文档库 最新最全的文档下载
当前位置:文档库 › 计算流体力学

计算流体力学

计算流体力学
计算流体力学

1、数值的耗散与频散:

在数值解中出现的振幅衰减波长加宽的现象叫数值耗散,与高阶偶次空间偏导数有关;在数值解中出现解得主波后有一系列频及传播速度不等的尾波的现象叫数值频散,与高阶奇次偏导数有关。

2、湍流模型理论:湍流模式理论或简称湍流模型,就是以雷诺平均运动方程与脉动运动方程为基础,依靠理论与经验的结合,引进一系列模型假设,而建立起得一组 描写湍流平均量的封闭方程组。

3、修正的偏微分方程:与差分方程相等价的微分方程称之为修正的微分方程。

4、自适应网格:为了计算具有高雷诺数的流场,必须将流场内的网格加密,但是实际计算中并不需要对全流场的网格所有部分同样加密,只需在某些部分,如物面附近、尾流区等得网格加密即可。因此需要事先估计一些变化较快的区域,但这种估计又是是正确的。有时则不正确。特别是不定常流动,流动过程本身就是变化的,所以需要不断的调整网格的位置和疏密,这样就产生了自适应网格。

5、CFL 条件:定义t

C x

μ

?=? ,不等式1C ≤ 称为CFL 条件,此条件一般应用于双曲线偏微分方程的显式格式。物理意义:即在时间步长内,波的位移应小于空间步长。

数学意义:差分方程解的依赖区域包含微分方程解得依赖区域。

1、简答CFD 方法求解流动问题的基本步骤

答:①确定流动模型;②计算区域离散化;③用离散节点变量代替场;④将控制方程中偏导数进行离散,得到线性方程组;⑤边界条件和初值条件离散化;⑥离散的线性方程组求解,得到离散值;⑦计算结果数据处理。

2、简述离散偏微分方程的三个原则及LAX 定理

三原则;相容性、稳定性、收敛性。

LAX 定理:对于一个选定的线性偏微分方程的初值问题,对应的差分方法是相容的,则差分方程解得收敛性和稳定性事等价的或者说稳定性是收敛性的充要条件。 3、简述差分格构造的基本规律,并应用规律方程

0t x

μμ

λ??+=?? 利用网格点()

()()构造方程的差分格式,并验证其离散格式的精度等级。

答:构造的基本规律 :①为保证均匀流场,差分的分子各项系数之和为零 ②分母向量级与微分的阶数一致 ③构造差分级指明针对哪点构造 ④差分格式的精度 由网格点()()()规律方程()构造得

1

11

1

0n n n n j j

j j x

x

μμμμλ

+++---+=?? 令112j j

x k k x

μμμ-+=

? 用泰勒公

式展开的23

126j j x xx x x x x μμμμμ-??=-?+- 所以12101k k k +=??

-=? 得12

11k k =-??=? 所以1j j x x μμμ--+=? 所以具有一阶精度

4、简要概括流动的数值计算对网格的基本要求 答:①计算域边界上的网格节点都应在边界上

②物理域上的特点与计算域上的节点要求一一对应 ③网格应尽量尺寸匀称,相邻网格长度比应小于2 ④物理域网格夹角不宜太小(≥45°)

⑤流动参数梯度大的地方网格要加密,否则稀疏。 5、简述人工压缩方法(时间相关法)的基本思想

答:用非定常流动方程来求解定常流动问题,用其稳态求解定常流动的解,将不可压缩的粘性流动的连续方程,添加到可压缩项。则与动量方程构成定常粘性流动时间相关方程,可把非定常流动的稳态解作为非定常流动的解。

()()()2

2

22

201Re 1Re t x y t x x y t y y x

P a u u u u uv P u v v uv P v ?++=??

?+++=

???

?+++=???

构造矢量方程210Re q F G D q t x y ???++-?=??? 其中22220,0,0;;;0,1,00,0,1a u p a v

q u F u p G uv D v uv v p ??????

?? ? ? ?

?==+= ? ? ?

? ? ? ? ?+?????

?

??

离散()()

()()11110.50.502Re

n n n n n n n x y xx yy q D

L F F L G G L L q q t ++++?++++-++=? 6、简述多重网格方法基本思想,及“两层V 循环多重网格方法”的步骤。

答:为了提高计算精度,一般应将网格分得足够细,这样计算就会比较麻烦,迭代时间也比较长,为此可将网格划分得稀疏一些,得到一个初步结果,然后在加密网格,其初值可以在上一次计算基础上插值得到。这样就可以减少计算时间,另外为了减少计算时间一般说一开始并不需要很高的精度,而是通过网格的反复加密和稀疏,最后得到精确的结果,“两层V 循环多重网格方法”的步骤是;在细网格上松弛迭代,求初始解得残差,限制残差到粗层网格求校正量,插值校正量到细网格,并求一个新的近似解,若新的近似解不能满座要求,则将其作为n μ 的初值,重复上述过程,直到解能满足精度为止。

7、简述各种湍流模型的特点

答:湍流模型包括一阶封闭模式、雷诺应力模式(RSM )、代数应力模式(ASM )和二方程模型。雷诺应力模式是目前所有模式中最精确也最复杂的一种模式,需求解的微分方程的个数最多,计算所花的时间也多,代数应力模式是目前应用较广的一种模式,它比雷诺应力模式简单得多,而计算所得的结果与RSM 不相上下,但需要注意的是其应用的场合(必须满足对流项与扩散项的条件)。二方程模型在工程上得到广泛的应用,它所花费的就散时间比ASM 少,计算结果也略差一些,该模式不适用。一阶封闭模式预报能力差,方程中出现的常数往往与所求解得流场有关,因此缺乏普适性,为了获得较好的计算结果,方程中出现的某些参数要根据实验数据修正,而实验数据的可靠性和精度将直接影响最后的计算结果。因此用过于简单的模型来预测复杂的流场,其结果是不可靠的,因此权衡利弊可以选择合适实际情况的模式来计算。

8、试说明为什么网格的生成问题可以认为是计算域内的边值问题及网格生成的常用方法。

答:从概念上说,网格可以这样生成:给定对应物理域的边界的ξ 和η 值,然后通过边界点连接两族坐标线,交叉构成内部节点,这样便可将其理解为:给定域R 边界上值()()

,,,x y x y ξξηη== ,

然后求内点

()()

,,,b b x y x y ξξηη==的值,网格生成的方法有微分方程法和代数映射法生成网格。

9、解释在进行流动模拟时为什么要使用贴体坐标系,而且还要进行方程的变换,及进行坐标系变幻的基本要求?

答:对于复杂物体绕流或复杂流道内流问题,在直角坐标系下,很难总是做到物面与坐标线相一致,从而在壁面附近,产生不规则网格,若采用有限差分法计标,在物面处还要采用与内点不同的差值或外推公式。这往往会使边界条件处理格式的精度降低,并进一步影响整个计标域内的解的精度,使用贴体坐标系意味着物理域上的不规则形状可以映射为计标域上的规则形状,而且控制方程也需要变换到贴体坐标下,并在曲线坐标系下离散。

基本要求:①建立两种坐标系与映射

②相邻网格步长变化不能太大(均匀速度) ③网格线夹角最好为90°

④在参数梯度大的地方加密网格,梯度小的地方稀疏网格。

10、分析方程

0T T t x μ??+=?? 的lax-wendoff 一步差分格式的精度和稳定性111

11

2

2

20.502n n

n n n n n j j j j j j j T T T T T T T t t

x

x

μ

μ

++-+----++-?=??? 并写出离散格式相等价的修正偏微分方程。

解:差分格式:()()

1211110.50.52n n n n n n n

j j j j j j j T T c T T c T T T ++--+=--+-+

精度:用中心差分在(j ,n )点泰勒展开11231

j j j x k T k T k T T x

-+++=

?

则23126j j x xx xxx x x T T xT T T -??=-?+- 23

126

j j x xx xxx x x T T xT T T +??=+?++ 故12313130111

22

k k k k k k k ?

?++=?-+=???+=? 得12312012k k k ?=-??

=???=? 得112j j x T T T x +--=? 故具有一阶精度

稳定性:放大因子22

2

12sin sin 2G c ic θθ??

=-- ??

?

若|G |≤1满足格式,则是稳定的 求修正的偏微分方程

23126n n

j

j

t tt ttt t t T

T tT T T +??=+?+- 23126

n n

j j x xx xxx x x T T xT T T -??=-?+-

23

1

26

n n

j j

x xx xxx x x T

T xT T T +??=+?++

得22

20.50266t tt ttt x xxx xx t t x T T T T T t T μμ?????++++-?= ???

所以22

20.5266t tt ttt x xxx xx t t x T T T T T t T μμ?????=---++? ???

20.52tt ttt xt xxt t T T T t T μμ?=

-+? 所以ttt xtt T T μ=- 20.52

tx ttx xx xxt t

T T T t T μμ?=--+? 所以txx xxx T T μ=-

11、标志物与单元法在交错网格上求解: ①做出交错网格 ②离散动量方程

()()1111/21/2

1,,k

1/2,1/21/2,1/2

1,,1/2

,1/2,1/2,1/2,2

2

21Re n n

n n n n

n n j j j k j j k j k j k j k

n

n n

n

n

j j k j k

j k

j k

v v P P t x

y

x

x

y μμμμμμμ

μμ

μμ

+++++++++-++-++----=-

--

??????-+++-

? ????

?

而()()1

11111

1/2,1/2,1,,,1/2,1/2,1,n n

n n n n n n j k j k j k j k j k j k j k j k t t u F P P v G P P x y

+++++++++-+++??=-

-=--??

由连续方程

1111

1/2,1/2,,1/2,1/2

0n n n n j k j k

j k j k u u v u x

y

+++++-+---+

=??

()()111111,1/2,1/2,k 1,,11/2,1/2,1,,1,22n n n n n n

n

n n n j k j k j j k j k j k

j k

j k j k j k t t G G P P P F

F

P P P y x x y

+++++++-+-+-+-??---+---+??+?? 整理化简

得()()

1n n n xx yy L L P F G ε++=+

22

20.50266t tt ttt x xxx xx t t x T T T u T T tu T ?????++++-?= ???

————①

得20.52tt ttt xt xxx t T T uT tu T t ?=

-+? 得ttt xtt T uT =- 20.52

tx ttx xx xxx t

T T uT tu T ?=--+? txx xxx T uT =- txt xxt T uT =-

将以上带入①整理得出与离散格式相等的修正的偏微分方程

12、写出非线性的对流扩散方程(Burges )方程

220u u u u t x x

γ???+-=??? 的CN 差分格式,然后对其进行线形化处理 解:令2212x u u

u F x x

??==?? 得0t x xx u F u γ+-= CN 格式:

()()111

0.50.50n n j j

n n n n x j j xx j j u u L F F L u u t

γ+++-++-+=? ————①

()()()2

2

1,0,1/2;1,2,1/;F ,2

x xx x x u L x L x uu F =-?=-?== 下面对非线性隐式进行线性化

()()()12

212

000n n n

n n n J j t j u t j j j

F F t F t F

t F u t F u u t ++=+?+?

=

+?+?=

+?+? ———② 将②代入①

()()111

0.520.50n n

j j

n n n n n x j j j xx j j u u L F u u L u u t

γ+++-++?-+=? 即线性后的差分方程

13、具体写出求解不可压缩流动SIMPLE 算法的求解步骤

解:控制方程()()2

22

201Re 1Re t x x y t

y y x u v x y u u uv P u v v uv P v ???+=????

?+++=???

?+++=???

离散动量方程如下:

()()1111

,,,,b 1,,1111,,,,b ,1,00u n u n u n n j k j k n b n j k j k v n v n v n n j k j k n b n j k j k x y a u a u b y P P t

x y a v a v b x P P t

++++++++++?????++++?-=--- ??????

?

?????++++?-=--- ??????∑∑①②

求解;u v ** ①②式中1n P + 以n P 代替,解得速度近似解;u v **

即解方程:

()(),,,,b 1,,,,,,b ,1,00u u u n n

j k j k n b n j k j k v v v n n j k j k n b n j k j k x y a u a u b y P P t

x y a v a v b x P P t

**+**+?????++++?-=--- ????????????++++?-=--- ??????∑∑⑤⑥

求解1

111;;;n n n c n c u

v u u u v v v +++*+*=+=+ 需求解;c c u v

方程①②分别减去③④得

()(),,,,b 1,,,,,,b ,1,00u c u c

j k j k n b n j k j k v c v c j k j k n b n j k j k x y a u a u y P P t

x y a v a v x P P t

δδδδ++?????+++?-=--- ??????

?

?????+++?-=--- ??????∑∑③④

简化方程⑤⑥的,c

c

u v 与修正压力P 的关系

()()

,,,1,,,,,1c

j k j k j k j k c j k j k j k j k u d P P v d P P δδδδ++?=-??=-?? 将+1,,,=n c j k j k j k

u u u *+ 代入到连续方程()()1+11+1

,1,,,10n n n n j k j k j k j k u u y v v ++---?+-= 并由⑦⑧式得P δ 的方程,,,p p

p j k j k nb n b a P a

P b δδ=

+∑

13、简要写出涡量—流函数法求解二维不可压流动的求解步骤 解:涡流u ξ=?? 而流函数u v y x

ψψψ??=

=??; 在二维不可压流动中:2222

x y ψψξ??=

+---??① 对于动量方程

()2

1Re

v v v P v t ?+?+?=?? 取旋度 得:()()22221+0Re u v t x y x y ξξξξξ????

???++-= ????????

离散涡量输运方程得

111

11

111111

,,1,1,,1,1

1,,1,,1,,122221022Re n n

n n n n n n n n n n n n n n j k j k

j k j k

j k j k j k j k j k k k j k j k u u v v t

x

y

x y ξξξξξξξξξξξξ++++++++++++-+-+-++??----+-++

+

-+= ? ????????

———② 可把①写成2222t x y

ψψψ

ξ???=-

++??? ———③ 离散③得

111111n+1

,,1,,1,,1,,-1

1

,2

2

22n n n n n n n j k j k j k j k j k j k j k j k n j k t

x

y

ψψψψψψψψξ+++++++-++--+-+-

+

+

=??? ----④

由②式求出1,n j k ξ+ 再代入到④式求出+1,n j k ψ 从而可求出u,v 再由原动量方程求解1

,n j k P + 得2

+1

=n P

ξ?

高等流体力学重点

1.流体的连续介质模型:研究流体的宏观运动,在远远大于分子运动尺度的范围里考察流体运动,而不考虑个别分子的行为,因此我们可以把流体视为连续介质。 它有如下性质: (1)流体是连续分布的物质,它可以无限分割为具有均布质量的宏观微元体。 (2)不发生化学反应和离解等非平衡热力学过程的运动流体中,微元体内流体状态服 从热力学关系 (3)除了特殊面外,流体的力学和热力学状态参数在时空中是连续分布的,并且通常 认为是无限可微的 2.应力:有限体的微元面积上单位面积的表面力称为表面力的局部强度,又称为应力,定义如下:=n T A F A δδδlim 0→ 3.流体的界面性质:微元界面两侧的流体的速度和温度相等,应力向量的大小相等.方向相反或应力分量相等。 4.流体具有易流行和压缩性。 5.应力张量具有对称性。 6.欧拉描述法:在任意指定的时间逐点描绘当地的运动特征量(如速度、加速度)及其它的物理量的分布(如压力、密度等)。 7.拉格朗日描述法:从某个时刻开始跟踪质点的位置、速度、加速度和物理参数的变化,这种方法是离散质点的运动描述法称为拉格朗日描述法。 8.流线:速度场的向量线,该曲线上的任意一点的切向量与当地的的速度向量重合。 迹线:流体质点点的运动迹象。 差别:迹线是同一质点在不同时刻的位移曲线。 流线是同一时刻、不同质点连接起来的速度场向量线。 流线微分方程:ω dz v dy u dx == 迹线微分方程:t x U i i ??= 9.质点加速度:质点速度向量随时间的变化率。 U U t U a )(??+??= 质点加速度=速度的局部导数+速度的迁移导数。 物理量的质点导数=物理量的局部导数+物理量的对流导数。

计算流体力学软件CFD在燃烧器设计中的应用探讨

计算流体力学软件CFD在燃烧器设计中的应用探讨[摘要]本文通过对目前燃烧器的现状与技术发展的研究,探讨计算流体力学 软件CFD在燃烧器设计中应用的必要性和可行性,以CFD(计算流体力学)软件为工具,以普通大气式燃烧器为研究对象,采用实验和理论相结合的方法,充分利用现代计算机技术,达到降低燃烧器设计成本和研制费用的目的。 [关键词]燃烧器数值模拟计算流体力学 一、燃烧器的发展现状 1.部分预混式燃烧器的产生及其原理 燃烧的方法被分为扩散式燃烧、部分预混式燃烧和完全预混式燃烧。扩散式燃烧易产生不完全燃烧产物,燃烧温度很低,并未充分利用燃气的能量;而一旦预先混入一部分空气后火焰就会变的清洁,燃烧温度也可以提高,燃烧较充分。完全预混燃烧(无焰燃烧)要求事先按照化学当量比将燃气和空气均匀混合(实际应用中空气系数要大于1),燃烧充分,火焰温度很高,但稳定性较差,易回火。所以民用燃具多采用部分预混式燃烧。 1855年工程师本生发明了一种燃烧器,能从周围大气中吸入一些空气和燃气预混,在燃烧时形成不发光的蓝色火焰,这就是实验室常用的本生灯(单火孔燃烧器)。这种燃烧技术就被称作部分预混式燃烧。 本生灯燃烧所产生的火焰为部分预混层流火焰(俗称本生火焰)。它由内焰,外焰及燃烧区域外围肉眼看不见的高温区组成。火焰一般呈锥体状。燃气—空气的混合气体先在内锥燃烧,中间产物及未燃尽的部分便从锥内向外流出,且混合气体出流的速度与内锥表面火焰向内传播速度相互平衡,此外便形成一个稳定的焰面,呈蓝色。而未燃烧尽的混合气体残余物继续与大气中的空气进行二次混合燃烧,形成火焰外锥。如图1所示,完成燃烧后产生高温co2和水进而在外焰的外侧形成外焰膜(肉眼看不见的高温层): 图1. 本生灯示意图 如果混合气流是处于层流状态,则外焰面呈较光滑的锥形;如果处于紊流状态,则外焰面产生褶皱,直至产生强烈扰动,气团不断飞散、燃尽。

计算流体力学常用数值方法简介[1]

计算流体力学常用数值方法简介 李志印 熊小辉 吴家鸣 (华南理工大学交通学院) 关键词 计算流体力学 数值计算 一 前 言 任何流体运动的动力学特征都是由质量守恒、动量守恒和能量守恒定律所确定的,这些基本定律可以由流体流动的控制方程组来描述。利用数值方法通过计算机求解描述流体运动的控制方程,揭示流体运动的物理规律,研究流体运动的时一空物理特征,这样的学科称为计算流体力学。 计算流体力学是一门由多领域交叉而形成的一门应用基础学科,它涉及流体力学理论、计算机技术、偏微分方程的数学理论、数值方法等学科。一般认为计算流体力学是从20世纪60年代中后期逐步发展起来的,大致经历了四个发展阶段:无粘性线性、无粘性非线性、雷诺平均的N-S方程以及完全的N-S方程。随着计算机技术、网络技术、计算方法和后处理技术的迅速发展,利用计算流体力学解决流动问题的能力越来越高,现在许多复杂的流动问题可以通过数值计算手段进行分析并给出相应的结果。 经过40年来的发展,计算流体力学己经成为一种有力的数值实验与设计手段,在许多工业领域如航天航空、汽车、船舶等部门解决了大量的工程设计实际问题,其中在航天航空领域所取得的成绩尤为显著。现在人们已经可以利用计算流体力学方法来设计飞机的外形,确定其气动载荷,从而有效地提高了设计效率,减少了风洞试验次数,大大地降低了设计成本。此外,计算流体力学也己经大量应用于大气、生态环境、车辆工程、船舶工程、传热以及工业中的化学反应等各个领域,显示了计算流体力学强大的生命力。 随着计算机技术的发展和所需要解决的工程问题的复杂性的增加,计算流体力学也己经发展成为以数值手段求解流体力学物理模型、分析其流动机理为主线,包括计算机技术、计算方法、网格技术和可视化后处理技术等多种技术的综合体。目前计算流体力学主要向二个方向发展:一方面是研究流动非定常稳定性以及湍流流动机理,开展高精度、高分辩率的计算方法和并行算法等的流动机理与算法研究;另一方面是将计算流体力学直接应用于模拟各种实际流动,解决工业生产中的各种问题。 二 计算流体力学常用数值方法 流体力学数值方法有很多种,其数学原理各不相同,但有二点是所有方法都具备的,即离散化和代数化。总的来说其基本思想是:将原来连续的求解区域划分成网格或单元子区

计算流体力学教案

计算流体力学教案 Teaching plan of computational fluid mechanics

计算流体力学教案 前言:本文档根据题材书写内容要求展开,具有实践指导意义,适用于组织或个人。便于学习和使用,本文档下载后内容可按需编辑修改及打印。 一、流体地基本特征 1.物质地三态 在地球上,物质存在地主要形式有:固体、液体和气体。 流体和固体地区别:从力学分析地意义上看,在于它们对外力抵抗地能力不同。 固体:既能承受压力,也能承受拉力与抵抗拉伸变形。 流体:只能承受压力,一般不能承受拉力与抵抗拉伸变形。 液体和气体地区别:气体易于压缩;而液体难于压缩; 液体有一定地体积,存在一个自由液面;气体能充满任意形状地容器,无一定地体积,不存在自由液面。 液体和气体地共同点:两者均具有易流动性,即在任何 微小切应力作用下都会发生变形或流动,故二者统称为流体。 2.流体地连续介质模型

微观:流体是由大量做无规则运动地分子组成地,分子之间存在空隙,但在标准状况下,1cm3液体中含有3.3×1022个左右地分子,相邻分子间地距离约为3.1×10-8cm。1cm3气体中含有2.7×1019个左右地分子,相邻分子间地距离约为3.2×10-7cm。 宏观:考虑宏观特性,在流动空间和时间上所采用地一切特征尺度和特征时间都比分子距离和分子碰撞时间大得多。 (1)概念 连续介质(continuum/continuous medium):质点连续充满所占空间地流体或固体。 连续介质模型(continuum continuous medium model):把流体视为没有间隙地充满它所占据地整个空间地一种连续介质,且其所有地物理量都是空间坐标和时间地连续函数地一种假设模型:u =u(t,x,y,z)。 (2)优点 排除了分子运动地复杂性。物理量作为时空连续函数,则可以利用连续函数这一数学工具来研究问题。 3.流体地分类

第二章计算流体力学的基本知识

第二章计算流体力学的基本知识 流体流动现象大量存在于自然界及多种工程领域中,所有这些工程都受质量守恒、动量守恒和能量守恒等基本物理定律的支配。这章将首先介绍流体动力学的发展和流体力学中几个重要守恒定律及其数学表达式,最后介绍几种常用的商业软件。 2.1计算流体力学简介 2.1.1计算流体力学的发展 流体力学的基本方程组非常复杂,在考虑粘性作用时更是如此,如果不靠计算机,就只能对比较简单的情形或简化后的欧拉方程或N-S方程进行计算。20 世纪30~40 年代,对于复杂而又特别重要的流体力学问题,曾组织过人力用几个月甚至几年的时间做数值计算,比如圆锥做超声速飞行时周围的无粘流场就从1943 年一直算到1947 年。 数学的发展,计算机的不断进步,以及流体力学各种计算方法的发明,使许多原来无法用理论分析求解的复杂流体力学问题有了求得数值解的可能性,这又促进了流体力学计算方法的发展,并形成了"计算流体力学" 。 从20 世纪60 年代起,在飞行器和其他涉及流体运动的课题中,经常采用电子计算机做数值模拟,这可以和物理实验相辅相成。数值模拟和实验模拟相互配合,使科学技术的研究和工程设计的速度加快,并节省开支。数值计算方法最近发展很快,其重要性与日俱增。 自然界存在着大量复杂的流动现象,随着人类认识的深入,人们开始利用流动规律来改造自然界。最典型的例子是人类利用空气对运动中的机翼产生升力的机理发明了飞机。航空技术的发展强烈推动了流体力学的迅速发展。 流体运动的规律由一组控制方程描述。计算机没有发明前,流体力学家们在对方程经过大量简化后能够得到一些线形问题解读解。但实际的流动问题大都是复杂的强非线形问题,无法求得精确的解读解。计算机的出现以及计算技术的迅速发展使人们直接求解控制方程组的梦想逐步得到实现,从而催生了计算流体力

计算流体力学软件Fluent在烟气脱硫中的应用

计算流体力学软件Fluent在烟气脱硫中的应用 0引言 污染最为有效的方法之一,而石灰石—石膏湿烟气脱硫是目前能大规模控制燃煤造成SO 2 法脱硫技术以其脱硫效率高、吸收剂来源丰富、成本低廉、技术成熟和运行可靠等优点获得广泛应用.从气液两相流体力学和化学反应动力学的观点看,脱硫吸收塔内流体流动的目的是强化气液两相的混合和质量传递、延长气液两相在塔内的接触时间、增大气液两相的接触面积并尽量减小吸收塔的阻力.合理的塔内流场分布对提高脱硫效率、降低脱硫投资和运行成本都具有重要意义. 目前,国内外对烟气脱硫吸收塔进行大量研究,主要采用实验方法,如研究塔的阻力特性、液滴运动速度沿塔高变化和TCA塔内温度场分布等,这些研究对指导工业应用具有重要意义,但其结果往往只针对特定的设备或结构,具有较大的局限性.随着计算机技术的迅速发展,计算流体力学(ComputationalFluidDynamic,CFD)已成为研究三维流动的重要方法:周山明等[4]利用FLUENT计算空塔和喷淋状态下的塔热态流场,结果表明脱硫吸收塔入口处流场变化最剧烈、压降损失最大,并根据计算结果改造来流烟道;孙克勤等采用混合网格和随机颗粒生成模型对烟气脱硫吸收塔的热态流场进行数值模拟;郭瑞堂等采用FLUENT结合非稳态反应传质-反应理论对湿法脱硫液柱冲的吸收进行数值模拟. 击塔内的流场和SO 2 本文尝试应用FLUENT对某脱硫吸收塔内烟气脱硫过程进行初步数值模拟,通过对内部流场进行分析验证本文模拟的合理性,进而对脱硫过程中脱硫吸收塔内是否存在湿壁现象进行深入分析研究. 1基于RANS求解器的CFD数值模拟 方法 1.1控制方程 时均的不可压缩连续性方程和N S方程 (RANS方程)如下: 1.2湍流模型和多相流模型

计算流体力学过渡到编程的傻瓜入门教程

借宝地写几个小短文,介绍CFD的一些实际的入门知识。主要是因为这里支持Latex,写起来比较方便。 CFD,计算流体力学,是一个挺难的学科,涉及流体力学、数值分析和计算机算法,还有计算机图形学的一些知识。尤其是有关偏微分方程数值分析的东西,不是那么容易入门。大多数图书,片中数学原理而不重实际动手,因为作者都把读者当做已经掌握基础知识的科班学生了。所以数学基础不那么好的读者往往看得很吃力,看了还不知道怎么实现。本人当年虽说是学航天工程的,但是那时本科教育已经退步,基础的流体力学课被砍得只剩下一维气体动力学了,因此自学CFD的时候也是头晕眼花。不知道怎么实现,也很难找到教学代码——那时候网络还不发达,只在教研室的故纸堆里搜罗到一些完全没有注释,编程风格也不好的冗长代码,硬着头皮分析。后来网上淘到一些代码研读,结合书籍论文才慢慢入门。可以说中间没有老师教,后来赌博士为了混学分上过CFD专门课程,不过那时候我已经都掌握课堂上那些了。 回想自己入门艰辛,不免有一个想法——写点通俗易懂的CFD入门短文给师弟师妹们。本人不打算搞得很系统,而是希望能结合实际,阐明一些最基本的概念和手段,其中一些复杂的道理只是点到为止。目前也没有具体的计划,想到哪里写到哪里,因此可能会很零散。但是我争取让初学CFD 的人能够了解一些基本的东西,看过之后,会知道一个CFD代码怎么炼成的(这“炼”字好像很流行啊)。欢迎大家提出意见,这样我尽可能的可以追加一些修改和解释。

言归正传,第一部分,我打算介绍一个最基本的算例,一维激波管问题。说白了就是一根两端封闭的管子,中间有个隔板,隔板左边和右边的气体状态(密度、速度、压力)不一样,突然把隔板抽去,管子内面的气体怎么运动。这是个一维问题,被称作黎曼间断问题,好像是黎曼最初研究双曲微分方程的时候提出的一个问题,用一维无粘可压缩Euler方程就可以描述了。 这里 这个方程就是描述的气体密度、动量和能量随时间的变化()与它们各自的流量(密度流量,动量流量,能量流量 )随空间变化()的关系。 在CFD中通常把这个方程写成矢量形式 这里 进一步可以写成散度形式

计算流体力学_CFD_的通用软件_翟建华

第26卷第2期河北科技大学学报Vol.26,No.2 2005年6月Journal of Hebei University of Science and T echnology June2005 文章编号:100821542(2005)022******* 计算流体力学(CFD)的通用软件 翟建华 (河北科技大学国际交流与合作处,河北石家庄050018) 摘要:对化学工程领域中的通用CFD(Computational Fluid Dynamics)模拟软件Phoenics,Flu2 ent,CFX等的具体特点和应用情况进行了综述,指出了他们各自的结构特点、特有模块、包含的数学模型和成功应用领域;给出了选用CFD软件平台的7项准则,对今后CFD技术的发展进行了预测,指出,今后CFD研究的主要方向将集中在数学模型开发、工程改造和新设备开发及与工艺软件的匹配连用等方面。 关键词:计算流体力学;模拟软件;CFX;FLUENT;PH OENICS 中图分类号:T Q015.9文献标识码:A Review of commercial CFD software ZH AI Jian2hua (Department of Int ernation Exchange and Cooperation,H ebei University of Science and Technology,Shijiazhuang H ebei 050018,China) Abstr act:The paper summar izes the features and application of the CF D simulation software like Phoenics,F luent and CFX etc in chemical engineering,and discusses their str ucture features,special modules,mathematical models and successful application areas.It also puts forward seven r ules for the good choice of commercial CF D code for the CF D simulation resea rcher s.Based on t he predict ion of the technology development,it points out the possible r esear ch direction for CF D in the future will focus on the development of mathematical model,project transformat ion,new equipment and their matching application with technologi2 cal softwa re. Key words:CF D;simulation software;CF X;FLUENT;P HOENICS CFD(Computational Fluid Dynamics)软件是计算流体力学软件的简称,是用来进行流场分析、计算、预测的专用工具。通过CFD模拟,可以分析并且显示流体流动过程中发生的现象,及时预测流体在模拟区域的流动性能,并通过各种参数改变,得到相应过程的最佳设计参数。CFD的数值模拟,能使我们更加深刻地理解问题产生的机理,为实验提供指导,节省以往实验所需的人力、物力和时间,并对实验结果整理和规律发现起到指导作用。随着计算机软硬件技术的发展和数值计算方法的日趋成熟,出现了基于现有流动理论的商用CFD软件。这使许多不擅长CFD工作的其他专业研究人员能够轻松地进行流体数值计算,从而使研究人员从编制繁杂、重复性的程序中解放出来,以更多的精力投入到研究问题的物理本质、问题提法、边界(初值)条件和计算结果的合理解释等重要方面上,充分发挥商用CFD软件开发人员和其他专业研究人员各自的智力优势,为解决实际工程问题开辟了道路。 CFD研究走过了相当漫长的过程。早期数值模拟阶段,由于缺乏模拟工具,研究者一般根据自身工作性质和研究过程,自行编制模拟程序,其优点是针对性强,对具体问题的解决有一定精度,但是,带来的问题 收稿日期:2004208221;修回日期:2004211221;责任编辑:张军 作者简介:翟建华(19642),男,河北平乡人,教授,主要从事化工CFD、高效传质与分离和精细化工方面的研究。

高等流体力学试题

1.简述流体力学有哪些研究方法和优缺点? 实验方法就是运用模型实验理论设计试验装置和流程,直接观察流动现象,测量流体的流动参数并加以分析和处理,然后从中得到流动规律。实验研究方法的优点:能够直接解决工程实际中较为复杂的流动问题,能够根据观察到的流动现象,发现新问题和新的原理,所得的结果可以作为检验其他方法的正确性和准确性。实验研究方法的缺点主要是对于不同的流动需要进行不同的实验,实验结果的普遍性稍差。 理论方法就是根据流动的物理模型和物理定律建立描写流体运动规律的封闭方程组以及相应初始条件和边界条件,运 用数学方法准确或近似地求解流场,揭示流动规律。理论方法的优点是:所得到的流动方程的解是精确解,可以明确地给出各个流动参数之间的函数关系。解析方法的缺点是:数学上的困难比较大,只能对少数比较简单的流动给出解析解,所能得到的解析解的数目是非常有限的。 数值方法要将流场按照一定的规则离散成若干个计算点,即网格节点;然后,将流动方程转化为关于各个节点上流动 参数的代数方程;最后,求解出各个节点上的流动参数。数值方法的优点是:可以求解解析方法无能为力的复杂流动。数值方法的缺点是:对于复杂而又缺乏完整数学模型的流动仍然无能为力,其结果仍然需要与实验研究结果进行对比和验证。 2.写出静止流体中的应力张量,解释其中非0项的意义. 无粘流体或静止流场中,由于不存在切向应力,即p ij =0(i ≠j ),此时有 P =00000 0xx yy zz p p p ??????????=000000p p p -????-????-??=-p 00000011????1?????? = -p I 式中I 为单位张量,p 为流体静压力。 流体力学中,常将应力张量表示为 p =-+P I T (2-9) 式中p 为静压力或平均压力,由于其作用方向与应力定义的方向相反,所以取负值;T 称为偏应力张量,即 T =xx xy xz yx yy yz zx zy zz τττττττττ?????????? (2-10) 偏应力张量的分量与应力张量各分量的关系为:i =j 时,p ij 为法向应力,τii = p ij - p ;当i ≠j 时p ij 为粘性剪切应力,τij =p ij 。τii =0的流体称为非弹性流体或纯粘流体,τii ≠0的流体称为粘弹性流体。 3.分析可压缩(不可压缩)流体和可压缩(不可压缩)流动的关系. 当气体速度流动较小(马赫数小于0.3)时,其密度变化不大,或者说对气流速度的变化不十分敏感,气体的压缩性没有表现出来。因此,在处理工程实际问题时,可以把低速气流看成是不可压缩流动,把气体可以看作是不可压缩流体。而当气体以较大的速度流动时,其密度要发生明显的变化,则此时气体的流动必须看成是可压缩流动。 流场任一点处的流速v 与该点(当地)气体的声速c 的比值,叫做该点处气流的马赫数,用符号Ma 表示: Ma /v c v == (4-20) 当气流速度小于当地声速时,即Ma<1时,这种气流叫做亚声速气流;当气流速度大于当地声速时,即Ma>l 时,这种气流称为超声速气流;当气流速度等于当地声速时,即Ma=l 时,这种气流称为声速气流。以后将会看到,超声速气流和亚声速气流所遵循的规律有着本质的不同。 马赫数与气流的压缩性有着直接的联系。由式(4-11)可得 所以有 222Ma d ρv dv dv ρc v v =-=-。 (4-21) 当Ma≤0.3时,dρ/ρ≤0.09dv /v 。由此可见,当速度变化一倍时,气体的密度仅仅改变9%以下,一般可以不考虑密度的变化,即认为气流是不可压缩的。反之,当Ma>0.3时,气流必须看成是可压缩的。 4.试解释为什么有时候飞机飞过我们头顶之后才能听见飞机的声音. 5.试分析绝能等熵条件下截面积变化对气流参数(v ,p ,ρ,T )的影响.

流体力学的应用

流体力学在航空航天工程中的应用 (洪渊,西安科技大学,能源学院采矿工程卓越1301班,1303110113) 摘要:航天航空工程综合了最新最高的现代科学与技术,是一个国家科技实力和国防现代化的重要标志之一,更是目前世界各国之间争相研究发展的顶尖科技产业,它直接关系到国家的安全和经济的发展。随着科学技术的进步和航天器的发展,遥远而深邃的宇宙已不再可望而不可及,飞天早已不再是无稽之谈。在20世纪对人类影响最大的20项技术中就包括航空航天技术,流体力学的发展对航空航天科技的发展起到了关键性的作用,而这些看似离我们非常遥远的高薪技术其实其基本原理无时无刻不伴随我们。因为我们身边有各种流体的存在。 关键词:航空航天技术、流体、流体力学 Application of fluid mechanics in Aerospace Engineering (Hong Yuan, Xi'an University of Science And Technology, the Institute of mining engineering excellence 1301, 1303110113) Aerospace Engineering integrated the latest modern science and technology, is a national science and technology strength and the important symbol of the modernization of national defense, but also the world's top scientific and technological industry, which is directly related to the national security and economic development. With the development of science and technology and the progress of the spacecraft, as remote and profound universe is no longer inaccessible and, flying already no longer is nonsense. In twentieth Century the greatest impact on human beings in the 20 technologies, including aerospace technology, the development of fluid mechanics to the development of Aerospace Science and technology has played a key role, and these seemingly away from us very far from the high paying technology in fact its basic principles are not accompanied by us. Because we have all kinds of fluid in the presence of. Key words: aerospace technology, fluid, fluid mechanics

计算流体力学软件

计算流体力学(CFD)是近代流体力学,数值数学和计算机科学结合的产物,是一门具有强大生命力的边缘科学。它以电子计算机为工具,应用各种离散化的数学方法,对流体力学的各类问题进行数值实验、计算机模拟和分析研究,以解决各种实际问题。 计算流体力学和相关的计算传热学,计算燃烧学的原理是用数值方法求解非线性联立的质量、能量、组分、动量和自定义的标量的微分方程组,求解结果能预报流动、传热、传质、燃烧等过程的细节,并成为过程装置优化和放大定量设计的有力工具。计算流体力学的基本特征是数值模拟和计算机实验,它从基本物理定理出发,在很大程度上替代了耗资巨大的流体动力学实验设备,在科学研究和工程技术中产生巨大的影响。目前比较好的CFD软件有:Fluent、CFX,Phoenics、Star-CD,除了Fluent 是美国公司的软件外,其它三个都是英国公司的产品 ------------------------------------------------------ FLUENT FLUENT是目前国际上比较流行的商用CFD软件包,在美国的市场占有率为60%。举凡跟流体,热传递及化学反应等有关的工业均可使用。它具有丰富的物理模型、先进的数值方法以及强大的前后处理功能,在航空航天、汽车设计、石油天然气、涡轮机设计等方面都有着广泛的应用。其在石油天然气工业上的应用包括:燃烧、井下分析、喷射控制、环境分析、油气消散/聚积、多相流、管道流动等等。 Fluent的软件设计基于CFD软件群的思想,从用户需求角度出发,针对各种复杂流动的物理现象,FLUENT软件采用不同的离散格式和数值方法,以期在特定的领域内使计算速度、稳定性和精度等方面达到最佳组合,从而高效率地解决各个领域的复杂流动计算问题。基于上述思想,Fluent开发了适用于各个领域的流动模拟软件,这些软件能够模拟流体流动、传热传质、化学反应和其它复杂的物理现象,软件之间采用了统一的网格生成技术及共同的图形界面,而各软件之间的区别仅在于应用的工业背景不同,因此大大方便了用户。其各软件模块包括: GAMBIT——专用的CFD前置处理器,FLUENT系列产品皆采用FLUENT公司自行研发的Gambit 前处理软件来建立几何形状及生成网格,是一具有超强组合建构模型能力之前处理器,然后由Fluent 进行求解。也可以用ICEM CFD进行前处理,由TecPlot进行后处理。 Fluent5.4——基于非结构化网格的通用CFD求解器,针对非结构性网格模型设计,是用有限元法求解不可压缩流及中度可压缩流流场问题的CFD软件。可应用的范围有紊流、热传、化学反应、混合、旋转流(rotating flow)及震波(shocks)等。在涡轮机及推进系统分析都有相当优秀的结果,并且对模型的快速建立及shocks处的格点调适都有相当好的效果。 Fidap——基于有限元方法的通用CFD求解器,为一专门解决科学及工程上有关流体力学传质及传热等问题的分析软件,是全球第一套使用有限元法于CFD领域的软件,其应用的范围有一般流体的流场、自由表面的问题、紊流、非牛顿流流场、热传、化学反应等等。 FIDAP本身含有完整的前后处理系统及流场数值分析系统。对问题整个研究的程序,数据输入与输出的协调及应用均极有效率。 Polyflow——针对粘弹性流动的专用CFD求解器,用有限元法仿真聚合物加工的CFD软件,主要应用于塑料射出成形机,挤型机和吹瓶机的模具设计。 Mixsim——针对搅拌混合问题的专用CFD软件,是一个专业化的前处理器,可建立搅拌槽及混合槽的几何模型,不需要一般计算流力软件的冗长学习过程。它的图形人机接口和组件数据库,让工程师

流体力学计算软件报告

三维方管内部二次流特征分析 ——基于NUMECA 数值仿真 2120130457 李明月 【摘 要】运用NUMECA 数值仿真的方法,通过在有粘与无粘的工况下三维方管的内部三维流线对比分析,重点在分析粘性工况下方管内部沿流向各截面上的切向速度矢量分布特征和总压系数分布特征对二次流机理进行讨论和分析。 【关键字】数值仿真 二次流 欧拉方程 N-S 方程 压力梯度 0 前言 在边界层内流体质点向着压力梯度相反并与主流运动方向大致垂直的方向流动,称为二次流。几乎所有的过流通到里面都存在着速度和压力分布不均的情况,压力分布不均则产生一个从高压指向低压的作用力,它与惯性力的大小关系是能否形成二次流的关键。而二次流会使叶轮机械叶片的边界层增厚从而导致分离和损失,而二次流在换热器中增强了对流换热,从而强化了传热,故对二次流的成因和特征的研究具有很大的现实意义。而运用NUMECA 软件对一个简单的三维方管在不同工况下进行数值运算,能够直观地观察得到二次流的结果,并对此进行对比和分析,对流体初学者而言,一方面可以熟悉NUMECA 软件的基本操作,一方面可以基于此加深对二次流的理解。 1 几何描述 如图一所示为三维方管的三维图与所需设定的边界条件。在此算例中,最大的特点在于 中部有一个90°的弯道,且出流部分较长。 10m m 30m m 80m m r20m m r10m m 图1 几何模型

2 网格划分与边界条件 在调入IGG data 文件生成几何文件之后,用网格功能中生成网格块的功能用对应网格顶点与几何顶点重合的方式将网格块贴附在几何模型上,再调整网格数量,和Cluster Points 功能调整边界网格大小,使得近壁面的网格较密,使数值计算时能更好地捕捉到近壁面的参数。生成的网格如图2所示。网格生成后一共33×33×129个网格,网格质量为:最小的正交角度为50.68°,最大宽高比为200,最大膨胀比为1.51,多重网格数为3。在边界条件上,管壁设为SOL 类型,另外短管端面设为INL 类型,剩下那一面设为OUT 类型。 3 边界设定及收敛特性 在NUMECA Fine Turbo 里面建立两个工况并命名为一个无粘一个有粘。在无粘的工况下,选择的流动模型为基于Euler 方程的数学模型。在有粘工况下,流动模型选择的是湍流N-S 方程,并且湍流模型为Spalart-Allmaras 模型。两个工况皆为理想气体的定常流动,进口边界设为总量下(total quantities imposed )马赫数推断(mach number extrapolated ),进口压力为1.3bar ,进口温度为340K 。出口设定为由静压推断(static pressure imposed ),出口压力为1.0bar 。固壁面在欧拉方程下为无粘的欧拉壁,在N-S 方程里为绝热壁。经初始化后选择计算后输出的参数,除了常规的静压静温和速度外,在壁面数据(solid data )里额外输出一个粘性压力(viscous stress )。选择500次迭代后,两种工况下的收敛曲线如图3~图6所示。 图2 三维方管网格划分示意图 图3 Euler 方程下残差收敛曲线

高等流体力学

高等流体力学 第一章 流体力学的基本概念 连续介质:流体是由一个紧挨着一个的连续的质点所组成的,没有任何空隙的连续体,即所 谓的连续介质。 流体质点:是指微小体积内所有流体分子的总和。 欧拉法质点加速度:时变加速度与位变加速度和 z u u y u u x u u t u dt du a x z x y x x x x x ??+??+??+??== 质点的随体导数:质点携带的物理量随时间的变化率称为质点的随体导数,用dt d 表示。在欧拉法描述中的任意物理量Q 的质点随体导数表述如下: x k k Q u t Q dt dQ ??+??= 式中Q 可以是标量、矢量、张量。质点的随体导数公式对任意物理量都成立,故将质点的 随体导数的运算符号表示如下: x k k u t dt d ??+??= 其中 t ?? 称为局部随体导数,x k k u ??称为对流随体导数,即在欧拉法描述的流动中,物理 量的质点随体导数等于局部随体导数与对流随体导数之和。 体积分的随体导数:质点携带的物理量随时间的变化率称为质点的随体导数。则在由流体质点组成的流动体积V 中标量函数Φ(x, t )随时间的变化率就是体积分的随导函数。 由两部分组成①函数Φ 对时间的偏导数沿体积V 的积分,是由标量场的非恒定性引起的。②函数Φ通过表面S 的通量。由体积V 的改变引起的。 ()dV divv dt d dV v div t dS u dV t dV dt d v v n s v v ?? ? ???Φ+Φ=??????Φ+?Φ?=Φ+?Φ?=Φ??????????????()dV adivv dt da dV av div t a dS au dV t a adV dt d v v n s v v ?? ????+=??????+??=+??=?????????????? 变形率张量: 11ε 12ε13ε D ij = 21ε 22ε 23ε 31ε 32ε 33ε

高等流体力学考试大纲

《高等流体力学》考试大纲 一、考试性质 《高等流体力学》是我校相关专业博士入学专业基础课考试科目。 二、考试形式与试卷结构 1、答卷方式:闭卷,笔试 2、答题时间;180分钟 3、题型比例 概念20% 计算与应用80% 4、参考书目 《高等流体力学》高学平,天津大学出版社,2005. 《高等工程流体力学》张鸣远等,西安交通大学出版社,2006. 三、考试要点 1、流体力学的基本概念 连续介质、欧拉法质点加速度、质点随体导数、体积分的随体导数、变形率张量、旋转角速度、判断有旋流与无旋流、涡量与速度环量的关系、应力张量的概念(包括切应力的特性、压应力的特性)、牛顿流体的本构方程(本构方程的概念、切应力和法向应力与变形的关系)。 2、流体运动的基本方程 微分形式的连续方程的表达形式、不可压缩流体的确切定义、理解其含义。N-S方程的各种表示形式、流体的能量包括哪几种形式,

并对各种形式进行解释,写出单位质量流体能量的表达式、流体运动微分形式的基本方程组有哪些方程组成,通常有几个未知量,方程组是否封闭、对于不可压缩流体,如何求解速度场、压强场以及温度场,说明其求解步骤。 3、势流运动 势流运动控制方程及求解步骤;势流求解常用的方法有哪些。速度势函数与流函数;复势与复速度;恒定平面势流的解析方法有哪几种途径;保角变换法的思路。 4、粘性流体运动 基本方程及求解途径;黏性流体运动的基本性质;黏性流体运动的解析解(如两平行板间的层流、普阿塞流的流速分布的推导)、小雷诺数流动近似解的思路;边界层的概念;边界层厚度(名义厚度、位移厚度);边界层方程的相似性解的概念;边界层的分离现象。5、紊流运动 紊流的特征及分类;壁面剪切紊流的发生过程及紊流结构;时间平均法和系综平均法的概念。紊流运动方程—雷诺方程的推导思路,雷诺方程的形式及与N-S方程的区别,雷诺应力项的意义。紊流模型的用途,紊流模型通常有哪几类(零方程模型、一方程模型、二方程模型、其他模型);紊流动能k、能量耗散率ε。 6、涡旋运动 涡旋的运动学性质、涡旋运动的基本方程;涡旋的形成。

并行计算流体力学的研究与应用

并行计算流体力学的研究与应用 1 计算流体力学(CFD)概况 自然界存在着大量复杂的流动现象,随着人类认识的深入,开始利用流动规律改造自然界。最典型的例子是人类利用空气对运动中的机翼产生升力的机理发明了飞机。航空技术的发展强烈推动了流体力学的迅速发展。 流体运动的规律由一组控制方程描述。计算机没有发明前,流体力学家们在对方程经过大量简化后能够得到一些线形问题解析解。但实际的流动问题大都是复杂的强非线形问题,无法求得精确的解析解。计算机的出现以及计算技术的迅速发展使人们直接求解控制方程组的梦想逐步得到实现,从而催生了计算流体力学这门交叉学科。 计算流体力学(CFD,Computational Fluid Dynamics)是一门用数值计算方法直接求解流动主控方程(Euler或Navier-Stokes方程)以发现各种流动现象规律的学科。它综合了计算数学、计算机科学、流体力学、科学可视化等多种学科。广义的CFD包括计算水动力学、计算空气动力学、计算燃烧学、计算传热学、计算化学反应流动,甚至数值天气预报也可列入其中。 自二十世纪六十年代以来CFD技术得到飞速发展,其原动力是不断增长的工业需求,而航空航天工业自始至终是最强大的推动力。传统飞行器设计方法试验昂贵、费时,所获信息有限,迫使人们需要用先进的计算机仿真手段指导设计,大量减少原型机试验,缩短研发周期,节约研究经费。四十年来,CFD在湍流模型、网格技术、数值算法、可视化、并行计算等方面取得飞速发展,并给工业界带来了革命性的变化。如在汽车工业中,CFD和其它计算机辅助工程(CAE)工具一起,使原来新车研发需要上百辆样车减少为目前的十几辆车;国外飞机厂商用CFD取代大量实物试验,如美国战斗机YF-23采用CFD进行气动设计后比前一代YF-17减少了60%的风洞试验量。目前在航空、航天、汽车等工业领域,利用C FD进行的反复设计、分析、优化已成为标准的必经步骤和手段。 当前CFD问题的规模为:机理研究方面如湍流直接模拟,网格数达到了109(十亿)量级,在工业应用方面,网格数最多达到了107(千万)量级。 2 并行计算流体力学(Parallel CFD)研究与应用现状 2.1 Parallel CFD的推动力 随着计算机技术的迅猛发展,CFD得以迅速发展和普及。单机性能的提高使过去根本无法解算的问题在普通微机上可以解算,从而推动了CFD成为尖端工业、乃至一般过程工业的基本设计分析手段,从而大大激发了其应用,但人们一直难以解决以下问题: (1)工业应用方面的大规模设计计算问题。如飞机设计中全机气动性能计算,火箭发动机复杂多变的燃烧和跨音速流动模拟,导弹的气动隐身性能评估,低阻力系数高性能汽车外形的设计和分析,透平机械复杂叶型及组合的设计分析,潜艇尾迹模拟,高超音速航天器空气动力学设计分析,核电站水蒸汽两相流流动分析,非定常状态的物理过程如飞机起飞降落、过载下空间推进剂晃动分析等。这些大规模设计计算问题不但单个作业计算量庞大,且需不断调整,重复计算。

计算流体力学简介

計算流體力學主要有以下幾個主要問題大家比較關心 1.關於瞬態計算的問題 2.關於建模的問題 3.關於網格化的問題 4.關於動畫顯示的問題 5.關於交變載荷的問題 一、關於第一個問題的解答: 計算瞬態設置參數與穩態不同,主要設置的參數爲: 1.FLDATA1,SOLU,TRAN,1設置爲瞬態模式 2.FLDATA4,TIME,STEP,0.02,自定義時間步時間間隔0.02秒 3.FLDATA4,TIME,TEND,0.1,設置結束時間0。1秒 4.FLDATA4,TIME,GLOB,10,設置每個時間步多少次運算 5.fldata4a,time,appe,0.02設置記錄時間間隔 6.SET,LIST,2查看結果 7.SET,LAST設爲最後一步 8.ANDATA,0.5,,2,1,6,1,0,1動態顯示結果 以上爲瞬態和穩態不同部分的設置和操作,特別是第五步。爲了動態顯示開始到結束時間內氣流組織的情況,還是花了我們很多時間來找到這條命令。如果你是做房間空調送風計算的,這項對你來說非常好,可以觀察到從開空調機到穩定狀態的過程。 二.關於建模的問題 大家主要關心的建模問題是模型的導入和導出,及存在的一些問題。這些問題主要體現在:1.AUTOCAD建模導出後的格式與ANSYS相容的只有SAT格式。PROE可以是IGES格式或SAT格式。當然還有其他格式,本人使用的限於正版軟體,只有上述兩種格式。SAT格式可由PROE中導出爲IGES格式。ANSYS默認的導入模型爲IGES格式的圖形模型。 2.使用AUTOCAD一般繪製介面比較複雜的拉伸體非常方便。如果是不規則體,用PROE和ANSYS都比較方便,當然本人推薦用ANSYS本身的建模功能。對於PROE,因爲它的功能強大,本人推薦建立很複雜的模型如變截面不規則曲線彎管(如血管)。 3.導入過程中會出現默認選項和自定義選項,一般本人推薦使用自定義選項,以避免一些操作帶來的問題。有時出現顯示只有線而沒有面顔色的問題,可以用命令: /FACET,NORML來解決這個問題。 三.關於網格化的問題。 網格化對結果影響很大,如果網格化不合理,出現的結果會不準確,或者計算時不收斂。更甚者,網格數量太大,減慢求解速度。對計算流體力學來說,實際應用中三維問題偏多,計算量一般非常大,由於ANSYS採用的是有限元,所以同有限差分比較來說,收斂慢,記憶體需要量大。但這並不是說水平不如有限差分的流體計算軟體。ANSYS的計算結果直觀性較好,特別對渦流的處理很形象很準確(其他軟體往往看不到該有的渦流,給人的感覺太粗糙)。當然對於稍大的模型,就有點力不從心的感覺。

计算流体力学基础

一、计算流体力学的基本介绍 一、什么是计算流体力学(CFD)? 计算流体力学(Computational Fluid Dynamics)是流体力学的一个新兴的分支,是一个采用数值方法利用计算机来求解流体流动的控制偏微分方程组,并通过得到的流场和其它物理场来研究流体流动现象以及相关的物理或化学过程的学科。事实上,研究流动现象就是研究流动参数如速度、压力、温度等的空间分布和时间变化,而流动现象是由一些基本的守恒方程(质量、动量、能量等)控制的,因此,通过求解这些流动控制方程,我们就可以得到流动参数在流场中的分布以及随时间的变化,这听起来似乎十分简单。但遗憾的是,常见的流动控制方程如纳维一斯托克斯(Navier-Stokes)方程或欧拉(Euler)方程都是复杂的非线性的偏微分方程组,以解析方法求解在大多数情况下是不可能的。实际上,对于绝大多数有实际意义的流动,其控制方程的求解通常都只能采用数值方法的求解。因此,采用CFD方法在计算机上模拟流体流动现象本质上是流动控制方程(多数情况下是纳维一斯托克斯方程或欧拉方程)的数值求解,而CFD软件本质上就是一些求解流动控制方程的计算机程序。 二、计算流体力学的控制方程 计算流体力学的控剖方程就是流体流动的质量、动量和能量守恒方程。守恒方程的常见的推导方法是基于流体微元的质量、动量和能量衡算。通过质量衡算可以得到连续性方程,通过动量守恒可以得到动量方程,通过能量衡算可以得到能量方程。式(1)一(3)是未经任何简化的流动守恒微分方程,即纳维一斯托克斯方程( N-S方程)。 N-S方程可以表示成许多不同形式,上面的N-S方程是所谓的守恒形式,

相关文档
相关文档 最新文档