文档库 最新最全的文档下载
当前位置:文档库 › 智能材料与智能结构分类

智能材料与智能结构分类

智能材料与智能结构分类
智能材料与智能结构分类

智能材料(Smart Materils 或者Intelligent Material System) 是20 世纪80 年代中期提出的概念。智能材料是模仿生命系统,能感知环境变化并能实时地改变自身的一种或多种性能参数,作出所期望的能与变化后的环境相适应的复合材料或材料的复合。智能材料是一种集材料与结构、智能处理、执行系统、控制系统和传感系统于一体的复杂的材料体系。它的设计与合成几乎横跨所有的高技术学科领域。

磁流变液

电流变体

压电材料、

形状记忆合金

磁致伸缩材料

电致伸缩材料

光纤材料

聚合物胶体

形状记忆聚合物(SMP)

疲劳寿命丝(箔)

磁流变体:通常由以下三种成分组成:

(1)具有高磁导率、低矫顽力的微小磁性微粒,如铁钴合金、铁镍合金、羰基铁等软磁材料。由Jolly 和Ginder等人[4]建立的磁流变液理论剪切屈服强度的计算公式可知,磁流变液的极限剪切屈服强度与磁性颗粒的饱和磁化强度的平方成正比。

(2)母液,又称溶媒,是磁性微粒悬浮的载体。为了保证磁流变液具有稳定的理化特性,母液应具有低粘度、高沸点、低凝固点、较高密度和极高“击穿磁场”等特性。目前,较为常用的母液是硅油。另外,一些高沸点的合成油、水以及优质煤油等也可作为磁流变液的母液;

(3)表面活性剂,其主要作用是包覆磁性微粒并阻止其相互聚集而产生凝聚,减少或消除沉降。

功能:

这种材料具有4种主要功能:(1)对环境参数的敏感;(2)对敏感信息的传输;(3)对敏感信息的分析、判断;(4)智能反应。

具体的有:

传感功能

反馈功能

信息识别与积累功能

相应功能

自诊断功能

自修复功能

自调节功能

智能结构( Intelligent Construction)是将驱动器、传感器、乃至处理器等微电子元器件集成在复合材料之中而成型的结构它对所处环境,具有主动感知和主动响应的功能。智能结构是在智能材料的基础上提出的,是当前结构设计与结构力学方面正在迅速发展的一种崭新领域,也称为自适应结构。智能结构就是可以根据外部条件和内部条件主动地改变结构

特性,以最优地满足任务需要的结构。外部条件包括环境、载荷或已制造出及已在使用中的结构几何外形。内部条件包括对材料或结构的局部区域的破坏、失效的隔离和改变载荷传输途径等。从结构方面,就是把具有特殊力学性能和物理性能的形状记忆合金、压电陶瓷、压电晶体、磁致变体、电致变体及流变体等复合在构件中(或埋在复合材料中) ,组成构件的受感元件和动作元件,再配上微处理器,便成为智能的材料结构,来自动适应结构的一些特殊要求。

智能结构有个基本系统, 即驱动、传感、处理和结构系统, 这四个系统分别扩展, 相互交叉, 组合成各种结构形式。

智能结构分类:

智能结构主要在复合材料的零部件中埋入或在其表面安装上传感元件、动作元件等;

智能结构是直接由智能材料制成的零部件。

按电子元器件及其材料分类如压电传感结构, 压电驱动结构, 电致磁致结构, 形状记忆合金传感、驱动结构, 电流变体驱动结构, 光纤传感结构等。

按结构功能分类如自传感结构, 自驱动结构, 自诊断结构, 寿命监视结构, 形状记忆结构, 振动抑制结构等。

按结构与关键电子元器件组合分类:

结构系统

驱动系统

传感系统

控制系统

自适应驱动结构

自适应传感结构

处理系统自驱动结构

自传感结构机敏结构

磁流变减振器:以磁流变体这种新型的智能材料作为减振器的工作液,并在减振器的活塞轴上缠绕电磁线圈,线圈产生的磁场作用于磁流变液,通过控制电磁线圈电流的大小来调整磁场强度进而改变磁流变液的粘度,实现阻尼可调的目的。根据磁流变液在减振器中的受力状态和流动形式的不同,磁流变减振器可分为流动模式(Flow Mode)、剪切模式(Shear Mode)、压缩模式(Squeeze Mode)以及这三种基本模式的任意组合。

智能材料与结构应用:

航空航天飞行器

建筑和工程结构

医疗

机器人

日常生活

智能材料及其发展

智能材料及其发展 1.材料的发展 材料是人类用于制造物品、器件、构件、机器或者其他产品的物质,是人类生活、生产的基础,是人类认识自然和改造自然的工具,与信息、能源并列为人类赖以生存、现代文明赖以发展的三大支柱。材料也是人类进化的标志之一,一种新材料的出现必将促进人类文明的发展和科技的进步,从人类出现,经历旧石器时代、新石器时代、青铜时代……,一直到21世纪,材料及材料科学的发展一直伴随着人类的文明的进步。在人类文明的进程中,材料大致经历了一下五个发展阶段。 1)利用纯天然材料的初级阶段:在远古时代人类只能利用纯天然材料(如石头、草木、野兽毛皮、甲骨、泥土等),也就是通常所说的旧石器时代。这一阶段人类只能对纯天然材料进行简单加工。 2)单纯利用火制造材料阶段:这一阶段跨越了新石器时代、青铜时代和铁器时代,它们风别已三大人造材料为象征,即陶、铜、铁。这一时期人类利用火来进行烧结、冶炼和加工,如利用天然陶土烧制陶、瓷、砖、瓦以及后来的玻璃、水泥等,从天然矿石中提炼铜、铁等金属。 3)利用物理和化学原理合成材料阶段:20世纪初,随着科学的发展和各种检测手段及仪器的出现,人类开始研究材料的化学组成、化学键、结构及合成方法,并以凝聚态物理、晶体物理、固体物理为基础研究材料组成、结构和性能之间的关系,并出现了材料科学。这一时期,人类利用一系列物理、化学原理、现象来创造新材料,这一时期出现的合成高分子材料与已有的金属材料、陶瓷材料(无机非金属材料)构成了现代材料的三大支柱。除此之外,人类还合成了一系列的合金材料和无机非金属材料,如超导材料、光纤材料、半导体材料等。 4)材料的复合化阶段:这一阶段以20世纪50年代金属陶瓷的出现为开端,人类开始使用新的物理、化学技术,根据需要制备出性能独特的材料。玻璃钢、铝塑薄膜、梯度功能材料以及抗菌材料都是这一阶段的杰出代表,它们都是为了适应高科技的发展和提高人类文明进步而产生的。 5)材料的智能化阶段:自然界的材料都具有自适应、自诊断、自修复的功能。如所有的动物和植物都能在没有受到毁灭性打击的情况下进行自诊断和修复。受大自然的启发,近三四十年的研发,一些人工材料已经具备了其中的部分功能,即我们所说的智能材料,如形状记忆合金、光致变色玻璃等。但是从严格意义上将,目前研制成功的智能材料离理想的智能材料还有一定的距离。 材料科学的发展主要集中在以下几个方面:超纯化(从天然材料到复合材料)、量子化

第十一章_智能材料与结构

第十一章智能材料和结构 智能材料结构(Smart/Intelligent Materials and Structures)是一门新兴起的多学科交叉的综合科学。80年代后期,随着材料技术和大规模集成电路的进展,美国军方提出了智能材料和结构的设想和概念,并开展了大规模的研究。智能材料和智能结构系统是近年来飞速发展的一个领域,这一领域的研究也越来越受到人们的重视。自1998年美国弗吉尼亚大学召开了关于“智能材料结构和数学问题”专题学术讨论会以来,智能材料系统的研究成为材料科学和工程的热点之一,有人甚至称21世纪是智能材料的世纪,目前美国已有几十家公司经营智能材料结构的产品。人们之所以如此关注智能材料系统是因为它在建筑、桥梁、水坝、电站、飞行器、空间结构、潜艇等振动、噪声、形状自适应控制、损伤自愈合等方面具有良好的使用前景。 第一节智能材料的概念及分类 智能材料结构的诞生有着一定的背景。80年代末期,复合材料普遍使用,为解决它的强度和刚度变化等问题,使得驱动元件和传感件较为容易地融合进入材料,组成整体,从而具有多种用途,同时驱动元件和传感件材料的发展以及材料集成技术上的突破,也促进了智能材料结构的出现。材料科学的发展,使得人们对机械、电子、动作等材料的多方面性能耦合进行研究,微电子技术、总线技术及计算机技术的飞速发展,解决了信息处理和快速控制等方面的难题,这些都为智能材料结构的出现提供了有利条件。 1.1智能材料的概念及其特点 智能材料系统和结构的有关名称定义目前尚不统一,但一般智能材料系统都应该具有敏感、处理、执行三个主要部分。一般来说,智能材料是能够感知环境变化(传感或发现的功能),通过自我判断和自我结构(思考和处理的功能),实现自我指令和自我执行(执行功能)的新型材料。该材料具有模仿生物体的自增值性、自修复性、自诊断性、自学习性和环境适应性。将具有仿生命功能的材料融合于基体材料中,使制成的构件具有人们期望的智能功能,这种结构称为智能材料结构。它是一个类似于人体的神经、肌肉、大脑和骨骼组成的系统,而基体材料就相当于人体的骨骼。而智能材料是能够感知环境变化,通过自我判断和结论,实现和执行指令的新型材料。智能材料的研究就是将信息和控制融入材料本身的物性和功能之中,其研究成果波及了信息、电子、生命科学、宇宙、海洋科学技术等领域。它的研究开发孕育着新一代的技术革命。智能化将成为21世纪高分子材料的重要发展方向之一。 例如光导纤维、形状记忆合金和镓砷化合物半导体控制电路埋入复合材料中,光导纤维是传感元件,能检测出结构中的应变和温度,形状记忆合金能使结构动作,改变性状,控制

几种智能材料在一些领域中有应用1

上课班级:2班学院:艺术学院姓名:王定波专业:雕塑学号:1016040104 几种智能材料在一些领域中的应用 智能复合材料成型工艺的在线监控技术 智能结构健康监控系统的研究 智能结构振动主动控制系统的研究 形状自适应改变智能结构的研究 智能蒙皮的研究 1、建筑和结构工程领域 将建筑和结构传感元件、微型计算机芯片、形状记忆合金’电流变体及压电材料等经设计后复合在结构体中,可研制出带有感知用判断能力,可自动加固用防护的自适应性智能结构,实现在线监测、自诊断、自预警、自修复,防止灾难性事故的发生。 ●自诊断混凝土 ●自愈合混凝土 2、航空航天领域 能经受恶劣环境,同时能对自己的状况进行自我诊断,并能阻止损坏和退化,能自动加固或自动修补裂纹,从而防止灾难性事故的发生。

a.机翼用智能材料:在高性能复合材料中嵌入细小的光纤,光纤象神经那样 感受机翼上承受的不同压力,光纤断裂时,光传输中断,发出事故警告。 b.自动加固的直升飞机水平旋转叶片:当叶片在飞行中遇到疾风作用而猛烈 振动时,分布在叶片中微小液滴会变成固体自动加固叶片。 c.智能蒙皮:对于飞行器如飞机、火箭、卫星及潜水艇等,具有随外界条件 变化而变化以及探测周围环境的能力的表皮(蒙皮)。 d.检测飞行速度、温度、湿度等各种条件,并能对变化的环境做出反应,如 抑制噪声和振动、维持飞行器座舱的通风、温度恒定、改变机翼形状等。 e.对于材料内部的缺陷和损伤,能进行自诊断,确定缺陷和损伤的部位并进 行自我修复、自适应。 3、抑制振动和噪声 传感元件对结构的振动进行监测,驱动元件在微电子的控制下准确地动作以改变结构的振动状态 ——具有振动和噪声主动控制功能的智能结构。 成功应用:减轻交通工具如汽车、飞机振动和噪声。 ●压电材料 将压电材料置于结构表面或内部用来感测振动,利用经过放大的输出功率去驱动另一个粘贴于下同区域的压电材料,为减小振动反应。这种方法已经成功地应用在降低圆柱型卫星天线桅杆的振动。 ●电(磁)流变体 在复合材料悬臂梁的空腔内注入电流变体,通过外电场改变电流变体的状态,从而实时控制梁的刚度、阻尼,实现了对结构整体振动的主动控件。 4、用于机器人 ●形状记忆合金能够感知温度或位移的变化,可将热能转换为机械能。如果 控制加热或冷却,可获得重复性很好的驱动动作。 ●刺激响应性高分子凝胶 在机器人中应用:触觉传感器、机器人手足和筋骨动作部分等。 5、在医学领域的应用 ●智能药物释放体系——以智能材料为载体材料,根据病情所引起的化学物

智能材料

智能材料及其在医学领域的应用 目录 1、智能材料的概述 1.1智能材料的定义和基本特征........................................................ 1.2智能材料的构成............................................................................ 1.3智能材料的分类............................................................................ 1.4智能材料的制备............................................................................ 2、智能材料的应用领域 2.1智能材料的研究方向................................................................... 2.2智能材料在医学上的应用............................................................ 2.3智能材料在医疗方法中的应用....................................................

2.4智能材料在医学器械方面的应用................................................. 3、结束语.................................................................... 4、参考文献................................................................ 摘要本文综合评述了智能材料的研究、应用和进展。对智能材料与结构的概念进行了描述,全面总结了智能材料智能材料生物医药方面的应用, 探讨了智能材料光明的应用前景和发展趋势。 关键词智能材料;医学应用;发展 1智能材料的概述 1.1定义:智能材料(Intelligent material),是一种能感知外部刺激,能够判断并适当处理且本身可执行的新型功能材料。智能材料是继天然材料、合成高分子材料、人工设计材料之后的第四代材料,是现代高技术新材料发展的重要方向之一,将支撑未来高技术的发展,使传统意义下的功能材料和结构材料之间的界线逐渐消失,实现结构功能化、功能多样化。科学家预言,智能材料的研制和大规模应用将导致材料科学发展的重大革命。 基本特征:因为设计智能材料的两个指导思想是材料的多功能复合和材料的仿生设计,所以智能材料系统具有或部分具有如下的智能功能和生命特征: (1)传感功能(Sensor)

智能材料系统结构与应用

智能材料系统结构与应用期末设计设计项目:压力触发式电灯开关 学院:电子信息与电器工程学院 专业:自动化 班级:F1503005 学号:515030910127 学生姓名:闻昊 2015年12月28日

压力触发式电灯开关 作者:闻昊 内容摘要:针对如何提高用户进入家庭时,电灯如何快捷方便的打开,从而采 用一种全新的连通电路的方式,采用压电材料,对外力的机械信号进行转换放大从而控制家用电路的连通。 关键词:传感、压电材料、放大电路、控制元件、转换 一、研究背景: 在生活在中经常出现这样的情况,有时当你进入了家门或者宿舍之后,会发现两只手都拿着东西,很不方便去打开电灯的开关,或者电灯的开关并不在门口触手可及的地方,得抹黑向前走一小段路才能打开电灯。难免会有一些不方便之处。如果我们可以转换一种打开灯的方式,这个问题就可以解决。所以急待需要一种新的电灯开关,来改变传统声控和手触的方式。那么可采用压力触发式,将开关隐藏于门口的脚垫之中,当我们一进门踩到脚垫上的时候,房间的灯就会亮起来,岂不是方便很多。 二、研究压力触发式开关的可行性与实现方案: 首先考虑压力触发的可行性,通过所学知识,压电材料可以将外力转换为电信号。压电传感器种类繁多,但传感器用压电材料主要有压电晶体、压电陶瓷和高分子材料三种。压电晶体性能稳定,居里点和机械强度高,绝缘性好,动态响应快,线性范围宽,迟滞小等,在精密测量系统和高温测量系统中常被选用;缺点是压电系数小,灵敏度低,价格昂贵。压电陶瓷是人造多晶体压电材料,其压电系数高,制造成本低,但性能不够稳定,在一般测量系统中广泛采用,高分子压电材料具有很高的压电敏感度,可以制成大面积的压电薄膜或阵列原件。那么采用高分子压电材料就可解决接收信号的问题,加上基本每家都会使用脚垫,所以可以将高分子压电材料制成压电薄膜置于脚垫之中。 接着分析如何将压电薄膜产生的信号放大从而可以控制家用电路使得灯泡亮起来。尽管压电传感器输出的电压很高,但是电流很小(最简单的一个例子就是打火机中的压电陶瓷能产生上万伏的电压,但是电流极小)。通过施加一个机械压力,压电材料产生的电荷就很少。此时的电流不足以触发一个原件。但是可以进过适当的放大,使其足够触发一个原件。 接下来最后的问题就是,需要设计出一个足够小的原件,因此不会对整体屋子装修的美观程度有影响,且在受到一定的(不是很大的)电流后,便可以触发,控制家庭电灯电路的连通,电灯可以亮起来,且这个原件也能被手动关闭,从而将电灯关上。 三、研究流程图

浅谈智能材料

浅谈智能材料 智能材料的构想来源于仿生(仿生就是模仿大自然中生物的一些独特功能制造人类使用的工具,如模仿蜻蜓制造飞机等等),它的目标就是想研制出一种材料,使它成为具有类似于生物的各种功能的“活”的材料。因此智能材料必须具备感知、驱动和控制这三个基本要素。但是现有的材料一般比较单一,难以满足智能材料的要求,所以智能材料一般由两种或两种以上的材料复合构成一个智能材料系统。这就使得智能材料的设计、制造、加工和性能结构特征均涉及到了材料学的最前沿领域,使智能材料代表了材料科学的最活跃方面和最先进的发展方向。 具体来说智能材料需具备以下内涵: (1)具有感知功能,能够检测并且可以识别外界(或者内部)的刺激强度,如电、光、热、应力、应变、化学、核辐射等; (2)具有驱动功能,能够响应外界变化; (3)能够按照设定的方式选择和控制响应; (4)反应比较灵敏、及时和恰当。 (5)当外部刺激消除后,能够迅速恢复到原始状态。 智能材料又可以称为敏感材料,其英文翻译也有若干种,常用的有Intelligent material、Intelligent material and structure、Smart material、Smart material and structure、Adaptive material and structure等。 为增加感性认识,现举一个简单的应用了智能材料的例子:某些太阳镜的镜片当中含有智能材料,这种智能材料能感知周围的光,并能够对光的强弱进行判断,当光强时,它就变暗,当光弱时,它就会变的透明。 作为一种新型材料,一般认为,智能材料由传感器或敏感元件等与传统材料结合而成。这种材料可以自我发现故障,自我修复,并根据实际情况作出优化反应,发挥控制功能。智能材料可分为两大类: (1)嵌入式智能材料,又称智能材料结构或智能材料系统。在基体材料中,嵌入具有传感、动作和处理功能的三种原始材料。传感元件采集和检测外界环境给予的信息,控制处理器指挥和激励驱动元件,执行相应的动作。 (2)有些材料微观结构本身就具有智能功能,能够随着环境和时间的变化改变自己的性能,如自滤玻璃、受辐射时性能自衰减的Inp半导体等。

智能材料与智能结构分类

智能材料(Smart Materils 或者Intelligent Material System) 是20 世纪80 年代中期提出的概念。智能材料是模仿生命系统,能感知环境变化并能实时地改变自身的一种或多种性能参数,作出所期望的能与变化后的环境相适应的复合材料或材料的复合。智能材料是一种集材料与结构、智能处理、执行系统、控制系统和传感系统于一体的复杂的材料体系。它的设计与合成几乎横跨所有的高技术学科领域。 磁流变液 电流变体 压电材料、 形状记忆合金 磁致伸缩材料 电致伸缩材料 光纤材料 聚合物胶体 形状记忆聚合物(SMP) 疲劳寿命丝(箔) 磁流变体:通常由以下三种成分组成: (1)具有高磁导率、低矫顽力的微小磁性微粒,如铁钴合金、铁镍合金、羰基铁等软磁材料。由Jolly 和Ginder等人[4]建立的磁流变液理论剪切屈服强度的计算公式可知,磁流变液的极限剪切屈服强度与磁性颗粒的饱和磁化强度的平方成正比。 (2)母液,又称溶媒,是磁性微粒悬浮的载体。为了保证磁流变液具有稳定的理化特性,母液应具有低粘度、高沸点、低凝固点、较高密度和极高“击穿磁场”等特性。目前,较为常用的母液是硅油。另外,一些高沸点的合成油、水以及优质煤油等也可作为磁流变液的母液; (3)表面活性剂,其主要作用是包覆磁性微粒并阻止其相互聚集而产生凝聚,减少或消除沉降。 功能: 这种材料具有4种主要功能:(1)对环境参数的敏感;(2)对敏感信息的传输;(3)对敏感信息的分析、判断;(4)智能反应。 具体的有: 传感功能 反馈功能 信息识别与积累功能 相应功能 自诊断功能 自修复功能 自调节功能 智能结构( Intelligent Construction)是将驱动器、传感器、乃至处理器等微电子元器件集成在复合材料之中而成型的结构它对所处环境,具有主动感知和主动响应的功能。智能结构是在智能材料的基础上提出的,是当前结构设计与结构力学方面正在迅速发展的一种崭新领域,也称为自适应结构。智能结构就是可以根据外部条件和内部条件主动地改变结构

复合材料教学大纲

《复合材料》教学大纲 一、课程名称:复合材料 二、学分、学时:2学分、32学时 三、教学对象:06级应用化学本科 四、课程性质、教学目标 《复合材料》是应用化学专业的一门学科基础课程,选修。复合材料是包括多学科、多领域的一门综合性学科。 本课程以恰当的比例分别对复合材料的各种增强材料、复合材料的各种基体材料以及聚合物基复合材料、陶瓷基复合材料等的性能、制备、应用和发展动态进行了较为系统的讨论。使学生在已有的材料科学的基础上,较为系统地学习复合材料的各种基体材料和增强材料,以及各种复合材料的性能、制备方法与应用,了解材料的复合原理,以及复合材料的发展方向。从而丰富和拓宽学生在材料及材料学方面的知识。 五、课堂要求 要求认真随堂听课,认真阅读指定教材,广泛查阅有关复合材料方面的最新资料。按教学要求完成专题综述论文的撰写,并进行课堂交流。 六、教学内容与基本要求 (一)绪论(2学时) 复合材料的国内外发展状况及今后的发展方向;复合材料的分类;复合材料的基本性能;复合材料的增韧增强原理;复合材料的特性;复合材料的应用。 基本要求:掌握复合材料的基本性能及分类,了解复合材料的应用。 (二)材料的基体材料 (6学时) 金属材料:金属的结构与性能、各种合金材料; 陶瓷材料:包括水泥、氧化物陶瓷、碳化物陶瓷、氮化物陶瓷; 聚合物材料:聚合物的种类、结构与性能,复合材料选用聚合物的原则。 基本要求:掌握常用基体材料的种类、结构性能及其选用的原则。 (三)材料的增强材料 (6学时) 玻璃纤维及其制品的分类、制备、性能与应用; 碳纤维的分类、制备、性能与应用; 陶瓷纤维、芳纶纤维、晶须的制备、性能与应用; 填料(高岭土、石墨、烹饪土、烹饪土、碳酸钙、化石粉等)的性能与应用。 基本要求:掌握常用增强材料的种类、性能及其选用的原则。 (四)传统复合材料的新发展 (4学时) 航空用先进树脂基复合材料的发展:先进复合材料在飞机上的应用、材料技术的进展、低成本复合制造技术的进展; 热塑性片材与热塑性树脂基复合材料:由片材制造成品的成型工艺、GMT片材在汽车工业中的应用; 熔体自发浸渗制备金属基复合材料:熔体自发浸渗制备金属基复合材料的原理及方法及研究现状; 陶瓷基层状复合材料:陶瓷制品的仿生结构构思、材料体系和制备技术、陶瓷基层状复合材料的结构性能及其强韧化机制、陶瓷基层状复合材料的发展方向。 基本要求:掌握常见几种传统复合材料的新应用、制备工艺与性能的基本知识,了解传统复合材料的发展方向。 (五)功能复合材料(4学时)

智能复合材料

智能复合材料课程论文 智能复合材料的研究现状与发展趋势(Research status and development trend of intelligent composite materials) 学院名称:材料科学与工程学院 专业班级:复合材料1102 学生姓名:不知道 学号:31107056541 指导教师:陈贝贝

智能复合材料的研究现状与发展趋势 摘要:智能复合材料是一类基于仿生学概念发展起来的高新技术材料,它实际上是集成了传感器、信息处理器和功能驱动器的新型复合材料。本文介绍了几种常见的智能复合材料及其研究现状。 关键词:智能复合材料;形状记忆合金;压电智能复合材料;电/磁流变体智能复合材料;纤维素智能复合材料;光导纤维智能复合材料 Research status and development trend of intelligent composite materials Abstract: the intelligent composite material is a kind of high-tech materials based on bionics concept developed, it is actually integrated model composite sensor, information processor and the function driver. This paper introduces several common intelligent composite material and its research status. Keywords:intelligent composite material; shape memory alloy; piezoelectric smart composite materials; electric / magnetic fluids of intelligent composite materials; cellulose smart composite materials; optical fiber intelligent composite material 1 前言 智能材料的兴起在材料科学引发了一个新的革命,智能材料就是指具有感知环境(包括内环境和外环境)刺激,对之进行分析、处理、判断,并采取一定的措施进行适度响应的智能特征的材料。智能材料特别之处,就是它拥有像生物一样能感应附近的环境并做出适当的反应的特性[1,2]。换句话说,智能材料能因应外界的刺激而改变自己,或者会产生某种讯息。如能运用适宜,以智能材料所做的一个零件可以取代一些复杂系统的几个环节(例如负责感觉及反应的部分),从而大大减低了系统的大小及复杂性[3-9]。智能材料可以简单分成被动和主动两种。被动智能材料在没有经过讯息分析的情况下或想也不想便会自动作出反应;而主动智能材料会分析接收到的讯息后才决定做出什么反应。智能材料的构想来源

智能材料在国防中的应用

智能材料在国防中的应用 学院:。。。。。。。。。。。。 专业:。。。。。。。。。。。。。 姓名:。。。。。。。。。。。。。 一、介绍: 智能材料(Intelligent material),是一种能感知外部刺激,能够判断并适当处理且本身可执行的新型功能材料。智能材料

是继天然材料、合成高分子材料、人工设计材料之后的第四代 材料,是现代高技术新材料发展的重要方向之一,将支撑未来 高技术的发展,使传统意义下的功能材料和结构材料之间的界 线逐渐消失,实现结构功能化、功能多样化。科学家预言,智 能材料的研制和大规模应用将导致材料科学发展的重大革命。 一般说来,智能材料有七大功能,即传感功能、反馈功能、信 息识别与积累功能、响应功能、自诊断能力、自修复能力和自 适应能力。 二、智能材料需具备以下内涵: (1)具有感知功能,能够检测并且可以识别外界的刺激强度,如电,光等; (2)具有驱动功能,能够响应外界变化; (3)能够按照设定的方式选择和控制响应; (4)反应比较灵敏,及时和恰当; (5)当外部刺激消除后,能够迅速恢复到原始状态。 三、研究方向 智能材料是一种集材料与结构、智然处理、执行系统、控制系统和传感系统于一体的复杂的材料体系。它的设计与合成几乎横跨所有的高技术学科领域。构成智能材料的基本材料组元有压电材料、形

状记忆材料、光导纤维、电(磁)流变液、磁致伸缩材料和智能高分子材料等。智然材料的出现将使人类文明进入一个新的高度,但目前距离实用阶段还有一定的距离。今后的研究重点包括以下六个方面:(1)智能材料概念设计的仿生学理论研究 (2)材料智然内禀特性及智商评价体系的研究 (3)耗散结构理论应用于智能材料的研究 (4)机敏材料的复合-集成原理及设计理论 (5)智能结构集成的非线性理论 (6)仿人智能控制理论 四、国防中的应用 (1)在飞机制造方面,科学家正在研制具有如下功能的智能材料:当飞机在飞行中遇到涡流或猛烈的逆风时,机翼中的智能材料能迅速变形,并带动机翼改变形状,从而消除涡流或逆风的影响,使飞机仍能平稳地飞行。可进行损伤评估和寿命预测的飞机自诊断监测系统。该系统可自行判断突然的结构损伤和累积损伤,根据飞行经历和损伤数据预计飞机结构的寿命,从而在保证安全的情况下,大大减少停飞检修次数和常规维护费用,使商业飞机能获得可观的经济效益。此外,还有人设想用智能材料制成涂料,涂在机身和机翼上,当机身或机翼内出现应力时,涂料会改变颜色,以此警告。

第十一章_智能材料与结构

第十一章智能材料与结构 智能材料结构(Smart/Intelligent Materials and Structures)是一门新兴起的多学科交叉的综合科学。80年代后期,随着材料技术和大规模集成电路的进展,美国军方提出了智能材料与结构的设想和概念,并开展了大规模的研究。智能材料与智能结构系统是近年来飞速发展的一个领域,这一领域的研究也越来越受到人们的重视。自1998年美国弗吉尼亚大学召开了关于“智能材料结构和数学问题”专题学术讨论会以来,智能材料系统的研究成为材料科学与工程的热点之一,有人甚至称21世纪是智能材料的世纪,目前美国已有几十家公司经营智能材料结构的产品。人们之所以如此关注智能材料系统是因为它在建筑、桥梁、水坝、电站、飞行器、空间结构、潜艇等振动、噪声、形状自适应控制、损伤自愈合等方面具有良好的应用前景。 第一节智能材料的概念及分类 智能材料结构的诞生有着一定的背景。80年代末期,复合材料普遍使用,为解决它的强度和刚度变化等问题,使得驱动元件和传感件较为容易地融合进入材料,组成整体,从而具有多种用途,同时驱动元件和传感件材料的发展以及材料集成技术上的突破,也促进了智能材料结构的出现。材料科学的发展,使得人们对机械、电子、动作等材料的多方面性能耦合进行研究,微电子技术、总线技术及计算机技术的飞速发展,解决了信息处理和快速控制等方面的难题,这些都为智能材料结构的出现提供了有利条件。 1.1智能材料的概念及其特点 智能材料系统和结构的有关名称定义目前尚不统一,但一般智能材料系统都应该具有敏感、处理、执行三个主要部分。一般来说,智能材料是能够感知环境变化(传感或发现的功能),通过自我判断和自我结构(思考和处理的功能),实现自我指令和自我执行(执行功能)的新型材料。该材料具有模仿生物体的自增值性、自修复性、自诊断性、自学习性和环境适应性。将具有仿生命功能的材料融合于基体材料中,使制成的构件具有人们期望的智能功能,这种结构称为智能材料结构。它是一个类似于人体的神经、肌肉、大脑和骨骼组成的系统,而基体材料就相当于人体的骨骼。而智能材料是能够感知环境变化,通过自我判断和结论,实现和执行指令的新型材料。智能材料的研究就是将信息与控制融入材料本身的物性和功能之中,其研究成果波及了信息、电子、生命科学、宇宙、海洋科学技术等领域。它的研究开发孕育着新一代的技术革命。智能化将成为21世纪高分子材料的重要发展方向之一。 例如光导纤维、形状记忆合金和镓砷化合物半导体控制电路埋入复合材料中,光导纤维是传感元件,能检测出结构中的应变和温度,形状记忆合金能使结构动作,改变性状,控制电

智能材料教学大纲

《智能材料》课程教学大纲 【课程编号】 【课程名称】智能材料 Intelligent materials 【学时学分】24学时;1.5学分【实验和上机学时】0学时【课程类别】专业与专业方向课【开课模式】选修 【先修课程】大学物理、高分子物理 【开课单位】辽宁省通用航空重点实验室【开课学期】第7学期 【授课对象】复合材料与工程专业本科学生 【考核方式】考查 一、课程的性质、目的与任务 智能材料这门课是为了拓展复合材料与工程专业学生的应用新型材料的能力,了解、应用、研发新材料的性能的一门选修课程,对学生认识交叉学科在材料与结构设计领域的应用具有启发意义。 本课程利用材料具有的一些生物体才具有的功能,如传感、判断、处理、执行、自预警、自修复、应激响应等,通过自适应材料与结构、智能超分子和膜、智能凝胶、微机械智能光电子、纳米机械等应用在航空航天飞行器以及土木建筑等方面。 本课程以大学物理和高分子物理等课程为基础,是学生毕业从事相关技术工作的重要理论基础。 二、课程的教学内容、基本要求和学时分配 1.绪论(2学时) 了解智能材料与智能结构的发展;智能材料的内涵和定义;智能材料与智能结构的应用前景与发展趋势。 2.典型智能材料介绍(16学时) 分别介绍几种典型的智能材料, ①形状记忆合金;

②压电复合材料; ③电磁流变体; ④智能纤维材料; ⑤智能高分子材料; ⑥智能橡胶与智能弹性体。 3.智能结构与智能控制(4学时) ①智能结构控制概念; ②隔振器与消能器; ③传感器; ④作动器。 4.其他传感元件(2学时) ①电阻应变丝; ②碳纤维复合材料; ③智能无机高分子复合材料与应用 ④二氧化钒智能窗; ⑤半导体材料; ⑥疲劳寿命丝(箔)。 三、教材及主要参考书(第1条填写主选教材) 著者书名出版社出版日期 1 陈英杰等《智能材料》机械工业出版社2013.07 2 傅秦生等《智能材料与结构系统》北京大学出版社2010.08 四、其它必要说明

复合材料损伤研究现状

复合材料损伤研究现状 复合材料是一种新型材料,由于其具有比强度、比模量高等优点,使其在众多领域都具有潜在的应用可能性。然而复合材料是由纤维、基体、界面等组成,其细观构造是一个复杂的多相体系,而且是不均匀和多向异性的,这使其结构内部的损伤与普通材料结构不同,在结构表面可能完全看不出损伤迹象,甚至用X 光和超声分层扫描也探测不到。现有的各种无损检测方法很难对复合材料结构损伤进行准确的探测与损伤程度评估,更无法对使用中的复合材料结构实现在线实时监测。将智能传感器敏感网络埋入复合材料内部,并配合适当的现代信号处理技术,构成智能复合材料结构系统,从而实现对复合材料内部状态的在线实时监测,及时发现并确定材料结构内部损伤的位置和程度,监视损伤区域的扩展,从而为材料结构的损伤检测、维修及自我修复提供准确信息,避免因复合材料结构损伤而带来巨大的损失。由于智能复合材料内部传感网络信号具有高度非线形、大数量、并行等特点,故使用传统的分析方法进行处理往往十分耗时、困难,甚至完全不可能。而现代模式识别方法(包括人工神经网络)、小波分析技术、时间有限元模型理论以及光时域反射计检测技术等就成为实现实时、在线、智能化处理分布式信号的理想工具。 结构损伤诊断,即对结构进行检测与评估,确定结构是否有损伤存在,进而判别结构损伤的程度和方位,一级结构目前的状况、使用功能和结构损伤的变化趋势等。 结构损伤诊断是近40年来发展起来的一门新学科,是一门适应工程实际需要而形成的交叉学科。结构损伤诊断概念的提出和发展,机械故障诊断问题开始引起各国政府的重视。美国国家宇航局(NASA)成立了机械故障预防小组(MFPG),英国成立了机器保健中心(MHMC),这些机构专门从事故障机理、检测、诊断和预报的技术研究,以及可靠性分析及耐久性评价,至此大型旋转机械的状态监测与故障诊断技术开始进入实用化阶段。20世纪80年代,以微型计算机为核心的现代故障诊断技术得到了迅速发展,涌现出许多商业化得计算机辅助监测和故障诊断系统,如美国SCIENTIFIC公司的PM系统、我国研制的大型旋转机械计算机状态检测与故障诊断系统等。在这一阶段,由于传感技术的飞速发展,使得诊断可以利用振动、噪声、温度、力、电、磁、光、射线等多种信号作为信息源,从而发展了振动诊断技术、声发射诊断技术、光谱诊断技术和热成像监测诊断技术等。与此同时,信号处理技术和模式识别、模糊数学、灰色系统理论等新的信息处理方法迅速发展,并在故障诊断技术中得到应用。 结构损伤诊断技术方面的工作在国外大体分为三个发展阶段: (1)20世纪40年代到50年代为探索阶段,注重对建筑结构缺陷原因的分析和补修方法的研究,检测工作大多数以目测方法为主。

智能材料结构系统在土木工程中的应用

智能材料结构系统在土木工程中的应用 发表时间:2016-09-18T14:14:34.507Z 来源:《建筑建材装饰》2015年11月上作者:胡启智 [导读] 旨在推动和促进智能材料的应用范围,为土木工程建设奠定坚实的基本条件。 摘要:在现代化的土木工程建设之中,智能材料有着广泛的应用,而加大智能材料的应用覆盖范围,对于土木工程建设项目的发展必将起到关键性的作用。文章将针对这一方面的内容展开论述,详细的分析了智能材料在土木工程建设项目当中的应用,同时对智能材料的令后发展方向和应用的现状进行了探索,旨在推动和促进智能材料的应用范围,为土木工程建设奠定坚实的基本条件。 关键词:智能材料;结构系统;土木工程 前言 智能材料的智能主要体现在,其具备感知内外部环境变化的能力,并通过分析判断来调整自身以适度符合环境。目前,随着光钎、压磁、压电和形状记忆合金等材料的发展,智能材料已经被广泛应用于土木工程的各个领域。最基本的智能材料一般被称为感知材料,其可以感知内外部刺激的材料。通过感知内外部条件变化,并做出适应环境调整的材料被称作驱动材料。现在的智能材料,一般需要多种材料复合组装来实现环境变化情况下材料结构的诊断、修复、调整。 1智能材料的特点 一般的来讲,智能材料特性有以下几点:反馈功能、传感功能、自诊断功能、相应功能、信息的积累以及识别功能、建筑结构的自我修复功能、自适应功能等。而当前所使用的智能材料还具有以下几个方面的特性:(1)在土木工程建设施工项目当中应用的智能材料可以对外界的环境进行准确的感知,可以精准的检测出环境当中的刺激和刺激所产生的强度,诸如应变量、应力、光、热能以及核辐射和化学能等;(2)智能建筑材料还具有一定的驱动能力,可以对外界的变化进行适当的相应;(3)智能材料可以按照事前设计好的方式,来对自身的相应进行控制,同时还可以选择相应的具体方式;(4)智能建筑材料对于外界刺激所产生的反应非常的快捷,并且非常恰当。最后,智能材料受到外界的刺激并且当刺激消除之时,可以迅速的、在短时间之内恢复至最初始的状态。 2智能材料在土木工程中的应用 2.1光导纤维在混泥土材料的监控 大型混凝土结构的安全检测是研究的重点,现如今,在钢筋混凝土中置入光导纤维并用于通讯,监测替代传统的导线,这样实现了建筑的自动化等等。在土木结构工程中置入传感器,能够判断出根基是否被破坏。如果将碳纤维材料置入水泥的熔浆之中,如果纤维的剂量和设备工艺要调节,那么电阻变硬的特性会随着压力的变化而变化,也就是所谓的回应力敏感,内部结构如果损坏或者接近损坏便会自动报警,这便是混凝土结构中的自我诊断的性能。这种性能可以在水坝、桥梁这些重要工程中进行结构的检测和伤害的评估。桥梁是承受负荷的一种结构,也就是说,在研究的时候,要将负荷和强度一起,并且还需要通过检测器来指导维修,这样可以减少诊断维护和维修费用。桥梁的承受能力主要是看桥面和拱璧之间有几个传感器,这样在桥梁使用的时候就会发生变化,从而造成光敏管的变化,从而获得承受能力的信息。 2.2压电材料 将压电体集成于传统的结构中,利用压电传感元件感知结构的振动模态,并根据其输出,再通过相应的控制算法确定压电作动体的输入,以实现结构振动的主动控制,是目前压电类智能结构应用研究的前沿和热点。为此,许多研究人员先后利用锆钛酸铅PZT作为加速度传感器和驱动体研究了任意复杂激励下压电层合结构的主动阻尼和被动阻尼以及主动振动控制等问题,还有的学者根据经典层板理论,采用加速度反馈控制方法讨论了利用压电传感元件实现复合材料层合梁的主动阻尼控制并进行了试验研究。特别是近年来压电材料和压电堆技术的迅速发展,为压电类智能结构的研究和应用开辟了许多新领域。不少学者已将压电材料和压电堆技术应用于土木工程结构的健康监测、安全评定和自适应修复以及抗震抗风等问题的研究,其中代表性的主要有Kamada等人的研究工作,他们已成功地把压电堆技术用于建筑结构的主动抗震控制,并取得了很好的控制效果,造价也较低廉。此外,也有将压电材料与普通控制装置相结合的半智能型混合抗震控制及半智能型主动抗震控制等方面的研究。 2.3压磁材料 压磁材料在土木工程中的应用主要包括磁流变材料和磁致伸缩材料。基于磁流变材料的原理,当磁场的强度高于临界强度时,磁流变在极短时间内从液态向固态转化。在介于固液体之间可根据磁流变液特点具有的快速、可控及可逆性质,控制流体特性实施时需要较低的能量,因此在智能结构中通常将磁流变液作为动器件的主要材料。基于这点,磁流变材料可用于高层建筑的结构中,实现对地震的半主动控制。因为潜在应用前景的广阔,使得磁致伸缩材料近年来得到很大关注。磁致伸缩材料具有强烈的磁致伸缩效应,这种材料可以在电磁和机械之间进行可逆转换,这种特性使其可以用于大功率超声器件、声纳系统、精密定位控制等很多领域。 2.4形状记忆合金 形状记忆合金是一种具有形状记忆效应的智能材料。形状记忆合金的形状被改变后,在一定条件下能激发其形状记忆效应,这一过程中,材料产生高于700兆帕的回复应力及8%左右的回复应变,同时具有较强的能量传输储存能力。基于这一特性,形状记忆合金在土木工程中最大的用处是用于各种结构中来实现结构的自我诊断、增加材料的韧性和强度等、增强材料的适应控制。形状记忆合金还可以被研制成智能驱动器,用于对结构变形、裂缝和振动方面的控制。形状记忆合金具有较高相变回复力,结合该特性能够研制开展形状记忆合金被动耗能控制系统,该系统可实现相变伪弹性性能,可在土木工程结构中用于耗能抗震的被动控制。目前的土木工程实践中,通常在结构层间或底部等受地震作用较大的位置安置形状记忆合金被动耗能控制系统,用于实现耗能系统对结构的层间变形的感知,进而起到消耗地震能量的作用。 2.5 MR制成的耗能器 MR制成的耗能器的工作温度范围宽,而且受杂质的影响比较小,因而在土木工程结构中应用也比较适合。用MR制成的可调阻尼耗能器的结构形式主要有阀型、挤压型和剪切型,其中应用最广的是阀型。活塞内部线圈在电流作用下在缸体与活塞间的间隙内产生沿活塞半径的径向磁场。活塞在缸体内相对运动,挤压并迫使液体流过缸体与活塞间隙,液体受到磁场作用产生磁流变效应,流动阻尼力增加。通

仿生智能材料

第一章绪论 1、基本概念 仿生学概念:人类进化只有500万年的历史,而生命进化已经历了约35亿年。人类很早就认识到生物具有许多超出人类自身的功能和特性。对生物的结构、形态、功能和行为等进行研究,我们就会从自然中获得解决问题的智慧和灵感。生物材料:通常有两个定义,一是有生命过程形成的材料,如结构蛋白(蚕丝等)和生物矿物(骨、牙、贝壳等),另一个是指生物医用材料(Biomedical materials),其定义随医用材料的发展不断发展,指用于取代、修复活组织的天然或人造材料。仿生材料(Bio-inspired):受生物启发或者模拟生物的各种特性而开发的材料。 材料的仿生包括模仿天然生物材料的成分和结构特征的成分、结构仿生、模仿生物体中形成材料的过程和加工制备仿生、模仿生物体系统功能的功能仿生。智能材料:具有感知环境(包括内环境和外环境)刺激,对之进行分析、处理、判断,并采取一定的措施进行适度响应的类似生物智能特征的材料。 2、智能材料的特征 具体地说,智能材料具备下列智能特性: (1)具有感知功能,可探测并识别外界(或内部)的刺激强度,如应力、应变、热、光、电、磁、化学、辐射等; 2)具有信息传输功能,以设定的优化方式选择和控制响应; (3)具有对环境变化作出响应及执行的功能; (4)反应灵敏、恰当; (5)外部刺激条件消除后能迅速回复 智能材料必须具备感知、驱动和控制三个基本要素。 3、智能材料的构成 智能材料一般由基体材料、敏感材料、驱动材料和信息处理器四部分构成。它不是传统的单一均质材料,而是一种复杂的智能材料系统。 基体材料首选高分子材料,因为质量轻,耐腐蚀;其次也可选金属材料,以轻质有色合金为主。 敏感材料担负传感的任务,其主要作用是感知环境的变化(温度、湿度、压力、pH值等)。 常用的敏感材料有形状记忆材料、压电材料、光纤材料、磁致伸缩材料、电致变色、液晶材料等。 在一定条件下,驱动材料可产生较大的应变和应力,所以它担负响应和控制的任务。常用的驱动材料有形状记忆材料、压电材料、磁致伸缩材料等可以看出,这些材料既是驱动材料又是敏感材料,显然起到了身兼二职的作用 4、智能材料的应用 (1)用于航空、航天飞行器:例:采用光纤传感器阵列和聚偏氟乙烯传感器的智能结构可对机翼、机架以及可重复使用航天运载器进行全寿命期实时监测、损伤评估和寿命预测;空间站等大型在轨系统采用光纤智能结构,可实时探测由于交会对接碰撞、陨石撞击或其他原因引起的损伤,对损伤进行评估,实施自诊断。(2)用于建筑、工程结构:例:可以利用形状记忆合金材料对应变敏感、电阻率大及加热后可以产生大回复力的特点,将记忆材料埋植在各种结构中,再配上微处理器,使之集传感驱动于一体,便构成自动探测裂纹或损伤和主动控制裂纹

纤维增强复合材料及新型结构体系

纤维增强复合材料及新型结构体系 【摘要】简单介绍土木工程材料的发展与历史、几大纤维原丝的生产工艺,介绍FRP 材料的特性与种类并分析其优缺点,深入介绍为实现FRP材料高性能化所运用的技术及FRP四大加固技术,提出问题并探讨FRP材料增强新结构。 【关键词】FRP材料结构加固增强新结构 引言 FRP 是复合材料,由于单一材料在性能方面或者其它方面无法满足具体的需求,所以有了 FRP 的存在,FRP 是将两种或者两种以上的材料组合而成的新型材料,它是一种高性能纤维复合材料和工程专用纤维复合材料。高性能纤维复合材料属于高分子复合材料,它是由各种高性能纤维作为增强体置于基体材料复合而成。其中高性能纤维是指有高的拉伸强度和压缩强度、耐磨擦、高的耐破坏力、低比重等优良物性的纤维材料,它是近年来纤维高分子材料领域中发展迅速的一类特种纤维。高性能纤维的发展是一个国家综合实力的体现,是建设现代化强国的重要物资基础。高性能纤维复合材料是发展国防军工、航空航天、新能源及高科技产业的重要基础原材料,同时在建筑、通信、机械、环保、海洋开发、体育休闲等国民经济领域具有广泛的用途。 1.土木工程材料的发展与历史 1.1历史远古时期,人类于穴巢居住;石器时代,人们挖土凿石为洞(古崖居)、伐木搭竹为棚;封建时期,人们可用砖木建房;1760年欧洲工业革命,建筑材料实现了质的飞跃,其标志为钢材、水泥、混凝土的发明与应用;二十世纪开始后,复合材料及高分子材料得到快速发展。 1.2传统土木工程材料的缺点 (1)耐久性差:如钢筋,型钢,拉索等 (2)性能单一性,不可设计性:如震后可恢复性较差 (3)低强度重量比,限制结构的发展:如大跨斜拉桥,悬索桥等 (4)无法实现自监测功能:结构安全性能隐患 1.3土木工程材料的基本性质 (1)材料的力学性质 A 强度与比强度 B 材料的弹性与塑性 C 脆性和韧性 D 硬度和耐磨性;

相关文档