P A B = . 2.设随机变量~(,), ()3, () 1.2B n p E D ξ ξξ==,则n =______. 3.随机变量ξ的期望为() 5E ξ=,标准差为()2σξ=,则2()E ξ=_______. 4.甲、乙两射手射击一个目标,他们射中目标的概率分别是0.7和0.8.先由甲射击,若甲未射中再由乙射击。设两人的射击是相互独立的,则目标被射中的概率为_________. 5.设连续型随机变量ξ的概率分布密度为 2 ()22 a f x x x = ++,a 为常数,则P (ξ≥0)=_______. 三.(本题10分)将4个球随机地放在5个盒子里,求下列事件的概率 (1) 4个球全在一个盒子里; (2) 恰有一个盒子有2个球. 四.(本题10分) 设随机变量ξ的分布密度为 , 03()10, x<0x>3 A x f x x ?? =+???当≤≤当或 (1) 求常数A ; (2) 求P (ξ<1); (3) 求ξ的数学期望. 五.(本题10分) 设二维随机变量(ξ,η)的联合分布是 (1) ξ与η是否相互独立? (2) 求ξ η?的分布及()E ξη?; 六.(本题10分)有10盒种子,其中1盒发芽率为90%,其他9盒为20%.随机选取其中1盒,从中取出1粒种子,该种子能发芽的概率为多少?若该种子能发芽,则它来自发芽率高的1盒的概率是多少? 七.(本题12分) 某射手参加一种游戏,他有4次机会射击一个目标.每射击一次须付费10元. 若他射中目标,则得奖金100元,且游戏停止. 若4次都未射中目标,则游戏停止且他要付罚款100元. 若他每次击中目标的概率为0.3,求他在此游戏中的收益的期望. 八.(本题12分)某工厂生产的零件废品率为5%,某人要采购一批零件,他希望以95%的概率保证其中有2000个合格品.问他至少应购买多少零件?(注:(1.28)0.90Φ=,(1.65)0.95Φ=) 九.(本题6分)设事件A 、B 、C 相互独立,试证明A B 与 C 相互独立. 某班有50名学生,其中17岁5人,18岁15人,19岁22人,20岁8人,则该班学生年龄的样本均值为________. 十.测量某冶炼炉内的温度,重复测量5次,数据如下(单位:℃):

济南大学概率论A大作业答案

第一章 概率论的基本概念 一、填空题 1.;)3(;)2(;)1(C B A C B A C B A C B A C AB )()4(C B C A B A C B A C B A C B A C B A 或; 2. 2 1 81,; 3.6.0; 4. 733.0,; 5. 8.0,7.0; 6. 87; 7. 85; 8. 996.01211010 12或A -; 9. 2778.0185 6 446==A ;10. p -1. 二、选择题 D ;C ;B ;A ;D ; C ;D ;C ;D ;B . 三、解答题 1.解:).()()()(),((AB P B P AB P A P A B P B A P -=-∴=) 相互独立, 又)B A B A P B P A P ,,9 1 )(),((==∴ .3 2 )(,91)](1[)()()()(22=∴=-===∴A P A P A P B P A P B A P 2.解: 设事件A 表示“取得的三个数字排成一个三位偶数”,事件B 表示“此三位偶数的末 尾为0”,事件B 表示“此三位偶数的末尾不为0”,则: =)(A P )()(B P B P += .125 3 4 1 2123423=+A A A A A 3.解:设A i =“飞机被i 人击中”,i =1,2,3 , B =“飞机被击落”, 则由全概率公式: )()()()((321321B A P B A P B A P B A B A B A P B P ++== ) )()()()()()(332211A B P A P A B P A P A B P A P ++= (1) 设1H =“飞机被甲击中”,2H =“飞机被乙击中”,3H =“飞机被丙击中”, 则: =)(1A P 321(H H H P 321(H H H P 321(H H H P ) =+)(321H H H P +)(321H H H P )(321H H H P ) 由于甲、乙、丙的射击是相互独立的,

概率统计大题题型总结(理)学生版

统计概率大题题型总结 题型一 频率分布直方图与茎叶图 例1.(2013广东理17)某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如 图所示,其中茎为十位数,叶为个位数. (Ⅰ) 根据茎叶图计算样本均值; (Ⅱ) 日加工零件个数大于样本均值的工人为优秀工人,根据茎叶图推断该车间12名工人中有几名优秀工人; (Ⅲ) 从该车间12名工人中,任取2人,求恰有名优秀工人的概率. 例2.(2013新课标Ⅱ理)经销商经销某种农产品,在一个销售季度内,每售出t 该产品获利润500 元,未售出的产品,每t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t 该农产品,以X (单位:t,150100≤≤X )表示下一个销售季度内的市场需求量,T (单位:元)表示下一个销售季度内销商该农产品的利润. (Ⅰ)将T 表示为X 的函数; (Ⅱ)根据直方图估计利润T 不少于57000元的概率; 1 7 9 2 0 1 5 3 0 第17题图

(Ⅲ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若[100,110)X ∈,则取105X =,且105X =的概率等于需求量落入[100,110)的概率),求利润T 的数学期望. 变式1. 【2015高考重庆,理3】重庆市2013年各月的平均气温(o C )数据的茎叶图如下: 08912 58 200338312 则这组数据的中位数是( ) A 、19 B 、20 C 、21.5 D 、23 /频率组距0.010 0.0150.0200.0250.030100110120130140150需求量/x t

概率统计试题和答案

题目答案的红色部分为更正部分,请同志们注意下 统计与概率 1.(2017课标1,理2)如图,正方形ABCD 内的图形来自中国古代的 太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中 心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( B ) A .14 B . π8 C .12 D . π 4 2.(2017课标3,理3)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图. 根据该折线图,下列结论错误的是( A ) A .月接待游客量逐月增加 B .年接待游客量逐年增加 C .各年的月接待游客量高峰期大致在7,8月 D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 3.(2017课标2,理13)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则D X = 。 4.(2016年全国I 理14)5(2)x x + 的展开式中,x 3的系数是 10 .(用数字填写答案) 5.(2016年全国I 理14)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( B ) (A )13 (B )12 (C )23 (D )3 4 5.(2016年全国2理10)从区间[]0,1随机抽取2n 个数1x ,2x ,…,n x ,1y ,2y ,…,n y ,构成n 个数对()11,x y , ()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近 似值为( C )(A ) 4n m (B )2n m (C )4m n (D )2m n 6.(2016年全国3理4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气 温的雷达图。图中A 点表示十月的平均最高气温约为150 C ,B 点表示四月的平均 最低气温约为50 C 。下面叙述不正确的是( D ) (A) 各月的平均最低气温都在00 C 以上 (B) 七月的平均温差比一月的平均温差大 (C) 三月和十一月的平均最高气温基本相同 (D) 平均气温高于200 C 的月份有5个 7.(15年新课标1理10)投篮测试中,每人投3次,至少投中2次才能通过测试。已知某同学每次投

概率论与数理统计试题及答案2[1]

概率论与数理统计B 二.填空题(每小题3分,共15分) 1.设A 、B 是相互独立的随机事件,P (A )=0.5, P (B )=0.7, 则()P A B = . 2.设随机变量~(,), ()3, () 1.2B n p E D ξ ξξ==,则n =______. 3.随机变量ξ的期望为() 5E ξ=,标准差为()2σξ=,则2()E ξ=_______. 4.甲、乙两射手射击一个目标,他们射中目标的概率分别是0.7和0.8.先由甲射击,若甲未射中再由乙射击。设两人的射击是相互独立的,则目标被射中的概率为_________. 5.设连续型随机变量ξ的概率分布密度为 2()22 a f x x x = ++,a 为常数,则P (ξ ≥0)=_______. 三.(本题10分)将4个球随机地放在5个盒子里,求下列事件的概率 (1) 4个球全在一个盒子里; (2) 恰有一个盒子有2个球. 四.(本题10分) 设随机变量ξ的分布密度为 , 03()10, x<0x>3 A x f x x ?? =+???当≤≤当或 (1) 求常数A ; (2) 求P (ξ<1); (3) 求ξ的数学期望. 五.(本题10分) 设二维随机变量(ξ,η)的联合分布是 (1) ξ与η是否相互独立? (2) 求ξη?的分布及()E ξη?; 六.(本题10分)有10盒种子,其中1盒发芽率为90%,其他9盒为20%.随机选取其中1盒,从中取出1粒种子,该种子能发芽的概率为多少?若该种子能发芽,则它来自发芽率高的1盒的概率是多少? 七.(本题12分) 某射手参加一种游戏,他有4次机会射击一个目标.每射击一次须付费10元. 若他射中目标,则得奖金100元,且游戏停止. 若4次都未射中目标,则游戏停止且他要付罚款100元. 若他每次击中目标的概率为0.3,求他在此游戏中的收益的期望. 八.(本题12分)某工厂生产的零件废品率为5%,某人要采购一批零件,他希望以95%的概率保证其中有2000个合格品.问他至少应购买多少零件? (注:(1.28)0.90Φ=,(1.65)0.95Φ=) 九.(本题6分)设事件A 、B 、C 相互独立,试证明A B 与C 相互独立. 某班有50名学生,其中17岁5人,18岁15人,19岁22人,20岁8人,则该班学生年龄的样本均值为 ________. 十.测量某冶炼炉内的温度,重复测量5次,数据如下(单位:℃): 1820,1834,1831,1816,1824 假定重复测量所得温度2~(,)N ξ μσ.估计10σ=,求总体温度真值μ 的0.95的置信区间. (注:

概率论与数理统计大纲各章节作业

第一章随机事件与概率 1. 将一枚均匀的硬币抛两次,事件C B A ,,分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”。试写出样本空间及事件C B A ,,中的样本点。 解:Ω={(正,正),(正,反),(反,正),(反,反)}; A={(正,反),(正,正)}; B={(正,正),(反,反)}; C={(正,反),(正,正),(反,正)}。 2.设31)(=A P ,2 1)(=B P ,试就以下三种情况分别求)(A B P : (1)AB =?,(2)B A ?,(3)81)(=AB P 解: (1)5.0)()()()()(==-=-=B P AB P B P AB B P A B P (2)6/13/15.0)()()()()()(=-=-=-=-=A P B P AB P B P AB B P A B P (3)375 .0125.05.0)()()()(=-=-=-=AB P B P AB B P A B P 3.某人忘记了电话号码的最后一个数字,因而随机的拨号,求他 拨号不超过三次而接通所需的电话的概率是多少如果已知最后一个数字是奇数,那么此概率是多少 解: 记H 表拨号不超过三次而能接通。 Ai 表第i 次拨号能接通。 注意:第一次拨号不通,第二拨号就不再拨这个号码。 10 3819810991109101) |()|()()|()()()(2131211211321211=??+?+= ++=∴ ++=A A A P A A P A P A A P A P A P H P A A A A A A H 三种情况互斥 Θ 如果已知最后一个数字是奇数(记为事件B )问题变为在B 已发生的条件下,求H 再发生的概率。

概率统计试题库及答案

、填空题 1、设 A 、B 、C 表示三个随机事件,试用 A 、B 、C 表示下列事件:①三个事件都发生 ____________ ;__②_ A 、B 发生,C 3、 设 A 、 B 、C 为三个事件,则这三个事件都不发生为 ABC; A B C.) 4、 设 A 、B 、C 表示三个事件,则事件“A 、B 、C 三个事件至少发生一个”可表示为 ,事件“A 、B 、 C 都发生”可表 示为 , 5、 设 A 、 B 、 C 为三事件,则事件“A 发生 B 与 C 都不发生”可表示为 ________ 事__件; “A 、B 、C 不都发生”可表 示为 ____________ ;_事_ 件“A 、B 、C 都不发生”可表示为 ____ 。_(_ABC ,A B C ;A B C ) 6、 A B ___________ ;__ A B ___________ ;__A B ___________ 。_(_ B A , A B , A B ) 7、 设事件 A 、B 、C ,将下列事件用 A 、B 、C 间的运算关系表示:(1)三个事件都发生表示为: _______ ;_(_ 2)三 个 事件不都发生表示为: ________ ;_(_ 3)三个事件中至少有一个事件发生表示为: _____ 。_(_ ABC , A B C , A B C ) 8、 用 A 、B 、C 分别表示三个事件,试用 A 、B 、C 表示下列事件: A 、B 出现、C 不出现 ;至少有一 个 事 件 出 现 ; 至 少 有 两 个 事 件 出 现 。 ( ABC,A B C,ABC ABC ABC ABC ) 9、 当且仅当 A 发生、 B 不发生时,事件 ________ 发_生_ 。( A B ) 10、 以 A 表 示 事 件 “甲 种 产 品 畅 销 , 乙 种 产 品 滞 销 ”, 则 其 对 立 事 件 A 表 示 。(甲种产品滞销或乙种产品畅销) 11、 有R 1, R 2 , R 3 三个电子元件,用A 1,A 2,A 3分别表示事件“元件R i 正常工作”(i 1,2,3) ,试用 A 1,A 2,A 3表示下列事件: 12、 若事件 A 发生必然导致事件 B 发生,则称事件 B _____ 事_件 A 。(包含) 13、 若 A 为不可能事件,则 P (A )= ;其逆命题成立否 。(0,不成立) 14、 设A、B为两个事件, P (A )=0 .5, P (A -B )=0.2,则 P (A B ) 。(0.7) 15、 设P A 0.4,P A B 0.7,若 A, B 互不相容,则P B ______________ ;_若 A, B 相互独立,则P B _______ 。_(_0.3, 概率论与数理统计试题库 不发生 _________ ;__③三个事件中至少有一个发生 2、 设 A 、B 、C 为三个事件,则这三个事件都发生为 _______________ 。_(__A_BC , ABC , A B C ) ;三个事件恰有一个发生 为 ABC; ABC ABC ABC )。 ;三个事件至少有一个发生为 事件“A 、 B 、C 三事件中至少有两个发生”可表示为 。( A B C , ABC , AB BC AC ) 三个元件都正常工作 ;恰有一个元件不正常工作 至少有一个元件 正常工作 。( A 1 A 2 A 3, A 1A 2 A 3 A 1 A 2A 3 A 1A 2A 3,A 1 A 2 A 3)

概率论与数理统计考试试卷与答案

0506 一.填空题(每空题2分,共计60 分) 1、A、B 是两个随机事件,已知p(A) 0.4,P(B) 0.5,p(AB) 0.3 ,则p(A B) 0.6 , p(A -B) 0.1 ,P(A B)= 0.4 , p(A B) 0.6。 2、一个袋子中有大小相同的红球6只、黑球4只。(1)从中不放回地任取2 只,则第一次、第二次取红色球的概率为:1/3 。(2)若有放回地任取 2 只,则第一次、第二次取红色球的概率为:9/25 。( 3)若第一次取一只球观查球颜色后,追加一只与其颜色相同的球一并放入袋中后,再取第二只,则第一次、第二次取红色球的概率为:21/55 。 3、设随机变量X 服从B(2,0.5)的二项分布,则p X 1 0.75, Y 服从二项分 布B(98, 0.5), X 与Y 相互独立, 则X+Y 服从B(100,0.5),E(X+Y)= 50 , 方差D(X+Y)= 25 。 4、甲、乙两个工厂生产同一种零件,设甲厂、乙厂的次品率分别为0.1、 0.15.现从由甲厂、乙厂的产品分别占60%、40%的一批产品中随机抽取 一件。 ( 1)抽到次品的概率为:0.12 。 2)若发现该件是次品,则该次品为甲厂生产的概率为:0.5 6、若随机变量X ~N(2,4)且(1) 0.8413 ,(2) 0.9772 ,则P{ 2 X 4} 0.815 , Y 2X 1,则Y ~ N( 5 ,16 )。

7、随机变量X、Y 的数学期望E(X)= -1,E(Y)=2, 方差D(X)=1 ,D(Y)=2, 且 X、Y 相互独立,则:E(2X Y) - 4 ,D(2X Y) 6 。 8、设D(X) 25 ,D( Y) 1,Cov( X ,Y) 2,则D(X Y) 30 9、设X1, , X 26是总体N (8,16)的容量为26 的样本,X 为样本均值,S2为样本方 差。则:X~N(8 ,8/13 ),25S2 ~ 2(25),X 8 ~ t(25)。 16 s/ 25 10、假设检验时,易犯两类错误,第一类错误是:”弃真” ,即H0 为真时拒绝H0, 第二类错误是:“取伪”错误。一般情况下,要减少一类错误的概率,必然增大另一类错误的概率。如果只对犯第一类错误的概率加以控制,使之

相关文档
相关文档 最新文档