文档库 最新最全的文档下载
当前位置:文档库 › 高分子材料按应用分类

高分子材料按应用分类

高分子材料按应用分类
高分子材料按应用分类

高分子材料按应用分类

高分子材料按特性分为橡胶、纤维、塑料、高分子胶粘剂、高分子涂料和高分子基复合材料等。①橡胶是一类线型柔性高分子聚合物。其分子链间次价力小,分子链柔性好,在外力作用下可产生较大形变,除去外力后能迅速恢复原状。有天然橡胶和合成橡胶两种。

②高分子纤维分为天然纤维和化学纤维。前者指蚕丝、棉、麻、毛等。后者是以天然高分子或合成高分子为原料,经过纺丝和后处理制得。纤维的次价力大、形变能力小、模量高,一般为结晶聚合物。③塑料是以合成树脂或化学改性的天然高分子为主要成分,再加入填料、增塑剂和其他添加剂制得。其分子间次价力、模量和形变量等介于橡胶和纤维之间。通常按合成树脂的特性分为热固性塑料和热塑性塑料;按用途又分为通用塑料和工程塑料。

④高分子胶粘剂是以合成天然高分子化合物为主体制成的胶粘材料。分为天然和合成胶粘剂两种。应用较多的是合成胶粘剂。⑤高分子涂料是以聚合物为主要成膜物质,添加溶剂和各种添加剂制得。根据成膜物质不同,分为油脂涂料、天然树脂涂料和合成树脂涂料。

⑥高分子基复合材料是以高分子化合物为基体,添加各种增强材料制得的一种复合材料。它综合了原有材料的性能特点,并可根据需要进行材料设计。⑦功能高分子材料。功能高分子材料除具有聚合物的一般力学性能、绝缘性能和热性能外,还具有物质、能量和信息的转换、传递和储存等特殊功能。已实用的有高分子信息转换材料、高分子透明材料、高分子模拟酶、生物降解高分子材料、高分子形状记忆材料和医用、药用高分子材料等。高聚物根据其机械性能和使用状态可分为上述几类。但是各类高聚物之间并无严格的界限,同一高聚物,采用不同的合成方法和成型工艺,可以制成塑料,也可制成纤维,比如尼龙就是如此。而聚氨酯一类的高聚物,在室温下既有玻璃态性质,又有很好的弹性,所以很难说它是橡胶还是塑料。

按高分子主链结构分类

①碳链高分子:分子主链由C原子组成,如:PP、PE、PVC②杂链高聚物:分子主链由C、O、N等原子构成。如:聚酰胺、聚酯③元素有机高聚物:分子主链不含C 原子,仅由一些杂原子组成的高分子。如:硅橡胶

新型高分子材料

高分子材料包括塑料、橡胶、纤维、薄膜、胶粘剂和涂料等。其中,被称为现代高分子三大合成材料的塑料、合成纤维和合成橡胶已经成为国民经济建设与人民日常生活所必不可少的重要材料。尽管高分子材料因普遍具有许多金属和无机材料所无法取代的优点而获得迅速的发展,但目前业已大规模生产的还是只能寻常条件下使用的高分子物质,即所谓的通用高分子,它们存在着机械强度和刚性差、耐热性低等缺点。而现代工程技术的发展,则向高分子材料提出了更高的要求,因而推动了高分子材料向高性能化、功能化和生物化方向发展,这样就出现了许多产量低、价格高、性能优异的新型高分子材料。

高分子分离膜

高分子分离膜是用高分子材料制成的具有选择性透过功能的半透性薄膜。采用这样的半透性薄膜,以压力差、温度梯度、浓度梯度或电位差为动力,使气体混合物、液体混合物或有机物、无机物的溶液等分离技术相比,具有省能、高效和洁净等特点,因而被认为是支撑新技术革命的重大技术。膜分离过程主要有反渗透、超滤、微滤、电渗析、压渗析、气体分离、渗透汽化和液膜分离等。用来制备分离、渗透汽化和液膜分离等。用来制备分离膜的高分子材料有许多种类。现在用的较多的是聚枫、聚烯烃、纤维素脂类和有机硅等。膜的形式也有多种,一般用的是平膜和空中纤维。推广应用高分子分离膜能获得巨大的经济效益和社

会效益。例如,利用离子交换膜电解食盐可减少污染、节约能源:利用反渗透进行海水淡化和脱盐、要比其它方法消耗的能量都小;利用气体分离膜从空气中富集氧可大大提高氧气回收率等。

高分子磁性材料

高分子磁性材料,是人类在不断开拓磁与高分子聚合物(合成树脂、橡胶)的新应用领域的同时,而赋予磁与高分子的传统应用以新的涵义和内容的材料之一。早期磁性材料源于天然磁石,以后才利用磁铁矿(铁氧体)烧结或铸造成磁性体,现在工业常用的磁性材料有三种,即铁氧体磁铁、稀土类磁铁和铝镍钴合金磁铁等。它们的缺点是既硬且脆,加工性差。为了克服这些缺陷,将磁粉混炼于塑料或橡胶中制成的高分子磁性材料便应运而生了。这样制成的复合型高分子磁性材料,因具有比重轻、容易加工成尺寸精度高和复杂形状的制品,还能与其它元件一体成型等特点,而越来越受到人们的关

高分子材料

注。高分子磁性材料主要可分为两大类,即结构型和复合型。所谓结构型是指并不添加无机类磁粉而高分子中制成的磁性体。目前具有实用价值的主要是复合型。

光功能高分子材料

所谓光功能高分子材料,是指能够对光进行透射、吸收、储存、转换的一类高分子材料。目前,这一类材料已有很多,主要包括光导材料、光记录材料、光加工材料、光学用塑料(如塑料透镜、接触眼镜等)、光转换系统材料、光显示用材料、光导电用材料、光合作用材料等。光功能高分子材料在整个社会材料对光的透射,可以制成品种繁多的线性光学材料,像普通的安全玻璃、各种透镜、棱镜等;利用高分子材料曲线传播特性,又可以开发出非线性光学元件,如塑料光导纤维、塑料石英复合光导纤维等;而先进的信息储存元件兴盘的基本材料就是高性能的有机玻璃和聚碳酸脂。此外,利用高分子材料的光化学反应,可以开发出在电子工业和印刷工业上得到广泛使用的感光树脂、光固化涂料及粘合剂;利用高分子材料的能量转换特性,可制成光导电材料和光致变色材料;利用某些高分子材料的折光率随机械应力而变化的特性,可开发出光弹材料,用于研究力结构材料内部的应力分布等。

高分子复合材料

高分子材料和另外不同组成、不同形状、不同性质的物质复合粘结而成的多相材料。高分子复合材料最大优点是博各种材料之长,如高强度、质轻、耐温、耐腐蚀、绝热、绝缘等性质,根据应用目的,选取高分子材料和其他具有特殊性质的材料,制成满足需要的复合材料。高分子复合材料分为两大类:高分子结构复合材料和高分子功能复合材料。以前者为主。高分子结构复合材料包括两个组分:①增强剂。为具有高强度、高模量、耐温的纤维及织物,如玻璃纤维、氮化硅晶须、硼纤维及以上纤维的织物。②基体材料。主要是起粘合作用的胶粘剂,如不饱合聚酯树脂、环氧树脂、酚醛树脂、聚酰亚胺等热固性树脂及苯乙烯、

聚丙烯等热塑性树脂,这种复合材料的比强度和比模量比金属还高,是国防、尖端技术方面不可缺少的材料。

在科技高速发展的21世纪,随着高分子科学与生命科学、材料、环保等领域联系的日益密切,作为高分子科学的基础,高分子合成技术也必将在高分子科学乃至整个化学学科中发挥越来越重要的作用。

“高分子新材料”同样不是一个基础学科,也是一个综合研究领域。该领域的研究思路是,结合国民经济对各种新材料的需求,运用高分子学科知识,融合其他相关学科的知识,对各种新材料开展分子设计、化合物合成以及聚合物结构和成型研究。因此本领域的工作面颇宽,研究内容颇广。“高分子材料”和“功能高分子”的区别在于,前者着重研究通用型材料,使用量大、应用面广,后者着重研究功能材料,即性能特殊、使用量小、附加价值高的一类材料。目前我国在高分子新材料方面的主要研究领域有高分子工程材料(含高性能树脂材料和高性能聚烯烃材料)、高分子复合材料、可环境降解塑料、高分子纳米材料、天然高分子改性材料等塑料领域的工作,另有橡胶、纤维、涂料、黏合剂、建材等方面的高分子材料研究。“高分子材料”领域的研究人员同样主要是高分子化学家,也有一些高分子工程、高分子物理及其他学科领域的学者。在高分子新材料领域,我国做出的有国际影响的工作有:杜仲橡胶(反式聚异戊二烯)研究、天然漆漆酚钛耐腐蚀涂料研究等。

牛顿第二定律的应用-临界问题(附答案)

例1.如图所示,一质量为M=5 kg的斜面体放在水平地面上,斜面体与地面的动摩擦因数为μ1=0.5,斜面高度为h=0.45 m,斜面体右侧竖直面与小物块的动摩擦因数为μ2=0.8,小物块的质量为m=1 kg,起初小物块在斜面的竖直面上的最高点。现在从静止开始在M上作用一水平恒力F,并且同时释放m,取g=10 m/s2,设小物块与斜面体右侧竖直面间最大静摩擦力等于它们之间的滑动摩擦力,小物块可视为质点。问: (1)要使M、m保持相对静止一起向右做匀加速运动,加速度至少多大? (2)此过程中水平恒力至少为多少? 例1解析:(1)以m为研究对象,竖直方向有: mg-F f=0 水平方向有:F N=ma 又F f=μ2F N 得:a=12.5 m/s2。 (2)以小物块和斜面体为整体作为研究对象,由牛顿第二定律得:F-μ1(M+m)g=(M+m)a 水平恒力至少为:F=105 N。 答案:(1)12.5 m/s2(2)105 N 例2.如图所示,质量为m的光滑小球,用轻绳连接后,挂在三角劈的顶端,绳与斜面平行,劈置于光滑水平面上,求: (1)劈的加速度至少多大时小球对劈无压力?加速度方向如何? (2)劈以加速度a1= g/3水平向左加速运动时,绳的拉力多大? (3)当劈以加速度a3= 2g向左运动时,绳的拉力多大? 例2解:(1)恰无压力时,对球受力分析,得 (2),对球受力分析,得

(3),对球受力分析,得(无支持力) 练习: 1.如图所示,质量为M的木板上放着质量为m的木块,木块与木板间的动摩擦因数为μ1,木板与水平地面间的动摩擦因数为μ2,求加在木板上的力F为多大时,才能将木板从木块下抽出?(取最大静摩擦力与滑动摩擦力相等) 1解:只有当二者发生相对滑动时,才有可能将M从m下抽出,此时对应的临界状态是:M与m间的摩擦力必定是最大静摩擦力,且m运动的加速度必定是二者共同运动时的最大加速度 隔离受力较简单的物体m,则有:,a m就是系统在此临界状态的加速度 设此时作用于M的力为F min,再取M、m整体为研究对象,则有: F min-μ2(M+m)g=(M+m)a m,故F min=(μ1+μ2)(M+m)g 当F> F min时,才能将M抽出,故F>(μ1+μ2)(M+m)g 2.一条不可伸长的轻绳跨过质量可忽略不计的定滑轮,绳的一端系一质量M=15kg的重物,重物静止于地面上,有一质量m=10kg的猴从绳子另一端沿绳向上爬,如图所示,不计滑轮摩擦,在重物不离开地面条件下,猴子向上爬的最大加速度为(g=10m/s2)() A.25m/s2 B.5m/s2 C.10m/s2 D.15m/s2 2.分析:当小猴以最大加速度向上爬行时,重物对地压力为零,故小猴对细绳的拉力等于重物的重力,对 小猴受力分析,运用牛顿第二定律求解加速度. 解答:解:小猴以最大加速度向上爬行时,重物对地压力为零,故小猴对细绳的拉力等于重物的重力,即F=Mg; 小猴对细绳的拉力等于细绳对小猴的拉力F′=F; 对小猴受力分析,受重力和拉力,根据牛顿第二定律,有

牛顿第二定律解题技巧分析

龙源期刊网 https://www.wendangku.net/doc/2412989477.html, 牛顿第二定律解题技巧分析 作者:姚良波 来源:《速读·上旬》2019年第10期 摘; 要:牛顿第二定律作为中学生在物理学习中的难点与重点知识,在最终的高考试卷中占据了较大的考试内容占比。本文将立足于学生学习情况与客观考试试卷内容,对牛顿第二定律解题技巧进行分析,希望能够促进教师教育教学工作的顺利展开。 关键词:牛顿第二定律;中学生学习;物理问题应用解析 对牛顿第二定律解题技巧展开分析,将能够提升学生的解题技巧,从而改善学生的卷面得分情况,也能够侧面的提高教师的教育教学水平。本文将从找准关键字、想象建模解题和正确书写三个方面对牛顿第二定律解题技巧进行一定分析,希望能够促进教育教学工作的改善。 一、找准关键字 在探讨牛顿第二定律解题技巧前,学生首先要判断该题目考查知识点中是否涉及到牛顿第二定律。判断该题目中是否涉及到牛顿第二定律知识点,则需要学生能够找准题目中的关键字。这就要求教师在日常练习中着重培养学生认真审题的习惯。教师可以让学生在日常解题时用铅笔进行点读,在点读时发现关键字时则要用笔在题目上进行一定标注。在读题时,学生首先要判断该题目属于平衡问题还是非平衡问题,如果题目中有关键字为“静止或匀速运动”,则此时a=0,学生则应该将本题判断为平衡问题;如果题目中的关键字为变速运动,则此时a≠0,为非平衡运动。学生首先要对该题目进行平衡或非平衡判断,才能在该基础上对题目进行进一步的探讨与研究。如果学生判断该题为平衡问题,则要对该题目中所涉及的具体物体或者人做受力分析。学生应该根据具体的题目要求选择其所需要的受力分析方法是合成法还是正分解法。如果该题目中所作受力分析中对力分析有三个,则学生宜采用合成法构建受力三角形;如果该题目中涉及到三个以上的力,则学生应该采用正交分解法对该题目中所涉及物体进行受力分析。如果学生判断该题目为非平衡问题,则以物体所受两个力为界限,两个力为合成法或者正交分解法;三个力及以上则应该使用正交分解法。就牛顿第二定律而言,如果该题目中涉及到非平衡问题,则适用牛顿第二定律,如果涉及到平衡问题,则解题模式为牛顿第一定律解题模式。而在利用牛顿第二定律解题时,一般我们采用正交分解法去进行物体的受力分析。 例如,质量为m的人站在斜面电梯上,该电梯以加速度a向上、向右做加速运动,a的方向与水平方向的夹角为α,根据以上信息,请求该站在斜面电梯上的人受到的支持力与摩擦力。学生根据题目中关键字加速度a、则可以判断该题目所考查知识点为牛顿第二定律,继而学生要根据题目要求判断位于电梯上的人的受力情况,并根据正交分解法对题目中的人进行受力情况分析。再根据具体的题目要求利用牛顿第二定律原始公式进行变式解题。

牛顿第二定律的系统表达式及应用一中

牛顿第二定律的系统表达式 一、整体法和隔离法处理加速度相同的连接体问题 1.加速度相同的连接体的动力学方程: F 合 = (m 1 +m 2 +……)a 分量表达式:F x = (m 1 +m 2 +……)a x F y = (m 1 +m 2 +……)a y 2. 应用情境:已知加速度求整体所受外力或者已知整体受力求整体加速度。 例1、如图,在水平面上有一个质量为M的楔形木块A,其斜面倾角为α,一质量为m的木块B放在A的斜面上。现对A施以水平推力F, 恰使B与A不发生相对滑动,忽略一切摩擦,则B对 A的压力大小为( BD ) A 、 mgcosα B、mg/cosα C、FM/(M+m)cosα D、Fm/(M+m)sinα ★题型特点:隔离法与整体法的灵活应用。 ★解法特点:本题最佳方法是先对整体列牛顿第二定律求出整体加速度,再隔离B受力分析得出A、B之间的压力。省去了对木楔受力分析(受力较烦),达到了简化问题的目的。 例2.质量分别为m1、m2、m3、m4的四个物体彼此用轻绳连接,放在光滑的桌面上,拉力F1、F2分别水平地加在m1、m4上,如图所示。求物体系的加速度a和连接m2、m3轻绳的张力F。(F1>F2) 例3、两个物体A和B,质量分别为m1和m2,互相接触放在光滑水平面上,如图所示,对物体A施以水平的推力F,则物体A对B的作用力等于 ( ) A.F F F F 3、B 解析:首先确定研究对象,先选整体,求出A、B共同的加速度,再单独研究B,B 在A施加的弹力作用下加速运动,根据牛顿第二定律列方程求解. 将m1、m2看做一个整体,其合外力为F,由牛顿第二定律知,F=(m1+m2)a,再以m2为研究对象,受力分析如右图所示,由牛顿第二定律可得:F12=m2a,以上两式联立可得:F12= ,B正确. 例4、在粗糙水平面上有一个三角形木块a,在它的两个粗糙斜面上分别放有质量为m1和m2的两个木块b和c,如图1所示,已知m1>m2,三木块均处于静止, 则粗糙地面对于三角形木块( D ) A.有摩擦力作用,摩擦力的方向水平向右。B.有摩擦力作用,摩擦力的方向水平向左。C.有摩擦力作用,组摩擦力的方向不能确定。D.没有摩擦力的作用。 二、对加速度不同的连接体应用牛顿第二定律1.加速度不同的连接体的动力学方程:b c a

牛顿第二定律经典例题

牛顿第二定律应用的问题 1. 力和运动的关系 力是改变物体运动状态的原因,而不是维持运动的原因。由知,加速度与力有直接关系,分析清楚了力,就知道了加速度,而速度与力没有直接关系。速度如何变化需分析加速度方向与速度方向之间的关系,加速度与速度同向时,速度增加;反之减小。在加速度为零时,速度有极值。 例1. 如图1所示,轻弹簧下端固定在水平面上。一个小球从弹簧正上方某一高度处由静止开始自由下落,接触弹簧后把弹簧压缩到一定程度后停止下落。在小球下落的这一全过程中,下列说法中正确的是() 图1 A. 小球刚接触弹簧瞬间速度最大 B. 从小球接触弹簧起加速度变为竖直向上 C. 从小球接触弹簧到到达最低点,小球的速度先增大后减小 D. 从小球接触弹簧到到达最低点,小球的加速度先减小后增大 例2. 一航天探测器完成对月球的探测任务后,在离开月球的过程中,由静止开始沿着与月球表面成一倾斜角的直线飞行,先加速运动,再匀速运动,探测器通过喷气而获得推动力,以下关于喷气方向的描述中正确的是() A. 探测器加速运动时,沿直线向后喷气 B. 探测器加速运动时,竖直向下喷气 C. 探测器匀速运动时,竖直向下喷气 D. 探测器匀速运动时,不需要喷气

解析:小球的加速度大小决定于小球受到的合外力。从接触弹簧到到达最低点,弹力从零开始逐渐增大,所以合力先减小后增大,因此加速度先减小后增大。当合力与速度同向时小球速度增大,所以当小球所受弹力和重力大小相等时速度最大。故选CD。 解析:受力分析如图2所示,探测器沿直线加速运动时,所受合力方向 与运动方向相同,而重力方向竖直向下,由平行四边形定则知推力方向必须斜向上方,由牛顿第三定律可知,喷气方向斜向下方;匀速运动时,所受合力为零,因此推力方向必须竖直向上,喷气方向竖直向下。故正确答案选C。 图2

牛顿第二定律的应用专题分类训练训练(精品)

图3 牛顿第二定律的应用检测题 (以下各题取2 /10s m g ) 第一类:由物体的受力情况确定物体的运动情况 1,如图1所示,用F = N 的水平拉力,使质量m = kg 的物体由静止开始沿光滑水平面做匀加速直线运动.求: (1)物体加速度a 的大小; (2)物体开始运动后t = s 内通过的位移x . { 2,如图2所示,用F = N 的水平拉力,使质量m = kg 的物体由静止开始沿 光滑水平面做匀加速直线运动。 (1)求物体的加速度a 的大小; (2)求物体开始运动后t = s 末速度的大小; 【 3.如图3所示,用F 1 = 16 N 的水平拉力,使质量m = kg 的物体由静止开始沿水平地面做匀加速直线运动。已知物体所受的滑动摩擦力F 2 = N 。求: (1)物体加速度a 的大小; (2)物体开始运动后t= s 内通过的位移x 。 @ 4.如图4所示,用F =12 N 的水平拉力,使物体由静止开始沿水平地面做匀加速直线运动. 已知物体的质量m = kg ,物体与地面间的动摩擦因数μ=. 求: (1)物体加速度a 的大小; (2)物体在t =时速度v 的大小. [ 图1 图2 图4

5,一辆总质量是×103kg 的满载汽车,从静止出发,沿路面行驶,汽车的牵引力是×103N ,受到的阻力为车重的倍。求汽车运动的加速度和20秒末的速度各是多大 ( 6.如图6所示,一位滑雪者在一段水平雪地上滑雪。已知滑雪者与其全部装备的总质量m = 80kg ,滑雪板与雪地之间的动摩擦因数μ=。从某时刻起滑雪者收起雪杖自由滑行,此时滑雪者的速度v = 5m/s ,之后做匀减速直线运动。 求: (1)滑雪者做匀减速直线运动的加速度大小; (2)收起雪杖后继续滑行的最大距离。 7,如图7所示,一个质量为m=20kg 的物块,在F=60N 的水平拉力作用下,从静止开始沿水平地面向右做匀加速直线运动,物体与地面之间的动摩擦因数为, (1)画出物块的受力示意图 (2)求物块运动的加速度的大小 (3)求物块速度达到s m v /0.6 时移动的距离 ; 第二类:由物体的运动情况确定物体的受力情况 1、列车在机车的牵引下沿平直铁轨匀加速行驶,在100s 内速度由s 增加到s. (1)求列车的加速度大小. (2)若列车的质量是×106kg ,机车对列车的牵引力是×105N ,求列车在运动中所受的阻力大小. 图6 ! F

牛顿第二定律的应用——解决动力学的两类基本问题

牛顿第二定律的应用 (解决动力学的两类基本问题) 知识要点: 1. 进一步学习分析物体的受力情况,达到能结合物体的运动情况进行受力分析。 2. 掌握应用牛顿运动定律解决问题的基本思路和方法。 重点、难点解析: (一)牛顿第一定律内容:物体总保持静止或匀速直线运动状态,直到有外力迫使它改变这种状态为止。 (二)牛顿第三定律 1. 内容:两个物体之间的作用力和反作用力总是大小相等、方向相反、作用在同一直线上。 2. 理解作用力与反作用力的关系时,要注意以下几点: (1)作用力与反作用力同时产生,同时消失,同时变化,无先后之分。 (2)作用力与反作用力总是大小相等,方向相反,作用在同一直线上(与物体的大小,形状,运动状态均无关系。) (3)作用力与反作用力分别作用在受力物体和施力物体上,其作用效果分别体现在各自的受力物体上,所以作用力与反作用力产生的效果不能抵消。(作用力与反作用力能否求和?)(4)作用力与反作用力一定是同种性质的力。(平衡力的性质呢?) (三)牛顿第二定律 1、内容:物体的加速度与物体所受合外力成正比,跟物体质量成反比,加速度方向跟合外力的方向相同。 2、数学表达式:F合=ma 3、关于牛顿第二定律的理解: (1)同体性:F合=ma是对同一物体而言的 (2)矢量性:物体加速度方向与所受合外力方向一致 (3)瞬时性:物体的加速度与所受合外力具有瞬时对应关系 牛顿第二定律的应用 (一)在共点力作用下物体的平衡 1:平衡状态:物体处于静止或匀速直线运动状态,称物体处于平衡状态。 2:平衡条件:在共点力作用下物体的平衡条件是:F合=0。 = = (其中F x合为物体在x轴方向上所受的合外力,F y合为物体在y轴方向上所受的合外力)(二)两类动力学的基本问题 1. 从受力情况确定运动情况 根据物体的受力情况,可由牛顿第二定律求出物体的加速度,再通过运动学的规律确定物体的运动情况。 2. 从运动情况确定受力情况 根据物体的运动情况,可由运动学公式求出物体的加速度,再通过牛顿第二定律确定物体所受的外力。 3. 分析这两点问题的关键是抓住受力情况和运动情况的桥梁-——加速度。 4. 求解这两类问题的思路,可由下面的框图来表示。

应用牛顿第二定律分量形式解题例析

应用牛顿第二定律分量形式解题例析 F合=ma是牛顿第二定律的矢量形式,它体现了加速度方向与合外力方向的一致性,在具体应用到两个相互垂直的方向时,可得到牛顿第二定律的平面直角坐标形式:Fx=max,Fy=may。 下面举两例牛顿第二定律的分量形式在求解高考题中的具体应用: 例1:(2013?安徽高考)如图所示,细线的一端系一质量为m的小球,另一端固定在倾角为θ的光滑斜面体顶端,细线与斜面平行。在斜面体以加速度a 水平向右做匀加速直线运动的过程中,小球始终静止在斜面上,小球受到细线的拉力T和斜面的支持力FN 分别为(重力加速度为g)() A.T=m(gsinθ+acosθ)FN=m(gcosθ-asinθ) B.T=m(gcosθ+asinθ)FN=m(gsinθ-acosθ) C.T=m(acosθ-gsinθ)FN=m(gcosθ+asinθ) D.T=m(asinθ-gcosθ)FN=m(gsinθ+acosθ) 解析:如图,沿斜面方向与垂直斜面方向建立直角坐标系,正交分解力与加速度: 根据牛顿第二定律分量式得:T-mgsinθ=macos

θ,mgcosθ-FN=masinθ, 解得:T=m(gsinθ+acosθ),FN=m(gcosθ-asin θ),答案选A。 当研究对象具有多个物体时,可应用系统牛顿第二定律的平面直角坐标形式: Fx=m1a1x+m2a2x+m3a3x+… Fy=m1a1y+m2a2y+m3a3y+… 式中Fx等于系统中各物体质量与其加速度沿x 轴的分量乘积之和,Fy等于系统中各物体质理与其加速度沿y轴的分量乘积之和。 例2:(2010年上海高考)倾角θ=37°,质量M=5kg的粗糙斜面位于水平地面上,质量m=2kg的木块置于斜面顶端,从静止开始匀加速下滑,经t=2s到达底端,运动路程L=4m,在此过程中斜面保持静止(sin37°=0.6、cos37°=0.8、g取10m/s2),求:(1)地面对斜面的摩擦力大小与方向; (2)地面对斜面的支持力大小。 解析:木块沿斜面做匀加速直线运动,设加速度为a,由位移时间关系: L=at2 得:a==2m/s2 以斜面和物体组成的系统为研究对象进行受力分

牛顿第二定律总结

牛顿第二定律应用的典型问题 1. 力和运动的关系 例1. 如图1所示,轻弹簧下端固定在水平面上。一个小球从弹簧正上方某一高度处由静止开始自由下落,接触弹簧后把弹簧压缩到一定程度后停止下落。在小球下落的这一全过程中,下列说法中正确的是() A. 小球刚接触弹簧瞬间速度最大 B. 从小球接触弹簧起加速度变为竖直向上 C. 从小球接触弹簧到到达最低点,小球的速度先增大后减小 D. 从小球接触弹簧到到达最低点,小球的加速度先减小后增大 例2. 一航天探测器完成对月球的探测任务后,在离开月球的过程中,由静止开始沿着与月球表面成一倾斜角的直线飞行,先加速运动,再匀速运动,探测器通过喷气而获得推动力,以下关于喷气方向的描述中正确的是() A. 探测器加速运动时,沿直线向后喷气 B. 探测器加速运动时,竖直向下喷气 C. 探测器匀速运动时,竖直向下喷气 D. 探测器匀速运动时,不需要喷气 故正确答案选C。 2. 力和加速度的瞬时对应关系 (1)物体运动的加速度a与其所受的合外力F有瞬时对应关系。每一瞬时的加速度只取决于这一瞬时的合外力,而与这一瞬时之间或瞬时之后的力无关。若合外力变为零,加速度也立即变为零(加速度可以突变)。这就是牛顿第二定律的瞬时性。 (2)中学物理中的“绳”和“线”,一般都是理想化模型,具有如下几个特性: ①轻,即绳(或线)的质量和重力均可视为零。由此特点可知,同一根绳(或线)的两端及其中间各点的张力大小相等。 ②软,即绳(或线)只能受拉力,不能承受压力(因绳能弯曲)。由此特点可知,绳与其他物体相互作用力的方向是沿着绳子且背离受力物体的方向。 ③不可伸长:即无论绳子所受拉力多大,绳子的长度不变。由此特点知,绳子中的张力可以突变。 (3)中学物理中的“弹簧”和“橡皮绳”,也是理想化模型,具有如下几个特性: ①轻:即弹簧(或橡皮绳)的质量和重力均可视为零。由此特点可知,同一弹簧的两端及其中间各点的弹力大小相等。 ②弹簧既能受拉力,也能受压力(沿弹簧的轴线);橡皮绳只能受拉力,不能承受压力(因橡皮绳能弯曲)。 ③由于弹簧和橡皮绳受力时,其形变较大,发生形变需要一段时间,所以弹簧和橡皮绳中的弹力不能突变。但是,当弹簧和橡皮绳被剪断时,它们所受的弹力立即消失。

用牛顿运动定律解决问题(二)(精选练习)(解析版)

人教版物理必修1第四章《牛顿运动定律》 第七节用牛顿运动定律解决问题(二) 精选练习 一、夯实基础 1.当物体在共点力的作用下处于平衡状态时,下列说法正确的是() A.物体一定保持静止B.物体一定做匀速直线运动 C.物体的加速度为零D.物体一定做匀加速直线运动 【答案】 C 【解析】平衡状态指的是匀速直线运动状态或静止状态,物体在共点力的作用下处于平衡状态时,可能 做匀速直线运动,也可能处于静止状态,A、B、D选项错误;物体处于平衡状态的条件是合力为零,加速 度为零,C选项正确. 2.(多选)下列事例中的物体处于平衡状态的是() A.“神舟”号飞船匀速落到地面的过程B.汽车在水平路面上启动或刹车的过程 C.汽车停在斜坡上D.竖直上抛的物体在到达最高点的那一瞬间 【答案】:AC 【解析】:物体处于平衡状态,从运动状态来说,即物体保持静止或做匀速直线运动.从受力情况来说,物 体所受合力为零.“神舟”号飞船匀速落到地面的过程中,飞船处于平衡状态,A正确;B项中汽车在水平路面上启动或刹车过程中,汽车的速度在增大或减小,其加速度不为零,其合力不为零,所以汽车不是处于 平衡状态;C项中汽车停在斜坡上,速度和加速度均为零,合力为零,保持静止状态不变,即汽车处于平衡 状态;D项中物体上升到最高点时,只是速度为零,而加速度为g,所以物体不是处于平衡状态. 3.(多选)电梯的顶部拴一弹簧秤,弹簧秤下端挂一重物,电梯静止时,电梯中的人观察到弹簧秤的示数为10 N.某时刻电梯中的人观察到弹簧秤的示数为12 N,取g=10 m/s2,则此时() A.电梯可能向上加速运动,加速度大小为 2 m/s2 B.电梯可能向上减速运动,加速度大小为 2 m/s2 C.电梯中的人一定处于超重状态 D.电梯中的人一定处于平衡状态 【答案】AC 【解析】弹簧秤的示数增大,根据牛顿第二定律得,F-mg=ma,解得加速度a=2 m/s2,方向向上,电

牛顿第二定律以专题训练

牛顿第二定律 1.牛顿第二定律的表述(内容) 物体的加速度跟物体所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合力的方向相同,公式为:F=ma(其中的F和m、a必须相对应)。 对牛顿第二定律理解: (1)F=ma中的F为物体所受到的合外力. (2)F=ma中的m,当对哪个物体受力分析,就是哪个物体的质量,当对一个系统(几个物体组成一个系统)做受力分析时,如果F是系统受到的合外力,则m是系统的合质量.(3)F=ma中的F与a有瞬时对应关系,F变a则变,F大小变,a则大小变,F方向变a也方向变. (4)F=ma中的F与a有矢量对应关系,a的方向一定与F的方向相同。 (5)F=ma中,可根据力的独立性原理求某个力产生的加速度,也可以求某一个方向合外力的加速度. 若F为物体受的合外力,那么a表示物体的实际加速度;若F为物体受的某一个方向上的所有力的合力,那么a表示物体在该方向上的分加速度;若F为物体受的若干力中的某一个力,那么a仅表示该力产生的加速度,不是物体的实际加速度。 (6)F=ma中,F的单位是牛顿,m的单位是千克,a的单位是米/秒2. (7)F=ma的适用范围:宏观、低速 2.应用牛顿第二定律解题的步骤 ①明确研究对象。可以以某一个物体为对象,也可以以几个物体组成的质点组为对象。设每个质点的质量为m i,对应的加速度为a i,则有:F合=m1a1+m2a2+m3a3+……+m n a n 对这个结论可以这样理解:先分别以质点组中的每个物体为研究对象用牛顿第二定律: ∑F1=m1a1,∑F2=m2a2,……∑F n=m n a n,将以上各式等号左、右分别相加,其中左边所有力中,凡属于系统内力的,总是成对出现的,其矢量和必为零,所以最后实际得到的是该质点组所受的所有外力之和,即合外力F。 ②对研究对象进行受力分析。(同时还应该分析研究对象的运动情况(包括速度、加速度),并把速度、加速度的方向在受力图旁边画出来。 ③若研究对象在不共线的两个力作用下做加速运动,一般用平行四边形定则(或三角形定则)解题;若研究对象在不共线的三个以上的力作用下做加速运动,一般用正交分解法解题(注意灵活选取坐标轴的方向,既可以分解力,也可以分解加速度)。 ④当研究对象在研究过程的不同阶段受力情况有变化时,那就必须分阶段进行受力分析,分阶段列方程求解。 解题要养成良好的习惯。只要严格按照以上步骤解题,同时认真画出受力分析图,那么问题都能迎刃而解。 3.应用举例 【例1】质量为m的物体放在水平地面上,受水平恒力F作用,由静止开始做匀加速直线运动,经过ts后,撤去水平拉力F,物体又经过ts停下,求物体受到的滑动摩擦力f.

新06.牛顿第二定律的综合应用专题训练(题型全面)

F 37 图 1 F 牛顿第二定律的应用 第一类:由物体的受力情况确定物体的运动情况 1. 如图1所示,一个质量为m=20kg 的物块,在F=60N 的水平拉力作用下,从静止开始沿水平地面向右做匀加速直线运动,物体与地面之间的动摩擦因数为0.10.( g=10m/s 2) (1)画出物块的受力示意图 (2)求物块运动的加速度的大小 (3)物体在t = 2.0s 时速度v 的大小. (4)求物块速度达到s m v /0.6=时移动的距离 2.如图,质量m=2kg 的物体静止在水平面上,物体与水平面间的滑动摩擦因数25.0=μ,现在对物体施加一个大小F=8N 、与水平方向夹角θ=37°角的斜向上的拉力.已知sin37°=0.6,cos37°=0.8,取g=10m/s 2,求 (1)画出物体的受力示意图 (2)物体运动的加速度 (3)物体在拉力作用下5s 内通过的位移大小。 〖自主练习:〗 1.一辆总质量是4.0×103kg 的满载汽车,从静止出发,沿路面行驶,汽车的牵引力是6.0×103N ,受到的阻力为车重的0.1倍。求汽车运动的加速度和20秒末的速度各是多大? ( g=10m/s 2 ) 2.如图所示,一位滑雪者在一段水平雪地上滑雪。已知滑雪者与其全部装备的总质量m = 80kg ,滑雪板与雪地之间的动摩擦因数μ=0.05。从某时刻起滑雪者收起雪杖自由滑行,此时滑雪者的速度v = 5m/s ,之后做匀减速直线运动。 求:( g=10m/s 2 )

(1)滑雪者做匀减速直线运动的加速度大小; (2)收起雪杖后继续滑行的最大距离。 第二类:由物体的运动情况确定物体的受力情况 1、列车在机车的牵引下沿平直铁轨匀加速行驶,在100s 内速度由5.0m/s 增加到15.0m/s. (1)求列车的加速度大小. (2)若列车的质量是1.0×106kg ,机车对列车的牵引力是1.5×105N ,求列车在运动中所受的阻力大小.( g=10m/s 2) 2.一个滑雪的人,质量m =75kg ,以v 0=2m/s 的初速度沿山坡匀加速滑下,山坡的倾角θ=30°,在t =5s 的时间内滑下的路程x =60m ,( g=10m/s 2)求: (1)人沿斜面下滑的加速度 (2)滑雪人受到的阻力(包括摩擦和空气阻力)。 〖自主练习:〗 1.静止在水平地面上的物体,质量为20kg ,现在用一个大小为60N 的水平力使物体做匀加速直线运动,当物体移动9.0m 时,速度达到6.0m/s ,( g=10m/s 2)求: (1)物体加速度的大小 (2)物体和地面之间的动摩擦因数 2.一位滑雪者如果以v 0=30m/s 的初速度沿直线冲上一倾角为300的山坡,从冲坡开始计时,至4s 末,雪橇速度变为零。如果雪橇与人的质量为m =80kg ,( g=10m/s 2) 求滑雪人受到的阻力是多少。 3.如图,质量m=2kg 的物体静止在水平面上,物体与水平面间的滑动摩擦因数25.0=μ,现在对物体施加一个大小F=8N 、与水平方向夹角θ=37°角的斜下上的推力.已知sin37°=0.6,cos37°=0.8,取g=10m/s 2, 求(1)物体运动的加速度 (2)物体在拉力作用下5s 内通过的位移大小。

高中物理:4.6应用牛顿第二定律解决问题

高中物理应用牛顿第二定律解决问题 (答题时间:30分钟) 1. 如图中A为电磁铁,C为胶木秤盘,A和C(包括支架)的总质量为M,B为铁片,质量为m,整个装置用轻绳悬挂于O点,当电磁铁通电,铁片被吸引上升的过程中,轻绳上的拉力F的大小为() A. F=mg B mg < F <(M+m)g C. F=(M+m)g D F >(M+m)g 2. 如图所示,在探究牛顿第二定律的演示实验中,若1、2两个相同的小车所受拉力分别为F1、F2,车中所放砝码的质量分别为m1、m2,打开夹子后经过相同的时间,两车的位移分别为x1、x2,则在实验误差允许的范围内,有() A. 当m1=m2、F1=2F2时,x1=2x2 B. 当m1=m2、F1=2F2时,x2=2x1 C. 当m1=2m2时,x1=2x2 D. 当m1=2m2、F1=F2时,x2=2x1 3. 如图所示,质量为1.2kg的金属块放在水平桌面上,在与水平方向成37°角斜向上、大小为 4.0N的拉力作用下,以10.0m/s的速度向右做匀速直线运动。已知sin37o=0.6, cos37o=0.8,g取10m/s2,求: (1)金属块与桌面间的动摩擦因数; (2)若从某时刻起将与水平方向成37°角斜向右上方的拉力F变成与水平方向成37°角斜向左下方的推力(如图)F1=8.0N,求在换成推力F1后的2s时间内金属块所经过的路程。

4. 在水平地面上有质量为4kg的物体,物体在水平拉力F作用下由静止开始运动,10s 后拉力减为F/3,该物体的速度-时间图象如下图所示,则水平拉力F=________N,物体与地面间的动摩擦因数μ=____________。 5. 如下图所示为某些同学根据实验数据画出的图象,下列说法中正确的是() A. 形成图甲的原因是平衡摩擦力时长木板倾角过大 B. 形成图乙的原因是平衡摩擦力时长木板倾角过小 C. 形成图丙的原因是平衡摩擦力时长木板倾角过大 D. 形成图丁的原因是平衡摩擦力时长木板倾角过小 6. 如图所示,一足够长的木板静止在光滑水平面上,一物块静止在木板上,木板和物块间有摩擦,现用水平力向右拉木板,当物块相对木板滑动了一段距离但仍有相对运动时,撤掉拉力,此后木板和物块相对于水平面的运动情况为() A. 物块先向左运动,再向右运动 B. 物块向右运动,速度逐渐增大,直到做匀速运动 C. 木板向右运动,速度逐渐变小,直到做匀速运动 D. 木板和物块的速度都逐渐变小,直到为零 7. 下图为蹦极运动的示意图,弹性绳的一端固定在O点,另一端和运动员相连,运动员从O点自由下落,至B点弹性绳自然伸直,经过合力为零的C点到达最低点D,然后弹起,整个过程中忽略空气阻力,分析这一过程,下列表述正确的是()

牛顿第二定律应用——图像专题

牛顿第二定律应用——图像专题 学习目标: 1.进一步理解牛顿第二定律; 2.理解图像的物理意义; 3.会结合图像求解动力学问题。 重点:理解牛顿第二定律,并结合图像求解动力学问题 难点:学生能力培养 一、牛顿运动定律中的图象 图象能形象的表达物理规律,能直观地描述物理过程,能鲜明地表示物理量之间的关系。应用图象,不仅能进行定性分析、比较、判断,也适宜于定量计算、论证,而且通过图象的启发常能找到巧妙的解题途径。因此,理解图象的物理意义,自觉地运用图象分析表达物理规律,是十分必要的。 当然,牛顿第二定律与图象的综合问题也是近年来高考的重点和热点。 一)、理解图象的轴、点、线、截、斜、面六大功能 1、轴:弄清直角坐标系中,横轴、纵轴代表的含义,即图像是描述哪两个物理量间的关系,是位移—时间关系?还是速度—时间关系?等等……同时注意单位及标度。 2、点:物理图像上的“点”代表某一物理状态,要弄清图像上任一点的物理意义,实质是两个轴所代表的物理量的瞬时对应关系,如代表t时刻的位移s,或t时刻对应的速度等等.在图象中我们着重要了解截距点、交点、极值点、拐点等这些特殊点的物理意义。 3、线:图像上的一段直线或曲线一般对应一段物理过程,给出了纵轴代表的物理量随横轴代表的物理量的变化过程. 4、截:即纵轴截距,一般代表物理过程的初状态情况,即时间为零时的位移或速度的值.当然,对物理图像的全面了解,还需同学们今后慢慢体会和提高,如对矢量及标量的正确处理分析等等…… 5、斜:即斜率,也往往代表另一个物理量的规律,看两轴所代表物理量的变化之比的含义.同样可以从物理公式或单位的角度分析,如s—t图像中,斜率代表速度等等…… 6、面:图像和坐标轴所夹的“面积”常与某一表示过程的物理量相对应,如能充分利用“面积”的这一特点来解题,不仅思路清晰,而且在很多情况下可以使解体过程得到简化,起到比解析法更巧妙、更灵活的独特效果。如速度--时间图像与横轴所围面积为物体在这段时间内的位移,看两轴代表的物理量的“积”有无实际的物理意义,可以从物理公式分析,也可从单位的角度分析,如s—t图像“面积”无实际意义,不予讨论。 二)、求解图象问题的思路 1.常见图象 动力学中常见的有a-F、a-1/m、F-t、v-t、x-t图象等,我们可抓住图象的斜率、截距、面积、交点、拐点等信息,结合牛顿第二定律和运动学公式来分析解决问题。 2.求解图象问题的思路: (1)确定研究对象并分析其受力情况和运动情况; (2)建立直角坐标系求合力(一般让x 轴沿着a的方向); (3)分析图象获取所需信息: 通常在a-F图象中找出a与F的对应值;在a-1/m图象中找出a与m的对应值; 在F-t图象中找出F在相应时刻的值;在v-t和x-t图象中求出a的值。 (4)根据牛顿第二定律列方程求解。

牛顿第二定律的应用临界问题与极值问题

值 2.中学阶段常见的临界问题归纳: 3.掌握临界问题的基本思路:

①仔细审题,认真分析研究对象所经历的物理过程,找到临界状态 ②找到重要物理量的变化规律,找出临界条件 ③根据临界条件列方程求解 【典型题例】 例1:有一质量M=4kg的小车置于光滑水平桌面上,在小车上放一质量m=6kg 的物块,动摩擦因素μ=0.2,现对物块施加F=25N的水平拉力,如图所示,求小车的加速度?(设车与物块之间的最大静摩擦力等于滑动摩擦力且g取10m/s2) 例2.托盘A托着质量为m的重物B,B 挂在劲度系数为k的弹簧下端,弹簧的上端悬挂于O点,开始时弹簧竖直且为原长,今让托盘A竖直向下做初速为零的匀加速运动,其加速度为a,求经过多长时间,A与B开始分离(a g). 例3.如图,光滑斜面质量为M=8 kg,小球m=2kg,用细绳悬挂相对静止在斜面上,求: (1)用多大的水平力F推斜面时,绳中的张力为零? (2)用多大的水平力F推斜面时,小球对斜面的压力为零? 例4:如图所示,m=4kg的小球挂在小车后壁上,细线与竖直方向成37°角。求: (1)小车以a=g向右加速; (2)小车以a=g向右减速时,细线对小球的拉力F1和后壁对小球的压力F2各多大? 牛顿第二定律专题(二)—临界问题与极值问题针对训练 一、选择题(第1到第4为单选题,第5到第8题为多选题) 1.如图在前进的车厢的竖直后壁上放一个物体,物体与后壁间的滑动摩擦系数为μ,设最大静摩擦力等于滑动摩擦力.要使物体不下滑,车厢至少应以多大的加速度前进() A.g/μ B.gμ C.μ/g D.g 2.如图5所示,质量为M的木板,上 O B A 例2题 例1

牛顿第二定律应用的典型问题

牛顿第二定律应用的典型问题 ——陈法伟 1. 力和运动的关系 力是改变物体运动状态的原因,而不是维持运动的原因。由知,加速度与力有直接关系,分析清楚了力,就知道了加速度,而速度与力没有直接关系。速度如何变化需分析加速度方向与速度方向之间的关系,加速度与速度同向时,速度增加;反之减小。在加速度为零时,速度有极值。 例1. 如图1所示,轻弹簧下端固定在水平面上。一个小球从弹簧正上方某一高度处由静止开始自由下落,接触弹簧后把弹簧压缩到一定程度后停止下落。在小球下落的这一全过程中,下列说法中正确的是() 图1 A. 小球刚接触弹簧瞬间速度最大 B. 从小球接触弹簧起加速度变为竖直向上 C. 从小球接触弹簧到到达最低点,小球的速度先增大后减小 D. 从小球接触弹簧到到达最低点,小球的加速度先减小后增大 解析:小球的加速度大小决定于小球受到的合外力。从接触弹簧到到达最低点,弹力从零开始逐渐增大,所以合力先减小后增大,因此加速度先减小后增大。当合力与速度同向时小球速度增大,所以当小球所受弹力和重力大小相等时速度最大。故选CD。

例2. 一航天探测器完成对月球的探测任务后,在离开月球的过程中,由静止开始沿着与月球表面成一倾斜角的直线飞行,先加速运动,再匀速运动,探测器通过喷气而获得推动力,以下关于喷气方向的描述中正确的是() A. 探测器加速运动时,沿直线向后喷气 B. 探测器加速运动时,竖直向下喷气 C. 探测器匀速运动时,竖直向下喷气 D. 探测器匀速运动时,不需要喷气 解析:受力分析如图2所示,探测器沿直线加速运动时,所受合力方向与运动方向相同,而重力方向竖直向下,由平行四边形定则知推力方向必须斜向上方,由牛顿第三定律可知,喷气方向斜向下方;匀速运动时,所受合力为零,因此推力方向必须竖直向上,喷气方向竖直向下。故正确答案选C。 图2 2. 力和加速度的瞬时对应关系 (1)物体运动的加速度a与其所受的合外力F有瞬时对应关系。每一瞬时的加速度只取决于这一瞬时的合外力,而与这一瞬时之间或瞬时之后的力无关。若合外力变为零,加速度也立即变为零(加速度可以突变)。这就是牛顿第二定律的瞬时性。 (2)中学物理中的“绳”和“线”,一般都是理想化模型,具有如下几个特性: ①轻,即绳(或线)的质量和重力均可视为零。由此特点可知,同一根绳(或线)的两端及其中间各点的张力大小相等。

牛顿第二定律解题技巧

考点名称:实验:探究加速度与力、质量的关系 实验目的: 验证牛顿第二定律。 实验原理: 1、如图所示装置,保持小车质量不变,改变小桶内砂的质量,从而改变细线对小车的牵引力,测 出小车的对应加速度,作出加速度和力的关系图线,验证加速度是否与外力成正比。 2、保持小桶和砂的质量不变,在小车上加减砝码,改变小车的质量,测出小车的对应加速度,作 出加速度和质量倒数的关系图线,验证加速度是否与质量成反比。 实验器材: 小车,砝码,小桶,砂,细线,附有定滑轮的长木板,垫木,打点计时器,低压交流电源,导线 两根,纸带,托盘天平及砝码,米尺。 实验步骤: 1、用天平测出小车和小桶的质量M和M',把数据记录下来。 2、按如图装置把实验器材安装好,只是不把挂小桶用的细线系在小车上,即不给小车加牵引力。 3、平衡摩擦力:在长木板的不带定滑轮的一端下面垫上垫木,反复移动垫木的位置,直至小车在 斜面上运动时可以保持匀速直线运动状态(可以从纸带上打的点是否均匀来判断)。 4、在小车上加放砝码,小桶里放入适量的砂,把砝码和砂的质量m和m'记录下来。把细线系在 小车上并绕过滑轮悬挂小桶,接通电源,放开小车,打点计时器在纸带上打下一系列点,取下纸 带,在纸带上写上编号。 5、保持小车的质量不变,改变砂的质量(要用天平称量),按步骤4再做5次实验。 6、算出每条纸带对应的加速度的值。 7、用纵坐标表示加速度a,横坐标表示作用力,即砂和桶的总重力(M'+m')g,根据实验结果在坐标 平面上描出相应的点,作图线。若图线为一条过原点的直线,就证明了研究对象质量不变时其加 速度与它所受作用力成正比。 8、保持砂和小桶的质量不变,在小车上加放砝码,重复上面的实验,并做好记录,求出相应的加 速度,用纵坐标表示加速度a,横坐标表示小车和车内砝码总质量的倒数,在坐标平面上根据实验结果描出相应的点并作图线,若图线为一条过原点的直线,就证明了研究对象所受作用力 不变时其加速度与它的质量成反比。 注意事项: 1、砂和小桶的总质量不要超过小车和砝码的总质量的。 2、在平衡摩擦力时,不要悬挂小桶,但小车应连着纸带且接通电源。用手给小车一个初速度,如 果在纸带上打出的点的间隔是均匀的,表明小车受到的阻力跟它的重力沿斜面向下的分力平衡。 3、作图时应该使所作的直线通过尽可能多的点,不在直线上的点也要尽可能对称地分布在直线的 两侧,但如遇个别特别偏离的点可舍去。 1、牛顿运动定律 牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。 牛顿第二定律:物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力 的方向相同,表达式F合=ma。 牛顿第三定律:两个物体间的作用力和反作用力总是大小相等,方向相反,作用在同一直线上。

牛顿第二定律应用专题训练题型全面

图 1 牛顿第二定律的应用 第一类:由物体的受力情况确定物体的运动情况 1. 如图1所示,一个质量为m=20kg 的物块,在F=60N 的水平拉力作用下,从静止开始沿水平地面向右做匀加速直线运动,物体与地面之间的动摩擦因数为0.10.( g=10m /s 2 ) (1)画出物块的受力示意图 (2)求物块运动的加速度的大小 (3)物体在t =2.0s 时速度v 的大小. (4)求物块速度达到s m v /0.6=时移动的距离 2.如图,质量m=2kg的物体静止在水平面上,物体与水平面间的滑动摩擦因数25.0=μ,现在对物体施加一个大小F =8N 、与水平方向夹角θ=37°角的斜向上的拉力.已知sin 37°=0.6,cos37°=0.8,取g=10m/s 2 ,求 (1)画出物体的受力示意图 (2)物体运动的加速度 (3)物体在拉力作用下5s 内通过的位移大小。

〖方法归纳:〗 〖自主练习:〗1.一辆总质量是4.0×103 kg 的满载汽车,从静止出发,沿路面行驶,汽车的牵引力是6.0×103 N ,受到的阻力为车重的0.1倍。求汽车运动的加速度和20秒末的速度各是多大? ( g=10m/s 2 ) 2.如图所示,一位滑雪者在一段水平雪地上滑雪。已知滑雪者与其全部装备的总质量m = 80k g,滑雪板与雪地之间的动摩擦因数μ=0.05。从某时刻起滑雪者收起雪杖自由滑行,此时滑雪者的速度v = 5m/s,之后做匀减速直线运动。 求:( g=10m/s 2 ) (1)滑雪者做匀减速直线运动的加速度大小; (2)收起雪杖后继续滑行的最大距离。 3.如图,质量m=2k g的物体静止在水平面上,物体与水平面间的滑动摩擦因数25.0=μ,现在对物体施加一个大小F=8N 、与水平方向夹角θ=37°角的斜下上的推力.已知si n37°=0.6,cos 37°=0.8,取g=10m/s 2 , 求(1)物体运动的加速度 (2)物体在拉力作用下5s 内通过的位移大小。

应用牛顿第二定律的几个典型模型

应用牛顿第二定律的几个典型模型 牛顿第二定律即物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合 力的方向相同,即F=ma(其中的F和m、a必须相对应)。因为力和加速度都是矢量,它们的关系除了数量大小的关系外,还有方向之间的关系。明确力和加速度方向,也是正确列出方程的重要环节。 一、应用牛顿第二定律解题的常用方法 牛顿第二定律明确了物体的受力情况和运动情况之间的定量关系。联系物体的受力情况和运动情况的桥梁或纽带就是加速度。 (一)应用牛顿第二定律解题的常用方法: 1.合成法与分解法 牛顿第二定律F=ma是矢量式,加速度的方向与物体所受合外力的方向相同。在解题时,当研究对象 所受的外力不在一条直线上时:如果物体只受两个力,可以用平行四边形定则求其合力;如果物体受力较 多,一般把它们正交分解到两个方向上去分别求合力;如果物体做直线运动,一般把各个力分解到沿运动方向和垂直运动的方向上。 2.整体法与隔离法 1.整体法:在研究物理问题时,把所研究的对象作为一个整体来处理的方法称为整体法。采用整体法时不仅可以把几个物体作为整体,也可以把几个物理过程作为一个整体,采用整体法可以避免对整体内 部进行繁锁的分析,常常使问题解答更简便、明了。 2.隔离法:把所研究对象从整体中隔离出来进行研究,最终得出结论的方法称为隔离法。可以把整个物体隔离成几个部分来处理,也可以把整个过程隔离成几个阶段来处理,还可以对同一个物体,同一过程中不同物理量的变化进行分别处理。采用隔离物体法能排除与研究对象无关的因素,使事物的特征明显地显示出来,从而进行有效的处理。 隔离法与整体法,不是相互对立的,一般问题的求解中,随着研究对象的转化,往往两种方法交叉运用,相辅相成. (二)应用牛顿第二定律解题的一般步骤: (1)对象和环境。可以以某一个物体为对象,也可以以几个物体组成的质点组为对象。所谓环境是指物体所接触到的所有可能对物体产生力的面或线。 (2)画受力分析图和过程草图。分析研究对象的运动情况(包括速度、加速度),并把速度、加速度的方向在受力图旁边画出来。 (3)根据F=ma列方程,一般用正交分解法解题(注意灵活选取坐标轴的方向,既可以分解力,也可以分解加速度)。当研究对象在研究过程的不同阶段受力情况有变化时,那就必须分阶段进行受力分析,分阶段列方程求解。 (4)求解并讨论。一般要把可能的临界值考虑清楚,以免错解或漏解。 解题要养成良好的习惯。只要严格按照以上步骤解题,同时认真画出受力分析图,标出运动情况,那 么问题都能迎刃而解。 二、应用牛顿第二定律的常见模型 1.应用牛顿第二定律处理定性问题模型 (1)由 F a m 得a与F成正比,a与m成正比。 (2)m是物体固有属性,像这样“物体所受合力与物体质量成正比,与物体加速度成正比”就是错误的。 2. 应用牛顿第二定律处理弹簧模型 要点:(1)弹簧弹力大小F=Kx;

相关文档
相关文档 最新文档