文档库 最新最全的文档下载
当前位置:文档库 › 南开大学数学分析答案2005

南开大学数学分析答案2005

南开大学数学分析答案2005
南开大学数学分析答案2005

2005年南开大学数学分析试题答案

0D .1为成奇函数,所以该积分轴对称,被积函数关于关于由于y x 2.x z f x y f f dx du z y x ??+??+=,其中x z x y ????,由 00=??+??+=??+??+x z h x y h h x z g x y g g z y x z y

x 求出 =??--=??x z h g h g g h g h x y y z z y x z z x ,y

z z y x y y x h g h g g h g h -- 3.?∑+=-=-=∞→1021

23234)(411lim πx dx n k n n

k n 4.t

x dt t M +≤?1,2sin 0在),0(+∞∈x 上单调一致趋于0,则)(x f 在),0(+∞∈x 上一致收敛,又t

x t +sin 在),0(+∞∈x 上连续,则)(x f 在),0(+∞∈x 上连续。 5.由泰勒公式)!1(!1!21!111+++++=n e n e ξ

,则

)!

1()!1(!1!21!111+≤+=+++-n e n e n e ξ ,后者收敛,则原级数收敛。 6.由拉格朗日中值定理,

,)('1)(122n

M n Mx n x f n n x f n ≤≤=ξ后者收敛,由魏尔特拉斯定理,原级数一致收敛。

由)(x s 一致收敛,则可以逐项求导,∑∞==

12)(')('n n n x f x s 也一致收敛且连续,故)(x s 连续可导

7.反证:设存在),(00y x 有0),)((00≠??-??y x y P x Q ,不妨设0),)((00>??-??y x y

P x Q ,由连

续函数的局部保号性,知道存在一个邻域,δ当δ∈),(y x 时0),)((>??-??y x y

P x Q ,则存在一个圆周,

0δ?C ???=+D Qdy Pdx 0)(>??-??dxdy y P x Q 与已知矛盾。 8.当2

0a x ≤≤时,x x f x f ≤=)('')('ξ a x a ≤≤2

时,x a a x f x f -≤-=))(('')('η,综上,)()('x g x f ≤ )2(若对任意的),0(a x ∈有)()('x g x f =,则在2

a x =时,)(''x f 不存在,矛盾。 )3(设当U x ∈时,0)()('<-x g x f 当U a x \),0(∈时0)()('=-x g x f ,两边对x 积分即可

6.))(()()(000x x x g x g x f -≥- ,))(()()(00x x x g x f x f -≥-,由)(x g 在),(b a 上有定义,则)(x g 在),(b a 上有界,则可以得到)(x f 在),(b a 上连续。

210)2(x x x <<,则121210101)()()()()(x x x f x f x g x x x f x f --≤≤--,则

02020101)()()()(x x x f x f x x x f x f --≤--则0

0)()(x x x f x f --单调递增有下界,存在右极限,)(0'x f +存在,同理)(0'x f -存在,由极限的保不等式性可得

南开大学数学分析考研试卷答案

南开大学年数学分析考研试卷答案 一、 设),,(x y x y x f w -+= 其中),,(z y x f 有二阶连续偏导数,求xy w . 解:令u =x +y ,v =x -y ,z =x ,则z v u x f f f w ++=; )1()1()1(-++-++-+=zv zu vv vu uv uu xy f f f f f f w 二、 设数列}{n a 非负单增且a a n n =∞ →lim ,证明 a a a a n n n n n n =+++∞ →1 21][lim . 解:因为a n 非负单增,故有n n n n n n n n n na a a a a 11 21)(][≤+++≤ . 由a a n n =∞ →lim ;据两边夹定理有极限成立。 三、 设? ??≤>+=0 ,00),1ln()(2 x x x x x f α,试确定α的取值范围,使f (x )分别满足: (1) 极限)(lim 0x f x + →存在 (2) f (x )在x=0连续 (3) f (x )在x=0可导 解:(1)因为 )(lim 0x f x + →=)1ln(lim 2 0x x x ++ →α=)]()1(2[lim 221420n n n x x o n x x x x +-++- -→+ α极限存在,则 2+α0≥知α2-≥. (2)因为)(lim 0 x f x - →=0=f(0)所以要使f(x)在0连续则2->α . (3)0)0(='- f 所以要使f(x)在0可导则1->α. 四、设f (x )在R 连续,证明积分ydy xdx y x f l ++?)(22与积分路径无关. 解;令U =22 y x +,则ydy xdx y x f l ++?)(22=2 1du u f l )(?又f (x )在R 上连续,故存 在F (u )使d F (u )=f (u )du=ydy xdx y x f ++)(22. 所以积分与路径无关。

2015年武汉大学线性代数考研真题

2015年线性代数 一、 ①证明?? ????-C B C A A 可逆的充要条件是AB 可逆 ②若??????-C B C A A 可逆,求出?? ????-C B C A A 的逆。 二、r b A r A r b ==≠),()(,0,b Ax =的所有解集合为S,证明: ①S 中包含1+-r n 个线性无关的向量121,...,+-r n ηηη。 ②ξ是S 中元素充要条件是存在)1...,2,1(,+-=r n i k i , 111=∑+-=r n i i k ,使得 ∑+-==1 1r n i i i k ηξ 三、已知A 为实正交矩阵,det(A)=1,证明存在正交矩阵P ,使得 21cos ,cos sin 0sin cos 00 01 332211'-++=??????????-=a a a AP P θθθθθ 其中。 四、以下有关矩阵秩的命题在数域F 上判断正误,如正确请说明理由,如不正确请举例说明。 (1)、若)()(B r A r =,则()()* *B r A r = (2)、若())(B r AB r =,则)()(BC r ABC r = (3)、)()('AA r A r = (4)、若一个对称矩阵的秩为r ,则有一个非0 的r 阶主子式。 五、A 是n 阶实对称矩阵,其正负惯性指数分别是q p ,, AX X x f ')(=,记{} n f R x x f x N ∈==,0)(|,证明: (1)、包含于f N 的线性空间维数至多是),max(q p n - (2)、若w 是n R 的一个线性子空间,将二次型限定w 在中,得到的正负惯性指数分别是p1,q1,则有q q p p ≤≤11,。

2015年数学考研数学分析各名校考研真题及答案

2015年考研数学分析真题集 目录 南开大学 北京大学 清华大学 浙江大学 华中科技大学

2014年浙江大学数学分析试题答案 一、,,0N ?>?ε当N n >时,ε<->>?m n a a N n N m ,, 证明:该数列一定是有界数列,有界数列必有收敛子列 }{k n a ,a a k n k =∞ →lim , 所以, ε2<-+-≤-a a a a a a k k n n n n 二 、,,0N ?>?ε当N x >时,ε<-)()(x g x f ,,0,01>?>?δε当1'''δ<-x x 时, ε<-)''()'(x f x f 对上述,0>ε当N x x >'','时,且1'''δ<-x x ε3)''()'()''()''()'()'()''()'(<-+-+-≤-x f x f x f x g x g x f x g x g 当N x x <'','时,由闭区间上的连续函数一定一致收敛,所以,0,02>?>?δε2'''δ<-x x 时 ε<-)''()'(x g x g ,当'''x N x <<时,由闭区间上的连续函数一定一致收敛,在 ],['','22δδ+-∈N N x x 时,ε<-)''()'(x g x g ,取},min{21δδδ=即可。 三、由,0)('',0)('<>x f a f 得,0)('a f ,所以 )(x f 必有零点,又)(x f 递减,所以有且仅有一个零点。 四、? ?==1 0,)(1)()(x dt t f x dt xt f x ?2 )()()('x dt t f x x f x x ? - =?, 2 2)(lim )(lim ) (lim )0('0 2 A x x f x dt t f x x x x x x ====→→→???, 2)(lim )(lim )() (lim )('lim 20 0020 00A x dt t f x x f x dt t f x x f x x x x x x x =-=-=?? →→→→?,)('x ?在0=x 连续。 五、当k m ≠时,不妨设k m <, ? ?--+--= 1 1 11 )(2)(2])1[(])1[(!!21 )()(dx x x k m dx x P x P k k m m k m k m = --? -dx x x k k m m 1 1 )(2)(2])1[(])1[(dx x x x x m m k k k k m m ?-+--------1 1 )1(2)1(211 ) 1(2 ) (2 ])1[(])1[(] )1[(])1[(=

2015武汉大学数学分析考研真题

2015武汉大学数学分析 一、(40分) 1、.) 1()1)(1()1()1)(1(lim 2111------+--→k k n n n x x x x x x x 2、.sin cos cos lim 20x bx ax m n x -→ 3、).11(lim 132 n -+∑=∞→n k n k 4、已知 2 110n a a n n +≤<+,证明数列{}n a 极限存在。 二、已知曲面0)))((,))(((11=------c z y b c z x a F ,且),(t s F 二阶偏导连续,梯度处处不为零,(1)证明,曲面的切平面必过一定点;(2)()y x z z ,=,证明 .02 22222=??? ? ?????-?????y x z y z x z 三、0>n a ,01lim 1n >=??? ? ??-+∞→λa a n n n ,证明,()∑∞=--111n n n a 收敛. 四、求?????????????? ??--??-∞→t t y x t dxdy y x e e e 00t lim 的极限,或证明它不存在。 五、(1)、求积分()??+ππ 00cos dxdy y x 的值,(2)、10<<α,求积分()d t t f ?1 α的上确界,其中)t (f 是连续函数, ().110 ≤?dt t f 六、已知()dt x tx f ?∞+=0 21cos t ,证明, (1)、()x f 在()∞+∞, -上一致收敛; (2)()0lim =∞→t f t (3)()x f 在()∞+∞, -上一致连续; (4)()0dt sin 0 ≤?∞ t t f ;

南开大学数学分析答案2005

2005年南开大学数学分析试题答案 0D .1为成奇函数,所以该积分轴对称,被积函数关于关于由于y x 2.x z f x y f f dx du z y x ??+??+=,其中x z x y ????,由 00=??+??+=??+??+x z h x y h h x z g x y g g z y x z y x 求出 =??--=??x z h g h g g h g h x y y z z y x z z x ,y z z y x y y x h g h g g h g h -- 3.?∑+=-=-=∞→1021 23234)(411lim πx dx n k n n k n 4.t x dt t M +≤?1,2sin 0在),0(+∞∈x 上单调一致趋于0,则)(x f 在),0(+∞∈x 上一致收敛,又t x t +sin 在),0(+∞∈x 上连续,则)(x f 在),0(+∞∈x 上连续。 5.由泰勒公式)!1(!1!21!111+++++=n e n e ξ ,则 )! 1()!1(!1!21!111+≤+=+++-n e n e n e ξ ,后者收敛,则原级数收敛。 6.由拉格朗日中值定理, ,)('1)(122n M n Mx n x f n n x f n ≤≤=ξ后者收敛,由魏尔特拉斯定理,原级数一致收敛。 由)(x s 一致收敛,则可以逐项求导,∑∞== 12)(')('n n n x f x s 也一致收敛且连续,故)(x s 连续可导 7.反证:设存在),(00y x 有0),)((00≠??-??y x y P x Q ,不妨设0),)((00>??-??y x y P x Q ,由连

武汉大学数学分析考试解答

武汉大学2004年攻读硕士学位研究生入学考试试题 科目名称:数学分析 科目代码:369 一、计算下列各题: 1. 2. 2212lim(...),(1)11()1lim()11(1)1n n n n n n a a a a n a a a a a a →∞→∞+++>-=-=---lim(sin 1sin ) 11lim 2sin()cos 2211lim 2sin cos 22(1) x x x x x x x x x x x x x →∞ →∞→∞+-+-++=++=++= 3. 4. 20 30 220sin()lim sin()lim (')313x x x t dt x x L Hospital x →→==?法则2 1 11 arctan 2arctan(21)arctan(21)244 k k k k k πππ∞ =∞ ==+--=-=∑∑ 5. 4812 4812323 3 1... ()59!13!1()...3!11!15! ()()sin ()4()()()24x x A B e e A x B x x A e e e e B A x B x π π πππππππππππππππππππ---+ +++= ++++-?-=??==?--+= ??!7! 6. " '2"22' 2(,)()(),()(,) (,)()()()() (,)()(23)()(1)()xy x xy y xy x y y xy F x y x yz f z dz f z F x y F x y z f z dz x xy xf xy x x F x y f x y f xy xy y f xy y y =-=-+-= +-+-??设:其中为可微函数,求

数学分析各校考研试题与答案

2003南开大学年数学分析 一、设),,(x y x y x f w -+=其中),,(z y x f 有二阶连续偏导数,求xy w 解:令u=x+y,v=x-y,z=x 则z v u x f f f w ++=; )1()1()1(-++-++-+=zv zu vv vu uv uu xy f f f f f f w 二、设数列}{n a 非负单增且a a n n =∞ →lim ,证明a a a a n n n n n n =+++∞ →1 21 ] [lim 解:因为an 非负单增,故有n n n n n n n n n na a a a a 1 1 21)(][≤ +++≤ 由 a a n n =∞ →lim ;据两边夹定理有极限成立。 三、设? ? ?≤>+=0 ,00),1ln()(2 x x x x x f α试确定α的取值围,使f(x)分别满足: (1) 极限)(lim 0x f x + →存在 (2) f(x)在x=0连续 (3) f(x)在x=0可导 解:(1)因为 )(lim 0x f x + →=)1ln(lim 20x x x ++ →α=)]()1(2[lim 221420n n n x x o n x x x x +-++--→+ α极限存在则2+α0≥知α2-≥ (2)因为)(lim 0 x f x - →=0=f(0)所以要使f(x)在0连续则2->α (3)0)0(='- f 所以要使f(x)在0可导则1->α 四、设f(x)在R 连续,证明积分ydy xdx y x f l ++?)(22与积分路径无关 解;令U=22 y x +则ydy xdx y x f l ++?)(22=2 1du u f l )(?又f(x)在R 上连续故存在F (u ) 使dF(u)=f(u)du=ydy xdx y x f ++)(22 所以积分与路径无关。 (此题应感小毒物提供思路) 五、 设 f(x)在[a,b]上可导, 0)2 (=+b a f 且 M x f ≤')(,证明 2) (4)(a b M dx x f b a -≤?

[考试必备]武汉大学数学分析考研试题集锦(1992,1994-2012年)

武汉大学数学分析1992 1.给定数列如下: }{n x 00>x ,?? ? ???+?=?+11)1(1k n n n x a x k k x ,",2,1,0=n (1)证明数列收敛。 }{n x (2)求出其极限值。 2.设函数定义在区间)(x f I 上,试对“函数在)(x f I 上不一致连续”的含义作一肯定语气的(即不用否定词的)叙述,并且证明:函数在区间x x ln ),0(+∞上不一致连续。 3.设函数在区间上严格递增且连续,)(x f ],0[a 0)0(=f ,为的反函数,试证明成立等式: 。 )(x g )(x f []x x g a x x f a f a d )(d )()(0 0∫ ∫?=4.给定级数∑+∞ =+01 n n n x 。 (1)求它的和函数。 )(x S (2)证明广义积分 x x S d )(10 ∫ 收敛,交写出它的值。 5.对于函数??? ????=+≠++=0,00,),(222 22 22y x y x y x y x y x f ,证明: (1)处处对),(y x f x ,对可导; y (2)偏导函数,有界; ),(y x f x ′),(y x f y ′(3)在点不可微。 ),(y x f )0,0((4)一阶偏导函数,中至少有一个在点不连续。 ),(y x f x ′),(y x f y ′)0,0(6.计算下列积分: (1)x x x x a b d ln 10 ?∫ ,其中为常数,b a ,b a <<0。 (2),其中为平面上由直线∫∫?D y y x e d d 2 D x y =及曲线31 x y =围成的有界闭区域。 武汉大学数学分析1994 1.设正无穷大数列(即对于任意正数}{n x M ,存在自然数,当时,成立), N N n >M x n >E 为的一切项组成的数集。试证必存在自然数}{n x p ,使得E x p inf =。 2.设函数在点的某空心邻域内有定义,对于任意以为极限且含于的数列 ,极限都存在(有限数)。 )(x f 0x 0 U 0x 0 U }{n x )(lim n n x f ∞ →(1)试证:相对于一切满足上述条件的数列来说,数列的极限是唯一确定的, 即如果和是任意两个以为极限且含于的数列,那么总有 }{n x )}({n x f }{n x }{n x ′0x 0 U )(lim )(lim n n n n x f x f ′=∞ →∞ →。 (2)记(1)中的唯一确定的极限为,试证:)}({n x f A A x f x x =→)(lim 0 。 3.设函数在点的邻域)(x f 0x I 内有定义,证明:导数)(0x f ′存在的充要条件是存在这样的函数,它在)(x g I 内有定义,在点连续,且使得在0x I 内成立等式:

南开大学数学分析考研试题

南开大学2008年数学分析考研试题 一.计算题 1.求极限2 1lim[ln(1)]x x x x →∞ -+ 。 2.求和()() ∑∞ =-+-1121n n n n 。 3.已知()()() 1f x x f x ''-=-,求()x f ? 4 .设 2ln 2 6 x π = ? ,则x =? 5.设区域()[][]{} 1,1,2,0,-∈∈=y x y x D ,求D 。 二.设61-≥x 61+= +n n x x ,(1,2,)n =,证明数列{}n x 收敛,并求其极限。 三.设()[]b a C x f ,∈,并且[]b a x ,∈?,[]b a y ,∈?,使()()x f y f 2 1 ≤, 证明[]b a ,∈?ξ,使得()0=ξf . 四.设()x f 在[)+∞,a 一致连续,且广义积分 ()a f x dx +∞ ? 收敛,求证()0lim =+∞ →x f x 。 五.设()x f 在(,)-∞+∞上可微,对任意(,)x ∈-∞+∞,()0f x >, ()()f x mf x '≤, 其中10<

南开大学2003年数学分析考研试题及解答

南开大学2003年数学分析考研试题及解答 一.设(),,w f x y x y x =+-,其中(),,f u v s 有二阶连续偏导数,求xy w . 解:令u x y =+,v x y =-,s x =, 则x u v s w f f f =++; ()()()111xy uu uv vu vv su sv w f f f f f f =+-++-++-. 二.设数列{}n a 非负单增,且lim n n a a →∞ =,证明:() 1 12lim n n n n n n a a a a →∞+++=L . 证明:因为 {}n a 非负单增, 所以有()() 1111 2 n n n n n n n n n n n a a a a na n a ≤+++≤=L , 由lim n n a a →∞ =,1lim n n n n a a →∞ =, 根据夹逼定理,得() 11 2 lim n n n n n n a a a a →∞ +++=L . 三.设 ()()2ln 1,00, 0x x x f x x α?+>?=?≤??,试确定α的取值范围,使()f x 分别满足: (1)极限()0 lim x f x + →存在; (2)()f x 在0x =处连续; (3) ()f x 在0x =处可导. 解(1)因为()()2 lim lim ln 1x x f x x x α+ + →→=+ ()2 2 2 ln 1lim x x x x α+ +→+=, ()22 0ln 1lim 1x x x + →+=, 极限存在的条件为20α+≥,即2α≥-,

所以当2α ≥-时,极限()0 lim x f x + →存在; (2)因为()()0 lim 00x f x f -→==, 所以要使()f x 在0x =处连续, 需要求20α+>,2α>-, 所以当2α >-时,()f x 在0x =处连续; (3)显然 ()00f -'=, ()()()12 000lim lim ln 1x x f x f x x x α++ -→→-=+ ()2 1 2 ln 1lim x x x x α+ +→+=, 要使其存在且为0,必须10α+>,1α>-, 所以当1α>-时,()f x 在0x =处可导. 四.设 ()f x 在(),-∞+∞上连续, 证明积分()()22 L f x y xdx ydy ++?与积分路径无关. 证明:设()()22 01,2 x y U x y f t dt +=?, 则有()()()22,dU x y f x y xdx ydy = ++, 即存在势函数, 所以 ()()22L L f x y xdx ydy dU ++=? ?与积分路径无关. 五.设 ()f x 在[],a b 上可导,02a b f +?? = ??? ,且()f x M '≤, 证明: ()()2 4 b a M f x dx b a ≤ -? . 证明:因为 ()f x 在[],a b 上可导, 则由拉格朗日中值定理,存在ξ在x 与2 a b +之间,使得

武汉大学2005数学分析试题解答.doc

2005 年攻读硕士学位研究生入学考试试题解答(武 汉 大 学) 一、设{}n x 满足: 11||||||n n n n n x x q x x +--=-,||1n q r ≤< ,证明{}n x 收敛。 证明:(分析:压缩映像原理) 1111 11 11 11 2121211,|12 ||||||||, ||||(1...)|| ||1||111ln || l n n n n n n n n n p p n p n i i n n i n n p n r m q m x x q x x m x x Cauchy x x x x m m x x m x x m m x x m m m x x N εε+--+--+-+=+--+= <<-=-<-?-≤ -<+++---=-<----=∑令:则显然|(此即压缩映像原理证明)以下证明压缩映像原理利用收敛准则,对取n ||n p n n N m x x ε+>-≤+1,对任意的。从而知命题收敛 二、对任意δ > 0。证明级数01 n n x +∞ =∑ 在(1,1+δ)上不一致收敛。 证明:(利用反证法,Cauchy 收敛准则和定义证明。) 10,(1,1),,,1 1()11111(1,{1(1,1),M N M n n n n N x N n M N x x x x x x min εδεδδ-+=?>?∈+?>->=>-∈+?+∑如果级数收敛, 那么对于当时 只需令代入上式,矛盾 从而知非一致收敛 三、设1 ()||sin ,"()f x x y f x =-?求 解,(本题利用莱布尼兹求导法则:)

2019年数学考研数学分析各名校考研真题及答案

考研数学分析真题集 目录 南开大学 北京大学 清华大学 浙江大学 华中科技大学 一、,,0N ?>?ε当N n >时,ε<>?m a N m , 证明:该数列一定是有界数列,有界数列必有收敛子列 }{k n a ,a a k n k =∞ →lim , 所以, ε 2<-+-≤-a a a a a a k k n n n n 二 、,,0N ?>?ε当N x >时,ε<-)()(x g x f ,,0,01>?>?δε当1'''δ<-x x 时, ε<-)''()'(x f x f 对上述,0>ε当N x x >'','时,且1'''δ<-x x ε3)''()'()''()''()'()'()''()'(<-+-+-≤-x f x f x f x g x g x f x g x g 当N x x <'','时,由闭区间上的连续函数一定一致收敛,所以,0,02>?>?δε2'''δ<-x x 时 ε<-)''()'(x g x g ,当'''x N x <<时,由闭区间上的连续函数一定一致收敛,在 ],['','22δδ+-∈N N x x 时,ε<-)''()'(x g x g ,取},m in{21δδδ=即可。 三、由,0)('',0)('<>x f a f 得,0)('

又2))((''2 1 ))((')()(a x f a x a f a f x f -+ -+=ξ,所以-∞=+∞→)(lim x f x ,且0)(>a f ,所以 )(x f 必有零点,又)(x f 递减,所以有且仅有一个零点。 四、? ?==1 ,)(1)()(x dt t f x dt xt f x ?2 )()()('x dt t f x x f x x ? -=?, 2 2)(lim )(lim ) (lim )0('0 2 A x x f x dt t f x x x x x x ====→→→???, 2 )(lim ) (lim )() (lim )('lim 2 002 00A x dt t f x x f x dt t f x x f x x x x x x x = -=-=? ? →→→→?,)('x ?在0=x 连续。 五、当k m ≠时,不妨设k m <, ??--+--=1 111) (2)(2])1[(])1[(!!21)()(dx x x k m dx x P x P k k m m k m k m = --? -dx x x k k m m 1 1 )(2)(2])1[(])1[(dx x x x x m m k k k k m m ?-+--------1 1 )1(2)1(211 ) 1(2)(2])1[(])1[(])1[(])1[(= 0])1][()1[()1(])1[(])1[(11 )(221 1 )1(2)1(2=---==---??-+-+-dx x x dx x x k m m k k m m k k Λ 当k m =时, ?? ----= 1 11 1 )(2)(22 2])1[(])1[(!21)()(dx x x m dx x P x P m m m m m k m ?? -+---------=--1 1 )1(21211 1 221 1 )(2)(2])1[(])1[(])1[(])1[(])1[(])1[(dx x x x x dx x x m m m m m m m m m m m m =?-+----1 1)1(212])1[(])1[(dx x x m m m m =?----=1 1 )2(22])1][()1[()1(dx x x m m m m Λ= ? ---1 1 2])1[()!2()1(dx x m m m =?--1 2])1[()!2()1(2dx x m m m 六、J 是实数,,0,0>?>?δε当δs 时,该积分收敛。 七、∑=-n k k 1 )1(有界,2 1 x n +在),(+∞-∞上单调一致趋于零,由狄利克雷判别法知,∑∞ =+-12)1(n n x n 在),(+∞-∞上一致收敛,∑∞ =+12 1n x n 与∑∞ =11 n n 同敛散,所以发散; 当0=x 时,∑∞ =+122)1(n n x x 绝对收敛,当0≠x 时,∑∞ =+122 ) 1(n n x x 绝对收敛;

武汉大学2004-2010年数学分析考研试题及解答汇总

武汉大学2004年攻读硕士学位研究生入学考试试题 科目名称:数学分析 科目代码:369 一、计算下列各题: 1.求2 12lim ( ...),(1)n n n a a a a →∞ + ++ > ; 解 212lim (...)n n n a a a →∞+++211() 1l i m ()11(1) 1n n n n a a a a a a →∞-=-=--- ; 2 、求lim (sin sin x →∞ ; 解 l i m (1n )x →∞ lim 2cos 2 2 x →∞ = lim 2sin 02 x →∞ ==; 3、求2 3 sin()lim x x t dt x →? ; 解 2 3 s i n ()l i m x x t d t x →? 2 2 sin()lim (')3x x L Hospital x →=法则 13 = ; 4、 设2 1 1arctan 2n n k S k == ∑,求lim n n S →∞ . 解:利用公式arctan arctan arctan 1x y x y xy --=+, 2 1 11a r c t a n a r c t a n a r c t a n 22121 k k k = - -+, 2 1 1 arctan 2n n k S k == ∑111arctan arctan 2121n k k k =? ?=- ?-+? ?∑

1 a r c t a n 1 a r c t a n 21 n =-+, lim 4 n n S π →∞ = ,即2 1 1arctan 24 k k π ∞ == ∑。 5. 求 4 8 12 4 8 12 1... 59! 13! 1...3! 11!15! ππ π ππ π + + + ++ +++! 7!; 解 设 4 8 12 4 8 12 1... ()59! 13! 1() ...3! 11!15! A B π π π ππ π π π+ + + += + +++! 7!, 则有 33 ()()sin ()()2 A B e e A B ππ πππππππππ-?-=? ?-+=?? 23 ()4() 4e e A e e B π π ππ πππππ ---? = =- 。 6. " (,)()(),()(,)xy x xy y F x y x yz f z dz f z F x y = -? 设:其中为可微函数,求。 解 '2 (,)()()()()xy x y y F x y z f z dz x xy xf xy = -+-? , "22 2 (,)( )(23)()(1)()xy x x F x y f x y f xy xy y f xy y y '= +-+-。 二、设113(1)0(1,2,3...)3n n n x x x n x ++>= =+,,,证明:lim n n x →∞ 存在,并求出极限。 证明:2 13(1)333n n n n n n n x x x x x x x ++--= -= ++, 13n n x x +- = +, 1(1)n n n x x x +>>> 当不难证明 1(2)n n n x x x +< << 当不难证明

2005年武汉大学数学分析解答

武汉大学2005年攻读硕士学位研究生入学考试试题解答 一、设{}n x 满足:11||||||n n n n n x x q x x +--=- ,||1n q r ≤<,证明{}n x 收敛。 证明:(分析:压缩映像原理) 1111 11 11 11 2121211,|12 ||||||||, ||||(1...)|| ||1||111ln || l n n n n n n n n n p p n p n i i n n i n n p n r m q m x x q x x m x x Cauchy x x x x m m x x m x x m m x x m m m x x N εε+--+--+-+=+--+= <<-=-<-?-≤ -<+++---=-<----=∑ 令:则显然|(此即压缩映像原理证明)以下证明压缩映像原理利用收敛准则,对取n ||n p n n N m x x ε+>-≤+1,对任意的。从而知命题收敛 二、对任意δ>0。证明级数0 1 n n x +∞ =∑ 在(1,1+δ)上不一致收敛。 证明:(利用反证法,Cauchy收敛准则和定义证明。) 10,(1,1),,,1 1(11111(1,{1(1,1),M N M n n n n N x N n M N x x x x x x min εδεδδ-+=?>?∈+?>->=>-∈+?+∑如果级数收敛, 那么对于当时 只需令代入上式,矛盾 从而知非一致收敛 三、设1 0()||,"() f x x y f x =-?求解,(本题利用莱布尼兹求导法则:)

() () ()()1 10 1 01 ()()()()()(())(())()||()sin (,[0,1] ()()sin ,(1,) ()sin ,(,0)'(b x a x b a x x F x f x dx F f x b a dx f b f a f x x y x y y x x f x x y x y x x f ααααααααααααααα =????=+-????=-?-+-∈??=-∈+∞???-∈-∞?? ??????,,,, ,10 1 01 ,[0,1] ),(1,) ,(,0)2sin [0,1]"()0,(1,) 0,(,0)x x x x x x x x f x x x ?-∈??=∈+∞???-∈-∞??∈? =∈+∞??∈-∞? ????四、判断级数2 ln ln sin ln n n n n +∞ =∑ 的绝对收敛性和相对收敛性解:(1)绝对收敛性:(主要使用放缩法) 2 1 ,|sin ||sin(1)|2sin 2 ,ln ln 1 ln ln ln ln ln ln |sin ||sin ||sin |ln ln ln ln 2n M n M n M M n n N n n A M M n n n n n n n n n A n +∞ +∞+∞ ===+∞ =?∈++≥=>=>>∑∑∑∑首先,不难证明对于当足够大的时候。显然,该级数发散。即不绝对收敛 (2)相对收敛性:(A-D 判别法){}0{}n n n n n n a b a a a b ∑∑∑<1>收敛于,有界 <2>有界,收敛 满足上述任意一个条件收敛

2015武汉大学考博英语部分真题答案

感谢”珞珈人(武大考博)197431621”群网友热心提供题源一、阅读理解 Justice in society must include both a fair trial to the accused and the selection of an appropriate punishment for those proven guilty. Because justice is regarded as one form. of equality, we find in its earlier expressions the idea of a punishment equal to the crime. Recorded in the Old Testament is the expression "an eye for an eye, and a tooth for a tooth." That is, the individual who has done wrong has committed an offence against society. To make up for his offence, society must get even. This can be done only by doing an equal injury to him. This conception of retributive justice is reflected in many parts of the legal documents and procedures of modern times. It is illustrated when we demand the death penalty for a person who has committed murder. This philosophy of punishment was supported by the German idealist Hegel. He believed that society owed it to the criminal to give a punishment equal to the crime he had committed. The criminal had by his own actions denied his true self and it is necessary to do something that will counteract this denial and restore the self that has been denied. To the murderer nothing less than giving up his own will pay his debt. The demand of the death penalty is a right the state owes the criminal and it should not deny him his due. Modern jurists have tried to replace retributive justice with the notion of corrective justice. The aim of the latter is not to abandon the concept of equality but to find a more adequate way to express it. It tries to preserve the idea of equal opportunity for each individual to realize the best that is in him. The criminal is regarded as being socially ill and in need of treatment that will enable him to become a normal member of society. Before a treatment can be administered, the cause of his antisocial behavior. must be found. If the cause can be removed, provisions must be made to have this done. Only those criminals who are incurable should be permanently separated front the rest of the society. This does not mean that criminals will escape punishment or be quickly returned to take up careers of crime. It means that justice is to heal the individual, not simply to get even with him. If severe punishments is the only adequate means for accompanying this, it should be administered. However, the individual should be given every opportunity to assume a normal place in society. His conviction of crime must not deprive him of the opportunity to make his way in the society of which he is a part. 1. The best title for this selection is (B ) A. Fitting Punishment to the Crime B. Approaches to Just Punishment C. Improvement in Legal Justice D. Attaining Justice in the Courts 2.The passage implies that the basic difference between retributive justice and corrective jus tice is the (C ) . A. type of crime that was proven B. severity for the punishment C. reason for the sentence

南开大学数学分析2009

南开大学2009 一、 计算()cos d x y dxdy +??, D 由y x =,0y =,2 x π = 围成.(15分) 二、 计算1 110 1 dx -?? .(15分) 三、 计算l ydx zdy xdz ++?,l 为 222 2 2 2 1x y z a b c + + =,1x z a c +=,0x ≥,0y ≥,0z ≥从点(),0,0a 到()0,0,c 的部分,其中a , b , c 为正的常数.(20分) 四、 求21 1 212 n n n n x ∞ ++=+∑ 的收敛域与和函数.(15分) 五、 求( )1 f t +∞ =? 的表达式.(20分) 六、 设()a f x dx +∞?收敛, ()f x x 在[),a +∞单调下降,试证:()lim 0x xf x →+∞ =.(15 分) 七、 已知()f x 在()1,1-内有二阶导数, ()()000f f '== , () ()()2 f x f x f x '''≤?,证明:存在0δ>,使在(),δδ-内()0f x ≡.(15 分) 八、 设(),f x y 在0P 的邻域()0U P 内存在连续的三阶偏导数,并且所有三阶偏 导数的绝对值不超过常数M ,1P 与2P 关于0P 对称,并且()120,P P U P ∈,1P 与0 P 的距离为l ,l 为0P 指向1P 的方向,试证: ()() () 12 2 23 f P f P f P M l l l -?- ≤ ? .(20分)

九、 证明:若1lim n n n u a u +→∞ =,0n u > ,则lim n a →∞ =.利用这一结论,分析达朗 贝尔判别法与柯西判别法在判别正项级数的敛散性时的关系,可以获得怎样的经验?(15分)

相关文档
相关文档 最新文档