文档库 最新最全的文档下载
当前位置:文档库 › 窗函数设计低通滤波器 电信课设

窗函数设计低通滤波器 电信课设

窗函数设计低通滤波器 电信课设
窗函数设计低通滤波器 电信课设

XXXX大学

课程设计报告

学生姓名:xxx 学号:xxx

专业班级:电子信息工程

课程名称:数字信号处理课程设计

学年学期20XX——20XX 学年第X学期指导教师:xxx

2014年6月

课程设计成绩评定表

学生姓名XXX 学号XXXXXX 成绩

专业班级XXXXX 起止时间20XX-X-X至20XX-X-XX

设计题目1.窗函数设计低通滤波器

2.用哈明窗设计FIR带通数字滤波器

指导教师:

年月日

目录

1. 窗函数设计低通滤波器

1.1设计目的 (1)

1.2设计原理推导与计算 (1)

1.3设计内容与要求 (2)

1.4设计源程序与运行结果 (3)

1.5思考题 (10)

2. 用哈明窗设计FIR带通数字滤波器

2.1设计要求 (14)

2.2设计原理和分析 (14)

2.3详细设计 (15)

2.4调试分析及运行结果 (15)

2.5心得体会 (17)

参考文献 (17)

1.窗函数设计低通滤波器

1.1设计目的

1. 熟悉设计线性相位数字滤波器的一般步骤。

2. 掌握用窗函数法设计FIR 数字滤波器的原理和方法。

3. 熟悉各种窗函数的作用以及各种窗函数对滤波器特性的影响。

4. 学会根据指标要求选择合适的窗函数。

1.2设计原理推导与计算

如果所希望的滤波器的理想的频率响应函数为()

ωj d e H ,则其对应的单位脉冲响应为

()()

ωπ

ωωπ

π

d e e H n h j j d d ?-

=

21 (4.1)

窗函数设计法的基本原理是设计设计低通FIR 数字滤波器时,一般以理想低通滤波特性为逼近函数()ωj e H ,即

()

?????≤<≤=-π

ωωωωωαω

c c j j

d ,,

e e

H 0,其中21-=N α

()()

()[]()

a n a n d e e d e e

H n h c j j j j d d c

c

--=

=

=

??-

--

πωωπ

ωπ

ωαωω

ωαω

π

π

ω

sin 21

21

用有限长单位脉冲响应序列()n h 逼近()n h d 。由于()n h d 往往是无限长序列,而且是非因果的,所以用窗函数()n ω将()n h d 截断,并进行加权处理,得到: ()()()n n h n h d ω= (4.2)

()n h 就作为实际设计的FIR 数字滤波器的单位脉冲响应序列,其频率响应函

数()ωj e H 为

()()n

j N n j e

n h e

H ωω

∑-==1

(4.3)

式中,N 为所选窗函数()n ω的长度。

用窗函数法设计的滤波器性能取决于窗函数()n ω的类型及窗口长度N 的取

值。设计过程中,要根据对阻带最小衰减和过渡带宽度的要求选择合适的窗函数类型和窗口长度N 。各种类型的窗函数可达到的阻带最小衰减和过渡带宽度见表(一)。

窗函数

旁瓣峰值幅度/dB

过渡带宽

阻带最小衰减/dB

过渡带带宽()N πω

2?

矩形窗 -13

4π/N -12

0.9

三角形窗 -25 8π/N -25 2.1

汉宁窗 -31 8π/N -44 3.1

哈明窗 -41 8π/N -53 3.3

不莱克曼窗

-57 12π/N

-74 5.5

凯塞窗(β=7.865)

-57

10π/N

-80 5

表(一) 各种窗函数的基本参数

这样选定窗函数类型和长度N 之后,求出单位脉冲响应()()()n n h n h d ω?=,并按照式(4.3)求出()ωj e H 。()ωj e H 是否满足要求,如果()ωj e H 不满足要求,则要重新选择窗函数类型和长度N ,再次验算,直至满足要求。

1.3设计内容与要求

(一)设计要求:

1. 学会计算滤波器各项性能指标及如何来满足给定的指标要求。

2. 用MATLAB 语言编程实现给定指标要求的滤波器的设计。

3. 熟悉MATLAB 语言,独立编写程序。

4. 设计低通FIR 滤波器的指标:

通带最大波动

0.25,

p R dB =,

0.2p ωπ

=

阻带最小衰减 50,s A dB =,0.3s ωπ=

(二)、设计内容:

1.熟悉各种窗函数,在MATLAB 命令窗下浏览各种窗函数,绘出(或打印)所看到的窗函数图。

2.编写计算理想低通滤波器单位抽样响应hd(n)的m 函数文件ideal.m 。

3. 编写计算N 阶差分方程所描述系统频响函数()j H e ω的m 函数文件fr.m 。

4.根据指标要求选择窗函数的形状与长度N 。(至少选择两种符合要求的窗函数及其对应的长度)。

5.编写.m 程序文件,通过调用ideal.m 和fr .m 文件,计算你设计的实际低通FIR 滤波器的单位抽样响应h(n)和频率响应()j H e ω,打印在频率区间[O ,π]上的幅频响应特性曲线()~j H e ωω,幅度用分贝表示。

6.验证所设计的滤波器是否满足指标要求。

1.4设计的源程序及运行结果:

1、利用MATLAB 窗口观察各种窗函数: %巴特利特窗 w=bartlett(20); subplot(3,2,1); plot(w);

stem(w,'y');%'y'表示黄色 %stem 表示以离散图输出 title('巴特利特床窗'); xlabel('n');%横坐标为n ylabel('w(n)');%纵坐标为w(n)

%布莱克曼窗 w=blackman(20);

subplot(3,2,2); plot(w);

stem(w,'b');%'b'表示蓝色 title('布莱克曼窗'); xlabel('n'); ylabel('w(n)'); %矩形窗 w=boxcar(20); subplot(3,2,3); plot(w); stem(w,'r'); title('矩形窗');

xlabel('n'); ylabel('w(n)'); %海明窗 w=hamming(20); plot(w);

stem(w,'m');%'m'表示紫色 title('海明窗'); xlabel('n'); ylabel('w(n)'); %汉宁窗 w=hanning(20); subplot(3,2,5); plot(w);

stem(w,'g');%'g'表示绿色

title('汉宁窗'); xlabel('n'); ylabel('w(n)'); %凯泽窗 beta=5.6533; w=kaiser(20,beta); subplot(3,2,6); plot(w);

stem(w,'k');%'k'表示黑色 title('凯泽窗,beta=5.6533');

xlabel('n'); ylabel('w(n)');

5

1015

20

0.51

巴特利特床窗

n w (n )

05

101520

0.51

布莱克曼窗

n w (n )

5

1015

20

00.51矩形窗

n w (n )

5

101520

00.51

海明窗

n

w (n )

5

1015

20

0.51汉宁窗

n

w (n )

05

101520

0.51

凯泽窗,beta=5.6533n

w (n )

常用窗函数的图形

2、理想低通滤波器单位抽样响应hd(n)的m 函数文件ideal.m 。

function hd=ideal(wc,M)

%理想低通滤波器计算

%hd为0到M-1之间的理想脉冲响应

%wc为截止频率

%M为理想滤波器的长度

alpha=(M-1)/2;

n=0:M-1;

m=n-alpha+eps;

hd=sin(wc*m)./(pi*m);

3、N阶差分方程所描述的系统频响函数的m函数文件fr.m。function[db,mag,pha,gfd,w]=fr(b,a)

%求解系统响应

%db为相位振幅(db)

%mag为绝对振幅

%pha为相位响应

%grd为群延时

%w为频率样本点矢量

%b为Ha(z)分析多项式系数(对FIR而言,b=h)

%a为Hz(z)分母多项式系数(对FIR而言,a=1)

[H,w]=freqz(b,a,1000,'whole');

H=(H(1:501))';

w=(w(1:501))';

mag=abs(H);

db=20*log10((mag+eps)/max(mag));

pha=angle(H);

gfd=grpdelay(b,a,w);

4、实际低通滤波器FIR:

%用海明窗设计低通滤波器

wp=0.2*pi;

ws=0.3*pi;

tr_width=ws-wp;

disp(['海明窗设计低通滤波器参数:']);

M=ceil(6.6*pi/tr_width)+1;

disp(['滤波器的长度为',num2str(M)]);

n=0:M-1;

wc=(ws+wp)/2; %理想LPF的截止频率

hd=ideal(wc,M);

w_ham=(hamming(M))';

h=hd.*w_ham;

[db,mag,pha,gfd,w]=fr(h,[1]);

delta_w=2*pi/1000;

Rp=-(min(db(1:1:wp/delta_w+1))); %求出实际通带波动

disp(['实际带通波动为',num2str(Rp)]);

As=-round(max(db(ws/delta_w+1:1:501))); %求出最小阻带衰减disp(['最小阻带衰减为-',num2str(As)],’db’);

%绘图

subplot(1,1,1)

subplot(2,6,1)

stem(n,hd);

title('理想冲击响应');

axis([0 M-1 -0.1 0.3]);

ylabel('hd(n)');

subplot(2,6,2)

stem(n,w_ham);

title('海明窗');

axis([0 M-1 0 1.1]);

ylabel('w(n)');

subplot(2,6,7)

stem(n,h);

title('实际冲激响应');

axis([0 M-1 -0.1 0.3]);

xlabel('n');

ylabel('h(n)');

subplot(2,6,8)

plot(w/pi,db);

title('幅度响应(db)');

axis([0 1 -100 10]);

grid;

xlabel('以pi为单位的频率');

ylabel('分贝数');

图(1)海明窗设计的FIR 海明窗设计低通滤波器参数:

滤波器的长度为67

实际带通波动为0.03936

最小阻带衰减为-52db

%用布莱克曼窗设计低通滤波器

wp=0.2*pi;

ws=0.3*pi;

tr_width=ws-wp;

disp(['布莱克曼窗设计低通滤波器的参数:']);

M=ceil(11.0*pi/tr_width)+1;

disp(['滤波器的长度为',num2str(M)]);

n=0:M-1;

%理想LPF的截止频率

wc=(ws+wp)/2;

hd=ideal(wc,M);

w_bla=(blackman(M))';

h=hd.*w_bla;

[db,mag,pha,gfd,w]=fr(h,[1]);

delta_w=2*pi/1000;

Rp=-(min(db(1:1:wp/delta_w+1))); %求出实际通带波动

disp(['实际带通波动为',num2str(Rp)]);

As=-round(max(db(ws/delta_w+1:1:501))); %求出最小阻带衰减disp(['最小阻带衰减-',num2str(As)],’db’);

%绘图

subplot(2,6,3)

stem(n,hd);

title('理想冲击响应');

axis([0 M-1 -0.1 0.3]);

ylabel('hd(n)');

subplot(2,6,4)

stem(n,w_bla);

title('布莱克曼窗');

axis([0 M-1 0 1.1]);

ylabel('w(n)');

subplot(2,6,9)

stem(n,h);

title('实际冲激响应');

axis([0 M-1 -0.1 0.3]);

xlabel('n');

ylabel('h(n)');

subplot(2,6,10)

plot(w/pi,db);

title('幅度响应(db)');

axis([0 1 -100 10]);

grid;

xlabel('以pi为单位的频率');

ylabel('分贝数');

图(2)布莱克曼窗设计的FIR 布莱克曼窗设计低通滤波器的参数:

滤波器的长度为111 实际带通波动为0.0033304 最小阻带衰减为-73db 5、技术指标比较:

(1)海明窗设计低通滤波器参数: 滤波器的长度为67 实际带通波动为0.03936 最小阻带衰减为-52db

(2)布莱克曼窗设计低通滤波器的参数: 滤波器的长度为111 实际带通波动为0.0033304 最小阻带衰减为-73db

在相同的技术指标下用布莱克曼窗设计的低通滤波器实际带通波动实际带通波动最小,最小阻带衰减,滤波器的长度最大;海明窗和凯泽窗最小阻带衰减差不多,滤波器的长度页差不多,但是海明窗实际波动小于凯泽窗;所以用布莱克曼窗用设计的FIR 最逼近理想单位冲击响应。这三个窗设计的低通滤波器都符合要求。

1.5思考题:

1. 设计线性相位数字滤波器的一般步骤:

(1)、给定所要求的频率响应函数Hd(jw e )以及技术指标阻带衰减ωδ?和; (2)、求hd=IDTFT[Hd(jw e )];

由过渡带带宽及带阻最小衰减的要求,利用六种常见的窗函数基本参数的比较表或凯泽窗设计FIR 滤波器的经验公式,选择窗函数的形状及N 的大小(一般N 要通过几次试探而最后确定);

(3)求得所设计的FIR 滤波器的单位抽样响应:

h(n)=hd(n)w(n),N=0,1,2,3…,N-1

(4)、求Hd(jw e )=DIFT[h(n)],校验是否满足设计要求,如果不满足,则重新设计。

2. 窗函数有哪些指标要求?对给定指标要求的低通滤波器,理论计算所需窗函数的长度N 。

答:窗函数的指标要求:主瓣宽度,旁瓣峰值。海明窗设计低通滤波器的长

度为67,凯泽窗设计低通滤波器的长度为60,布莱克曼窗设计低通滤波器的长度为111。

3. 用窗函数法设计FIR 滤波器,滤波器的过渡带宽度和阻带衰减与哪些因素有关?

答:过渡带宽度与窗函数的形状和窗的宽度有关;阻带衰减只有窗函数的

形状决定,不受N 的影响。

4、计算理想带通滤波器单位抽样响应hd(n)时取N 为奇数和N 为偶数有没有区别?你计算时所用的方法是仅适合于N 为奇数或偶数的一种还是两种都可以用?

答: 以海明窗为例说明:

0102030

405060

-0.1

00.10.2

0.3理想冲击响应N=67

h d (n )

10

20

30

40

50

60

-0.100.10.2

0.3理想冲击响应N=68

h d (n )

10

20

30

40

50

60

-0.100.10.2

0.3理想冲击响应N=64

h d (n )

滤波器的长度为 67 实际带通波动为 0.03936 最小阻带衰减为 52

滤波器的长度为 68

实际带通波动为 0.036424

最小阻带衰减为 53

滤波器的长度为 64

实际带通波动为 0.068677

最小阻带衰减为 45

N取奇偶数时,低通滤波器的幅度函数是不同的,如上图所示(海明窗设计低通滤波器N取奇偶数时的图),通过比较,当滤波器的长度大于技术指标要求的长度时,选择偶数也是满足要求的,所以海明窗奇偶都满足。同理,N取奇偶数,选择其他的窗函数也满足设计低通滤波器的指标要求。

比较所选窗长N相同但窗形状不同对滤波器设计结果的影响以及选同一种窗函数但窗长N不同时对滤波器设计结果的影响,将结论写在报告中。

海明窗布莱克曼窗凯泽窗

以海明窗设计的低通滤波器的长度N=67,用布莱克曼窗和凯泽窗设计低通滤波器滤波器的长度为67

实际带通波动0.03936

最小阻带衰减为52

滤波器的长度为67

实际带通波动0.29523

最小阻带衰减为30

滤波器的长度为67

实带通波动0.047919

最小阻带衰减为51

线性斜率beta=4.5513

以凯泽窗设计的低通滤波器的长度N=60,用布莱克曼窗和海明窗窗设计低通滤波器滤波器的长度为60

实际带通波动为0.12166

最小阻带衰减为39

滤波器的长度为60

实际带通波动为0.47079

最小阻带衰减为26

滤波器的长度为60

实际带通波动0.053711

最小阻带衰减为51

线性斜率beta=4.5513

以布莱克曼窗设计的低通滤波器的长度

N=111,用凯泽窗和海明窗窗设计低通滤波器滤波器的长度为111

实际带通波动为0.02894

最小阻带衰减为59

滤波器的长度为111

实际带通波动0.0033304

最小阻带衰减为73

滤波器的长度为111

实际带通波动0.034426

最小阻带衰减为58

线性斜率beta=4.5513

结论:

1、当以海明窗设计的低通滤波器的长度N,用布莱克曼窗和凯泽窗设计低通滤波器,即N=67时,三个窗函数设计的低通滤波器中布莱克曼窗设计的不满足要求,凯泽窗设计的带通波动大于海明窗设计的低通滤波器带通波动,最小阻带衰减小于海明窗设计的低通滤波器。凯泽窗设计的结果没有用海明窗设计结果好。

当N取67 、60、111时,用海明窗设计的低通滤波器的性能不同,通过上表比较,N也越大性能越好,满足要求,当N<67时不满足设计技术指标。

2、以凯泽窗设计的低通滤波器的长度N,用布莱克曼窗和海明窗窗设计低通滤波器,即N=60时,海明窗设计的低通滤波器的最小阻带衰减不满足指标要求,布莱克曼窗设计的低通滤波器的最小阻带衰减和带通波动都不满足要。

当N取67 、60、111时,用布莱克曼窗设计的低通滤波器的性能不同,通过上表比较,N也越大性能越好,满足要求,当N<111时不满足设计技术指标。

3、以布莱克曼窗设计的低通滤波器的长度N,用凯泽窗和海明窗窗设计低通滤波器,即N=111时,三个都满足要求。但是用布莱克曼窗函数设计的低通滤波器的性能更好。

当N取67 、60、111时,用凯泽窗设计的低通滤波器的性能不同,通过上表比较,N也越大性能越好,满足要求,当N>60时都满足设计技术指标。

2、用哈明窗设计FIR带通数字滤波器

2.1设计要求

x t,设计滤波系统,滤除针对一个含有5Hz、15Hz和30Hz的混合正弦波信号()

5Hz和30Hz的正弦分量,阻带的最小衰减不小于50dB。

x t进行采样;

①确定采样频率s f、采样长度N,对()

②选择合适的窗函数,设计FIR带通数字滤波器;

③通过计算机仿真对滤波器的性能进行分析。

2.2设计原理分析和设计

此题要求也是滤波,但是要求滤掉5Hz和30Hz的信号,而保留15Hz的信号,因此必须采用带通滤波器。要求阻带的最小衰减不低于50dB,查表可知可选哈明窗。

分析题目可知:

f1=5Hz,T1=1/5s;

f2=15Hz,T2=1/15s;

f3=30Hz,T3=1/30s;

则采样时长tT至少应为0.2s,取tT=1s;

采样频率fs≥2fc;可取fs=150;则采样间隔T=1/fs;

所以采样长度N=tT/T=150;

数字技术指标可取

wp1=2*pi*14/fs;

wp2=2*pi*23/fs;

ws1=2*pi*7/fs;

ws2=2*pi*27/fs;

滤波器设计好后,利用卷积和可得输出信号y(n)=x(n)*h(n),卷积和长度N=N1+N2-1;

2.3详细设计

源程序代码:

tT=1; %采样时长

fs=150; %采样频率

wp1=2*pi*14/fs;

wp2=2*pi*20/fs;

ws1=2*pi*7/fs;

ws2=2*pi*27/fs;

trwidth=wp1-ws1; %过渡带带宽

N1=ceil(8*pi/trwidth) %计算滤波器阶次

n=0:N1-1;

wc1=(ws1+wp1)/2; wc2=(ws2+wp2)/2; %计算3dB截止频率

alpha=(N1-1)/2; %单位响应的对称中心

m=n-alpha;

hd=sin(wc2*m)./(pi*m)-sin(wc1*m)./(pi*m); %理想带通滤波器的单位响应wham=(hamming(N1))';

h=hd.*wham; %实际带通滤波器单位响应

w=0:0.01:pi;

H=freqz(h,1,w); %单位滤波器幅频响应

T=1/fs; %对输入信号进行采样

N2=fs*tT;

t=(0:N2-1)*T;

x=sin(2*pi*5*t)+sin(2*pi*15*t)+sin(2*pi*30*t);

subplot(411) %绘制数字滤波器幅频响应

plot(w/pi,abs(H));

grid on;title('数字滤波器幅频响应');

subplot(412) %绘制数字滤波器单位响应

stem(n,h,'.');

grid on;title('数字滤波器单位响应')

subplot(413) %绘制输入信号

plot(t,x);

axis([0 0.4 -4 4])

grid on;title('输入信号')

subplot(414) %绘制输出信号

y=conv(x,h); %用卷积求输出信号

N=N1+N2-1; %计算卷积和长度

tt=(0:N-1)*T;

plot(tt,y);

axis([0 0.8 -1 1])

grid on;title('输出信号')

2.4调试分析及运行结果

代码完成后,滤波器幅频响应、单位响应和输入信号能够正常输出,但是绘制输出信号时用的是plot(y),并未指明自变量,结果绘制的图(如下)是以n 为自变量,看起来非常不明了也不清楚。

0102030405060708090100

-1

-0.500.51输出信号

后将绘图语句直接改为plot(t,y),结果出现错误

提示t 和y 矩阵长度不匹配,翻阅《信号与系统》上册课本重新复习了离散卷积和部分,得知两信号卷积后长度变化规律,于是将绘制输出信号部分代码改为: y=conv(x,h); N=N1+N2-1; tt=(0:N-1)*T; plot(tt,y);

然后得到以时间为横坐标的输出信号。 运行结果如下:

2.5心得体会:

通过运用MATLAB设计低通滤波器,学习了MATLAB 语言的编程以及熟悉MATLAB软件环境,会利用MATLAB编写基本程序,熟悉绘制图形命令的正确使用,以及掌握MATLAB处理数字信号的有关命令。在命令窗口运行编写好的m文件,学习M文件调用其他的M文件,文件之间的调用必须满足这两个文件在一个文件夹里。

学习生成常用窗函数的MATLAB语言函数,并通过调用生成各种窗函数MATLAB内部函数,以及编写窗函数M文件,在figure窗口观察常用窗函数的图形。

掌握FIR带通滤波器设计原理,并自己查阅有关带通滤波器的设计的书籍,根据设计指标要求利用MATLAB软件设计出符合要求的带通滤波器。另外,掌握设计FIR滤波器的一般步骤,以及掌握窗函数的选择。在MATLAB窗口观察用不同窗函数设计的带通滤波器的图形,比较在相同的指标条件下不同的窗函数设计的带通滤波器自之间的差别,以及N取不同值时,同一个窗函数设计的FIR的带通滤波器的技术指标不同。

参考文献

1、王华、李有军、刘建存,《MATLAB 电子仿真与应用教程》,国防科技大学出版社,2007

2、闻新、周露、张鸿《MATLAB 科学图形构建基础与应用》,科技出版社,2002

3、程佩青,数字信号处理及应用,清华大学出版社,2009

4、王宏,MATLAB及其在信号处理中的应用,清华大学出版社,2004

实验六、用窗函数法设计FIR滤波器

实验六 用窗函数法设计 FIR 滤波器 一、实验目的 (1) 掌握用窗函数法设计FIR 数字滤波器的原理和方法。 (2) 熟悉线性相位FIR 数字滤波器特性。 (3) 了解各种窗函数对滤波特性的影响。 二、实验原理 滤波器的理想频率响应函数为H d (e j ω ),则其对应的单位脉冲响应为: h d (n) = ?-π π ωωωπ d e e H n j j d )(21 窗函数设计法的基本原理是用有限长单位脉冲响应序列h(n)逼h d (n)。由于h d (n)往往是无 限长序列,且是非因果的,所以用窗函数。w(n)将h d (n)截断,并进行加权处理: h(n) = h d (n) w(n) h(n)就作为实际设计的FIR 数字滤波器的单位脉冲响应序列,其频率响应函数H(e j ω )为: H(e j ω ) = ∑-=-1 )(N n n j e n h ω 如果要求线性相位特性,则h (n )还必须满足: )1()(n N h n h --±= 可根据具体情况选择h(n)的长度及对称性。 用窗函数法设计的滤波器性能取决于窗函数w(n)的类型及窗口长度N 的取值。设计过程中,要根据对阻带最小衰减和过渡带宽度的要求选择合适的窗函数类型和窗口长度N 。 三、实验步骤 1. 写出理想低通滤波器的传输函数和单位脉冲响应。 2. 写出用四种窗函数设计的滤波器的单位脉冲响应。 3. 用窗函数法设计一个线性相位FIR 低通滤波器,用理想低通滤波器作为逼近滤波器,截止频率ωc =π/4 rad ,选择窗函数的长度N =15,33两种情况。要求在两种窗口长度下,分别求出h(n),打印出相应的幅频特性和相频特性曲线,观察3dB 带宽和阻带衰减; 4 用其它窗函数(汉宁窗(升余弦窗)、哈明窗(改进的升余弦窗)、布莱克曼窗) 设计该滤波器,要求同1;比较四种窗函数对滤波器特性的影响。 四、实验用MATLAB 函数 可以调用MATLAB 工具箱函数fir1实现本实验所要求的线性相位FIR-DF 的设计,调用一维快速傅立叶变换函数fft 来计算滤波器的频率响应函数。

MATLAB窗函数法实现FIR的高通,带通和低通滤波器的程序

MATLAB窗函数法实现FIR的高通,带通和低通滤波器的程序 MATLAB 学院:地球物理与石油资源学院班级:姓名:学号:班内编号:指导教师:完成日期:测井11001大牛啊啊啊陈义群2013年6月3日课程设计报告一、题目FIR滤波器的窗函数设计法及性能比较 1. FIR滤波器简介数字滤波器是一种用来过滤时间离散信号的数字系统,通过对抽样数据进行数学处理来达到频域滤波的目的。根据其单位冲激响应函数的时域特性可分为两类:无限冲激响应滤波器和有限冲激响应滤波器。与IIR滤波器相比,FIR滤波器的主要特点为: a. 线性相位;b.非递归运算。 2. FIR 滤波器的设计FIR滤波器的设计方法主要有三种:a.窗函数设计法;b.频率

抽样发;c.最小平法抽样法;这里我主要讨论在MATLAB环境下通过调用信号分析与处理工具箱的几类窗函数来设计滤波器并分析与比较其性能。窗函数法设计FIR滤波器的一般步骤如下: a. 根据实际问题确定要设计的滤波器类型; b. 根据给定的技术指标,确定期望滤波器的理想频率特性;c. 求期望滤波器的单位脉冲响应;d. 求数字滤波器的单位脉冲响应; e. 应用。常用的窗函数有(1)Hanningwindoww(n)?[?((2)Hammingw indoww(n)?[?((3)Balckmanwindoww(n)?[ ?((4)KaiserwindowI0{?1?[2n/(N?1)]2}w(n )?RN(n)I0(?)式中I0(x)是零阶Bessel函数,可定义为()2?n4?n)?()]RN(n)N?1N?1()2?n)]RN(n)N ?1() ?nN?1)]RN(n)() (x/2)m2I0(x)?1??m!m?1? 当x?0时与矩形窗一致;当x?时与海明窗结果相同;当x?时与布莱克曼窗结果相同。3.窗函数的选择标准 1. 较低的旁瓣

绝对经典的低通滤波器设计报告

经典 无源低通滤波器的设计

团队:梦知队 团结奋进,求知创新,追求卓越,放飞梦想 队员: 日期:2010.12.10 目录 第一章一阶无源RC低通滤波电路的构建 (3) 1.1 理论分析 (3) 1.2 电路组成 (4) 1.3 一阶无源RC低通滤波电路性能测试 (5) 1.3.1 正弦信号源仿真与实测 (5) 1.3.2 三角信号源仿真与实测 (10) 1.3.3 方波信号源仿真与实测 (15) 第二章二阶无源LC低通滤波电路的构建 (21) 2.1理论分析 (21) 2.2 电路组成 (22) 2.3 二阶无源LC带通滤波电路性能测试 (23) 2.3.1 正弦信号源仿真与实测 (23) 2.3.2 三角信号源仿真与实测 (28)

2.3.3 方波信号源仿真与实测 (33) 第三章结论与误差分析 (39) 3.1 结论 (39) 3.2 误差分析 (40) 第一章一阶无源RC低通滤波电路的构建1.1理论分析 滤波器是频率选择电路,只允许输入信号中的某些频率成分通过,而阻止其他频率成分到达输出端。也就是所有的频率成分中,只是选中的部分经过滤波器到达输出端。 低通滤波器是允许输入信号中较低频率的分量通过而阻止较高频率的分量。 图1 RC低通滤波器基本原理图 当输入是直流时,输出电压等于输入电压,因为Xc无限大。当输入

频率增加时,Xc减小,也导致Vout逐渐减小,直到Xc=R。此时的频率为滤波器的特征频率fc。 解出,得: 在任何频率下,应用分压公式可得输出电压大小为: 因为在=时,Xc=R,特征频率下的输出电压用分压公式可以表述为: 这些计算说明当Xc=R时,输出为输入的70.7%。按照定义,此时的频率称为特征频率。 1.2电路组成

窗函数设计FIR滤波器

1.课题描述......................................................... (1) 2.题目及要求......................................................... (1) 3.设计原理......................................................... (1) 3.1 滤波器的分类......................................................... (1) 3.2 数字滤波器工作原理 (1) 3.3 FIR滤波器的设计指 标 (3) 3.4窗函数设计FIR滤波器的设计原 理 (5) 3.5用窗函数设计滤波器的步 骤 (10) 3.6实验所用MATLAB函数说 数 (11)

4设计容......................................................... (12) 4.1用MATLAB编程实 现 (12) 4.2结果分析......................................................... (15) 5总结......................................................... (17) 6参考文献......................................................... (17)

1.课题描述 数字滤波器是指输入、输出均为数字信号,通过数值运算处理改变输入信号所含频率成分的相对比例,或者滤除某些频率成分的数字器件或程序。因此,数字滤波的概念和模拟滤波相同,只是信号的形成和实现滤波方法不同。正因为数字滤波通过数值运算实现滤波,所以数字滤波处理精度高、稳定、体积小、质量轻、灵活、不存在阻抗匹配问题,可以实验模拟滤波器无法实现的特殊滤波功能。本课题使用MATLAB信号处理箱和运用窗函数的FIR滤波器去除无用信号。2.题目及要求 产生包含三个正弦成分(120hz,80hz,20hz)的信号,设计基于窗函数的FIR滤波器去除120hz,20hz成分,保留80hz信号。通带允许的最大衰减为0.25dB,阻带应达到的最小衰减为20dB。滤波器的采样频率为500Hz。 3.设计原理 3.1滤波器的分类 从功能上可以分为:低通、高通、带通和带阻。 从处理信号分为:经典滤波器和现代滤波器。 从设计方法上分为:切比雪夫和巴特沃斯 从实现方法上分为:FIR和IIR 3.2数字滤波器的工作原理 数字滤波器是一个离散时间系统,输入x(n)是一个时间序列,输出y(n)也是一个时间序列。如数字滤波器的系统函数为H(Z),其脉

实验四 用窗函数法设计FIR数字滤波器

实验四 用窗函数法设计FIR 数字滤波器 实验项目名称:用窗函数法设计FIR 数字滤波器 实验项目性质:验证性实验 所属课程名称:数字信号处理 实验计划学时:2 一. 实验目的 (1)掌握用窗函数法设计FIR 数字滤波器的原理与方法。 (2)熟悉线性相位FIR 数字滤波器的特性。 (3)了解各种窗函数对滤波特性的影响。 二. 实验容和要求 (1) 复习用窗函数法设计FIR 数字滤波器一节容,阅读本实验原理,掌握设计步骤。 (2) 用升余弦窗设计一线性相位低通FIR 数字滤波器,截止频率 rad c 4 π ω= 。窗口长度N =15,33。要求在两种窗口长度情况下,分别求出()n h ,打印出相应的幅频特性和相频特性曲线,观察3dB 带宽和20dB 带宽。总结窗口长度N 对滤波器特性的影响。 设计低通FIR 数字滤波器时,一般以理想低通滤波特性为逼近函数()ωj e H ,即 ()?????≤<≤=-π ωωωωωα ω c c j j d ,,e e H 0 其中2 1 -= N α ()() ()[]() a n a n d e e d e e H n h c j j j j d d c c --= = = ??- -- πωωπ ωπ ωαωω ωαωπ π ωsin 2121

(3) 33=N ,4πω=c ,用四种窗函数设计线性相位低通滤波器,绘制相应的幅频特性曲线,观察3dB 带宽和20dB 带宽以及阻带最小衰减,比较四种窗函数对滤波器特性的影响。 三. 实验主要仪器设备和材料 计算机,MATLAB6.5或以上版本 四. 实验方法、步骤及结果测试 如果所希望的滤波器的理想的频率响应函数为()ωj d e H ,则其对应的单位脉冲响应为 ()()ωπ ω ωπ πd e e H n h j j d d ?- = 21 (4.1) 窗函数设计法的基本原理是用有限长单位脉冲响应序列()n h 逼近 ()n h d 。由于()n h d 往往是无限长序列,而且是非因果的,所以用窗函数() n ω将()n h d 截断,并进行加权处理,得到: ()()()n n h n h d ω= (4.2) ()n h 就作为实际设计的FIR 数字滤波器的单位脉冲响应序列,其频率 响应函数()ωj e H 为 ()()n j N n j e n h e H ωω ∑-==1 (4.3) 式中,N 为所选窗函数()n ω的长度。 我们知道,用窗函数法设计的滤波器性能取决于窗函数()n ω的类型及窗口长度N 的取值。设计过程中,要根据对阻带最小衰减和过渡带宽度的

简单低通滤波器设计及matlab仿真

东北大学 研究生考试试卷 考试科目: 课程编号: 阅卷人: 考试日期: 姓名:xl 学号: 注意事项 1.考前研究生将上述项目填写清楚. 2.字迹要清楚,保持卷面清洁. 3.交卷时请将本试卷和题签一起上交. 4.课程考试后二周内授课教师完成评卷工作,公共课成绩单与试卷交研究生院培养办公室, 专业课成绩单与试卷交各学院,各学院把成绩单交研究生院培养办公室. 东北大学研究生院培养办公室

数字滤波器设计 技术指标: 通带最大衰减: =3dB , 通带边界频率: =100Hz 阻带最小衰减: =20dB 阻带边界频率: =200Hz 采样频率:Fs=200Hz 目标: 1、根据性能指标设计一个巴特沃斯低通模拟滤波器。 2、通过双线性变换将该模拟滤波器转变为数字滤波器。 原理: 一、模拟滤波器设计 每一个滤波器的频率范围将直接取决于应用目的,因此必然是千差万别。为了使设计规范化,需要将滤波器的频率参数作归一化处理。设所给的实际频 率为Ω(或f ),归一化后的频率为λ,对低通模拟滤波器令λ=p ΩΩ/,则1 =p λ, p s s ΩΩ=/λ。令归一化复数变量为p ,λj p =,则p p s j j p Ω=ΩΩ==//λ。所以巴 特沃思模拟低通滤波器的设计可按以下三个步骤来进行。 (1)将实际频率Ω规一化 (2)求Ωc 和N 11010/2-=P C α s p s N λααlg 1 10 110lg 10 /10/--= 这样Ωc 和N 可求。 p x fp s x s f

根据滤波器设计要求=3dB ,则C =1,这样巴特沃思滤波器的设计就只剩一个参数N ,这时 N p N j G 222 )/(11 11)(ΩΩ+= += λλ (3)确定)(s G 因为λj p =,根据上面公式有 N N N p j p p G p G 22)1(11 )/(11)()(-+= += - 由 0)1(12=-+N N p 解得 )221 2exp(πN N k j p k -+=,k =1,2, (2) 这样可得 1 )21 2cos(21 ) )((1 )(21+-+-= --= -+πN N k p p p p p p p G k N k k 求得)(p G 后,用p s Ω/代替变量p ,即得实际需要得)(s G 。 二、双线性变换法 双线性变换法是将s 平面压缩变换到某一中介1s 平面的一条横带里,再通过标准变换关系)*1exp(T s z =将此带变换到整个z 平面上去,这样就使s 平面与z 平面之间建立一一对应的单值关系,消除了多值变换性。 为了将s 平面的Ωj 轴压缩到1s 平面的1Ωj 轴上的pi -到pi 一段上,可以通过以下的正切变换来实现: )21 tan(21T T Ω= Ω 这样当1Ω由T pi -经0变化到T pi 时,Ω由∞-经过0变化到∞+,也映射到了整个Ωj 轴。将这个关系延拓到整个s 平面和1s 平面,则可以得到

FIR滤波器窗函数设计

课题名称:FIR滤波器窗函数设计

FlR 滤波器窗函数设计 引言: 数字滤波器(DigitalFilter )是指输入、输出都是离散时间信号,通过一定运算 关系改变输入信号所含频率成分的相对比例或者滤除某些频率成分的器件。 在许 多数字信号处理系统中,如图像信号处理等,有限冲激响应( FIR )滤波器是最 常用的组件之一,它完成信号预调、频带选择和滤波等功能。 FIR 滤波器虽然在 截止频率的边沿陡峭性能上不及无限冲激响应 (IIR )滤波器,但是却具有严格的 线性相位特性,稳定性好,能设计成多通带(或多阻带)滤波器组,所以能够在 数字信号处理领域得到广泛的应用。 数字滤波器的分类 1) 根据系统响应函数的时间特性分为两类 1. FIR (Finite ImPUISe Response 数字滤波器网络 M y[n] b k x[n k] k0 特点:不存在反馈支路,其单位 冲激响应为有限长 2. IIR ( Infinite ImPUISe Response 数字滤波器网络 特点:存在反馈支路,即信号流图中存在环路,其单位冲激响应为无限长 (2) FIR 数字滤波器IIR 数字滤波器的区别 1. 从性能上来说,IlR 滤波器传递函数包括零点和极点两组可调因素, 对极点的 惟一限制是在单位圆内。因此可用较低的阶数获得高的选择性,所用的存储 单元 少,计算量小,效率高。但是这个高效率是以相位的非线性为代价的。 选择性越好,则相位非线性越严重。FIR 滤波器传递函数的极点固定在原点, 是不能动的,它只能靠改变零点位置来改变它的性能。所以要达到高的选择 性,必须用较高的阶数;对于同样的滤波器设计指标, FIR 滤波器所要求的 阶数可能比IIR 滤波器高5-10倍,但是FIR 滤波器可以得到严格的线性相位。 2. 从结构上看,IIR 滤波器必须采用递归结构,极点位置必须在单位圆内,否则 系统将 不稳定。相反,FIR 滤波器只要采用非递归结构,不论在理论上还是 在实际的有限精度运算中都不存在稳定性问题, 因此造成的频率特性误差也 较小。此外FIR 滤波器可以采用快速傅里叶变换算法, 在相同阶数的条件下, 运算速度可以快得多。 3. 从设计工具看,IIR 滤波器可以借助于模拟滤波器的成果,因此一般都有有效 的圭寸闭形式的设计公式可供准确计算,计算工作量比较小,对计算工具的要 求不高。 hn b n , 0 n M 0, 其他 n y[n] b k x[n k] k0 a k y[n k1 k]

实验四 窗函数法设计FIR数字滤波器

实验四 窗函数法设计FIR 数字滤波器 一、实验目的 1、掌握窗函数法设计FIR 数字滤波器的原理及具体方法。 2、掌握频率取样法设计FIR 数字滤波器的原理和基本方法。 3、学习利用窗函数法和频率取样法设计低通、带通、高通、带阻数字滤波器。 二、实验环境 计算机、MATLAB 软件 三、实验基础理论 窗函数设计FIR 滤波器 1.基本原理 窗函数设计法的基本思想为,首先选择一个适当的理想的滤波器()j d H e ω ,然后 用窗函数截取它的单位脉冲响应(n)d h ,得到线性相位和因果的FIR 滤波器。这种方法的重点是选择一个合适的窗函数和理想滤波器,使设计的滤波器的单位脉冲响应逼近理想滤波器的单位脉冲响应。 2.设计步骤 (1)给定理想滤波器的频率响应()j d H e ω ,在通带上具有单位增益和线性相位, 在阻带上具有零响应。一个带宽为()c c ωωπ<的低通滤波器由下式给定: π ωωωωωωω≤<=≤=-||,0)(,||,)(c j d c ja j d e H e e H 其中α为采样延迟,其作用是为了得到一个因果系统。 (2)确定这个滤波器的单位脉冲响应 ) ()) (sin()(a n a n n h c d --= πω 为了得到一个(n)h 长度为N 的因果的线性相位FIR 滤波器,我们令 2 1 -= N a (3)用窗函数截取(n)d h 得到所设计FIR 数字滤波器:)()()(n R n h n h N d = 3.窗函数的选择 常用的窗函数有矩形(Rectangular )窗,汉宁(Hanning )窗,海明(Hamming )窗、布莱克曼(Blackman )窗、凯瑟(Kaiser )窗等 表4-1 MATLAB 中产生窗函数的命令

有源低通滤波器设计报告要点

课程设计(论文)说明书 题目:有源低通滤波器 院(系):信息与通信学院 专业:通信工程 学生姓名: 学号: 指导教师: 职称: 2010年 12 月 19 日

摘要 低通滤波器是一个通过低频信号而衰减或抑制高频信号的部件。理想滤波器电路的频响在通带内应具有一定幅值和线性相移,而在阻带内其幅值应为零。有源滤波器是指由放大电路及RC网络构成的滤波器电路,它实际上是一种具有特定频率响应的放大器。滤波器的阶数越高,幅频特性衰减的速率越快,但RC网络节数越多,元件参数计算越繁琐,电路的调试越困难。根据指标,本次设计选用二阶有源低通滤波器。 关键词:低通滤波器;集成运放UA741;RC网络 Abstract Low-pass filter is a component which can only pass the low frequency signal and attenuation or inhibit the high frequency signal . Ideal frequency response of the filter circuit in the pass band should have a certain amplitude and linear phase shift, and amplitude of the resistance band to be zero. Active filter is composed of the RC network and the amplifier, it actually has a specific frequency response of the amplifier. Higher the order of the filter, the rate of amplitude-frequency characteristic decay faster, but more the number of RC network section, the more complicated calculation of device parameters, circuit debugging more difficult. According to indicators ,second-order active low-pass filter is used in this design . Key words:Low-pass filter;Integrated operational amplifier UA741;RC network,

窗函数设计低通滤波器 电信课设

XXXX大学 课程设计报告 学生:xxx 学号:xxx 专业班级:电子信息工程 课程名称:数字信号处理课程设计

学年学期20XX——20XX 学年第X学期指导教师:xxx 2014年6月

课程设计成绩评定表

目录 1. 窗函数设计低通滤波器 1.1设计目的 (1) 1.2设计原理推导与计算 (1) 1.3设计容与要求 (2) 1.4设计源程序与运行结果 (3) 1.5思考题 (10) 2. 用哈明窗设计FIR带通数字滤波器 2.1设计要求 (14) 2.2设计原理和分析 (14) 2.3详细设计 (15) 2.4调试分析及运行结果 (15) 2.5心得体会 (17) 参考文献 (17)

1.窗函数设计低通滤波器 1.1设计目的 1. 熟悉设计线性相位数字滤波器的一般步骤。 2. 掌握用窗函数法设计FIR 数字滤波器的原理和方法。 3. 熟悉各种窗函数的作用以及各种窗函数对滤波器特性的影响。 4. 学会根据指标要求选择合适的窗函数。 1.2设计原理推导与计算 如果所希望的滤波器的理想的频率响应函数为() ωj d e H ,则其对应的单位脉冲响应为 ()() ωπ ωωπ π d e e H n h j j d d ?- = 21 (4.1) 窗函数设计法的基本原理是设计设计低通FIR 数字滤波器时,一般以理想低通滤波特性为逼近函数() ωj e H ,即 ()?????≤<≤=-π ωωωωωα ω c c j j d ,, e e H 0,其中21-=N α ()() ()[]() a n a n d e e d e e H n h c j j j j d d c c --= = = ??- -- πωωπ ωπ ωαωω ωαωπ π ωsin 2121 用有限长单位脉冲响应序列()n h 逼近()n h d 。由于()n h d 往往是无限长序列,而且是非因果的,所以用窗函数()n ω将()n h d 截断,并进行加权处理,得到: ()()()n n h n h d ω= (4.2) ()n h 就作为实际设计的FIR 数字滤波器的单位脉冲响应序列,其频率响应函 数() ωj e H 为 ()()n j N n j e n h e H ωω ∑-==10 (4.3) 式中,N 为所选窗函数()n ω的长度。

fir低通滤波器设计(完整版)

电子科技大学信息与软件工程学院学院标准实验报告 (实验)课程名称数字信号处理 电子科技大学教务处制表

电 子 科 技 大 学 实 验 报 告 学生姓名: 学 号: 指导教师: 实验地点: 实验时间:14-18 一、实验室名称:计算机学院机房 二、实验项目名称:fir 低通滤波器的设计 三、实验学时: 四、实验原理: 1. FIR 滤波器 FIR 滤波器是指在有限范围内系统的单位脉冲响应h[k]仅有非零值的滤波器。M 阶FIR 滤波器的系统函数H(z)为 ()[]M k k H z h k z -==∑ 其中H(z)是k z -的M 阶多项式,在有限的z 平面内H(z)有M 个零点,在z 平面原点z=0有M 个极点. FIR 滤波器的频率响应 ()j H e Ω 为 0 ()[]M j jk k H e h k e Ω -Ω ==∑ 它的另外一种表示方法为 () ()()j j j H e H e e φΩΩΩ=

其中 () j H e Ω和()φΩ分别为系统的幅度响应和相位响应。 若系统的相位响应()φΩ满足下面的条件 ()φαΩ=-Ω 即系统的群延迟是一个与Ω没有关系的常数α,称为系统H(z)具有严格线性相位。由于严格线性相位条件在数学层面上处理起来较为困难,因此在FIR 滤波器设计中一般使用广义线性相位。 如果一个离散系统的频率响应 ()j H e Ω 可以表示为 ()()()j j H e A e αβΩ-Ω+=Ω 其中α和β是与Ω无关联的常数,()A Ω是可正可负的实函数,则称系统是广义线性相位的。 如果M 阶FIR 滤波器的单位脉冲响应h[k]是实数,则可以证明系统是线性相位的充要条件为 [][]h k h M k =±- 当h[k]满足h[k]=h[M-k],称h[k]偶对称。当h[k]满足h[k]=-h[M-k],称h[k]奇对称。按阶数h[k]又可分为M 奇数和M 偶数,所以线性相位的FIR 滤波器可以有四种类型。 2. 窗函数法设计FIR 滤波器 窗函数设计法又称为傅里叶级数法。这种方法首先给出()j d H e Ω, ()j d H e Ω 表示要逼近的理想滤波器的频率响应,则由IDTFT 可得出滤波器的单位脉冲响应为 1 []()2j jk d d h k H e e d π π π ΩΩ-= Ω ? 由于是理想滤波器,故 []d h k 是无限长序列。但是我们所要设计的FIR 滤波 器,其h[k]是有限长的。为了能用FIR 滤波器近似理想滤波器,需将理想滤波器的无线长单位脉冲响应 []d h k 分别从左右进行截断。 当截断后的单位脉冲响应 []d h k 不是因果系统的时候,可将其右移从而获得因果的FIR 滤波器。

FIR滤波器的窗函数设计法及性能比较

MATLAB课程设计报告 学院:地球物理与石油资源学院 班级: 姓名: 学号: 班内编号: 指导教师: 完成日期: 2013年6月3日

一、 题目 FIR 滤波器的窗函数设计法及性能比较 1. FIR 滤波器简介 数字滤波器是一种用来过滤时间离散信号的数字系统,通过对抽样数据进行数学处理来达到频域滤波的目的。根据其单位冲激响应函数的时域特性可分为两类:无限冲激响应(IIR )滤波器和有限冲激响应(FIR )滤波器。与IIR 滤波器相比,FIR 滤波器的主要特点为: a. 线性相位;b.非递归运算。 2. FIR 滤波器的设计 FIR 滤波器的设计方法主要有三种:a.窗函数设计法;b.频率抽样发;c.最小平法抽样法; 这里我主要讨论在MA TLAB 环境下通过调用信号分析与处理工具箱的几类窗函数来设计滤波器并分析与比较其性能。窗函数法设计FIR 滤波器的一般步骤如下: a. 根据实际问题确定要设计的滤波器类型; b. 根据给定的技术指标,确定期望滤波器的理想频率特性; c. 求期望滤波器的单位脉冲响应; d. 求数字滤波器的单位脉冲响应; e. 应用。 常用的窗函数有 同。 时与布莱克曼窗结果相当时与海明窗结果相同; 时与矩形窗一致;当当885.84414.50]!)2/([1)(120===+=∑∞ =x x x m x x I m m 3.窗函数的选择标准 1. 较低的旁瓣幅度,尤其是第一旁瓣; 2. 旁瓣幅度要下降得快,以利于增加阻带衰减; 3. 主瓣宽度要窄,这样滤波器过渡带较窄。 函数,可定义为是零阶式中Bessel x I n R I N n I n w window Kaiser n R N n N n n w window Balckm an n R N n n w window Ham m ing n R N n n w window Hanning N N N N )()5.2.9()(]) (})]1/(2[1{[)()4()4.2.9()()]14cos(08.0)12cos( 5.042.0[)()3()3.2.9()()]12cos( 46.054.0[)()2() 2.2.9()()]1cos( 5.05.0[)()1(0020ββππππ--=-+--=--=--=

用窗函数法设计FIR数字滤波器

用窗函数法设计FIR 数字滤波器 一、实验目的 1.掌握用窗函数法设计FIR 数字滤波器的原理和方法。 2.熟悉线性相位FIR 数字滤波器特征。 3.了解各种窗函数对滤波特性的影响。 二、实验仪器 微型计算机 matlab 软件 三、实验原理和方法 如果所希望的滤波器的理想频率响应函数为 )(ωj d e H ,则其对应的单位脉冲响应为 )(n h d =π21 ωωωππd e e H j j d )(?- (2-1) 窗函数设计法的基本原理是用有限长单位脉冲响应序列)(n h 逼近)(n h d 。由于)(n h d 往往是无限长序列,且是非因果的,所以用窗函数)(n ω将)(n h d 截断,并进行加权处理,得到: )(n h =)(n h d )(n ω (2-2) )(n h 就作为实际设计的FIR 数字滤波器的单位脉冲响应序列, 其频率响应函数)(ωj d e H 为: )(ωj d e H =∑-=-1 0)(N n j e n h ω (2-3) 式中,N 为所选窗函数)(n ω的长度。 由第七章可知,用窗函数法设计的滤波器性能取决于窗函数)(n ω的类型及窗口长度N 的取值。设计过程中,要根据对阻带最小衰减和过渡带宽度的要求选择合适的窗函数类型和窗口长度N 。各种类型的窗函数可达到的阻带最小衰减和过渡带宽度见第七章。 这样选定窗函数类型和长度N 后,求出单位脉冲响应)(n h =)(n h d ·)(n ω,并按式(2-3)求出)(ωj e H 。)(ωj e H 是否满足要求,要进行验算。一般在)(n h 尾部加零使长度满足于2的整数次幂,以便用FFT 计算)(ωj e H 。如果要观察细节,补零点数增多即可。如果)(ωj e H 不满足要求,则要重新选择窗函数类型和长度N ,再次验算,直至满足要求。 如果要求线性相位特性,则)(n h 还必须满足 )1()(n N h n h --±= (2-4) 根据上式中的正负号和长度N 的奇偶性又将线性相位FIR 滤波器分成四类。要根据设计的滤波特性正确选择其中一类。例如,要设计线性低通特征,可选择)1()(n N h n h --=一类,而不能选)1()(n N h n h ---=一类。 四、实验内容

低通滤波器的设计

低通滤波器的设计 模拟滤波器在各种预处理电路中几乎是必不可少的,已成为生物医学仪器中的基本单元电路。有源滤波器实质上是有源选频电路,它的功能是允许指定频段的信号通过,而将其余频段上的信号加以抑制或使其急剧衰减。各种生物信号的低噪声放大,都是首先严格限定在所包含的频谱范围之内。 最常用的全极点滤波器有巴特沃斯滤波器和切比雪夫滤波器。就靠近ω=0处的幅频特性而言,巴特沃斯滤波器比切比雪夫滤波器平直,即在频率的低端巴特沃斯滤波器幅频特性更接近理想情况。但在接近截止频率和在阻带内,巴特沃斯滤波器则较切比雪夫滤波器差得多。本设计中要保证低频信号不被衰减,而对高频要求不高,因此选择了巴特沃斯滤波器。巴特沃思滤波电路(又叫最平幅度滤波电路)是最简单也是最常用的滤波电路,这种滤波电路对幅频响应的要求是:在小于截止频率ωc。的范围内,具有最平幅度响应,而在ω>ωc。后,幅频响应迅速下降。 因为本设计中要保证低频信号不被衰减,而对高频要求不高,所以选择 二阶滤波器即可。本系统采用二阶Butterworth低通滤波器,截止频率f H=100HZ,其电路原理图如1: 图1 低通滤波器图 根据matlab软件算得该设计适合二阶低通滤波器,FSF=628选Z=10000,则

Z R R FSF Z ?=?=的归一值的归一值 C C 3.2脉象信号的的前置放大 由于人体信号的频率和幅度都比较低,很容易受到空间电磁波以及人体其它生理信号的干扰,因此在对其进行变换、分析、存储、记录之前,应该进行一些预处理,以保证测量结果的准确性。因此需要对信号进行放大,“放大”在信号预处理中是第一位的。根据所测参数和所用传感器的不同,放大电路也不同。用于测量生物电位的放大器称为生物电放大器,生物电放大器比一般放大器有更严格的要求。 在本研究中放在传感器后面的电路就是前置放大电路,由于从传感器取得的信号很微弱,且混杂了一些其他的干扰信号。因此前置放大电路的主要功能是,滤除一些共模干扰信号,同时进行一定的放大。该电路由4部分构成:并联型双运放仪器放大器,阻容耦合电路,由集成仪用放大器构成的后继放大器和共模信号取样电路。并联型双运放仪器放大器的优点是不需要精密的匹配电阻,理论上它的共模抑制比为无穷大,且与其外围电阻的匹配程度无关。集成仪用放大器将由并联型双运放仪器放大器输出的双端差动信号转变为单端输出信号,并采用阻容耦合电路隔离直流信号,可以使集成仪用放大器取得较高的差模增益,从而得到很高的共模抑制比。共模取样驱动电路由两个等值电阻和一只由运放构成的跟随器构成,能够使共模信号不经阻容耦合电路的分压直接加在集成放大器的输入端,避免了由于阻容耦合电路的不匹配而降低电路整体的共模抑制比。此电路中也采用了右腿驱动电路来抑制位移电流的影响。前置放大电路参数选择:此部分总的增益取为1000,其中并联型双运放仪器放大器的增益为5,集成仪用放大器的增益为200。具体设计电路如图2所示

实验六用窗函数设计FIR滤波器附思考题程序

实验六 用窗函数设计 F I R 滤波器 1.实验目的 (1) 熟悉FIR 滤波器设计的方法和原理 (2) 掌握用窗函数法设计FIR 滤波器的方法和原理,熟悉滤波器的特性 (3) 了解各种窗函数滤波器特性的影响 2.实验原理 FIR 滤波器的设计方法主要有三种:窗函数法、频率取样法、切比雪夫等波纹逼近法。FIR 滤波器的设计是要寻求一系统函数)(z H ,使其频率响应)(ωj e H 逼近滤波器要求的理想频率响应()j d H e ω,其对应的单位脉冲响应)(n h d 。 (1)用窗函数设计FIR 滤波器的基本方法 在时域用一个窗函数截取理想的)(n h d 得到)(n h ,以有限长序列)(n h 近似逼近理想的)(n h d ;在频域用理想的)(ωj d e H 在单位圆上等角度取样得到h(k),根据h(k)得到H(z)将逼近理想的Hd(z)。 设理想滤波器)(ωj d e H 的单位脉冲响应为)(n h d 。以低通线性相位FIR 数字滤波器为例。 )(n h d 一般是无限长的、非因果的,不能直接作为FIR 滤波器的单位脉冲响应。要想得到一个因果的有限长的滤波器h(n),最直接的方法是截断)()()(n w n h n h d =,即截取为有限长因果序列,并用合适的窗函数进行加权作为FIR 滤波器的单位脉冲响应。按照线性相位滤波器的要求,h(n)必须是偶对称的。对称中心必须等于滤波器的延时常数,即 用矩形窗设计的FIR 低通滤波器,所设计滤波器的幅度函数在通带和阻带都呈现出振荡现象,且最大波纹大约为幅度的9%,(现象称为吉布斯(Gibbs )效应)。 (2)典型的窗函数 (a )矩形窗(Rectangle Window) 其频率响应和幅度响应分别为: 21)2/sin()2/sin()(--=N j j e N e W ωωωω,) 2/sin()2/sin()(ωωωN W R = 在matlab 中调用w=boxcar(N)函数,N 为窗函数的长度 (b )三角形窗(Bartlett Window) 其频率响应为:212])2/sin()4/sin([2)(--=N j j e N N e W ωω ωω 在matlab 中调用w=triang(N)函数,N 为窗函数的长度 (c )汉宁(Hanning)窗,又称升余弦窗 其频率响应和幅度响应分别为: 在matlab 中调用w=hanning(N)函数,N 为窗函数的长度 (d )汉明(Hamming)窗,又称改进的升余弦窗

窗函数法设计FIR数字滤波器

数字信号处理实验报告 ---实验4窗函数法设计FIR数字滤波器 一、实验目的 1.了解常用的几种窗函数,能正确选择适当的窗函数进行滤波器设计; 2.掌握窗函数法设计数字低通滤波器。 二、实验原理 1.常用的窗函数: 矩形窗函数为boxcar和rectwin,调用格式: w= boxcar(N) w= rectwin(N) 其中N是窗函数的长度,返回值w是一个N阶的向量。 三角窗函数为triang,调用格式: w= triang(N) 汉宁窗函数为hann,调用格式: w= hann(N) 海明窗函数为hamming,调用格式: w= hamming(N) 2.各个窗函数的性能比较

三、实验内容 题一:生成四种窗函数:矩形窗、三角窗、汉宁窗、海明窗,并观察其频率响应。 题二:根据下列技术指标,设计一个FIR数字低通滤波器:wp=0.2π,ws=0.4π,ap=0.25dB, as=50dB,选择一个适当的窗函数,确定单位冲激响应,绘出所设计的滤波器的幅度响应。 四、上机程序及运行结果 题一:n=30; %矩形窗及其频响 window1=rectwin(n); [h1,w1]=freqz(window1,1); subplot(4,2,1); stem(window1);title('矩形窗');subplot(4,2,2); plot(w1/pi,20*log(abs(h1))/abs(h1(1)));title('矩形窗频响'); %三角窗及其频响 window2=triang(n); [h2,w2]=freqz(window2,1); subplot(4,2,3);stem(window2);title('三角窗'); subplot(4,2,4); plot(w2/pi,20*log(abs(h2))/abs(h2(1)));title('三角窗频响'); %汉宁窗及其频响 window3=hann(n); [h3,w3]=freqz(window3,1); subplot(4,2,5);stem(window3);title('汉宁窗'); subplot(4,2,6); plot(w3/pi,20*log(abs(h3))/abs(h3(1)));title('汉宁窗频响'); %海明窗频响 window4=hamming(n);

实验六 用窗函数设计FIR滤波器(附思考题程序)

实验六 用窗函数设计FIR 滤波器 1.实验目的 (1) 熟悉FIR 滤波器设计的方法和原理 (2) 掌握用窗函数法设计FIR 滤波器的方法和原理,熟悉滤波器的特性 (3) 了解各种窗函数滤波器特性的影响 2.实验原理 FIR 滤波器的设计方法主要有三种:窗函数法、频率取样法、切比雪夫等波纹逼近法。FIR 滤波器的设计是要寻求一系统函数)(z H ,使其频率响应)(ωj e H 逼近滤波器要求的理想频率响应()j d H e ω,其对应的单位脉冲响应)(n h d 。 (1)用窗函数设计FIR 滤波器的基本方法 在时域用一个窗函数截取理想的)(n h d 得到)(n h ,以有限长序列)(n h 近似逼近理想的)(n h d ;在频域用理想的)(ωj d e H 在单位圆上等角度取样得到h(k),根据h(k)得到H(z)将逼近理想的Hd(z)。 设理想滤波器)(ωj d e H 的单位脉冲响应为)(n h d 。以低通线性相位FIR 数字滤波器为 例。 )(n h d 一般是无限长的、非因果的,不能直接作为FIR 滤波器的单位脉冲响应。要想得到一个因果的有限长的滤波器h(n),最直接的方法是截断)()()(n w n h n h d =,即截取为有限长因果序列,并用合适的窗函数进行加权作为FIR 滤波器的单位脉冲响应。按照线性相位滤波器的要求,h(n)必须是偶对称的。对称中心必须等于滤波器的延时常数,即 用矩形窗设计的FIR 低通滤波器,所设计滤波器的幅度函数在通带和阻带都呈现出振荡现象,且最大波纹大约为幅度的9%,(现象称为吉布斯(Gibbs )效应)。 (2)典型的窗函数 (a )矩形窗(Rectangle Window) 其频率响应和幅度响应分别为: 21)2/sin()2/sin()(--=N j j e N e W ωωωω,) 2/sin()2/sin()(ωωωN W R = 在matlab 中调用w=boxcar(N)函数,N 为窗函数的长度 (b )三角形窗(Bartlett Window) 其频率响应为:212])2/sin()4/sin([2)(--=N j j e N N e W ωω ωω 在matlab 中调用w=triang(N)函数,N 为窗函数的长度 (c )汉宁(Hanning)窗,又称升余弦窗 其频率响应和幅度响应分别为:

窗函数法设计FIR数字滤波器

数字信号处理实验报告---实验4窗函数法设计FIR数字滤波器

一、实验目的 1.掌握用窗函数法、频率采样法设计FIR数字滤波器的原理及方法,熟悉相应的计算机编程。 2.熟悉线性相位FIR数字滤波器的幅频特性和相频特性。 3.了解各种不同窗函数对滤波器性能的影响。 二、实验原理 1.常用的窗函数: 矩形窗函数为boxcar和rectwin,调用格式: w= boxcar(N)w= rectwin(N) 其中N是窗函数的长度,返回值w是一个N阶的向量。 三角窗函数为triang,调用格式: w= triang(N) 汉宁窗函数为hann,调用格式: w= hann(N) 汉明窗函数为hamming,调用格式: w= hamming(N) 三、设计指标 (1)矩形窗设计线性相位低通滤波器(参数自主设定)。 (2)改用汉宁窗,设计参数相同的低通滤波器。 四、上机程序及运行结果 生成四种窗函数:矩形窗、三角窗、汉宁窗、海明窗,并观察其频率响应。 n=30; %矩形窗及其频响 window1=rectwin(n); [h1,w1]=freqz(window1,1); subplot(4,2,1);

stem(window1);title('矩形窗');subplot(4,2,2); plot(w1/pi,20*log(abs(h1))/abs(h1(1)));title('矩形窗频响'); %三角窗及其频响 window2=triang(n); [h2,w2]=freqz(window2,1); subplot(4,2,3);stem(window2);title('三角窗'); subplot(4,2,4); plot(w2/pi,20*log(abs(h2))/abs(h2(1)));title('三角窗频响'); %汉宁窗及其频响 window3=hann(n); [h3,w3]=freqz(window3,1); subplot(4,2,5);stem(window3);title('汉宁窗'); subplot(4,2,6); plot(w3/pi,20*log(abs(h3))/abs(h3(1)));title('汉宁窗频响'); %汉明窗频响 window4=hamming(n); [h4,w4]=freqz(window4,1); subplot(4,2,7);stem(window4);title('汉明窗'); subplot(4,2,8); plot(w4/pi,20*log(abs(h4))/abs(h4(1)));title('汉明窗频响');

相关文档
相关文档 最新文档