文档库 最新最全的文档下载
当前位置:文档库 › 南开大学数学分析2009

南开大学数学分析2009

南开大学数学分析2009
南开大学数学分析2009

南开大学2009

一、 计算()cos d

x y dxdy +??, D 由y x =,0y =,2

x π

=

围成.(15分)

二、

计算1

110

1

dx -??

.(15分)

三、 计算l

ydx zdy xdz ++?,l 为

222

2

2

2

1x y z

a

b

c

+

+

=,1x z

a c +=,0x ≥,0y ≥,0z ≥从点(),0,0a 到()0,0,c 的部分,其中a ,

b ,

c 为正的常数.(20分)

四、 求21

1

212

n n n n x

++=+∑

的收敛域与和函数.(15分)

五、 求(

)1

f t +∞

=?

的表达式.(20分)

六、 设()a

f x dx +∞?收敛,

()f x x

在[),a +∞单调下降,试证:()lim 0x xf x →+∞

=.(15

分)

七、 已知()f x 在()1,1-内有二阶导数,

()()000f f '==

()

()()2

f x f

x f x '''≤?,证明:存在0δ>,使在(),δδ-内()0f x ≡.(15

分)

八、 设(),f x y 在0P 的邻域()0U P 内存在连续的三阶偏导数,并且所有三阶偏

导数的绝对值不超过常数M ,1P 与2P 关于0P 对称,并且()120,P P U P ∈,1P 与0

P 的距离为l ,l

为0P 指向1P 的方向,试证:

()()

()

12

2

23

f P f P

f P

M l l

l

-?-

? .(20分)

九、 证明:若1lim

n n n

u a u +→∞

=,0n u >

,则lim

n a

→∞

=.利用这一结论,分析达朗

贝尔判别法与柯西判别法在判别正项级数的敛散性时的关系,可以获得怎样的经验?(15分)

北大数学系本科课程

基础和专业基础必修课1301301数学分析(Ⅰ) 1301301 数学分析1301301 数学分析(Ⅲ) 1301302 高等代数(Ⅰ) 1301302 高等代数1301303 解析几何1301304 常微分方程1301305 近世代数1301306 复变函数1301307 微分几何1301308 拓扑学1301309 实变函数1301310 概率统计1301311 数学模型1301312 泛函分析1301313 偏微分方程 专业限定选修课1301401 整体微分几何1301402 计算方法1301403 运筹学1301404 组合学1301405 初等数学教学研究1301406 微分流形1301407 计算机应用(Ⅰ) 1301408 多复变变函数引论 专业任意选修课1301501图论1301502 模糊数学1301503 中学数学竞赛1301504 数学史1301505 数学软件1301506 计算代数1301507 初等数论1301508 交换代数1301509 偏微分方程数值计算1301510 数学方法论1301511 数学学习论1301512 模糊控制与模糊决策

1301513 矩阵论 1301514 微分方程定性及分岔理论基 础 1301515 代数几何 1301516 李群与李代数 1301517 控制论 另外一个版本: 北大数学科学学院本科生课程 课程号 00130011 课程名数学分析(一) 课程号 00130012 课程名数学分析(二) 课程号 00130013 课程名数学分析(三) 课程号 00130031 课程名高等代数(上) 课程号 00130032 课程名高等代数(下) 课程号 00130051 课程名解析几何 课程号 00130061 课程名解析几何习题课 课程号 00130072 课程名初等数论 课程号 00130081 课程名常微分方程 课程号 00130091 课程名计算机原理与算法语言 课程号 0013010. 课程名计算机实习 课程号 00130110 课程名复变函数 课程号 00130120 课程名微分几何学 课程号 00130130 课程名抽象代数(A) 课程号 00130140 课程名实变函数论 课程号 00130150 课程名偏微分方程 课程号 00130161 课程名拓朴学(一) 课程号 00130162 课程名拓朴学(二) 课程号 00130170 课程名泛函分析

003005[高等数学(专)] 天津大学考试题库及答案

1 / 10 高等数学(专)复习题 一、选择题 1、下列等式哪一个是正确的( C ). ()A 1lim sin x x x →∞=∞; ()B ()10lim 14x x x →-; ()C 0sin lim 1x x x →=; ()D 0sin lim 2x x x →. 2、当0x → 等价的无穷小量为( B ). ()A 1- ()B (ln 1; ()C (1 211+-; ()D 1-3、设函数(),z f x y x y =-+,且1f C ∈类,则z x ??=( A ) ()A 12+f f ; ()B 12f f -; ()C 12f y f +; ()D 2f y . 4、极限()10lim 13x x x →-的值等于( A ). ()A 3e -; ()B 13e -; ()C 3e ; ()D 13e . 5、设()1f '存在,则()()011lim x f x f x →+-=( B ) ()A ()112 f '; ()B ()1f '; ()C ()21f '; ()D ()21f '-. 6、设函数(),z f x y xy =+,且1f C ∈类,则 z y ??=( C ) ()A 12f yf +; ()B 12f x f +; ()C 12f xf +; ()D 2f . 7、方程e x y y -'=是( A ). ()A 可分离变量方程; ()B 齐次方程; ()C 一阶线性微分方程; ()D 以上都不正确. 8、设()f x 在点()0M x 处可微,则下列结论不正确的是( D ) ()A ()f x 在点M 处极限存在; ()B ()f x 在点M 处连续; ()C ()f x 在点M 处可导; ()D ()f x 在点M 不连续. 9、设()f x 在[, ]()a b a b <上二阶可导,且()0,()0,f x f x ''><若令 12()(),()d ,b a S f a b a S f x x =-?=则( C )

南开大学数学分析考研试卷答案

南开大学年数学分析考研试卷答案 一、 设),,(x y x y x f w -+= 其中),,(z y x f 有二阶连续偏导数,求xy w . 解:令u =x +y ,v =x -y ,z =x ,则z v u x f f f w ++=; )1()1()1(-++-++-+=zv zu vv vu uv uu xy f f f f f f w 二、 设数列}{n a 非负单增且a a n n =∞ →lim ,证明 a a a a n n n n n n =+++∞ →1 21][lim . 解:因为a n 非负单增,故有n n n n n n n n n na a a a a 11 21)(][≤+++≤ . 由a a n n =∞ →lim ;据两边夹定理有极限成立。 三、 设? ??≤>+=0 ,00),1ln()(2 x x x x x f α,试确定α的取值范围,使f (x )分别满足: (1) 极限)(lim 0x f x + →存在 (2) f (x )在x=0连续 (3) f (x )在x=0可导 解:(1)因为 )(lim 0x f x + →=)1ln(lim 2 0x x x ++ →α=)]()1(2[lim 221420n n n x x o n x x x x +-++- -→+ α极限存在,则 2+α0≥知α2-≥. (2)因为)(lim 0 x f x - →=0=f(0)所以要使f(x)在0连续则2->α . (3)0)0(='- f 所以要使f(x)在0可导则1->α. 四、设f (x )在R 连续,证明积分ydy xdx y x f l ++?)(22与积分路径无关. 解;令U =22 y x +,则ydy xdx y x f l ++?)(22=2 1du u f l )(?又f (x )在R 上连续,故存 在F (u )使d F (u )=f (u )du=ydy xdx y x f ++)(22. 所以积分与路径无关。

北大数学分析实数理论参考资料

实数理论 §1.1 从自然数到有理数 实数是在有理数基础上定义的,有理数又是在整数的基础上定义的,而整数又是在自然数的基础上定义的,那么自然数如何定义呢? 有两个集合A 和B ,我们称它们为等价的,如果存在一个从A 到B 的映射,它是的,又是满的.这时我们说f 11?A 和B 具有相同的势.我们首先承认空集φ是存在的,考虑一个集合}{φ,它不是空集,凡与}{φ等价的集合都有相同的势,我们把}{φ简写为0.再考虑集合}}{,{φφ,它与}{0φ=是不等价的,我们把它简写为1.一般地如果有了之后,可以定义它的跟随n },{n φ,简写为1+n .这样我们就得到了自然数N .在N 上可以定义加法:},,,2,1,0{ n =111++++=+ n m n ,还可以证明加法满足结合律和交换律:p m n p m n ++=++)()(,n m m n +=+.这样我们就从空集出发,定义出自然数N .这是一个最抽象的定义,比如说1,它不指一个人,也不指一个物,而是指一个集合}}{,{φφ,这个集合有两个不同的元素{}φ和φ.凡是与它等价的集合,都与它有相同的势,于是一个人,一个物……,都具有相同的势,按我们的理论,用}}{,{φφ作为它们的代表. 在集合{}中,考虑一个关系N ∈n m n m ,:),(~:),(n m ~),(n m ′′当且仅当,容易证明n m n m +′=′+~是一个等价关系. 整数Z 现在定义为: Z =~ },:),{(N ∈n m n m . 在Z 上可以定义加法:),(),(),(n n m m n m n m ′+′+=′′+,还可以定义减法:.可以验证它们在Z 中封闭,而且互为逆运算.在Z 中我们用0表示N },即),(),(),(n m n m n m n m +′′+=′′?∈n n n :),({ =?=?=22110,这就是作为整数的0. 用表示 k ∈+k n n )k n ,:,({

数学分析 第三讲 连续与一致连续

第三讲 连续与一致连续 一、 知识结构 1、 函数连续的概念和定义 函数连续的概念: 如果函数)(x f 在区间I 上有定义,并且函数)(x f 的图象是连续不断的,我们称函数)(x f 在区间I 上连续. (1) 函数)(x f 在点0x 连续的相关定义 定义1 设函数)(x f 定义在);(δ0x U 内,如果)()(lim 00 x f x f x x =→,则 我们称函数)(x f 在0x 点连续. 记作)()(lim 00 x f x f x x =→. 定义1′设函数)(x f 定义在);(δ0x U 内,对0>?ε,?0>'δ,当δδ<'<-0x x 时,有ε<-)()(0x f x f ,则我们称函数)(x f 在0x 点连 续. 定义2 设函数)(x f 定义在);(δ0x U +内,对0>?ε,?0>'δ,当 δδ<'<-≤00x x 时,有ε<-)()(0x f x f ,则我们称函数)(x f 在0 x 点连续. 记作)()(lim 00 x f x f x x =+ →. 定义 3 设函数)(x f 定义在);(δ0x U -内,对0>?ε,?0>'δ,当 δδ<'<-≤x x 00时,有ε<-)()(0x f x f ,则我们称函数)(x f 在0 x 点左连续. 记作)()(lim 0_ x f x f x x =→. (2) 函数)(x f 在区间I 上连续

定义1 如果函数)(x f 在区间),(b a 内任意一点连续,则我们称函数在区间),(b a 内连续. 定义1′固定),(0b a x ∈, 对0>?ε,?0>δ,当δ<-0x x 时(b x a x ≤+≥-δδ00,),有ε<-)()(0x f x f ,则我们称函数在区间 ),(b a 内连续. 定义 2 如果函数)(x f 在区间),(b a 内任意一点连续,并且在点b 左连续, 则我们称函数)(x f 在区间],(b a 连续. 定义3 如果函数)(x f 在区间),(b a 内任意一点连续,并且在点a 右连续, 则我们称函数)(x f 在区间),[b a 连续. 定义4 如果函数)(x f 在区间),(b a 内任意一点连续,并且在点b 左连续、点a 右连续, 则我们称函数)(x f 在区间],[b a 上连续. 2、 函数一致连续的概念和定义 函数一致连续的概念: 如果函数)(x f 在区间I 上有定义,函数)(x f 的图象是连续不断的,并且函数)(x f 的图象没有铅直的渐进线,我们称函数 )(x f 在区间I 上一致连续. 例如,函数x x f 1= )(在区间),(10内连续,但不一致连续. 定义1对),(0b a x ∈?, 0>?ε,?0>δ,当δ<-0x x 时(b x a x ≤+≥-δδ00,),有ε<-)()(0x f x f ,则我们称函数在区间 ),(b a 内一致连续.

2015年数学考研数学分析各名校考研真题及答案

2015年考研数学分析真题集 目录 南开大学 北京大学 清华大学 浙江大学 华中科技大学

2014年浙江大学数学分析试题答案 一、,,0N ?>?ε当N n >时,ε<->>?m n a a N n N m ,, 证明:该数列一定是有界数列,有界数列必有收敛子列 }{k n a ,a a k n k =∞ →lim , 所以, ε2<-+-≤-a a a a a a k k n n n n 二 、,,0N ?>?ε当N x >时,ε<-)()(x g x f ,,0,01>?>?δε当1'''δ<-x x 时, ε<-)''()'(x f x f 对上述,0>ε当N x x >'','时,且1'''δ<-x x ε3)''()'()''()''()'()'()''()'(<-+-+-≤-x f x f x f x g x g x f x g x g 当N x x <'','时,由闭区间上的连续函数一定一致收敛,所以,0,02>?>?δε2'''δ<-x x 时 ε<-)''()'(x g x g ,当'''x N x <<时,由闭区间上的连续函数一定一致收敛,在 ],['','22δδ+-∈N N x x 时,ε<-)''()'(x g x g ,取},min{21δδδ=即可。 三、由,0)('',0)('<>x f a f 得,0)('a f ,所以 )(x f 必有零点,又)(x f 递减,所以有且仅有一个零点。 四、? ?==1 0,)(1)()(x dt t f x dt xt f x ?2 )()()('x dt t f x x f x x ? - =?, 2 2)(lim )(lim ) (lim )0('0 2 A x x f x dt t f x x x x x x ====→→→???, 2)(lim )(lim )() (lim )('lim 20 0020 00A x dt t f x x f x dt t f x x f x x x x x x x =-=-=?? →→→→?,)('x ?在0=x 连续。 五、当k m ≠时,不妨设k m <, ? ?--+--= 1 1 11 )(2)(2])1[(])1[(!!21 )()(dx x x k m dx x P x P k k m m k m k m = --? -dx x x k k m m 1 1 )(2)(2])1[(])1[(dx x x x x m m k k k k m m ?-+--------1 1 )1(2)1(211 ) 1(2 ) (2 ])1[(])1[(] )1[(])1[(=

天津大学网络教育数学考试试题

天津大学网络教育数学考试试题 一、单选题(共86题) 1. 下列各式中正确的是 ( ) A. B. C. D. 2. A.2x+3 B.-(2x+3) C. D. 3. 化简3a+2b-4a= A.2b-a B. C.-2ab D.b 4. A. B. C. D. 5. 因式分解 A. B. C. D.

6. A.(x+6)(x+1) B.(x-6)(x-1) C.(x+2)(x+3) D.(x-2)(x-3) 7. 分母有理化 A. B. C. D. 8. A. B.-15 C. D. 9. x=-1是方程3a-2x=a的解,则a的值为( ) A.-1 B.1 C. D.以上都不对 10. 二元一次方程组的解是() A. B. C. D. 11. 一元二次方程的一个根是-1,则k=( ) A.-5 B.9 C.-9 D.5 12. 的解是( ) A.x=-1 B.x=-5 C.x=-1和x=-5 D.x=1和x=5

13. 集合用区间表示是( ) A. B. C. D. 14. 集合用区间表示是( ) A. B. C. D. 15. 设集合,则这两个集合满足的关系是( ) A. B. C. D. 16. 设集合,则( ) A. B. C.空集 D.实数集 17. 函数的定义域是( ) A. B. C.(-1,5) D.[-1,5] 18. 下列4个函数中,与函数定义域相同的函数是( ) A. B. C. D. 19. 已知函数,则( )

A.-1 B.0 C.-4 D.5 20. 设函数且,则( ) A. B.1 C.2 D. 21. 下列函数中,图象关于原点对称的是( ) A. B. C. D. 22. 函数的奇偶性是() A.奇函数 B.偶函数 C.非奇非偶函数 D.既是奇函数也是偶函数 23. 已知在上单调递增,则在上的最大值是( ) A. B. C. D.以上都不对 24. 在上单调递减,在上单调递增, 则与的大小关系是( ) A. B. C. D.不能确定 25. 一次函数是奇函数,则( ) A.1 或 2 B.1 C.2 D.以上都不对 26. 反比例函数是减函数,则( ) A. B.

天津大学管理数学基础

1 天津大学研究生管理数学基础试题 (考试日期:2017年11月11日) 专业_________________ 姓名____________ 学号__________________ 成绩_________ 一.(15分)设矩阵A =111 1 3927111- 2 3927111- - 3 3927111- - - 43927???????????????????????? , (1)求A 的圆盘,并作图示; (2)基于(1)说明:A 相似于对角形矩阵。 二.(15分)设(,)X 是线性赋范空间,则可由其范数定义一个泛函()=f x x 。请问该泛函f 是否线性泛函?为什么(说明原因和写出分析过程)? 三.(18分)设[0,1]C 上的范数为01 max ()t x x t ≤≤=,定义算子:[0,1][0,1]T C C →为()()Tx t tx t =,证明([0,1],[0,1])T B C C ∈,并求T 。 四.(15分)设221, 0() , 0 ?-+≤?=?>??x x x x f x e x ,分别求次微分(0)?f 和()?f x ,并作()?f x 的图示。 五.(17分) (1)设模糊集12345 050610703+++~....=+A x x x x x ,分别求当=1λ,0.7,0.6,0.5,0.3时的截集A λ; (2)已知模糊集~B 的截集λB 如下,求~ B 。

2 12345123513513 302020505060607071λλλλλλ≤≤??<≤=<≤?<≤<≤{,,,,} 0.{,,,} ..{,,} ..{,} ..{} .x x x x x x x x x B x x x x x x ,,,,, ??????。 (注:本试卷满分为80分,平时成绩占20分。)

天津大学硕士研究生谈考研数学复习篇

天津大学硕士研究生谈考研数学复习篇 课本+复习指导书+习题集+模拟题+真题=KO 数学是与专业课并列的最重要的科目,用时最长。一般总分高的学生数学分数都高,即数学是提分的一门科目。只凭数学一门课,比别人高十到二十分是比较容易的,而这个分数对于考研是相当大的差距。学习数学的要点是: a、注重基本概念、定理(就像练武时的扎马步,一定要有非常扎实的基本功); b、多动手做题(不能只看不动笔,1+1=2这样简单的东西也要写出来)。 一、我的复习安排 我数学复习是从大三下学期开始的,大致分六轮: 1)3月初开学——6月15日:看一章课本,做课后题和陈文登《复习指南》对应章节(平均四天一章)。这一遍最仔细,也耗时最多,通完之后基本掌握了各种题型的解法和考研大纲的要求。这一轮完成后基本上对数学考高分就有了信心,因为很多人连《复习指南》的书还没看过呢。

2)6月15日——8月11日:这段时间我把《复习指南》又做了一遍,同时把从上一届学姐那里买的《数学大纲解析》做了一遍。这一轮完成后,虽然不能全部融会贯通,但基本建立了数学的框架体系,考研数学的信心更足了。因为很多人《复习指南》第一遍还没完呢。 3)8月11日——10月1日:数学过了两遍,基本题型已经能够解决了(《复习指南》太熟了,看着就要吐)。这时感觉做的题不多,急切希望做些题练练手,提高自己的计算能力。于是从图书馆借了本陈文登的《题型集粹》,做了一遍(平均一至两天一章)。因为这段时间准备并参加了一个比赛,有些分神,所以进度较慢。 4)10月1日——11月11日:把《复习指南》又做了一遍,主要目的是在很短时间内,完全建立数学框架体系,达到融会贯通。因为有了前三轮的基础,所以这一轮完成的比较顺利。但由于去外地参加某比赛的答辩以及准备期末考试,进度依然不快。 5)11月11日——考前一周:基本没什么事了,全心全意备考。这段时间主要是做模拟题和真题。把李永乐的《400题》连续做了两遍,又把十年真题做了一遍(留着上年的真题到考前一周做)。这时已经信心十足了。 6)考前一周——考试:才发现时间有些紧了。迅速把《复习指南》扫了一遍,卡着时间做了一遍去年真题(不管好坏,千万别往心里去),剩下一两天把以前总结在本子上的公式、解题方法看了一遍,感觉效果不错。

数学分析各校考研试题与答案

2003南开大学年数学分析 一、设),,(x y x y x f w -+=其中),,(z y x f 有二阶连续偏导数,求xy w 解:令u=x+y,v=x-y,z=x 则z v u x f f f w ++=; )1()1()1(-++-++-+=zv zu vv vu uv uu xy f f f f f f w 二、设数列}{n a 非负单增且a a n n =∞ →lim ,证明a a a a n n n n n n =+++∞ →1 21 ] [lim 解:因为an 非负单增,故有n n n n n n n n n na a a a a 1 1 21)(][≤ +++≤ 由 a a n n =∞ →lim ;据两边夹定理有极限成立。 三、设? ? ?≤>+=0 ,00),1ln()(2 x x x x x f α试确定α的取值围,使f(x)分别满足: (1) 极限)(lim 0x f x + →存在 (2) f(x)在x=0连续 (3) f(x)在x=0可导 解:(1)因为 )(lim 0x f x + →=)1ln(lim 20x x x ++ →α=)]()1(2[lim 221420n n n x x o n x x x x +-++--→+ α极限存在则2+α0≥知α2-≥ (2)因为)(lim 0 x f x - →=0=f(0)所以要使f(x)在0连续则2->α (3)0)0(='- f 所以要使f(x)在0可导则1->α 四、设f(x)在R 连续,证明积分ydy xdx y x f l ++?)(22与积分路径无关 解;令U=22 y x +则ydy xdx y x f l ++?)(22=2 1du u f l )(?又f(x)在R 上连续故存在F (u ) 使dF(u)=f(u)du=ydy xdx y x f ++)(22 所以积分与路径无关。 (此题应感小毒物提供思路) 五、 设 f(x)在[a,b]上可导, 0)2 (=+b a f 且 M x f ≤')(,证明 2) (4)(a b M dx x f b a -≤?

北京大学数学分析考研试题及解答

判断无穷积分 1 sin sin( )x dx x +∞ ?的收敛性。 解 根据不等式31|sin |||,||62 u u u u π -≤≤, 得到 33 sin sin 1sin 11 |sin()|||66x x x x x x x -≤≤, [1,)x ∈+∞; 从而 1sin sin (sin())x x dx x x +∞-?绝对收敛,因而收敛, 再根据1sin x dx x +∞?是条件收敛的, 由sin sin sin sin sin()(sin())x x x x x x x x =-+ , 可知积分1sin sin()x dx x +∞?收敛,且易知是是条件收敛的。 例5.3.39 设2()1...2!! n n x x P x x n =++++,m x 是21()0m P x +=的实根, 求证:0m x <,且lim m m x →+∞ =-∞。 证明 (1)任意* m N ∈,当0x ≥时,有21()0m P x +>; 当0x <且x 充分大时,有21()0m P x +<,所以21()0m P x +=的根m x 存在, 又212()()0m m P x P x +'=>,21()m P x +严格递增,所以根唯一,0m x <。 (2) 任意(,0)x ∈-∞,lim ()0x n n P x e →+∞ =>,所以21()m P x +的根m x →-∞,(m →∞)。 因为若m →∞时,21()0m P x +=的根,m x 不趋向于-∞。 则存在0M >,使得(,0)M -中含有{}m x 的一个无穷子列,从而存在收敛子列0k m x x →,(0x 为某有限数0x M ≥-); 21210lim ()lim ()0k k k M m m m k k e P M P x -++→+∞ →+∞ <=-≤=,矛盾。 例、 设(1)ln(1)n n p a n -=+,讨论级数2 n n a ∞ =∑的收敛性。 解 显然当0p ≤时,级数 2 n n a ∞ =∑发散; 由 20 01 1ln(1) 1lim lim 2x x x x x x x →→- -++=011lim 21x x →=+ 12=, 得 2 21ln(1)4 x x x x ≤-+≤,(x 充分小),

天津大学最优化方法复习题

《最优化方法》复习题 第一章 概述(包括凸规划) 一、 判断与填空题 1 )].([arg )(arg min max x f x f n n R x R x -=∈∈ √ 2 {}{} .:)(m in :)(m ax n n R D x x f R D x x f ?∈-=?∈ ? 3 设.:R R D f n →? 若n R x ∈*,对于一切n R x ∈恒有)()(x f x f ≤*,则称*x 为最优化问题 )(min x f D x ∈的全局最优解. ? 4 设.:R R D f n →? 若D x ∈*,存在*x 的某邻域)(*x N ε,使得对一切 )(*∈x N x ε恒有)()(x f x f <*,则称*x 为最优化问题)(min x f D x ∈的严格局部最 优解. ? 5 给定一个最优化问题,那么它的最优值是一个定值. √ 6 非空集合n R D ?为凸集当且仅当D 中任意两点连线段上任一点属于D . √ 7 非空集合n R D ?为凸集当且仅当D 中任意有限个点的凸组合仍属于D . √ 8 任意两个凸集的并集为凸集. ? 9 函数R R D f n →?:为凸集D 上的凸函数当且仅当f -为D 上的凹函数. √ 10 设R R D f n →?:为凸集D 上的可微凸函数,D x ∈*. 则对D x ∈?,有).()()()(***-?≤-x x x f x f x f T ? 11 若)(x c 是凹函数,则}0)( {≥∈=x c R x D n 是凸集。 √ 12 设{}k x 为由求解)(min x f D x ∈的算法A 产生的迭代序列,假设算法A 为下降算法, 则对{} ,2,1,0∈?k ,恒有 )()(1k k x f x f ≤+ .

2017年北大数学分析考研试题(Xiongge)

北京大学2017年硕士研究生招生考试试题 (启封并使用完毕前按国家机密级事项管理) 考试科目:数学基础考试1(数学分析)考试时间:2016年12月25日上午 专业:数学学院各专业(除金融学和应用统计专业) 方向:数学学院各方向(除金融学和应用统计方向) ————————————————————————————————————————说明:答题一律写在答题纸上(含填空题、选择题等客观题),写在此试卷上无效. 1.(10分)证明lim n !+1Z 2 sin n x p 2x dx =0.2.(10分)证明1X n =111+nx 2sin x n ?在任何有限区间上一致收敛的充要条件是?>12.3.(10分)设1X n =1a n 收敛.证明lim s !0+1X n =1a n n s =1X n =1a n . 4.(10分)称 (t )=(x (t );y (t )),(t 2属于某个区间I )是R 2上C 1向量场(P (x;y );Q (x;y ))的积分曲线,若x 0(t )=P ( (t )),y 0(t )=Q ( (t ));8t 2I ,设P x +Q y 在R 2上处处非0,证明向量场(P;Q )的积分曲线不可能封闭(单点情形除外). 5.(20分)假设x 0=1;x n =x n 1+cos x n 1(n =1;2; ),证明:当x !1时,x n 2=o ?1n n ?.6.(20分)假如f 2C [0;1];lim x !0+f (x ) f (0)x =?<ˇ=lim x !1 f (x ) f (1)x 1 .证明:8 2(?;ˇ);9x 1;x 22[0;1]使得 =f (x 2) f (x 1)x 2 x 1 .7.(20分)设f 是(0;+1)上的凹(或凸)函数且 lim x !+1xf 0(x )=0(仅在f 可导的点考虑 极限过程).8.(20分)设 2C 3(R 3), 及其各个偏导数@i (i =1;2;3)在点X 02R 3处取值都是0.X 0点的?邻域记为U ?(?>0).如果 @2ij (X 0) á3 3是严格正定的,则当?充分小时,证明如下极限存在并求之: lim t !+1t 32? U ?e t (x 1;x 2;x 3)dx 1dx 2dx 3: 9.(30分)将(0; )上常值函数f (x )=1进行周期2 奇延拓并展为正弦级数: f (x ) 4 1X n =112n 1 sin (2n 1)x:该Fourier 级数的前n 项和记为S n (x ),则8x 2(0; );S n (x )=2 Z x 0sin 2nt sin t dt ,且lim n !1S n (x )=1.证明S n (x )的最大值点是 2n 且lim n !1S n 2n á=2 Z 0sin t t dt .考试科目:数学分析整理:Xiongge ,zhangwei 和2px4第1页共??页

南开大学数学分析考研试题

南开大学2008年数学分析考研试题 一.计算题 1.求极限2 1lim[ln(1)]x x x x →∞ -+ 。 2.求和()() ∑∞ =-+-1121n n n n 。 3.已知()()() 1f x x f x ''-=-,求()x f ? 4 .设 2ln 2 6 x π = ? ,则x =? 5.设区域()[][]{} 1,1,2,0,-∈∈=y x y x D ,求D 。 二.设61-≥x 61+= +n n x x ,(1,2,)n =,证明数列{}n x 收敛,并求其极限。 三.设()[]b a C x f ,∈,并且[]b a x ,∈?,[]b a y ,∈?,使()()x f y f 2 1 ≤, 证明[]b a ,∈?ξ,使得()0=ξf . 四.设()x f 在[)+∞,a 一致连续,且广义积分 ()a f x dx +∞ ? 收敛,求证()0lim =+∞ →x f x 。 五.设()x f 在(,)-∞+∞上可微,对任意(,)x ∈-∞+∞,()0f x >, ()()f x mf x '≤, 其中10<

2014年天津大学602数学分析考研试题(回忆版)

2014年天津大学602数学分析考研试题 回忆版) ) (回忆版 数学分析考研试题( 线性规划题 一、线性规划题 题目大概是3种产品,设置的问题有6道: 1. 建立模型(MIN型) 2. B值变化后,是否最优解变化? 3. C参数变化后,是否最优解变化? 4. 对偶模型 5. 好像是目标函数的变化,是否最优解变化? 动态规划题 二、动态规划题 题目是产品生产的问题,就是设置了库存量、每月的约束以及一些限制条件,问题有: 1. 阶段变量 2. 某个值的取值范围 3. 要建立动态规划部,譬如:当S4=5 3.最短路问题 三、有四款书架,分别高H1,H2,H3,H4,要装不同的书,并且给了书架的面积,要以高度排列,但是要根据面积来进行计算费用,在费用板块还得用固定成本+单位面积成本*所需面积,最后根据V1,V2,V3,V4进行一个最短路的规划,但是题上会有提示。 四、随机模拟 随机模拟 一个好像进入银行还是话务系统的时间,需要自己建表格,填写: 1. 进入时间 2. 操作时间 3. 等待时间 4. 总时间 5. 最后,计算一个平均等待时间 排队论 5、排队论 给了几个数据,是N=2的题,求以下的问题: 1. P0 2. 平均逗留时间 3. 平均等待时间 4. 需要建立几个队

矩阵对策 六、矩阵对策 就是AT=-A,3个问题: 1. 证明上述的公式 2. 如果运用到模型了,如何快速的求解(V=0) 3. 实际意义 线性规划 七、线性规划 给你一个线性规划,再给一个对偶模型,问一下4个问题 1. 对偶模型的意义(代理商的利益最大化) 2. 约束式子的意义 3.实际意义(我记得答案是:买方和卖方的都满意的结果)

天津大学网络教育入学考试高等数学试题

天津大学网络教育入学考试高等数学试题1、题目Z1-2(2)() A.A B.B C.C D.D 标准答案:A 2、题目20-1:(2)() A.A B.B C.C D.D 标准答案:A 3、题目20-2:(2)() A.A B.B C.C D.D 标准答案:B 4、题目20-3:(2)()

A.A B.B C.C D.D 标准答案:A 5、题目20-4:(2)() A.A B.B C.C D.D 标准答案:D 6、题目20-5:(2)() A.A B.B C.C D.D 标准答案:D 7、题目20-6:(2)() A.A B.B C.C

D.D 标准答案:A 8、题目20-7:(2)() A.A B.B C.C D.D 标准答案:D 9、题目20-8:(2)() A.A B.B C.C D.D 标准答案:C 10、题目11-1(2)() A.A B.B C.C D.D 标准答案:C

11、题目11-2(2)() A.A B.B C.C D.D 标准答案:B 12、题目11-3(2)() A.A B.B C.C D.D 标准答案:A 13、题目20-9:(2)() A.A B.B C.C D.D 标准答案:C 14、题目11-4:(2)()

A.A B.B C.C D.D 标准答案:D 15、题目11-5(2)() A.A B.B C.C D.D 标准答案:C 16、题目20-10:(2)() A.A B.B C.C D.D 标准答案:B 17、题目11-6(2)() A.A B.B C.C D.D 标准答案:B 18、题目11-7(2)()

2019年数学考研数学分析各名校考研真题及答案

考研数学分析真题集 目录 南开大学 北京大学 清华大学 浙江大学 华中科技大学 一、,,0N ?>?ε当N n >时,ε<>?m a N m , 证明:该数列一定是有界数列,有界数列必有收敛子列 }{k n a ,a a k n k =∞ →lim , 所以, ε 2<-+-≤-a a a a a a k k n n n n 二 、,,0N ?>?ε当N x >时,ε<-)()(x g x f ,,0,01>?>?δε当1'''δ<-x x 时, ε<-)''()'(x f x f 对上述,0>ε当N x x >'','时,且1'''δ<-x x ε3)''()'()''()''()'()'()''()'(<-+-+-≤-x f x f x f x g x g x f x g x g 当N x x <'','时,由闭区间上的连续函数一定一致收敛,所以,0,02>?>?δε2'''δ<-x x 时 ε<-)''()'(x g x g ,当'''x N x <<时,由闭区间上的连续函数一定一致收敛,在 ],['','22δδ+-∈N N x x 时,ε<-)''()'(x g x g ,取},m in{21δδδ=即可。 三、由,0)('',0)('<>x f a f 得,0)('

又2))((''2 1 ))((')()(a x f a x a f a f x f -+ -+=ξ,所以-∞=+∞→)(lim x f x ,且0)(>a f ,所以 )(x f 必有零点,又)(x f 递减,所以有且仅有一个零点。 四、? ?==1 ,)(1)()(x dt t f x dt xt f x ?2 )()()('x dt t f x x f x x ? -=?, 2 2)(lim )(lim ) (lim )0('0 2 A x x f x dt t f x x x x x x ====→→→???, 2 )(lim ) (lim )() (lim )('lim 2 002 00A x dt t f x x f x dt t f x x f x x x x x x x = -=-=? ? →→→→?,)('x ?在0=x 连续。 五、当k m ≠时,不妨设k m <, ??--+--=1 111) (2)(2])1[(])1[(!!21)()(dx x x k m dx x P x P k k m m k m k m = --? -dx x x k k m m 1 1 )(2)(2])1[(])1[(dx x x x x m m k k k k m m ?-+--------1 1 )1(2)1(211 ) 1(2)(2])1[(])1[(])1[(])1[(= 0])1][()1[()1(])1[(])1[(11 )(221 1 )1(2)1(2=---==---??-+-+-dx x x dx x x k m m k k m m k k Λ 当k m =时, ?? ----= 1 11 1 )(2)(22 2])1[(])1[(!21)()(dx x x m dx x P x P m m m m m k m ?? -+---------=--1 1 )1(21211 1 221 1 )(2)(2])1[(])1[(])1[(])1[(])1[(])1[(dx x x x x dx x x m m m m m m m m m m m m =?-+----1 1)1(212])1[(])1[(dx x x m m m m =?----=1 1 )2(22])1][()1[()1(dx x x m m m m Λ= ? ---1 1 2])1[()!2()1(dx x m m m =?--1 2])1[()!2()1(2dx x m m m 六、J 是实数,,0,0>?>?δε当δs 时,该积分收敛。 七、∑=-n k k 1 )1(有界,2 1 x n +在),(+∞-∞上单调一致趋于零,由狄利克雷判别法知,∑∞ =+-12)1(n n x n 在),(+∞-∞上一致收敛,∑∞ =+12 1n x n 与∑∞ =11 n n 同敛散,所以发散; 当0=x 时,∑∞ =+122)1(n n x x 绝对收敛,当0≠x 时,∑∞ =+122 ) 1(n n x x 绝对收敛;

南开大学2003年数学分析考研试题及解答

南开大学2003年数学分析考研试题及解答 一.设(),,w f x y x y x =+-,其中(),,f u v s 有二阶连续偏导数,求xy w . 解:令u x y =+,v x y =-,s x =, 则x u v s w f f f =++; ()()()111xy uu uv vu vv su sv w f f f f f f =+-++-++-. 二.设数列{}n a 非负单增,且lim n n a a →∞ =,证明:() 1 12lim n n n n n n a a a a →∞+++=L . 证明:因为 {}n a 非负单增, 所以有()() 1111 2 n n n n n n n n n n n a a a a na n a ≤+++≤=L , 由lim n n a a →∞ =,1lim n n n n a a →∞ =, 根据夹逼定理,得() 11 2 lim n n n n n n a a a a →∞ +++=L . 三.设 ()()2ln 1,00, 0x x x f x x α?+>?=?≤??,试确定α的取值范围,使()f x 分别满足: (1)极限()0 lim x f x + →存在; (2)()f x 在0x =处连续; (3) ()f x 在0x =处可导. 解(1)因为()()2 lim lim ln 1x x f x x x α+ + →→=+ ()2 2 2 ln 1lim x x x x α+ +→+=, ()22 0ln 1lim 1x x x + →+=, 极限存在的条件为20α+≥,即2α≥-,

所以当2α ≥-时,极限()0 lim x f x + →存在; (2)因为()()0 lim 00x f x f -→==, 所以要使()f x 在0x =处连续, 需要求20α+>,2α>-, 所以当2α >-时,()f x 在0x =处连续; (3)显然 ()00f -'=, ()()()12 000lim lim ln 1x x f x f x x x α++ -→→-=+ ()2 1 2 ln 1lim x x x x α+ +→+=, 要使其存在且为0,必须10α+>,1α>-, 所以当1α>-时,()f x 在0x =处可导. 四.设 ()f x 在(),-∞+∞上连续, 证明积分()()22 L f x y xdx ydy ++?与积分路径无关. 证明:设()()22 01,2 x y U x y f t dt +=?, 则有()()()22,dU x y f x y xdx ydy = ++, 即存在势函数, 所以 ()()22L L f x y xdx ydy dU ++=? ?与积分路径无关. 五.设 ()f x 在[],a b 上可导,02a b f +?? = ??? ,且()f x M '≤, 证明: ()()2 4 b a M f x dx b a ≤ -? . 证明:因为 ()f x 在[],a b 上可导, 则由拉格朗日中值定理,存在ξ在x 与2 a b +之间,使得

相关文档
相关文档 最新文档