文档库 最新最全的文档下载
当前位置:文档库 › 初中数学《勾股定理》典型练习题

初中数学《勾股定理》典型练习题

初中数学《勾股定理》典型练习题
初中数学《勾股定理》典型练习题

《勾股定理》典型例题分析

一、知识要点:

1、勾股定理

勾股定理:直角三角形两直角边的平方和等于斜边的平方。也就是说:如果直角三角形的两直角边为a、b,斜边为c ,那么 a2 + b2= c2。公式的变形:a2 = c2- b2, b2= c2-a2 。

2、勾股定理的逆定理

如果三角形ABC的三边长分别是a,b,c,且满足a2 + b2= c2,那么三角形ABC 是直角三角形。这个定理叫做勾股定理的逆定理.

该定理在应用时,同学们要注意处理好如下几个要点:

①已知的条件:某三角形的三条边的长度.

②满足的条件:最大边的平方=最小边的平方+中间边的平方.

③得到的结论:这个三角形是直角三角形,并且最大边的对角是直角.

④如果不满足条件,就说明这个三角形不是直角三角形。

3、勾股数

满足a2 + b2= c2的三个正整数,称为勾股数。注意:①勾股数必须是正整数,不能是分数或小数。②一组勾股数扩大相同的正整数倍后,仍是勾股数。常见勾股数有:

(3,4,5 )(5,12,13 ) ( 6,8,10 ) ( 7,24,25 ) ( 8,15,17 )(9,12,15 )

4、最短距离问题:主要运用的依据是两点之间线段最短。

二、考点剖析

考点一:利用勾股定理求面积

1、求阴影部分面积:(1)阴影部分是正方形;(2)阴影部分是长方形;(3)阴影部分是半圆.

2. 如图,以Rt△ABC的三边为直径分别向外作三个半圆,试探索三个半

圆的面积之间的关系.

3、如图所示,分别以直角三角形的三边向外作三个正三角形,其面积分别是S 1、S 2、S 3,则它们之间的关系是( )

A. S 1- S 2= S 3

B. S 1+ S 2= S 3

C. S 2+S 3< S 1

D. S 2- S 3=S 1

4、四边形ABCD 中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD 的面积。

5、在直线上依次摆放着七个正方形(如图4所示)。已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是

=_____________。

考点二:在直角三角形中,已知两边求第三边

1.在直角三角形中,若两直角边的长分别为1cm ,2cm ,则斜边长为 . 2.(易错题、注意分类的思想)已知直角三角形的两边长为3、2,则另一条边长的平方是

3、已知直角三角形两直角边长分别为5和12, 求斜边上的高.

4、把直角三角形的两条直角边同时扩大到原来的2倍,则斜边扩大到原来的( ) A . 2倍

B . 4倍

C . 6倍

D . 8倍

5、在Rt △ABC 中,∠C=90°

S 3

S 2

S

1

①若a=5,b=12,则c=___________;

②若a=15,c=25,则b=___________;

③若c=61,b=60,则a=__________;

④若a∶b=3∶4,c=10则Rt△ABC的面积是=________。

6、如果直角三角形的两直角边长分别为1

n2-,2n(n>1),那么它的斜边长是()

A、2n

B、n+1

C、n2-1

D、1

n2+

7、在Rt△ABC中,a,b,c为三边长,则下列关系中正确的是()

A. 222

c b a

+= D.以上都有可能

+= C. 222

a c b

+= B. 222

a b c

8、已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是()

A、242

c m B、36 2

c m D、602

c m

c m C、482

9、已知x、y为正数,且│x2-4│+(y2-3)2=0,如果以x、y的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为()

A、5

B、25

C、7

D、15

考点三:应用勾股定理在等腰三角形中求底边上的高

例、如图1所示,等腰中,,是底边上的高,若,求①AD的长;②ΔABC的面积.

考点四:勾股数的应用、利用勾股定理逆定理判断三角形的形状、最大、最小角的问题

1、下列各组数据中的三个数,可作为三边长构成直角三角形的是()

A. 4,5,6

B. 2,3,4

C. 11,12,13

D. 8,15,17

2、若线段a,b,c组成直角三角形,则它们的比为()

A、2∶3∶4

B、3∶4∶6

C、5∶12∶13

D、4∶6∶7

3、下面的三角形中:

①△ABC中,∠C=∠A-∠B;

②△ABC中,∠A:∠B:∠C=1:2:3;

③△ABC中,a:b:c=3:4:5;

④△ABC中,三边长分别为8,15,17.

其中是直角三角形的个数有().

A.1个 B.2个 C.3个 D.4个

,则这个三角形一定是()

4、若三角形的三边之比为:1

A.等腰三角形

B.直角三角形

C.等腰直角三角形

D.不等边三角形

5、已知a,b,c为△ABC三边,且满足(a2-b2)(a2+b2-c2)=0,则它的形状为()

A.直角三角形

B.等腰三角形

C.等腰直角三角形

D.等腰三角形或直角三角形

6、将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是( )

A.钝角三角形 B. 锐角三角形 C. 直角三角形 D. 等腰三角形

7、若△ABC的三边长a,b,c满足222

a b c20012a16b20c

+++=++,试判断△ABC的形状。

8、△ABC的两边分别为5,12,另一边为奇数,且a+b+c是3的倍数,则c应为,此三角形为。

例3:求

(1)若三角形三条边的长分别是7,24,25,则这个三角形的最大内角是度。

(2)已知三角形三边的比为1:2,则其最小角为。

考点五:应用勾股定理解决楼梯上铺地毯问题

某楼梯的侧面视图如图3所示,其中米,,,因某种活动要求铺设红色地毯,则在AB段楼梯所铺地毯的长度应为.

考点六、利用列方程求线段的长(方程思想)

1、小强想知道学校旗杆的高,他发现旗杆顶端的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,你能帮他算出来吗?

2、一架长2.5m 的梯子,斜立在一竖起的墙上,梯子底端距离墙底0.7m (如图),如果梯子的顶端沿墙下滑0.4m ,那么梯子底端将向左滑动 米

3、如图,一个长为10米的梯子,斜靠在墙面上,梯子的顶端距地面的垂

直距离为8米,如果梯子的顶端下滑1米,那么,梯子底端的滑动距离 1米,(填“大于”,“等于”,或“小于”)

4、在一棵树10 m 高的B 处,有两只猴子,一只爬下树走到离树20m 处的池塘A 处;?另外一只爬到树顶D 处后直接跃到A 外,距离以直线计算,如果两只猴子所经过的距离相等,试问这棵树有多高?

C

B

5、如图,是一个外轮廓为矩形的机器零件平面示意图,根据图中标出尺寸(单位:mm )计算两圆孔中心A 和B 的距离为 .

6、如图:有两棵树,一棵高8米,另一棵高2米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了 米.

7、如图18-15所示,某人到一个荒岛上去探宝,在A 处登陆后,往东走8km ,又往北走2km ,遇到障碍后又往西走3km ,再折向北方走到5km 处往东一拐,仅1km ?就找到了宝藏,问:登陆点(A 处)到宝藏埋藏点(B 处)的直线距离是多少?

考点七:折叠问题

1、如图,有一张直角三角形纸片,两直角边AC=6,BC=8,将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则CD 等于( )

A. 425

B. 322

C. 47

D. 35

第6题图

图18-15

15

3

2

8

B

A

B

C

2、如图所示,已知△ABC 中,∠C=90°,AB 的垂直平分线交BC ?于M ,交AB 于N ,若AC=4,MB=2MC ,求AB 的长.

3、折叠矩形ABCD 的一边AD,点D 落在BC 边上的点F 处,已知AB=8CM,BC=10CM ,求CF 和EC 。

4、如图,在长方形ABCD 中,DC=5,在DC 边上存在一点E ,沿

直线AE 把△ABC 折叠,使点D 恰好在BC 边上,设此点为F ,若△ABF 的面积为30,求折叠的△AED 的面积

D

C

B

A

F E

5、如图,矩形纸片ABCD 的长AD=9㎝,宽AB=3㎝,将其折叠,使点D 与点B 重合,那么折叠后DE 的长是多少?

6、如图,在长方形ABCD 中,将?ABC 沿AC 对折至?AEC 位置,CE 与AD 交于点F 。

A

B

C

E

F

D

(1)试说明:AF=FC;(2)如果AB=3,BC=4,求AF的长

7、如图2所示,将长方形ABCD沿直线AE折叠,顶点D正好落在BC边上F点处,已知CE=3cm,AB=8cm,则图中阴影部分面积为_______.

8、如图2-3,把矩形ABCD沿直线BD向上折叠,使点C落在C′的位置

上,已知AB=?3,BC=7,重合部分△EBD的面积为________.

9、如图5,将正方形ABCD折叠,使顶点A与CD边上的点M重合,折痕交AD于E,交BC于F,边AB折叠后与BC边交于点G。如果M为CD边的中点,求证:DE:DM:EM=3:4:5。

10、如图2-5,长方形ABCD中,AB=3,BC=4,若将该矩形折叠,使C

点与A 点重合,?则折叠后痕迹EF 的长为( )

A .3.74

B .3.75

C .3.76

D .3.77 2-5

11、如图1-3-11,有一块塑料矩形模板ABCD ,长为10cm ,宽为4cm ,将你手中足够大的直角三角板 PHF 的直角顶点P 落在AD 边上(不与A 、D 重合),在AD 上适当移动三角板顶点P :

①能否使你的三角板两直角边分别通过点B 与点C ?若能,请你求出这时 AP 的长;若不能,请说明理由.

②再次移动三角板位置,使三角板顶点P 在AD 上移动,直角边PH 始终通过点B ,另一直角边PF 与DC 的延长线交于点Q ,与BC 交于点E ,能否使CE=2cm ?若能,请你求出这时AP 的长;若不能,请你说明理由.

12、如图所示,△ABC 是等腰直角三角形,AB=AC ,D 是斜边BC 的中点,E 、F 分别是AB 、AC 边上的点,且DE ⊥DF ,若BE=12,CF=5.求线段EF 的长。

13、如图,公路MN 和公路PQ 在点P 处交汇,且∠QPN =30°,点A 处有一所中学,AP =160m 。假设拖拉机行驶时,周围100m 以内会受到噪音的影响,那么拖拉机在公路MN 上沿PN 方向行

驶时,学校是否会受到噪声影响?请说明理由,如果受影响,已

知拖拉机的速度为18km/h ,那么学校受影响的时间为多少秒?

考点八:应用勾股定理解决勾股树问题

1、如图所示,所有的四边形都是正方形,所有的三角形都是直角

三角形,其中

2、最大的正方形的边长为5,则正方形A ,B ,C ,D 的面积的和为

2、已知△ABC 是边长为1的等腰直角三角形,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三个等腰Rt △ADE ,…,依此类推,第

n 个等腰直角三角形的斜边长是 .

考点九、图形问题

1、如图1,求该四边形的面积

2、如图2,已知,在△ABC 中,∠A = 45°,AC = 2,AB = 3+1,则边BC 的长为 .

A

B

C

D E F

G

3、某公司的大门如图所示,其中四边形ABCD是长方形,上部是以AD为直径的半圆,其中AB=2.3m,BC=2m,现有一辆装满货物的卡车,高为2.5m,宽为1.6m,问这辆卡车能否通过公司的大门?并说明你的理由

.

4、将一根长24㎝的筷子置于地面直径为5㎝,高为12㎝的圆柱形水杯中,设筷子露在杯子外面的长为h㎝,则h的取值范围。

5、如图,铁路上A、B两点相距25km,C、D为两村庄,DA?垂直AB于A,

CB垂直AB于B,已知AD=15km,BC=10km,现在要在铁路AB上建一个土

特产品收购站E,使得C、D两村到E站的距离相等,则E站建在距A站

多少千米处?

考点十:其他图形与直角三角形

如图是一块地,已知AD=8m,CD=6m,∠D=90°,AB=26m,BC=24m,求这块地的面积。

考点十一:与展开图有关的计算

1、如图,在棱长为1的正方体ABCD —A ’B ’C ’D ’的表面上,求从顶点A 到顶点C ’的最短距离.

2、如图一个圆柱,底圆周长6cm ,高4cm ,一只蚂蚁沿外壁爬行,要从A 点爬到B 点,则最少要爬行 cm

3、国家电力总公司为了改善农村用电电费过高的现状,目前正在全国各地农村进行电网改造,某地有四个村庄A 、B 、C 、D ,且正好位于一个正方形的四个顶点,现计划在四个村庄联合架设一条线路,他们设计了四种架设方案,如图实线部分.请你帮助计算一下,哪种架设方案最省电线.

考点十二、航海问题

1、一轮船以16海里/时的速度从A 港向东北方向航行,另一艘船同时以12海里/时的速度从A 港向西北方向航行,经过1.5小时后,它们相距________海里.

2、如图,某货船以24海里/时的速度将一批重要物资从A 处运往正东方向的M 处,在点A 处测得某岛C 在北偏东60°的方向上。该货船航行30分钟到达B 处,此时又测得该岛在北偏东30°的方向上,已知在C 岛周围9海里的区域内有暗礁,若继续向正东方向航行,该货船有无暗礁危险?试说明理由。

A

B

3、如图,某沿海开放城市A接到台风警报,在该市正南方

向260km的B处有一台风中心,沿BC方向以15km/h的速

度向D移动,已知城市A到BC的距离AD=100km,那么台风

中心经过多长时间从B点移到D点?如果在距台风中心

30km的圆形区域内都将有受到台风的破坏的危险,正在D点休闲的游人在接到台风警报后的几小时内撤离才可脱离危险?

考点十三、网格问题

1、如图,正方形网格中,每个小正方形的边长为1,则网格上的三角

形ABC中,边长为无理数的边数是()

A.0 B.1 C.2 D.3

2、如图,正方形网格中的△ABC,若小方格边长为1,则△ABC是()

A.直角三角形

B.锐角三角形

C.钝角三角形

D.以上答案都不对

3、如图,小方格都是边长为1的正方形,则四边形ABCD的面积是 ( )

A. 25 B. 12.5 C. 9 D. 8.5 D

B C

A

B

C

A

A

B

C

C

(图1) (图2) (图3)

4

、如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫格点,以格点为顶点分别按下列要求画三角形:

①使三角形的三边长分别为3

; ②使三角形为钝角三角形且面积为4(在图乙中画一个即可).

勾股定理单元测试卷

勾股定理单元测试卷 This model paper was revised by the Standardization Office on December 10, 2020

2016-2017学年八上数学单元测 《勾股定理》 (时间:80分钟 总分:100分) 一、选择题(每小题3分,共30分) 1.小明在一个矩形的水池里游泳,矩形的长、宽分别为30米、40米,小明在水池中沿直线最远可以游( ) A .30米 B .40米 C .50米 D .60米 2.已知△ABC 的三边长分别为5、13、12,则△ABC 的面积为( ) A .30 B .60 C .78 D .不能确定 3.将直角三角形的三边长同时扩大2倍,得到的三角形是( ) A .钝角三角形 B .锐角三角形 C .直角三角形 D .等 腰三角形 4.下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是( ) A .3、4、5 B .6、8、10 C .4、2、9 D .5、12、13 5.暑假期间,小明的妈妈趁电器打价格战之机在网上购买了一台电视,小明量了电 视机的屏幕后,发现屏幕93厘米长和52厘米宽,则这台电视机为________英寸(实际测量的误差可不计)( ) A .32(81厘米) B .39(99厘米) C . 42(106 厘 米 ) D .46(117厘米) 6.如图,点D 在△ABC 的边AC 上,将△ABC 沿BD 翻折后,点A 恰好与点C 重合.若BC =5,CD =3,则BD 的长为( ) A .1 B . 2

C .3 D .4 7.如图,一圆柱高8 cm ,底面半径 2 cm ,一只蚂蚁从点A 爬到点B 处吃食,要爬行的最短路程(π取3)是( ) A .20 cm B .10 cm C . 14 cm D .无法确定 8.如图,两个较大正方形的面积分别为225,289,则字母A 所代表的正方形的面 积为( ) A .4 B .8 C .16 D .64 9.小明准备测量一段河水的深度,他把一根竹竿直插到离岸边 1.5 m 远的水底,竹 竿高出水面0.5 m ,把竹竿的顶端拉向岸 边,竿顶和岸边的水面刚好相齐,则河水 的深度为( ) A . 2 m B . 2.5 m C . D .3 m 10.△ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长是( ) A .42 B .32 C .42或32 D .37或33 二、填空题(每小题4分,共16分) 11.若直角三角形的两直角边长为a 、b , 且满足(a -3)2+|b -4|=0,则该直角三 角形的斜边长为________. 12.一个三角形的三边长分别是12 cm , 16 cm ,20 cm ,则这个三角形的面积是 ________cm 2. 13.在Rt △ABC 中,∠C =90°,AC =9, BC =12,则点C 到AB 的距离是________. 14.课间,小聪拿着老师的等腰直角三角 板玩,不小心掉到两墙之间(如图),∠ACB =90°,AC =BC ,从三角板的刻度可知AB =20 cm ,小聪很快就知道了砌墙砖块的厚

新人教版八年级数学下册勾股定理典型例题分析

新人教版八年级下册勾股定理典型例习题 一、经典例题精讲 题型一:直接考查勾股定理 例1.在ABC ?中,90C ∠=?. ⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长分析:直接应用勾股定理 222a b c += 解:⑴2210AB AC BC =+= ⑵228BC AB AC =-= 题型二:利用勾股定理测量长度 例题1 如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少米? 解析:这是一道大家熟知的典型的“知二求一”的题。把实物模型转化为数学模型后,.已 知斜边长和一条直角边长,求另外一条直角边的长度,可以直接利用勾股定理! 根据勾股定理AC 2+BC 2=AB 2, 即AC2+92=152,所以AC 2 =144,所以AC=12. 例题2 如图(8),水池中离岸边D 点1.5米的C 处,直立长着一根芦苇,出水部分B C的长是0.5米,把芦苇拉到岸边,它的顶端B 恰好落到D 点,并求水池的深度AC. 解析:同例题1一样,先将实物模型转化为数学模型,如图 2. 由题意可知△AC D中,∠ACD=90°,在Rt △ACD 中,只知道CD =1.5,这是典型的利用勾股定理“知二求一”的类型。 标准解题步骤如下(仅供参考): 解:如图2,根据勾股定理,AC 2+CD 2=A D2 设水深AC= x 米,那么AD =A B=AC+CB =x +0.5 x2+1.52=( x +0.5)2 解之得x =2. 故水深为2米. 题型三:勾股定理和逆定理并用—— 例题3 如图3,正方形ABCD 中,E 是BC 边上的中点,F 是AB 上一点,且AB FB 4 1= 那么△DEF 是直角三角形吗?为什么? C B D A

《勾股定理》典型例题

《勾股定理》典型例题 例1 在两千多年前我国古算术上记载有“勾三股四弦五”.你知道它的意思吗? 它的意思是说:如果一个直角三角形的两条直角边长分别为3和4个长度单位,那么它的斜边的长一定是5个长度单位,而且3、4、5这三个数有这样的关系:32+42=52. (1)请你动动脑筋,能否验证这个事实呢?该如何考虑呢? (2)请你观察下列图形,直角三角形ABC 的两条直角边的长分别为AC =7,BC =4,请你研究这个直角三角形的斜边AB 的长的平方是否等于42+72? 解: (1)边长的平方即以此边长为边的正方 形的面积,故可通过面积验证.分别以这个直 角三角形的三边为边向外做正方形,如右 图:AC =4,BC =3, S 正方形ABED =S 正方形FCGH -4S Rt △ABC =(3+4)2-4×2 1×3×4=72-24=25 即AB 2=25,又AC =4,BC =3, AC 2+BC 2=42+32=25 ∴AB 2=AC 2+BC 2 (2)如图(图见题干中图)

S 正方形ABED =S 正方形KLCJ -4S Rt △ABC =(4+7)2-4×2 1×4×7=121-56=65=42+72 例2 下图甲是任意一个直角三角形ABC ,它的两条直角边的边长分别为a 、b ,斜边长为c .如图乙、丙那样分别取四个与直角三角形ABC 全等的三角形,放在边长为a +b 的正方形内. ①图乙和图丙中(1)(2)(3)是否为正方形?为什么? ②图中(1)(2)(3)的面积分别是多少? ③图中(1)(2)的面积之和是多少? ④图中(1)(2)的面积之和与正方形(3)的面积有什么关系?为什么? 由此你能得到关于直角三角形三边长的关系吗? 解: ①图乙、图丙中(1)(2)(3)都是正方形.易得(1)是以a 为边长的正方形, (2)是以b 为边长的正方形,(3)的四条边长都是c ,且每个角都是直角,所以(3)是以c 为边长的正方形. ②图中(1)的面积为a 2,(2)的面积为b 2,(3)的面积为c 2. ③图中(1)(2)面积之和为a 2+b 2. ④图中(1)(2)面积之和等于(3)的面积. 因为图乙、图丙都是以a +b 为边长的正方形,它们面积相等,(1)(2)的面

(完整版)初中数学圆--经典练习题(含答案)

圆的相关练习题 1、已知:弦AB 把圆周分成1:5的两部分,这弦AB 所对应的圆心角的度数为 。 2、如图:在⊙O 中,∠AOB 的度数为1200,则的长是圆周的 。 3、已知:⊙O 中的半径为4cm ,弦AB 所对的劣弧为圆的3 1,则弦AB 的长为 cm ,AB 的弦心距为 cm 。 4、如图,在⊙O 中,AB ∥CD ,的度数为450,则∠COD 的度数为 。 5、如图,在三角形ABC 中,∠A=700,⊙O 截△ABC 的三边所得的弦长相等,则 ∠BOC=( )。 A .140° B .135° C .130° D .125° (第2题图) (第4题图) (第5题图) 6、下列语句中,正确的有( ) (1)相等的圆心角所对的弧相等; (2)平分弦的直径垂直于弦; (3)长度相等的两条弧是等弧; (4) 圆是轴对称图形,任何一条直径都是对称轴 A .0个 B .1个 C .2个 D .3个 7、已知:在直径是10的⊙O 中, 的度数是60°,求弦AB 的弦心距。 8、已知:如图,⊙O 中,AB 是直径,CO ⊥AB ,D 是CO 的中点,DE ∥AB , 求证:

600 9. 已知:AB 交圆O 于C 、D ,且AC =BD.你认为OA =OB 吗?为什么? 10. 如图所示,是一个直径为650mm 的圆柱形输油管的横截面,若油面宽AB=600mm ,求油面的最大深度。 一、选择题 1.(北京市西城区)如图,BC 是⊙O 的直径,P 是CB 延长线上一点,PA 切⊙O 于点A ,如果PA =3,PB =1,那么∠APC 等于 () (A )ο15 (B )ο30 (C )ο45 (D )ο60 2.(北京市西城区)“圆材埋壁”是我国古代著名的数学菱《九章算术》中的一个问题,“今在圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”用 现在的数学语言表述是:“如图,CD 为⊙O 的直径,弦AB ⊥CD ,垂足为E ,CE =1 寸,AB =10寸,求直径CD 的长”.依题意,CD 长为 ( ) (A )2 25寸 (B )13寸 (C )25寸 (D )26寸 5.(北京市朝阳区)如果圆锥的侧面积为20π平方厘米,它的母线长为5厘米,那么此圆锥的底面半径的长等于 ( ) (A )2厘米 (B )22厘米 (C )4厘米 (D )8厘米 6.(天津市)相交两圆的公共弦长为16厘米,若两圆的半径长分别为 10厘米和17厘米,则这两圆的圆心距为 ( ) (A )7厘米 (B )16厘米 (C )21厘米 (D )27厘米 7.(重庆市)如图,⊙O 为△ABC 的内切圆,∠C =ο 90,AO 的延长线交BC 于点D ,AC =4,DC =1,,则⊙O 的半径等于 ( )

勾股定理单元测试题

一、相信你的选择 1、如图,在Rt △ABC 中,∠B =90°,BC =15,AC =17,以 AB 为直径作半圆,则此半圆的面积为( ). A .16π B .12π C .10π D .8π 2、已知直角三角形两边的长为3和4,则此三角形的周长为( ). A .12 B .7+7 C .12或7+7 D .以上都不对 3、如图,梯子AB 靠在墙上,梯子的底端A 到墙根O 的距离为2m , 梯子的顶端B 到地面的距离为7m ,现将梯子的底端A 向外移动到A ′, 使梯子的底端A ′到墙根O 的距离等于3m .同时梯子的顶端B 下降 至B ′,那么BB ′( ). A .小于1m B .大于1m C .等于1m D .小于或等于1m 4、将一根24cm 的筷子,置于底面直径为15cm ,高8cm 的圆柱 形水杯中,如图所示,设筷子露在杯子外面的长度为h cm ,则h 的取 值范围是( ). A .h ≤17cm B .h ≥8cm C .15cm ≤h ≤16cm D .7cm ≤h ≤16cm 二、试试你的身手 5、在Rt △ABC 中,∠C =90°,且2a =3b ,c =213,则a =_____,b =_____. 6、如图,矩形零件上两孔中心A 、B 的距离是_____(精确到个位). 7、如图,△ABC 中,AC =6,AB =BC =5,则BC 边上的高AD =______. 8、某市在“旧城改造”中计划在市内一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米售价a 元,则购买这种草皮至少需要 元. 三、挑战你的技能 9、如图,设四边形ABCD 是边长为1的正方形,以对角线AC 为边作第二个正方形ACEF ,再以对角线AE 为边作第三个正方形AEGH ,如此下去. (1)记正方形ABCD 的边长为a 1=1,按上述方法所作的正方形的边长依次为a 2,a 3,a 4,……,a n ,请求出a 2,a 3,a 4的值; 150o 20 米 30米

(完整版)勾股定理典型例题详解及练习(附答案)

典型例题 知识点一、直接应用勾股定理或勾股定理逆定理 例1:如图,在单位正方形组成的网格图中标有AB CD EF、GH四条线段, 其中能构成一个直角三角形三边的线段是() A.CD、EF、 GH C. AB、CD GH B.AB、EF、GH D. AB、CD EF 愿路分乐屮 1)題意分析’本题考查幻股定理及勾股定理的逆定理.亠 2)解題思器;可利用勾脸定理直接求出各边长,再试行判断?』 解答过整屮 在取DEAF中,Af=l, AE=2,根据勾股定理,得昇 EF = Q抡於十£尸° = Q +F二艮 同理HE = 2百* QH. = 1 CD = 2^5 计算发现W十◎血尸=(鸥31即血+曲=GH2,根据勾股定理的逆宦理得到UAAE、EF\ GH为辺的三角形是直毎三角形.故选B. * 縮題后KJ思专:* 1.勾股定理只适用于直角三角形,而不适用于说角三角形和钝角三角形? 因此」辭题时一宦妾认真分析题目所蛤■条件■,看是否可用勾股定理来解口* 2.在运用勾股左理时,要正确分析题目所给的条件,不要习惯性地认为就是斜 迫而“固执”地运用公式川二/十就其实,同样是S6

"不一罡就等于餌,疋不一罡就昱斜辺,KABC不一定就是直角三祐

3.直角三第形的判定条件与勾股定理是互逆的.区别在于勾股定理的运用是一个从 卅形s—个三角形是直角三角形)到懺 y =沖十沪)的过程,而直角三角形的判定是一 ①从嗦(一个三角形的三辺满足X二护+酹的条件)到偲个三角形是直角三角形)的过 程.a 4?在应用勾股定理解题叭聲全面地琴虑间题.注意m题中存在的多种可能性,遊免漏辭.初 例玉如圏,有一块直角三角形?椀屈U,两直角迫4CM5沁丸m?现将直角边AC沿直绘AD折蠡便它落在斜边AB上.且点C落到点E处, 则切等于(、* C/) "禎 B. 3cm G-Icni n題童分析,本题着查勾股定理的应用刎 :)解龜思路;車题若直接在△MQ中运用勾股定理是无法求得仞的长的,因为貝知遒一条边卫0的长,由题意可知,AACD和心迓门关于直线KQ对称.因而^ACD^hAED ?进一歩则有应RUm CZAED ED 丄AB,设UD=E2>黄泱,则在Rt A ABO中,由勾股定 理可得^=^(^+^=^83=100,得AB=10cm,在松迟DE 中,W ClO-fl)2= d驚解得尸 九4 解龜后的思琴尸 勾股定理说到底是一个等式,而含有未知数的等式就是方程。所以,在利用勾股定理求线段的长时常通过解方程来解决。勾股定理表达式中有三个量,如果条件中只有一个已知量,必须设法求出另一个量或求出另外两个量之间的关系,这一点是利用勾股定理求线段长时需要明确的思路。 方程的思想:通过列方程(组)解决问题,如:运用勾股定理及其逆定理求线段的长度或解决实际问题时,经常利用勾股定理中的等量关系列出方程来解 决问题等。 例3:一场罕见的大风过后,学校那棵老杨树折断在地,此刻,张老师正和占 明、清华、绣亚、冠华在楼上凭栏远眺。 清华开口说道:“老师,那棵树看起来挺高的。” “是啊,有10米高呢,现在被风拦腰刮断,可惜呀!” “但站立的一段似乎也不矮,有四五米高吧。”冠华兴致勃勃地说。 张老师心有所动,他说:“刚才我跑过时用脚步量了一下,发现树尖距离树根恰好3米,你们能求出杨树站立的那一段的高度吗?” 占明想了想说:“树根、树尖、折断处三点依次相连后构成一个直角三角

勾股定理知识点、经典例题及练习题带答案

【趣味链接】我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是用八个全等的直角三角形拼接而成,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为S 1,S 2,S 3.若S 1,S 2,S 3=10,则S 2的值是多少呢? 【知识梳理】 1、勾股定理定义:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2 +b 2=c 2. 即直角三角形两直角边的平方和等于斜边的平方 A B C a b c 弦股勾 勾:直角三角形较短的直角边 股:直角三角形较长的直角边 弦:斜边 勾股定理的逆定理:如果三角形的三边长a ,b ,c 有下面关系:a 2+b 2=c 2,那么这个三角形是直角三角形。 2、勾股数:满足a 2+b 2=c 2的三个正整数叫做勾股数(注意:若a ,b ,c 、为勾股数, 那么ka ,kb ,kc 同样也是勾股数组。) *附:常见勾股数:3,4,5; 6,8,10; 9,12,15; 5,12,13 3、判断直角三角形:如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2 ,那么这个三角形是 直角三角形。

(经典直角三角形:勾三、股四、弦五) 其他方法:(1)有一个角为90°的三角形是直角三角形。 (2)有两个角互余的三角形是直角三角形。 用它判断三角形是否为直角三角形的一般步骤是: (1)确定最大边(不妨设为c); (2)若c2=a2+b2,则△ABC是以∠C为直角的三角形; 若a2+b2<c2,则此三角形为钝角三角形(其中c为最大边); 若a2+b2>c2,则此三角形为锐角三角形(其中c为最大边) 4、注意:(1)直角三角形斜边上的中线等于斜边的一半 (2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。 (3)在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°。 5、勾股定理的作用: (1)已知直角三角形的两边求第三边。 (2)已知直角三角形的一边,求另两边的关系。 (3)用于证明线段平方关系的问题。 (4)利用勾股定理,作出长为n的线段 【经典例题】【例1】(2016山东烟台)如图是油路管道的一部分,延伸外围的支路恰好构成一个直角三角

初中数学圆的经典测试题及解析

初中数学圆的经典测试题及解析 一、选择题 1.如图,有一个边长为2cm 的正六边形纸片,若在该纸片上沿虚线剪一个最大圆形纸片,则这个圆形纸片的半径是( ) A .3cm B .2cm C .23cm D .4cm 【答案】A 【解析】 【分析】 根据题意画出图形,再根据正多边形圆心角的求法求出∠AOB 的度数,最后根据等腰三角形及直角三角形的性质解答即可. 【详解】 解:如图所示,正六边形的边长为2cm ,OG ⊥BC , ∵六边形ABCDEF 是正六边形, ∴∠BOC=360°÷6=60°, ∵OB=OC ,OG ⊥BC , ∴∠BOG=∠COG= 12 ∠BOC =30°, ∵OG ⊥BC ,OB=OC ,BC=2cm , ∴BG= 12BC=12×2=1cm , ∴OB=sin 30 BG o =2cm , ∴OG=2222213OB BG -=-=, ∴圆形纸片的半径为3cm , 故选:A . 【点睛】

本题考查的是正多边形和圆,根据题意画出图形,利用直角三角形的性质及正六边形的性质解答是解答此题的关键. 2.如图,正方形ABCD内接于⊙O,AB=22,则?AB的长是() A.πB.3 2 πC.2πD. 1 2 π 【答案】A 【解析】 【分析】连接OA、OB,求出∠AOB=90°,根据勾股定理求出AO,根据弧长公式求出即可. 【详解】连接OA、OB, ∵正方形ABCD内接于⊙O, ∴AB=BC=DC=AD, ∴???? AB BC CD DA ===, ∴∠AOB=1 4 ×360°=90°, 在Rt△AOB中,由勾股定理得:2AO2=(2)2,解得:AO=2, ∴?AB的长为902 180 π′ =π, 故选A. 【点睛】本题考查了弧长公式和正方形的性质,求出∠AOB的度数和OA的长是解此题的关键. 3.如图,在平面直角坐标系中,点P是以C271为半径的⊙C上的一个动点,已知A(﹣1,0),B(1,0),连接PA,PB,则PA2+PB2的最小值是()

勾股定理经典例题(含答案)

类型一:勾股定理的直接用法 1、在Rt△ABC中,∠C=90° (1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a. 思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。 解析:(1) 在△ABC中,∠C=90°,a=6,c=10,b= (2) 在△ABC中,∠C=90°,a=40,b=9,c= (3) 在△ABC中,∠C=90°,c=25,b=15,a= 举一反三 【变式】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少? 【答案】∵∠ACD=90° AD=13, CD=12 ∴AC2 =AD2-CD2 =132-122 =25 ∴AC=5 又∵∠ABC=90°且BC=3 ∴由勾股定理可得 AB2=AC2-BC2 =52-32 =16 ∴AB= 4 ∴AB的长是4. 类型二:勾股定理的构造应用 2、如图,已知:在中,,,. 求:BC的长. 思路点拨:由条件,想到构造含角的直角三角形,为此作于D,则有 ,,再由勾股定理计算出AD、DC的长,进而求出BC的 长. 解析:作于D,则因, ∴(的两个锐角互余) ∴(在中,如果一个锐角等于, 那么它所对的直角边等于斜边的一半). 根据勾股定理,在中, . 根据勾股定理,在中,

. ∴. 举一反三【变式1】如图,已知:,,于P. 求证:. 解析:连结BM,根据勾股定理,在中, . 而在中,则根据勾股定理有 . ∴ 又∵(已知), ∴. 在中,根据勾股定理有 , ∴. 【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。求:四边形ABCD的面积。 分析:如何构造直角三角形是解本题的关键,可以连结AC,或延长AB、DC交于F,或延长AD、BC交于点E,根据本题给定的角应选后两种,进一步根据本题给定的边选第三种较为简单。 解析:延长AD、BC交于E。 ∵∠A=∠60°,∠B=90°,∴∠E=30°。 ∴AE=2AB=8,CE=2CD=4, ∴BE2=AE2-AB2=82-42=48,BE==。 ∵DE2= CE2-CD2=42-22=12,∴DE==。 ∴S四边形ABCD=S△ABE-S△CDE=AB2BE-CD2DE= 类型三:勾股定理的实际应用(一) 用勾股定理求两点之间的距离问题3、如图所示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了 到达B点,然后再沿北偏西30°方向走了500m到达目的地C点。(1)

初中数学圆 经典练习题(含答案)

圆的相关练习题(含答案) 1、已知:弦AB 把圆周分成1:5的两部分,这弦AB 所对应的圆心角的度数为 。 2、如图:在⊙O 中,∠AOB 的度数为1200,则 的长是圆周的 。 3、已知:⊙O 中的半径为4cm ,弦AB 所对的劣弧为圆的3 1,则弦AB 的长为 cm , AB 的弦心距为 cm 。 4、如图,在⊙O 中,AB ∥CD , 的度数为450,则∠COD 的度数为 。 5、如图,在三角形ABC 中,∠A=700,⊙O 截△ABC 的三边所得的弦长相等,则 ∠BOC=( )。 A .140° B .135° C .130° D .125° (第2题图) (第4题图) (第5题图) 6、下列语句中,正确的有( ) (1)相等的圆心角所对的弧相等; (2)平分弦的直径垂直于弦; (3)长度相等的两条弧是等弧; (4) 圆是轴对称图形,任何一条直径都是对称轴 A .0个 B .1个 C .2个 D .3个 7、已知:在直径是10的⊙O 中, 的度数是60°,求弦AB 的弦心距。 8、已知:如图,⊙O 中,AB 是直径,CO ⊥AB ,D 是CO 的中点,DE ∥AB , 求证:

600 9. 已知:AB 交圆O 于C 、D ,且AC =BD.你认为OA =OB 吗?为什么? 10. 如图所示,是一个直径为650mm 的圆柱形输油管的横截面,若油面宽AB=600mm ,求油面的最大深度。 11. 如图所示,AB 是圆O 的直径,以OA 为直径的圆C 与圆O 的弦AD 相交于点E 。你认为图中有哪些相等的线段?为什么? 答案:1.60度 2. 3 2 3. 1 3 4 4.90度 5.D 6.A 7.2.5 8.提示:连接OE ,求出角COE 的度数为60度即可 9.略 10.100毫米 11.AC=OC , OA=OB , AE=ED B

第一单元 勾股定理单元检测卷(含答案)

第一单元 勾股定理单元检测卷 一、选择题(每小题3分,共30分) 1.如图,阴影部分是一个长方形,它的面积是( ) A .3 B .4 C .5 D .6 2.如图,正方形AB CD 的边长为1,则正方形ACEF 的面积为( ) A .2 B .3 C .4 D .5 3.三角形的三边长,,满足,则这个三角形是( ) A .等边三角形 B .钝角三角形 C .直角三角形 D .锐角三角形 4.已知直角三角形的斜边长为10,两直角边的比为3∶4,则较短直角边的长为( ) A .3 B .6 C .8 D .5 5.△ABC 中,∠A ,∠B ,∠C 的对边分别记为,,,由下列条件不能判定△ABC 为直角三角形的是( ) A .∠A +∠B =∠C B .∠A ∶∠B ∶∠ C =1∶2∶3 C . D .∶∶=3∶4∶6 6.若直角三角形的三边长为6,8,m ,则的值为( ) A .10 B .100 C . 28 D .100或28 7.在Rt △ABC 中,∠C =90°,AC =9,BC =12,则点C 到斜边AB 的距离是( ) 2 cm 2 cm 2 cm 2 cm a b c ()2 2 2a b c ab +=+a b c 2 2 2 a c b =-a b c 2 m

B 169 25 C B A 5cm A . B . C .9 D .6 8.如图,在Rt△ABC 中,∠B =90°,以AC 为直径的圆恰好过点 B .若AB =8,B C =6,则阴影部分的面积是( ) A . B . C . D . 9.如图所示为一种“羊头”形图案,其作法是:从正方形①开始,以它的一边为斜边,向外作等腰直角三角形,然后再以其直角边为边,分别向外作正方形②和②',…,依此类推,若正方形①的面积为64,则正方形⑤的面积为( ) A .2 B .4 C .8 D .16 10.勾股定理是几何中的一个重要定理,在我国古算书《周髀算经》中就有“若勾三、股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入长方形内得到的,∠BAC =90°,AB =3,AC =4,点D ,E ,F ,G ,H ,I 都在长方形KLMJ 的边上,则长方形KLMJ 的面积为( ) A .90 B .100 C .110 D .121 二、填空题(每小题4分,共20分) 11.如图,字母B 所代表的正方形的面积为 . 36 5 12 5 100π24-100π48-25π24-25π48-③' ④' ④ ③ ②' ② ①

勾股定理练习题及问题详解(共6套)

勾股定理课时练(1) 1. 在直角三角形ABC中,斜边AB=1,则AB2 2 2AC BC+ +的值是() A.2 B.4 C.6 D.8 2.如图18-2-4所示,有一个形状为直角梯形的零件ABCD,AD∥BC,斜腰DC的长为10 cm,∠D=120°,则该零件另一腰AB的长是______ cm(结果不取近似值). 3. 直角三角形两直角边长分别为5和12,则它斜边上的高为_______. 4.一根旗杆于离地面12m处断裂,犹如装有铰链那样倒向地面,旗杆顶落于离旗杆地步16m,旗杆在断裂之前高多少m? 5.如图,如下图,今年的冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是米. 6. 飞机在空中水平飞行,某一时刻刚好飞到一个男孩子头顶正上方4000米处,过了20秒,飞机距离这个男孩头顶5000米,求飞机每小时飞行多少千米? 7. 如图所示,无盖玻璃容器,高18cm,底面周长为60cm,在外侧距下底1cm的点C处有一蜘蛛,与蜘蛛相对的容器的上口外侧距开口1cm的F处有一苍蝇,试求急于扑货苍蝇充饥的蜘蛛,所走的最短路线的长度. 8. 一个零件的形状如图所示,已知AC=3cm,AB=4cm,BD=12cm。求CD的长. 9. 如图,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,BC=2,CD=3,求AB的长. 10. 如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北 7km处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少? 11如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼道上铺地毯,已知地毯平方米18元,请你帮助计算一下,铺完这个楼道至少需要多少元钱? 12. 甲、乙两位探险者到沙漠进行探险,没有了水,需要寻找水源.为了不致于走散,他们用两部对话机联系,已知对话机的有效距离为15千米.早晨8:00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,甲、乙二人相距多远?还能保持联系吗?

初三数学圆知识点复习专题经典

《圆》 一、圆的概念 概念:1、圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆; (补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线); 3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线; 4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线; 5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。 二、点与圆的位置关系 1、点在圆内?d r ?点A在圆外; 三、直线与圆的位置关系 1、直线与圆相离?d r >?无交点; 2、直线与圆相切?d r =?有一个交点; 3、直线与圆相交?d r +; 外切(图2)?有一个交点?d R r =+; 相交(图3)?有两个交点?R r d R r -<<+; 内切(图4)?有一个交点?d R r =-; 内含(图5)?无交点?d R r <-; A

r R d 图3 r R d 五、垂径定理 垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。 推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即: ①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。 推论2:圆的两条平行弦所夹的弧相等。 即:在⊙O 中,∵AB ∥CD ∴弧AC =弧BD 例题1、 基本概念 1.下面四个命题中正确的一个是( ) A .平分一条直径的弦必垂直于这条直径 B .平分一条弧的直线垂直于这条弧所对的弦 C .弦的垂线必过这条弦所在圆的圆心 D .在一个圆内平分一条弧和它所对弦的直线必过这个圆的圆心 2.下列命题中,正确的是( ). A .过弦的中点的直线平分弦所对的弧 B .过弦的中点的直线必过圆心 C .弦所对的两条弧的中点连线垂直平分弦,且过圆心 D .弦的垂线平分弦所对的弧 例题2、垂径定理 1、 在直径为52cm 的圆柱形油槽内装入一些油后,截面如图所示,如果油的最大 深度为16cm ,那么油面宽度AB 是________cm. r R d 图4 r R d 图5 r R d O E D C A O C D A B

初中数学-《勾股定理》单元测试卷

初中数学-《勾股定理》单元测试卷 一、选择题 1.△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题中的假命题是() A.如果∠C﹣∠B=∠A,则△ABC是直角三角形 B.如果c2=b2﹣a2,则△ABC是直角三角形,且∠C=90° C.如果(c+a)(c﹣a)=b2,则△ABC是直角三角形 D.如果∠A:∠B:∠C=5:2:3,则△ABC是直角三角形 2.下列各组数的三个数,可作为三边长构成直角三角形的是() A.1,2,3 B.32,42,52C.,,D.0.3,0.4,0.5 3.勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为() A.90 B.100 C.110 D.121 4.在Rt△ABC中,斜边长BC=3,AB2+AC2+BC2的值为() A.18 B.9 C.6 D.无法计算 5.在Rt△ABC中,a,b,c为△ABC三边长,则下列关系正确的是() A.a2+b2=c2 B.a2+c2=b2 C.b2+c2=a2 D.以上关系都有可能 6.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为() A.42 B.32 C.42或32 D.37或33 二.填空题 7.已知a,b,c分别是Rt△ABC的两条直角边长和斜边长,且a+b=14,c=10,则S△ABC=.8.小强在操场上向东走200m后,又走了150m,再走250m回到原地,小强在操场上向东走了200m后,又走150m的方向是.

(完整版)《勾股定理》典型练习题

《勾股定理》典型例题分析 一、知识要点: 1、勾股定理 勾股定理:直角三角形两直角边的平方和等于斜边的平方。也就是说:如果直角三角形的两直角边为a、b,斜边为c ,那么 a2 + b2= c2。公式的变形:a2 = c2- b2, b2= c2-a2 。 2、勾股定理的逆定理 如果三角形ABC的三边长分别是a,b,c,且满足a2 + b2= c2,那么三角形ABC 是直角三角形。这个定理叫做勾股定理的逆定理. 该定理在应用时,同学们要注意处理好如下几个要点: ①已知的条件:某三角形的三条边的长度. ②满足的条件:最大边的平方=最小边的平方+中间边的平方. ③得到的结论:这个三角形是直角三角形,并且最大边的对角是直角. ④如果不满足条件,就说明这个三角形不是直角三角形。 3、勾股数 满足a2 + b2= c2的三个正整数,称为勾股数。注意:①勾股数必须是正整数,不能是分数或小数。②一组勾股数扩大相同的正整数倍后,仍是勾股数。常见勾股数有: (3,4,5)(5,12,13) (6,8,10)(7,24,25)(8,15,17)(9,12,15) 4、最短距离问题:主要 5、运用的依据是两点之间线段最短。 二、考点剖析 考点一:利用勾股定理求面积 1、求阴影部分面积:(1)阴影部分是正方形;(2)阴影部分是长方形;(3)阴影部分是半圆.

2. 如图,以Rt △ABC 的三边为直径分别向外作三个半圆,试探索三个半圆的面积之间的关系. 3、如图所示,分别以直角三角形的三边向外作三个正三角形,其面积分别是S 1、S 2、S 3,则它们之间的关系是( ) A. S 1- S 2= S 3 B. S 1+ S 2= S 3 C. S 2+S 3< S 1 D. S 2- S 3=S 1 4、四边形ABCD 中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD 的面积。 5、(难)在直线上依次摆放着七个正方形(如图4所示)。已知斜放置的三个正方形的面积分别是 1、2、3,正放置的四个正方形的面积依次是 、 =_____________。 考点二:在直角三角形中,已知两边求第三边 1.在直角三角形中,若两直角边的长分别为1cm ,2cm ,则斜边长为 . S 3 S 2 S 1

初三数学圆经典例题

一.圆的定义及相关概念 【考点速览】 考点1: 圆的对称性:圆既是轴对称图形又是中心对称图形。经过圆心的每一条直线都是它的对称轴。圆心是它的对称中心。 考点2: 确定圆的条件;圆心和半径 ①圆心确定圆的位置,半径确定圆的大小; ②不在同一条直线上的三点确定一个圆; 考点3: 弦:连结圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。直径是圆中最大的弦。 弦心距:圆心到弦的距离叫做弦心距。 弧:圆上任意两点间的部分叫做弧。弧分为半圆,优弧、劣弧三种。 (请务必注意区分等弧,等弦,等圆的概念) 弓形:弦与它所对应的弧所构成的封闭图形。 弓高:弓形中弦的中点与弧的中点的连线段。 (请务必注意在圆中一条弦将圆分割为两个弓形,对应两个弓高) 固定的已经不能再固定的方法: 求弦心距,弦长,弓高,半径时通常要做弦心距,并连接圆心和弦的一个端点,得到直角三角形。如下图: 考点4: 三角形的外接圆: 锐角三角形的外心在,直角三角形的外心在 ,钝角三角形的外心在。 考点5 点和圆的位置关系设圆的半径为r,点到圆心的距离为d,

则点与圆的位置关系有三种。 ①点在圆外?d >r ;②点在圆上?d=r ;③点在圆? d <r ; 【典型例题】 例1 在⊿ABC 中,∠ACB =90°,AC =2,BC =4,CM 是AB 边上的中线,以点C 为圆心,以5为半径作圆,试确定A,B,M 三点分别与⊙C 有怎样的位置关系,并说明你的理由。 例2.已知,如图,CD 是直径,?=∠84EOD ,AE 交⊙O 于B ,且AB=OC ,求∠A 的度数。 例3 ⊙O 平面一点P 和⊙O 上一点的距离最小为3cm ,最大为8cm ,则这圆的半径是_________cm 。 例4 在半径为5cm 的圆中,弦AB ∥CD ,AB=6cm ,CD=8cm ,则AB 和CD 的距离是多少? 例5 如图,⊙O 的直径AB 和弦CD 相交于点E ,已知AE=6cm ,EB=2cm, 30=∠CEA , 求CD 的长. 例6.已知:⊙O 的半径0A=1,弦AB 、AC 的长分别为3,2,求BAC ∠的度数. A B D C O · E

勾股定理单元测试

勾股定理单元测试 LELE was finally revised on the morning of December 16, 2020

人教版八年级数学第17章《勾股定理》测试题 姓名:成绩: 一、选择题(本大题10小题,每小题3分,共30分。) 1.三角形的边长之比为:①∶2∶;②4∶∶;③1∶3∶2;④∶∶.其中可以构成直角三角形的有() A.1个 B.2个 C.3个 D.4个 2.如图,小巷左右两侧是竖直的墙,一架梯子斜靠 在左墙时,梯子底端到左墙角的距离为米,顶端距离 地面米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为() A.米 B.米 C.米 D.3.已知a,b,c是三角形的三边长,如果满足(a-6)2+b-8+|| c-10=0,那么下列说法中不正确的是() A.这个三角形是直角三角形 B.这个三角形的最长边长是10 C.这个三角形的面积是48 D.这个三角形的最长边上的高是4.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端 刚好接触到地面,然后将绳子末端拉到距离旗杆8 m 处,发现此时绳子末端距离地面2 m,则旗杆的高度为(滑轮上方的部分忽略不计)() A.12 m B.13 m C.16 m D.17 m 5.如图是一张探宝图,根据图中的尺寸,起点A与起点B 的距离是() A.113 B.8 C.9 D.10 6.一艘轮船和一艘渔船同时沿各自的航向从港口O 出发,如图所示,轮船从港口O沿北偏西20°的方向 行60海里到达点M处,同一时刻渔船已航行到与港 口O相距80海里的点N处,若M,N两点相距100海里,则∠NOF的度数为() A.50° B.60° C.70° D.80° 7.如图,已知等腰直角三角形ABC的各顶点分别 在直线l1,l2,l3上,且l1∥l2∥l3,l1,l2间的距离为 1,l2,l3间的距离为3,则AB的长度为() A.22 B.32 C.42 D.52

(完整版)勾股定理经典例题(教师版)

勾股定理全章知识点和典型例习题 一、基础知识点: 1?勾股定理 内容:____________________________________________________________ 表示方法:如果直角三角形的两直角边分别为 a , b,斜边为c,那么__________________ 2 ?勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 3 ?勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC中,C 90 , 则 __________________________________________ ②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定 理解决一些实际问题 4. 勾股定理的逆定理 如果三角形三边长a , b , c满足a2 b2c,那么这个三角形是直角三角形,其中c为斜边 ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过数转化为形”来确定三角形的可能 形状,在运用这一定理时,可用两小边的平方和a2 b2与较长边的平方c2作比较,若它们相等时,以 a , b , c为三边 的三角形是直角三角形;若 _________ ,时,以a , b , c为三边的三角形是钝角三角形;若__________________ ,时,以a , b , c为三边的三角形是锐角三角形; ②定理中a , b , c及a2 b2 c2只是一种表现形式,不可认为是唯一的,如若三角形三边长 a , b , c满足a2 c2 b2, 那么以a , b , c为三边的三角形是直角三角形,但是b为斜边 ③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 5. 勾股数 ①能够构成直角三角形的三边长的三个正整数称为勾股数,即a2 b2 c2中,a , b , c为正整数时,称a , b , c为 一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5 ; 6,8,10 ; 5,12,13; 7,24,25等 ③用含字母的代数式表示n组勾股数: 2 2 n 1,2n,n 1 (n 2, n 为正整数); 2n 1,2n2 2n,2n2 2n 1 (n为正整数)m2 n2,2mn,m2 n2(m n, m , n为正整数)7 .勾股定理的应用

相关文档
相关文档 最新文档