文档库 最新最全的文档下载
当前位置:文档库 › 高一初等函数定义域值域

高一初等函数定义域值域

高一初等函数定义域值域
高一初等函数定义域值域

函数

例1、 已知函数f (x )=3+x +

21+x , (1) 求函数的定义域;

(2) 求f (-3),f (32)的值;

(3) 当a>0时,求f (a ),f (a-1)的值。

例2、中哪个与函数y=x 相等?( )x 3

A 、y=(x )2

B 、y=33

x C 、y=2x D 、y=x x 2 例3、求下列函数的定义域

(1)f (x )=

741+x (2)f(x)=x -1+ 3+x -1

例4、已知函数f (x )=x 2+2x

(1) 求f (2),f (-2),f (2)+f (-2)的值

(2) 求f (a ),f (-a ),f (a )+f (-a )的值

例5、某种笔记本的单价是5元,买x(x {1,2,3,4,5})个笔记本需要y元,试用函数的三种表示法表示函数y=f(x)。

例6、画出函数y=|x|的函数图象。

例7、如图,把截面半径为25cm的圆形木头锯成矩形木材,如果矩形木材的一边长为xcm,面积为ycm2,把y表示为x的函数。

1、求下列函数的定义域

(1)f (x )=

43-x x (2)f (x )=2x (3)f (x )=

2

362+-x x (4)f (x )=14--x x

2、下列那组中的函数f (x )与g (x )相等?

(1)f (x )=x-1,g (x )=x x 2

-1; (2)f (x )=x 2,,g (x )=(x )4 (3)f (x )=x 2,g (x )=36x

3、已知函数f (x )=3x 2-5x+2,求f (-2),f (-a ),f (a+3),f (a )+f (3)的值.

4、已知函数f (x )=6

2-+x x (1)点(3,14)在f (x )的图象上吗?

(2)当x=4时,求f (x )的值;

(3)当f (x )=2,求x 的值。

5、若f (x )=x 2+bx+c ,且f (1)=0,f (3)=0,求f (-1)的值。

6、画下列函数的图象:

(1)

(2)G(n)=3n+1,n ∈{1,2,3}.

7、求下列函数的值域

(1)y=x -1

(2)y=122+x x

函数的奇偶性

1、判断下列函数的奇偶性:

(1)f(x)=x 4; (2)f(x)=x 5;

(2)f(x)=x+1x

; (4)f(x)=1/x 2;

2、判断下列函数的奇偶性:

(1)f(x)=2x 4+3x 2; (2)f(x)=x 3-2x ;

(3)f(x)=(x 2+1)/x (4)f(x)=x 2+1

3、证明:

(1)函数f(x)=x 2+1在(-∞,0)上是减函数;

(2)函数f(x)=1- 1x

在(-∞,0)上是增函数;

4、已知函数f(x)=x 2-2x,g(x)=x 2-2x(x ∈[2,4].

(1)求f(x),g(x)的单调区间;

(2)求f(x),g(x)的最小值.

(注:可编辑下载,若有不当之处,请指正,谢谢!)

高一初等函数定义域值域

函数 例1、 已知函数f (x )=3+x + 21+x , (1) 求函数的定义域; (2) 求f (-3),f (32)的值; (3) 当a>0时,求f (a ),f (a-1)的值。 例2、中哪个与函数y=x 相等( )x 3 A 、y=(x )2 B 、y=33 x C 、y=2x D 、y=x x 2 例3、求下列函数的定义域 (1)f (x )= 741+x (2)f(x)=x -1+ 3+x -1 例4、已知函数f (x )=x 2+2x (1) 求f (2),f (-2),f (2)+f (-2)的值 (2) 求f (a ),f (-a ),f (a )+f (-a )的值 例5、某种笔记本的单价是5元,买x (x ∈{1,2,3,4,5})个笔记

本需要y元,试用函数的三种表示法表示函数y=f(x)。 例6、画出函数y=|x|的函数图象。 例7、如图,把截面半径为25cm的圆形木头锯成矩形木材,如果矩形木材的一边长为xcm,面积为ycm2,把y表示为x的函数。

1、求下列函数的定义域 (1)f (x )= 43-x x (2)f (x )=2x (3)f (x )= 2 362+-x x (4)f (x )=14--x x 2、下列那组中的函数f (x )与g (x )相等 (1)f (x )=x-1,g (x )=x x 2 -1; (2)f (x )=x 2,,g (x )=(x )4 (3)f (x )=x 2,g (x )=36x 3、已知函数f (x )=3x 2-5x+2,求f (-2),f (-a ),f (a+3),f (a )+f (3)的值. 4、已知函数f (x )=6 2-+x x (1)点(3,14)在f (x )的图象上吗 (2)当x=4时,求f (x )的值; (3)当f (x )=2,求x 的值。

函数定义域、值域经典习题及答案

复合函数定义域和值域练习题 一、 求函数的定义域 1、求下列函数的定义域: ⑴y = (2 )01(21)111 y x x = +-+- 2、设函数f x ()的定义域为[]01,,则函数f x ()2 的定义域为_ _ _;函数f x ()-2的定义域为 ________; 3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x +的定义域为 。 4、 已知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取 值范围。 二、求函数的值域 5、求下列函数的值域: ⑴223y x x =+- ()x R ∈ ⑵2 23y x x =+- [1,2]x ∈

⑶311x y x -=+ ⑷31 1 x y x -=+ (5)x ≥ ⑸ y = 三、求函数的解析式 1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。 2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。 3、 已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。 4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =,则当(,0)x ∈-∞时()f x =____ _ ()f x 在R 上的解析式为 5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且 1 ()()1 f x g x x += -,求()f x 与()g x 的解析表达式

求函数的定义域和值域的方法

解:求函数的定义域的常用方法 函数的定义域是高考的必考内容,高考对函数的定义域常常是通过函数性质或函数的应用来考查的,具有隐蔽性,所以在研究函数问题时必须树立“函数的定义域优先”的观念。因此掌握函数的定义域的基本求解方法是十分重要的。下面通过例题来谈谈函数的定义域的常见题型和常用方法。 一,已知函数解析式求函数的定义域 如果只给出函数解析式(不注明定义域),其定义域是指使函数解析式有意义的自变量的取值范围(称为自然定义域),这时常通过解不等式或不等式组求得函数的定义域。主要依据是:(1)分式的分母不为零,(2)偶次根式的被开方数为非负数,(3)零次幂的底数不为零,(4)对数的真数大于零,(5)指数函数和对数函数的底数大于零且不等于1,(6)三角函数中的正切函数y=tanx ,{x ︱x ∈R 且 x ≠2 k π π+ , k ∈z }和余切函数y=cotx ,{x ︱x ∈R 且 x ≠k π,k ∈z }等。 例题一 求下列函数的定义域: (1) y=2)0+㏒(x —2)x 2 (2) 解:(1)欲使函数有意义,须满足 2≠0 x —1≥0 x —2>0 解得:x >2 且 x ≠3 ,x ≠5 x —2≠1 ∴ 函数的定义域为(2,3)∪(3,5)∪(5,+∞) x ≠0 (2) 由已知须满足 tanx ﹥0 解得: k π ﹤x ﹤2 k π π+ (k ∈z ) x ≠2 k π π+ -4﹤x ﹤4 16—x 2 ﹥0 ∴ 函数的定义域为(-π,2 π - )∪(0, 2 π )∪(π,4) 二,复合函数求定义域 求复合函数定义域应按从外向内逐层求解的方法。最外层的函数的定义域为次外层函数的值域,依次求,直到最内层函数定义域为止。多个复合函数的求和问题,是将每个复合函数定义域求出后取其交集。 例题二(1)已知函数f (x )的定义域为〔-2,2〕,求函数y=f (x 2-1)的定义域。 (2)已知函数y=f (2x+4)的定义域为〔0,1〕,求函数f (x )的定义域。 (3)已知函数f (x )的定义域为〔-1,2〕,求函数y=f (x+1)—f (x 2-1)的定义域。 (4)已知函数y=f (tan2x )的定义域为〔0, 8 π 〕,求函数f (x )的定义域。 分析:(1)是已知f (x )的定义域,求f 〔g (x )〕的定义域。其解法是:已知f

五大基本初等函数性质及其图像

五、基本初等函数及其性质和图形 1.幂函数 函数称为幂函数。如,, ,都是幂函数。没有统一的定义域,定义域由值确定。如 ,。但在 总是有定义的,且都经过(1,1)点。当时,函数在上是单调增加的,当时,函数在内是单调减少的。下面给出几个常用的幂函数: 的图形,如图1-1-2、图1-1-3。 图1-1-2

图1-1-3 2.指数函数 函数称为指数函数,定义域 ,值域;当时函数为单调增加的;当时为单调减少的,曲线过点。高等数学中常用的指数函数是时,即。以与 为例绘出图形,如图1-1-4。 图1-1-4 3.对数函数

函数称为对数函数,其定义域 ,值域。当时单调增加,当时单调减少,曲线过(1,0)点,都在右半平面内。与互为反函数。当时的对数函数称为自然对数,当时,称为常用对数。 以为例绘出图形,如图1-1-5。 图1-1-5 4.三角函数有 ,它们都是周期函数。对三角函数作简要的叙述: (1)正弦函数与余弦函数:与定义域都是,值域都是。它们都是有界函数,周期都是,为奇函数,为偶函数。图形为图1-1-6、图1-1-7。

图1-1-6正弦函数图形 图1-1-7余弦函数图形 (2)正切函数,定义域,值 域为。周期,在其定义域内单调增加的奇函数,图形为图1-1-8 图1-1-8 (3)余切函数,定义域,值域为 ,周期。在定义域内是单调减少的奇函数,图形如图1-1-9。

图1-1-9 (4)正割函数,定义域,值域为,为无界函数,周期的偶函数,图形如图1-1-10。 图1-1-10 (5)余割函数,定义域,值域为,为无界函数,周期在定义域为奇函数,图形如图1-1-11。

高中数学-函数定义域、值域求法总结

函数定义域、值域求法总结 一.求函数的定义域需要从这几个方面入手: (1)分母不为零 (2)偶次根式的被开方数非负。 (3)对数中的真数部分大于0。 (4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。 ( 6 )0x 中x 0≠ 二、值域是函数y=f(x)中y 的取值范围。 常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法 (4)配方法 (5)换元法 (包括三角换元)(6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等 这些解题思想与方法贯穿了高中数学的始终。 定义域的求法 1、直接定义域问题 例1 求下列函数的定义域: ① 2 1 )(-=x x f ;② 23)(+=x x f ;③ x x x f -+ +=211)( 解:①∵x-2=0,即x=2时,分式 2 1 -x 无意义, 而2≠x 时,分式 21 -x 有意义,∴这个函数的定义域是{}2|≠x x . ②∵3x+2<0,即x<-32 时,根式23+x 无意义, 而023≥+x ,即3 2 -≥x 时,根式23+x 才有意义, ∴这个函数的定义域是{x |3 2 -≥x }.

③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x -21 同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x } 另解:要使函数有意义,必须: ? ??≠-≥+0201x x ? ???≠-≥21 x x 例2 求下列函数的定义域: ①14)(2 --= x x f ②2 14 3)(2-+--= x x x x f ③= )(x f x 11111++ ④x x x x f -+= 0)1()( ⑤3 7 3132+++-=x x y 解:①要使函数有意义,必须:142 ≥-x 即: 33≤≤-x ∴函数14)(2--= x x f 的定义域为: [3,3-] ②要使函数有意义,必须:???≠-≠-≤≥?? ??≠-+≥--131 40210432x x x x x x x 且或 4133≥-≤<--

函数定义域和值域

1.函数的定义、定义域、值域 2.两个函数相等的条件 (1)定义域相同. (2)对应关系完全一致. 知识点二函数的表示及分段函数 1.函数的表示方法 函数的三种表示法:解析法、图象法、列表法. 2.分段函数 如果函数y=f(x),x∈A,根据自变量x在A中不同的取值范围,有着不同的对应关系,那么称这样的函数为分段函数.分段函数是一个函数,分段函数的定义域是各段定义域的并集,值域是各段值域的并集. 知识梳理 1.函数与映射的概念 函数映射 两个集合A,B 设A,B是两个 非空数集 设A,B是两个 非空集合 对应关系f:A→B 如果按照某种确定的对应关 系f,使对于集合A中的任意 一个数x,在集合B中都有唯 如果按某一个确定的对应关 系f,使对于集合A中的任意 一个元素x,在集合B中都有

求()x f 与()x g 的解析式。 1.(绍兴质检)函数f (x )=log 2(x 2+2x -3)的定义域是( ) A.[-3,1] B.(-3,1) C.(-∞,-3]∪[1,+∞) D.(-∞,-3)∪(1,+∞) 2.已知f (x )是一次函数,且f [f (x )]=x +2,则f (x )=( ) A.x +1 B.2x -1 C.-x +1 D.x +1或-x -1 3.(湖州一模)f (x )=???? ????13x (x ≤0),log 3x (x >0),则f ???? ?? f ? ????19=( ) A.-2 B.-3 C.9 D.-9 4.(全国Ⅱ卷)下列函数中,其定义域和值域分别与函数y =10lg x 的定义域和值域相同的是( ) A.y =x B.y =lg x C.y =2x D.y = 1x 5.(铜陵一模)设P (x 0,y 0)是函数f (x )图象上任意一点,且y 20≥x 2 0,则f (x )的解析式可以是( ) A.f (x )=x -1x B.f (x )=e x -1 C.f (x )=x +4 x D.f (x )=tan x 6.下列图象中,不可能成为函数y =f (x )的图象的是( )

(完整版)六大基本初等函数图像及其性质

六大基本初等函数图像及其性质一、常值函数(也称常数函数)y =C(其中C 为常数); α

1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称; 2)当α为负整数时。函数的定义域为除去x=0的所有实数; 3)当α为正有理数 n m 时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1); 4)如果m>n 图形于x 轴相切,如果ma ,1≠a ),定义域是R ; [无界函数] 1.指数函数的图象: 2. 1)当1>a 时函数为单调增,当10<

3.(选,补充)指数函数值的大小比较* N ∈a ; a.底数互为倒数的两个指数函数 x a x f =)(, x a x f ? ? ? ??=1)( 的函数图像关于y 轴对称。 b.1.当1>a 时,a 值越大,x a y = 的图像越靠近y 轴; b.2.当10<∈>=n Z n m a a a n m n m (2)) 1,,,0(1 1*>∈>= =- n Z n m a a a a n m n m n m y x f x x x x g ? ? ?=1)(

函数定义域值域求法(全十一种)

创作编号: GB8878185555334563BT9125XW 创作者: 凤呜大王* 高中函数定义域和值域的求法总结 一、常规型 即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的定义域。 例1 求函数8 |3x |15 x 2x y 2-+--= 的定义域。 解:要使函数有意义,则必须满足 ?? ?≠-+≥--②① 8|3x |015x 2x 2 由①解得 3x -≤或5x ≥。 ③ 由②解得 5x ≠或11x -≠ ④ ③和④求交集得3x -≤且11x -≠或x>5。 故所求函数的定义域为}5x |x {}11x 3x |x {>-≠-≤ 且。 例2 求函数2 x 161 x sin y -+=的定义域。 解:要使函数有意义,则必须满足 ???>-≥②①0 x 160 x sin 2 由①解得Z k k 2x k 2∈π+π≤≤π, ③ 由②解得4x 4<<- ④ 由③和④求公共部分,得 π≤<π-≤<-x 0x 4或 故函数的定义域为]0(]4(ππ--,, 评注:③和④怎样求公共部分?你会吗? 二、抽象函数型 抽象函数是指没有给出解析式的函数,不能常规方法求解,一般表示为已知一个抽象函数的定义域求另一个抽象函数的解析式,一般有两种情况。 (1)已知)x (f 的定义域,求)]x (g [f 的定义域。 (2)其解法是:已知)x (f 的定义域是[a ,b ]求)]x (g [f 的定义域是解b )x (g a ≤≤,即为所求的定义域。 例3 已知)x (f 的定义域为[-2,2],求)1x (f 2-的定义域。 解:令21x 22≤-≤-,得3x 12≤≤-,即3x 02≤≤,因此3|x |0≤≤,从而3x 3≤≤-,故函数的定义域是}3x 3|x {≤ ≤-。

求函数的定义域与值域的常用方法完整版

求函数的定义域与值域 的常用方法 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

求函数的定义域与值域的常用方法 引入: 自变量x 的取值范围为 定义域 因变量y 的取值范围为 值域 求函数的解析式、求函数的定义域、求函数的值域、求函数的最值? 一、求函数的解析式 (一)解析式的表达形式 (解析式的表达形式有一般式、分段式、复合式等。) 1、一般式 (是大部分函数的表达形式) 例:一次函数:b kx y +=)0(≠k 二次函数:c bx ax y ++=2 )0(≠a 反比例函数:x k y = )0(≠k 正比例函数:kx y = )0(≠k 2、复合式 若y 是u 的函数,u 又是x 的函数,即),(),(),(b a x x g u u f y ∈==,那么y 关于x 的函数[]()b a x x g f y ,,)(∈=叫做f 和g 的复合函数。 例1、已知3)(,12)(2+=+=x x g x x f ,则[]=)(x g f , []=)(x f g 。 解:[]721)3(21)(2)(22+=++=+=x x x g x g f (二)解析式的求法 (根据已知条件求函数的解析式,常用配凑法、换元法、待定系数法、赋值(式)法、方程法等。) 1. 配凑法 例1.已知 :23)1(2+-=+x x x f ,求f(x); 解:因为15)1(23)1(22+-+=+-=+x x x x x f 例2、已知:221)1(x x x x f +=+,求)(x f 。 解: 2)1(1)1(222-+=+=+x x x x x x f ∴ )22(2)(2-≤≥-=x x x x f 或 注意:使用配凑法也要注意自变量的范围限制。 2.换元法 例1.已知:x x x f 2)1(+=+,求f(x); 解:令2)1(,1,1-=≥=+t x t t x 即则 则1)1(2)1()(22-=-+-=t t t t f 所以)1(1)(2≥-=x x x f 例2、已知:11)11(2-=+x x f ,求)(x f 。

高一数学《函数的定义域值域》练习题

函数值域、定义域、解析式专题 一、函数值域的求法 1、直接法: 例1:求函数y = 例2:求函数1y 的值域。 2、配方法: 例1:求函数242y x x =-++([1,1]x ∈-)的值域。 例2:求 函 数]2,1[x ,5x 2x y 2 -∈+-= 的 值域。 例3:求函数2256y x x =-++的值域。 3、分离常数法: 例1:求函数125 x y x -=+的值域。 例2:求函数1 22+--=x x x x y 的值域. 例3:求函数1 32 x y x -=-得值域. 4、换元法: 例1:求函数2y x = 例2: 求 函 数1x x y -+=的 值 域。 5、函数的单调性法:确定函数在定义域(或某个定义域的子集)上的单调性,求出函数的值域。 例1:求函数y x = 例2:求函数()x x x f -++=11的值域。

例3:求 函 数1x 1x y --+=的 值 域。 6、数型结合法:函数图像是掌握函数的重要手段,利用数形结合的方法,根据函数图像求得函数值域,是一种求值域的重要方法。当函数解析式具有某种明显的几何意义(如两点间距离,直线的斜率、截距等)或当一个函数的图象易于作出时,借助几何图形的直观性可求出其值域。 例1:求函数|3||5|y x x =++-的值域。 7、非负数法 根据函数解析式的结构特征,结合非负数的性质,可求出相关函数的值域。 例1、(1)求函数216x y -=的值域。 (2)求函数1 3 22+-=x x y 的值域。 二、函数定义域 例1:已知函数()f x 的定义域为[]15-,,求(35)f x -的定义域. 例2:若()f x 的定义域为[]35-,,求()()(25)x f x f x ?=-++的定义域. 例3:求下列函数的定义域: ① 2 1 )(-= x x f ; ② 23)(+=x x f ; ③ x x x f -+ += 21 1)( 例4:求下列函数的定义域: ④ 14)(2--=x x f ⑤ ②2 14 3)(2-+--= x x x x f ⑥ 3 7 3132+++-= x x y ④x x x x f -+= 0)1()( 三、解析式的求法 1、配凑法 例1:已知 :23)1(2 +-=+x x x f ,求f(x);

5、函数的定义域和值域答案

函数定义 映射 一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应法则f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应:f A B →为从集合A 到集合B 的一个映射(mapping ).记作“:f A B →” 函数的概念 1.定义:如果A ,B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个数,在集合B 中都有唯一确定的数)(x f 和它对应,那么就称B A f →:为从集合A 到集合B 的一个函数,记作 )(x f y =,A x ∈。 其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 的值叫做函数值,函数值的集合{}A x x f ∈|)(叫做函数的值域。 函数与映射的关系与区别 相同点:(1)函数与映射都是两个非空集合中元素的对应关系; (2)函数与映射的对应都具有方向性; (3)A 中元素具有任意性,B 中元素具有唯一性; 区别:函数是一种特殊的映射,它要求两个集合中的元素必须是数,而映射中两个集合的元素是任意的数学对象。 函数的三要素 函数是由三件事构成的一个整体,分别称为定义域.值域和对应法则.当我们认识一个函数时,应从这三方面去了解认识它. 例 函数y =x x 2 3与y =3x 是不是同一个函数?为什么? 练习 判断下列函数f (x )与g (x )是否表示同一个函数,说明理由? ① f ( x ) = (x -1) 0;g ( x ) = 1 ② f ( x ) = x ; g ( x ) = 2x ③ f ( x ) = x 2;f ( x ) = (x + 1) 2 ④ f ( x ) = | x | ;g ( x ) = 2x 重点一:函数的定义域各种类型例题分析

高中数学基本初等函数涉及定义域值域、性质、零点问题

各类基本初等函数涉及定义域值域、性质、零点问题等梳理 (一)单调性与值域问题 (1)一次函数型 例题1 若函数 ()2f x a x b =-+在[)0,+∞上为增函数,则实数a b 、的范围是 【解析】 2,()22,ax ab x b f x a x b ax ab x b -+≥?=-+=? -++?< ∵函数 ()2f x a x b =-+在[)0,+∞上为增函数,∴00a b ≤且> 【小结】亦可对a 的符号进行分类讨论,一一排除。 (2)二次函数型 例题2 函数 ()23f x x x m x =-+-在R 上单调递增,求实数m 的取值范围 【解析】 22(2)3,()23(2)3,x m x x m f x x x m x x m x x m ?+--≥?=-+-=?-++-??< ∵函数 ()23f x x x m x =-+-在R 上单调递增 ∴22 2222 m m m m m -?-≤???-≤≤? +?≥?? 变式1 函数()y f x =在[2,)+∞上单调递增,且()(4)f x f x =-恒成立,则关于x 的不等式2(3)(22)f x f x +>+的解集为________ 【解析】 ()(4)f x f x =-恒成立,∴函数关于2x =对称, 函数()y f x =在[2,)+∞上单调递增,∴函数在(],2-∞单调递减, 关于x 的不等式2(3)(22)f x f x +>+,∴2 32222x x +->+-, 解得2 12x x +>,即22110x x x ?<+?+≥?或()22110 x x x ?<-+?+

函数的定义域和值域课件

函数的定义域和值域 学习目标: 1.了解构成函数的要素有定义域、对应法则和值域,会求一些简单函数的值域; 2.通过本节的学习,使学生养成用运动、发展、变化的观点认识世界的思维习惯; 活动方案 活动一(目标:理解函数定义域的概念,复习巩固上一节课的定义域的相关内容,并能 熟练求出一个给定的函数的定义域。) 题型一:简单函数的定义域 巩固检测1.求下列函数定义域: (1)()f x =; (2)21()1f x x = -; 小结:求简单函数的定义域时常考虑哪些因素? 题型二:函数由两个及以上数学式子的和、差、积、商的形式构成时的定义域 求下列函数的定义域: 巩固检测2.(1)y = (2)1()f x x = 小结:此种情况如何求定义域? 题型三:复合函数的定义域 例1.(P24.5)若2 ()f x x x =- (1)此函数的输入值是谁? (2)求(0),(1),(1)f f f x +; (3)函数(1)y f x =+的输入值又是谁?(2)y f x =呢? 例2.求下列函数的定义域: (1)若()y f x =的定义域为]1,4?-?,则2()y f x =的定义域是 。 (2)若函数(1)y f x =+的定义域是]2,3?-?,则(21)y f x =-的定义域 是 。 活动二(目标:理解函数值域的概念,并能熟练准确地求出一个给定的函数的值域。) 阅读课本P23中间关于值域的内容,思考以下问题: (1)函数的值域是怎样定义的? (2)函数的值域与定义中集B 有怎样的包含关系? (3)函数的定义域、值域、对应法则称为函数的三要素,这三者之间的关系怎 样?

高一函数值域定义域方法总结

函数定义域、值域求法总结 一、定义域是函数y=f(x)中的自变量x 的范围。 求函数的定义域需要从这几个方面入手: (1)分母不为零 (2)偶次根式的被开方数非负。 (3)对数中的真数部分大于0。 (4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。 ( 6 )0x 中x 0≠ 二、值域是函数y=f(x)中y 的取值范围。 常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法 (4)配方法 (5)换元法 (包括三角换元) (6)反函数法(逆 求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等 这些解题思想与方法贯穿了高中数学的始终。 三、典例解析 1、定义域问题 例1 求下列函数的定义域: ① 21)(-= x x f ;② 23)(+=x x f ;③ x x x f -++=21 1)( 解:①∵x-2=0,即x=2时,分式21 -x 无意义, 而2≠x 时,分式21 -x 有意义,∴这个函数的定义域是{}2|≠x x . ②∵3x+2<0,即x<-3 2 时,根式23+x 无意义, 而023≥+x ,即3 2 -≥x 时,根式23+x 才有意义, ∴这个函数的定义域是{x |3 2 -≥x }. ③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式 x -21 同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x } 另解:要使函数有意义,必须: ?? ?≠-≥+0 201x x ? ???≠-≥21 x x 例2 求下列函数的定义域:

函数的定义域及值域

函数的定义域及值域 题型一 求函数的定义域 1. 已函数f(x)=x x x -+0 )1(的定义域 2.函数 )3(log 1 3x y -= 的定义域为 3.函数x x y cos lg 252+-=的定义域为 __ 2.抽象函数定义域 1. 函数f(x 2)的定义域为[-1,1],则函数f(x)的定义域 2.设函数 的定义域是[0,1],求的定义域. 3.已知f(x 2)的定义域为[1,2],则y=f()(log 2 1x 的定义域为_______. 3.定义域逆用 1. 已知函数y = 的定义域为R.求实数m 的取值范围; 2. 设f (x )=lg(x 2 -2x +a )的定义域为R ,求a 的取值范围; 3.设函数y = 的定义域为R ,求实数a 的取值范围.

题型二 求函数的值域 1.求下列函数的值域: (1)y = 2x -1 x ∈[1,3] (2) y = -3x +1 x ∈[-1,2] (3)函数f(x)= ax + b x ∈[-1,1] 最大值为2,最小值为-4,求a,b 的值 2. 求下列函数的值域: ⑴y =x 2-5x +6 x ∈[-2,1] ⑵y =x 2-5x +6,x ∈[1,3] ⑶y =x 2-5x +6,x ∈[2,4] (4)y =x 2-5x +6,x ∈[3,5] (5) f(x)= x 2-2ax -2 x ∈[-2,4] 3. x>0 4.函数y =x +x 21-的值域 5.若 求函数的取值范围. 6. 对于任意实数,设函数 是与中较小者,求的最大值 7.已知函数 的值域是,求的值.

高中数学函数定义域值域求法总结

函数定义域、值域求法总结 一。求函数得定义域需要从这几个方面入手: (1)分母不为零 (2)偶次根式得被开方数非负。 (3)对数中得真数部分大于0。 (4)指数、对数得底数大于0,且不等于1 (5)y=tanx中x≠kπ+π/2;y=cotx中x≠kπ等等。 ( 6 )中x 二、值域就是函数y=f(x)中y得取值范围。 常用得求值域得方法: (1)直接法(2)图象法(数形结合) (3)函数单调性法 (4)配方法 (5)换元法 (包括三角换元)(6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等 这些解题思想与方法贯穿了高中数学得始终。 定义域得求法 1、直接定义域问题 例1 求下列函数得定义域: ①;②;③ 解:①∵x—2=0,即x=2时,分式无意义, 而时,分式有意义,∴这个函数得定义域就是、 ②∵3x+2〈0,即x<-时,根式无意义, 而,即时,根式才有意义, ∴这个函数得定义域就是{|}. ③∵当,即且时,根式与分式同时有意义, ∴这个函数得定义域就是{|且} 另解:要使函数有意义,必须: 例2 求下列函数得定义域: ①② ③④ ⑤ 解:①要使函数有意义,必须: 即: ∴函数得定义域为: []

②要使函数有意义,必须: ∴定义域为:{ x|} ③要使函数有意义,必须: ? ∴函数得定义域为: ④要使函数有意义,必须: ∴定义域为: ⑤要使函数有意义,必须: 即 x< 或 x〉∴定义域为: 2定义域得逆向问题 例3若函数得定义域就是R,求实数a得取值范围(定义域得逆向问题) 解:∵定义域就是R,∴ ∴ 练习: 定义域就是一切实数,则m得取值范围; 3复合函数定义域得求法 例4 若函数得定义域为[-1,1],求函数得定义域 解:要使函数有意义,必须: ∴函数得定义域为: 例5 已知f(x)得定义域为[—1,1],求f(2x—1)得定义域。 分析:法则f要求自变量在[-1,1]内取值,则法则作用在2x-1上必也要求2x-1在[-1,1]内取值,即-1≤2x-1≤1,解出x得取值范围就就是复合函数得定义域;或者从位置上思考f(2x-1)中2x-1与f(x)中得x位置相同,范围也应一样,∴—1≤2x-1≤1,解出x得取值范围就就是复合函数得定义域。 (注意:f(x)中得x与f(2x-1)中得x不就是同一个x,即它们意义不同。) 解:∵f(x)得定义域为[—1,1], ∴—1≤2x-1≤1,解之0≤x≤1, ∴f(2x-1)得定义域为[0,1]。 例6已知已知f(x)得定义域为[-1,1],求f(x2)得定义域。 答案:—1≤x2≤1 x2≤1-1≤x≤1 练习:设得定义域就是[-3,],求函数得定义域 解:要使函数有意义,必须: 得: ∵≥0 ∴ ∴函数得定域义为: 例7 已知f(2x-1)得定义域为[0,1],求f(x)得定义域 因为2x-1就是R上得单调递增函数,因此由2x-1, x∈[0,1]求得得值域[-1,1]就是f(x)得定义域、 练习: 1已知f(3x-1)得定义域为[—1,2),求f(2x+1)得定义域。) (提示:定义域就是自变量x得取值范围) 2已知f(x2)得定义域为[-1,1],求f(x)得定义域

函数定义域值域及表示

函数定义域值域及表示 (1)函数的概念 设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数.记作: y=f(x),x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)| x ∈A }叫做函数的值域. 注意:如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有 意义的实数的集合; 函数的定义域、值域要写成集合或区间的形式. 构成函数的三要素:定义域、对应关系和值域 再注意: 1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以, 如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数) 2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无 关。相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备) (2)区间的概念及表示法 设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足 a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的 集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <. (3)求函数的定义域时,一般遵循以下原则: ①()f x 是整式时,定义域是全体实数. ②()f x 是分式函数时,定义域是使分母不为零的一切实数. ③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合. ④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.

高一初等函数定义域值域

高一初等函数定义域值 域 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

函数 例1、 已知函数f (x )=3+x + 21+x , (1) 求函数的定义域; (2) 求f (-3),f (32)的值; (3) 当a>0时,求f (a ),f (a-1)的值。 例2、中哪个与函数y=x 相等( )x 3 A 、y=(x )2 B 、y=33 x C 、y=2x D 、y=x x 2 例3、求下列函数的定义域 (1)f (x )= 7 41+x (2)f(x)=x -1+ 3+x -1 例4、已知函数f (x )=x 2+2x (1) 求f (2),f (-2),f (2)+f (-2)的值 (2) 求f (a ),f (-a ),f (a )+f (-a )的值

例5、某种笔记本的单价是5元,买x(x {1,2,3,4,5})个笔记本需要y元,试用函数的三种表示法表示函数y=f(x)。 例6、画出函数y=|x|的函数图象。 例7、如图,把截面半径为25cm的圆形木头锯成矩形木材,如果矩形木材的一边长为xcm,面积为ycm2,把y表示为x的函数。 x

1、求下列函数的定义域 (1)f (x )=43-x x (2)f (x )=2x (3)f (x )=236 2+-x x (4)f (x )=14--x x 2、下列那组中的函数f (x )与g (x )相等? (1)f (x )=x-1,g (x )=x x 2 -1; (2)f (x )=x 2,,g (x )=(x )4 (3)f (x )=x 2,g (x )=36x 3、已知函数f (x )=3x 2-5x+2,求f (-2),f (-a ),f (a+3),f (a )+f (3)的值. 4、已知函数f (x )=62 -+x x (1)点(3,14)在f (x )的图象上吗?

函数定义域、值域、解析式习题及答案

一、 求函数的定义域 1、求下列函数的定义域: ⑴y = ⑵y = ⑶01(21)111 y x x = +-+- (4) f(x)= 2 32--x x ; (5) ; (6)f(x)=1+x -x x -2; (7 )0y = (8 )223 y x x =+- 2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________; 3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x +的定义域为 。 4、f(x)的定义域为[0,1],求f(x +1)的定义域。 5、已知f(x-1)的定义域为[-1,0],求f(x+1)的定义域。 二、求函数的值域 5、求下列函数的值域: ⑴2 23y x x =+- ()x R ∈ ⑵2 23y x x =+- [1,2]x ∈ ⑶31 1x y x -= + ⑷311 x y x -=+ (5)x ≥ (5 )y x =(6)求函数y =-x 2 +4x -1 ,x ∈[-1,3) 的值域

三、求函数的解析式 1、已知函数 2 (1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。 2、已知()f x 是二次函数,且 2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。 3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。 4、已知f(2x+1)=3x-2,求函数f(x)的解析式。(配凑法或换元法) 5、已知函数f(x)满足1 ()2()f x f x x -=,求函数f(x)的解析式。(消去法) 6、已知()1f x x =+,求函数f(x)的解析式。 7、已知 2 2 11()11x x f x x --=++,求函数f(x)的解析式。 8、已知2 211()f x x x x +=+,求函数f(x)的解析式。 9、已知()2()1f x f x x +-=-,求函数f(x)的解析式。 10、求下列函数的单调区间: ⑴ 2 23y x x =++ 11、函数236x y x -= +的递减区间是

高一数学第五讲--函数的定义域与值域

第五讲 函数的定义域与值域 一、知识归纳: (一)函数的定义域与值域的定义: 函数y=f(x)中自变量x 的取值范围A 叫做函数的定义域,与x 的值相对应的y 的值叫做函数值。函数值的集合{f(x)│x ∈A}叫做函数的值域。 (二)求函数的定义域一般有3类问题: 1、已知解析式求使解析式有意义的x 的集合常用依据如下: ①分式的分母不等于0; ②偶次根式被开方式大于等于0; ③对数式的真数大于0,底数大于0且不等于1; ④指数为0时,底数不等于0 [ 2、复合函数的定义域问题主要依据复合函数的定义,其包含两类: ①已知f[g(x)]的定义域为x ∈(a,b )求f(x)的定义域,方法是:利用a0且a,b≠1,k ∈R)

函数定义域值域习题及答案

复合函数定义域和值域练习题 一、 求函数的定义域 1、求下列函数的定义域: ⑴y = ⑵y = ⑶01 (21)1 11y x x =+-+- 2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________; 3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数 1(2)f x +的定义域为 。 4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。 二、求函数的值域 5、求下列函数的值域: ⑴2 23y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311 x y x -= + ⑷311x y x -=+ (5)x ≥ ⑸ y = ⑹ 225941 x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =-

⑼ y = ⑽ 4y = ⑾y x =-6、已知函数222()1 x ax b f x x ++=+的值域为[1,3],求,a b 的值。 三、求函数的解析式 1、 已知函数2(1)4f x x x -=-,求函数 ()f x ,(21)f x +的解析式。 2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。 3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。 4、设 ()f x 是R 上的奇函数, 且当[0,)x ∈+∞时, ()(1f x x =+,则当(,0)x ∈-∞时()f x =____ _ ()f x 在R 上的解析式为 5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1 f x g x x +=-,求()f x 与()g x 的解析表达式 四、求函数的单调区间 6、求下列函数的单调区间: ⑴ 223y x x =++ ⑵y = ⑶ 261y x x =-- 7、函数 ()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是 8、函数236 x y x -=+的递减区间是 ;函数y =的递减区间是 五、综合题 9、判断下列各组中的两个函数是同一函数的为 ( )

相关文档
相关文档 最新文档