文档库 最新最全的文档下载
当前位置:文档库 › 高数同济7版教案第一章函数与极限

高数同济7版教案第一章函数与极限

高数同济7版教案第一章函数与极限
高数同济7版教案第一章函数与极限

广西民族师范学院

数计系《高等数学》课程教案

课程代码:061041210

总学时/周学时:_________ 51/3

开课时间:2015年9月16日第3周至第18周授课年级、专业、班级:制药本152班

使用教材:高等数学同济大学第7版

教研室:数学与应用数学教研室

授课教师:

、课程教学计划表

、教案正文

第一章函数与极限

(一)教学目的:

1. 理解映射与函数的概念,掌握函数的表示方法,并会建立简单应用问题中的函数关系式。

2?了解函数的奇偶性、单调性、周期性和有界性。

3?理解复合函数及分段函数的概念,了解反函数及隐函数的概念。

4?掌握基本初等函数的性质及其图形。

5?理解极限的概念,理解函数左极限与右极限的概念,以及极限存在与左、右极限之间的关系。

6?掌握极限的性质及四则运算法则。

7?了解极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。

8?理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限。9?理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型

10.了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质

(有界性、最大值和最小值定理、介值定理) ,并会应用这些性质。

(二)重点、难点

1.重点函数与复合函数的概念,基本初等函数与初等函数,实际问题中的函数关系,极限概念与极限运算,无穷小,两个重要极限公式,函数连续的概念与初等函数的连续性。

2 .难点函数符号的运用,复合函数的复合过程,极限定义的理解,两个重要极限的灵活运用。

三)教学方法、手段:

教师讲授,提问式教学,多媒体教学

第一节映射与函数

一、映射

1. 映射概念

定义4.设X、Y是两个非空集合,如果存在一个法则f,使得对X中每个元素X,按法则f,在Y中有唯一确定的元素y与之对应,则称f为从X到Y的映射,记作 f : X Y.

其中y称为元素x(在映射f下)的像,并记作f(x),即y f(x),元素x称为元素y(在映射f下)的一个原像;集合X称为映射f的定义域,记作D f ,即D f X。X中所有元素的像所组成的集合称为映射f的值域,

记为R f , 或 f(X), 即R f f(X) {f(x)| x X}.

、I ?、、+ :

注意:

1) 映射的三要素 : 定义域 , 对应规则 , 值域 .

2) 对每个x X,元素x的像y是唯一的;但对每个y R元素y的原像不一定唯

例 1设 f : R R, 对每个 x R, f(x) x2.f 是一个映射 , f 的定义域 Df R, 值域R f {y| y 0}.

例 2 设 X {(x, y)| x2 y2 1}, Y {( x, 0)|| x| 1}, f : X Y,对每个(x, y) X, 有唯一确定的(x, 0) 丫与之对应.f是一个映射,f的定义域Df X,值域R f

Y

在几何上,这个映射表示将平面上一个圆心在原点的单位圆周上的点投影到x轴的区间[1, 1]上.

2、满射、单射和双射

设f是从集合X到集合丫的映射.

(1)若R f 丫即丫中任一元素y都是X中某元素的像,则称f为X到丫上

的映射或满射;

(2)若对X中任意两个不同元素x1 x2,它们的像f(x1) f(x2),则称f为X 到丫的单射;

(3)若映射f既是单射,又是满射,则称f为一一映射(或双射).

从实数集(或其子集)X到实数集丫的映射通常称为定义在X上的函数.

3. 逆映射与复合映射

逆映射定义:设f是X到丫的单射,则由定义,对每个y R f ,有唯一的x人

适合f(x) y,于是,我们可定义一个从R f到X的新映射g,即

g : R f X,

对每个y R f ,规定g(y) x,这x满足f (x) y.这个映射g称为f的逆映射,

记作f 1,其定义域为R f ,值域为X .

按定义,只有单射才存在逆映射。

例如,映射y x2, x ( , 0],其逆映射为y 、上,x [ 0,)

复合映射定义:设有两个映射g : X Y1, f : Y2 Z,其中丫1 Y2.则由映射g和f 可以定出一个从X到Z的对应法则,它将每个x X映射成f[g(x)]乙显然,这个对应法则确定了一个从 X到Z的映射,这个映射称为映射g和f构成的复合映射,记作f o g,

即 f o g: X Z,

( f o g)( x) f [g(x)], x X .

说明:(1)映射g和f构成复合映射的条件是:g的值域R必须包含在f的定义域内,即R Df .

(2)映射的复合是有顺序的,f o g有意义并不表示g o f也有意义.即使它们都有意义,f o g与g o f也未必相同.

例3设有映射 g : R [ 1, 1],对每个x R, g(x) sin x,映射

f:[ 1,1] [0,1],对每个u [1,1],f(u)厂孑?则映射g和f构成复映射fo

g: R [0, 1],对每个X R,有

(f og)(x) f [g(x)] f (sin x) <1 sin2x cosx

、函数

1.函数的定义:设x和y是两个变量,D是一个给定的数集,如果对于给定的

每个数x D,变量y按照一定法则总有确定的数值和它对应,则称y是x的函数,记作y f(x),数集D叫做这个函数的定义域,x叫做自变量,y叫

做因变量.y的取值范围叫函数的值域.

2. 定义域的求法原则:

(1)分母不为零

(2)、、x, x 0

(3)ln x, x 0

(4)arcs in x, arccos x, 1 x 1

(5)同时含有上述四项时,要求使各部分都成立的交集

3. 分段函数

用两个以上表达式表达的函数关系叫分段函数

x 1, x 1

x 1, x 1

x 1称为分段点

4. 复合函数

若y f u u x,当x的值域落在f u的定义域内时

称y f x是由中间变量u复合成的复合函数.

5. 反函数

设函数的定义域为D f,值域为V f .对于任意的y V f,在D f上至少可以确

定一个x与y对应,且满足y f x ?如果把y看作自变量,x看作因变量,就

可以得到一个新的函数:x f 1y .我们称这个新的函数x f 1y为函数

y f x的反函数,而把函数y f x称为直接函数.

说明:一个函数若有反函数,则有恒等式 f 1f X x, x D f .

相应地有f f 1y y, y V f.

例如直接函数y f x -x 3, x

4

R 的反函数为

x f 1y 4

3y3

,y R ,并且有 f 1f x

4

3

3

x

4

3 3 x ,

f f 1y

3 4

4 3

y 3 3 y .

由于习惯上x表示自变量,y表示因变量,于是我们约定y f 1x也是直接函数y f x的反函数.

6. 函数的性质

(1)有界性

有界定义:若有正数M存在,使函数f x在区间I上恒有f x M,则称 f x在区间I上是有界函数;否则,f x在区间I上是无界函数.

上界定义:如果存在常数M (不一定局限于正数),使函数f x在区间|上恒有f(x) M,则称f x在区间I上有上界,并且任意一个 N M的数N都是 f x在区间I上的一个上界;

下界定义:如果存在常数m,使f x在区间I上恒有f x m,则称f x在区间I上有下界,并且任意一个I m的数I都是f x在区间I上的一个下界.

显然,函数f x在区间|上有界的充分必要条件是f x在区间|上既有上界又有下界.

(2)单调性

严格单调递增:设函数f x在区间I上的任意两点x1x2,都有f X" f x2 (或f X1 f x2 ),则称y f X在区间I上为严格单调增加(或严格单调减少)

的函数.

严格单调递增:如果函数f X在区间|上的任意两点x1 x2,都有 f X i f X2 (或f X i f X2),则称y f x在区间I上为广义单调增加(或

广义单调减少)的函数.

广义单调增加的函数,通常简称为单调增加的函数或非减函数;广义单调减少的函数则简称为单调减少的函数或非增函数.

例如,函数y X2在区间,0内是严格单调减少的;在区间0, 内是严

格单调增加的.

而函数y x、y X3在区间,内都是严格单调增加的.

(3)奇偶性

若函数f X在关于原点对称的区间I上满足f X f X (或f X f X )则称f X为偶函数(或奇函数).

偶函数的图形是关于y轴对称的;奇函数的图形是关于原点对称的.

例如,f x x2、g X XS in x在定义区间上都是偶函数.而 F x X、

G x xcosx在定义区间上都是奇函数.

(4)周期性

对于函数y fx,如果存在一个非零常数T ,对一切的X均有

f x T f x,则称函数f x为周期函数.并把T称为f x的周期.应当指出的是,通常讲的周期函数的周期是指最小的正周期.

7. 初等函数

基本初等函数幕函数、指数函数、对数函数、三角函数、反三角函数和常数这6类函数叫做基本初等函数.这些函数在中学的数学

课程里已经学过.

(1)幕函数y x a a R

它的定义域和值域依a的取值不同而不同,但

是无论a取何值,幕函数在x 0, 内总有

定义.当a N或a -一,n N时,定义域

2n 1

为R .常见的幕函数的图形如图1-1所示.

图1-1

(2)指数函数y a x a 0, a 1

它的定义域为,,值域为0, .指数函

数的图形如图1-2所示.

(3)对数函数y log a x a 0, a 1

定义域为0, ,值域为,.对数函数

y log a x是指数函数y a x的反函数.其图形见图

1-3 .

在工程中,常以无理数 e = 2.718 281 828…作为指

数函数和对数函数的底,并且记e x expx,og e x In x,而

后者称为自然对数函数.

(4)三角函数

三角函数有正弦函数y sinx、余弦函数 y cosx、正切函数 y tanx、余

切函数y cotx、正割函数y secx和余割函数y cscx .其中正弦、余弦、正

切和余切函数的图形见图1-4 .

图1-4

(5)反三角函数

反三角函数主要包括反正弦函数y arcsinx、反余弦函数y arccosx、反正

切函数y arctanx和反余切函数y arccotx等.它们的图形如图1-5所示.

,函数的图形

是一条水平的直线,如图1-6所示.

■y = c

b

图1-6

初等函数通常把由基本初等函数经过有限次的四则运算和有限次的复合步骤所构成的并用一个解析式表达的函数,称为初等函数.

非初等函数经常遇到.例如符号函数,取整函数y x等分段函数就是非初等函数.

在微积分运算中,常把一个初等函数分解为基本初等函数来研究,学会分析初等函数的结构是十分重要的.

作业 P16 第 1 题的( 1)、(3)、(5)、(7)、(9)小结与思考:本节复习了中学学过的各种函数,应该熟记六种基本初等函数的性态,为后继课的学习作好准备.

1. x sinx是否为初等函数?

第二节数列的极限

一、数列极限的定义

极限概念是由于求某些实际问题的精确解答而产生的.

引例我国古代数学家刘徽(公元 3 世纪)利用圆内接正多边形来推算圆面积的方法——割圆术,就是极限思想在几何学上的应用.

设有一圆,首先作内接正六边形,把它的面积记为A;再作内接正十二边形,其面积记为A2 ;再作内接正二十四边形,其面积记为A3 ;循此下去,每次边数加倍,一般地把内接正6 2n 1边形的面积记为A n n N .这样,就得到一系列内接正多边形的面积:

A1,A2,A3,,A n,,

它们构成一列有次序的数.当n越大,内接正多边形与圆的差别就越小,从而以

A n作为圆面积的近似值也越精确.但是无论n取得如何大,只要n取定了,A n终究只是多边形的面积,而还不是圆的面积.因此,设想无限增大(记为n ,读作n 趋于无穷大),即内接正多边形的边数无限增加,在这个过程中,内接正多边形无限接近于圆,同时A n也无限接近于某一确定的数值,这个确定的数值就理解为圆的面积. 这个确定的数值在数学上称为上面这列有次序的数(所谓数列)A1,A2,A3,,A n,,当n

时的极限.在圆面积问题中我们看到,正是这个数列的极限才精确地表达了圆的面积.

在解决实际问题中逐渐形成的这种极限方法,已成为高等数学中的一种基本方法,因此有必要作进一步的阐明.

数列的概念如果按照某一法则,有第一个数治,第二个数X2,…这样依次

序排列着,使得对应着任何一个正整数n有一个确定的数x n,那么,这列有次序的数

x1,x2,x3,,x n,

就叫做数列.

数列中的每一个数叫做数列的项,第n项X n叫做数列的一般项?例如:

12 3 n

2,E ,4,,百, 2,4,8, 2n ,; 1 1 1 2,4,8,

1 , 1 ,1 ,,

2丄4 2 3

都是数列的例子,它们的一般项依次为

,?,2

n

以后,数列

也简记为数列X n ?

数列极限定义

一般地:如果数列X n 与常数a 有下列关系:对于任意给定的正数 多么

小),总存在正整数N ,使得对于n N 时的一切X n ,不等式

X n a

都成立,则称常数a 是数列X n 的极限,或者称数列X n 收敛于a ,记为 lim X n a,或 X n n

如果数列没有极限,就说数列是发散的. 如:

lim 1 n

n

n 1 lim n

n

X 1 , X 2 , X 3, ,x

n ,

1n1

(不论它

0,

|

( 1)n

I 2 n 1

0 (设e <1 ),只要

已矢口

X n

(1

厶,证明数列

1

X n 的极限是00

a| 0|

1

不等式lx . a |

必定成立。所以,取N=[

1],则当n>N 时就有

lim * 0

n (n 1)2

例 2 证明 lim( . n 2 1 n) 0

n

、收敛数列的性质

性质2 (收敛数列的有界性) 如果数列X n 收敛,那么数列X n 一定有界. 性质3 如果lim x n a,且a 0(a 0),那么存在正整数N 0,当n N 时, n

有 X n 0(X n 0).

性质4 (收敛数列与其子数列间的关系) 如果数列X n 收敛于a ,那么它的 任一子数列也收敛,且极限也是a .

练习P26 1 、2

小结与思考: 1 ?中国古代数学家刘徽在《九章算术注》中介绍割圆术计算圆周率 ?“割之弥

细,所失弥少?割之又割以至于不可割,则与圆合体而无所失矣.”这句话明 确的表达了极限思想.

|

( 1)n l

(n 1)2

0|

证 l 一『

1

n| 1

Jn 2 1 n

解得

n 1

2

N [- ]

2

0, N 1 [],n N

2

来求N,需变形,放大,再求No

2n

性质1 (极限的唯一性)

数列X n 不能收敛于两个不同的极限.

析 不能直接解n 2 1 n | 因此,lim( . n 2

1 n) 0 n

|、n 2 1 n |

第三节函数的极限

一、函数极限的定义

一般地,在自变量的某个变化过程中,如果对应的函数值无限接近于某个确定的数,那么这个确定的数就叫做在这一变化过程中函数的极限。

1 ?函数当x x0时的极限

满足X甸的x的范围称作以X0为中心的邻域,满足0 |x X o 的

范围称作以X o为中心,以为半径的去心邻域,记作U X o ?

现在考虑自变量X的变化过程为X X0.如果在X x0的过程中,对应的函数值f X无

限接近于确定的数值 A,那么就说A是函数f X当x x0时的极限.当然,这里我们首

先假定函数 f X在点X0的某个去心邻域内是有定义的.

函数极限的解析定义:

设函数f X在点X。的某一去心邻域内有定义.如果对于任意给定的正数

(不论它多么小),总存在正数,使得对于适合不等式0 x X。的一切X,

对应的函数值f X都满足不等式

f X A ,

那么常数A就叫做函数f X当X X0时的极限,记作

lim f x A或f x A(当x x0).上述x x0时函数f x的极限概念中,

x x

x是既从X0的左侧也从X0的右侧趋于X0的.但有时只能或只需考虑X仅从X0的左侧趋

于X0 (记作X X0 0 )的情形,或X仅从X0的右侧趋于X0 (记作

x x0 0)的情形.在x x0 0的情形,x在x0的左侧,x x0.在lim f x A

X X0

的定义中,把 Ox X0 改为X0 X X0,那么A就叫做函数 f X当

X x0时的左极限,记作

lim f x A或 f x°0 A .

x X0 0

类似地,在lim f x A的定义中,把0 x x0改为x0 x x0,那

x X。

么A就叫做函数f x当x X。时的右极限,记作

lim f x A或 f x0 0 A .

x x0 0

根据x X0时函数f x的极限的定义,以及左极限和右极限的定义,容易证明:函数f X当x X。时极限存在的充分必要条件是左极限及右极限各自存在并且相等,即

f X0 0 f X0 0 .

因此,即使f X0 0和f X0 0都存在,但若不相等,则lim f x不存在.

X x 0

而左右极限统称为单侧极限。

注:若lim f x A极限存在时

X X0

(1) A是唯一的确定的常数;

(2) X X0表示从X0的左右两侧同时趋于X0 ;

(3) 极限A的存在与f x在X0有无定义或定义的值无关.

函数

x 1,x 0

f x 0,x 0

x 1,x 0

当x 0时fx的极限不存在.

当x 0时f x的左极限lim f x lim x 1

x 0 x 0

而右极限lim f x lim x 1 1,

x 0 x 0

因为左极限和右极限存在但不相等,所以lim

x 0

2 .函数当x 时的极限

我们知道,当X 时f X 丄越来越接近零.如果函数f X当X无限增大

X

时,f X取值和常数A要多接近就有多接近,此时称 A是f X当x 时的极

限,记作

lim f x A .

x

函数极限的解析定义:

设函数f x当x大于某一正数时有定义.如果对于任意给定的正数(不论它多么小),总存在着正数X,使得对于适合不等式x X的一切X ,对应的函数值f x 都满足不等式f x A ,那么常数A就叫做函数f x当x 时的极限,记作

lim f x A或 f x A (当x ).

x

注:若 lim f x A

x

(1)A是唯一的确定的常数;

(2)x 既表示趋于,也表示趋于

如果x 时,f x取值和常数A要多接近就有多接近,我们称A是f x当 x 时的极限,记作

lim f x A .

x

如果x 时,f x取值和常数l要多接近就有多接近,我们称A是f x当x 时的极限,记作

lim f x A .

x

显然,lim f x存在的充分必要条件是

x

lim f x lim f x

x x

二、函数极限的性质

定理1函数极限唯一性。与数列极限的唯一性一致

定理2函数极限的局部有界性。与数列极限的有界性类同

定理3 (极限的局部保号性)如果lim f x A,而且A 0 (或A 0),

X x

那么就存在着点x o的某一去心邻域,当x在该邻域内时,就有 f X 0 (或 f x 0).

定理1' 如果lim f x A ( A 0 ),那么就存在着X o的某一去心邻域

x x o

。。A

U x o,当x U x o时,就有f x 」.

2

定理2 如果在x0的某一去心邻域内fx 0 (或fx 0 ),而且lim f x A,那么 A 0 (或 A 0).

X X Q

练习P33 1、3

小结:本节讲述了各种趋势下的极限的定义.

第四节无穷大与无穷小

前面我们研究了n

x

x

x

x

数列X n的极限、

函数f x的极限、

函数f x的极限、

函数f x的极限、X o函数f x的极限、

显然,n 时,n 、n 2、n 3、都是无穷大量,

x 0 时,x 、x 2、x x 2、sin x 、tanx 都是无穷小量.

注:无穷大量、无穷小量的概念是反映变量的变化趋势,因此任何常量都不是无 穷大量,任何非零常量都不是无穷小,谈及无穷大量、无穷小量之时,首先应给 出自变量的变化趋势.

无穷小与无穷大的关系: 定理2在自变量的同一变化过程中,如果fx 为无穷大,则十为无穷小;

反之,如果f x 为无穷小,且f x 0,则

二为无穷大. 例1当 x 时,y xsi nx 是

( )

A) 无穷小 B )

无穷大

C)

有界函数

D

) 无界的但不是无穷大

分析:取 x

n

2n (n 1,2,3

),则 y n 0,此时 n

im y

n

x n 2n

—(n

1,2,3

) y n 2n — lim y n

取 2

,则y

2,此时n im y

n

答案:D 作业P37 2、4

小结与思考:

本节给出了无穷小量和无穷大量的概念和它们的相关性质,注意不要错误的 利用这些性质.

1.求极限

所以原极限=1

e x

~~2

e

: lim(2

x 0

1 分析:含有绝对值符号,必须去掉绝对值,要考虑从左、 解:

x

)

右极限入手. lim (

x 0

1 2 lim (x

0 1

1

e x

2

e

1

e

2

x )

x x )

lim 0 (2

1

2 lim (x 0 1

1

e x

2

e x

1 e ;

2

e

x -) x

lim

x 0

lim

x 0

2

1 e x

2

1 e x 1

e x

1

e ; 2— 1

1 e x

第一章函数与极限复习提纲

第一章函数与极限复习提纲 一、函数 知识点:1、函数的定义域、性质的判断(有界性、奇偶性、单调性、周期性) 2、基本初等函数的表示形式 3、复合函数的分解必须会!! 4、函数关系的建立 如1、下列函数中属于偶函数的是( D. ) A. x x y sin +=; B. x x y sin 2+=; C . x x y cos +=; D. x x y cos 2+=。 2、下列复合函数由哪些基本初等函数构成? (1)x x f 2ln )(= 解:u y ln =,x u 2= (2)x y 2cos = 解:2u y = ,x u cos = (3)5)13(+=x y 解:5u y =, 13+=x u (4)3 2 1-= x y 解:3 1u y =,12-=x u (5)x y 2cos ln = 解:u y ln =,v u cos =,x v 2= 3、旅客乘坐火车时,随身携带物品,不超过20公斤免费;超过20公斤部分,每公斤收费0.20元;超过50公斤部分再加收50%。试列出收费与物品重量的函数关系式。 解 0, 0.2(20), 2050 0.3(50)6, 50 x y x x x x ≤≤?? =-<≤??-+>? 4、某公司生产某种产品,总成本为C 元,其中固定成本为200元,每多生产一单位产品,成本增加10元,又设该产品价格P 与需求量x 之间的关系为2 25x P -=,求x 为多少时公司总利润最大? 解 成本函数C (x )=固定成本+可变成本 所以x x C 10200)(+= 收入函数x x x x x p x R 2521 )225()(2+-=?- =?= 利润函数200152 1)10200(2521)()()(2 2-+-=+-+-=-=x x x x x x C x R x L 令015)('=+-=x x L 得15=x 因为驻点唯一,又根据01)("<-=x L 可知函数最大值存在,所以当15=x 时,() L x

高等数学同济第七版7版下册习题 全解

数,故 /, =Jj( x2 + y1)3d(j =2jj(x2+ y1) 3dcr. fh i)i 又由于D3关于;t轴对称,被积函数(/ +r2)3关于y是偶函数,故jj(x2 +j2)3dcr=2j(x2+y2)3da=2/2. Dy 1): 从而得 /, = 4/2. (2)利用对称性来计算二重积分还有以下两个结论值得注意: 如果积分区域关于^轴对称,而被积函数/(x,y)关于y是奇函数,即fix, -y) = -f(x,y) ,PJ jf/(x,y)da =0; D 如果积分区域D关于:K轴对称,而被积函数/(x,y)关于:c是奇函数,即/(~x,y)=-/(太,y),则 =0. D ?3.利用二重积分定义证明: (1)jj da=(其中(7为的面积); IJ (2)JJ/c/( X ,y)drr =Aj|y’(A:,y)do■(其中A:为常数); o n (3 )JJ/( x,y)clcr = JJ/( x,y)drr +jJ/( x ,y) dcr ,其中 /) = /)! U /)2,, A 为两个 I) b\ lh 尤公共内点的WK域. 证(丨)由于被枳函数./U,y)=1,故山二t积分定义得 n"

jj'ltr = Hm y^/( ,rji) A

大一高数第一章--函数、极限与连续

第一章 函数、极限与连续 由于社会和科学发展的需要,到了17世纪,对物体运动的研究成为自然科学的中心问题.与之相适应,数学在经历了两千多年的发展之后进入了一个被称为“高等数学时期”的新时代,这一时代集中的特点是超越了希腊数学传统的观点,认识到“数”的研究比“形”更重要,以积极的态度开展对“无限”的研究,由常量数学发展为变量数学,微积分的创立更是这一时期最突出的成就之一.微积分研究的基本对象是定义在实数集上的函数. 极限是研究函数的一种基本方法,而连续性则是函数的一种重要属性.因此,本章内容是整个微积分学的基础.本章将简要地介绍高等数学的一些基本概念,其中重点介绍极限的概念、性质和运算性质,以及与极限概念密切相关的,并且在微积分运算中起重要作用的无穷小量的概念和性质.此外,还给出了两个极其重要的极限.随后,运用极限的概念引入函数的连续性概念,它是客观世界中广泛存在的连续变化这一现象的数学描述. 第一节 变量与函数 一、变量及其变化范围的常用表示法 在自然现象或工程技术中,常常会遇到各种各样的量.有一种量,在考察过程中是不断变化的,可以取得各种不同的数值,我们把这一类量叫做变量;另一类量在考察过程中保持不变,它取同样的数值,我们把这一类量叫做常量.变量的变化有跳跃性的,如自然数由小到大变化、数列的变化等,而更多的则是在某个范围内变化,即该变量的取值可以是某个范围内的任何一个数.变量取值范围常用区间来表示.满足不等式a x b ≤≤的实数的全体组成的集合叫做闭区间,记为,a b ????,即 ,{|}a b x a x b =≤≤????; 满足不等式a x b <<的实数的全体组成的集合叫做开区间,记为(,)a b ,即 (,){|}a b x a x b =<<; 满足不等式a x b <≤(或a x b ≤<)的实数的全体组成的集合叫做左(右)开右(左)闭区间,记为 (,a b ?? (或),a b ??),即 (,{|}a b x a x b =<≤?? (或),{|}a b x a x b =≤

同济第六版《高等数学》教案WORD版-第01章 函数与极限

第一章函数与极限 教学目的: 1、理解函数的概念,掌握函数的表示方法,并会建立简单应用问题中的函数关系式。 2、了解函数的奇偶性、单调性、周期性和有界性。 3、理解复合函数及分段函数的概念,了解反函数及隐函数的概念。 4、掌握基本初等函数的性质及其图形。 5、理解极限的概念,理解函数左极限与右极限的概念,以及极限存在与左、右极限 之间的关系。 6、掌握极限的性质及四则运算法则。 7、了解极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限 的方法。 8、理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限。 9、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。 10、了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有 界性、最大值和最小值定理、介值定理),并会应用这些性质。 教学重点: 1、复合函数及分段函数的概念; 2、基本初等函数的性质及其图形; 3、极限的概念极限的性质及四则运算法则; 4、两个重要极限; 5、无穷小及无穷小的比较; 6、函数连续性及初等函数的连续性; 7、区间上连续函数的性质。 教学难点: 1、分段函数的建立与性质; 2、左极限与右极限概念及应用; 3、极限存在的两个准则的应用; 4、间断点及其分类; 5、闭区间上连续函数性质的应用。 §1. 1 映射与函数 一、集合 1. 集合概念 集合(简称集): 集合是指具有某种特定性质的事物的总体. 用A, B, C….等表示. 元素: 组成集合的事物称为集合的元素. a是集合M的元素表示为a?M. 集合的表示: 列举法: 把集合的全体元素一一列举出来. 例如A?{a, b, c, d, e, f, g}. 描述法: 若集合M是由元素具有某种性质P的元素x的全体所组成, 则M可表示为

高等数学(同济五版)第一章 函数与极限知识点

第一章函数与极限 一、对于函数概念要注意以下几点: (1) 函数概念的本质特征是确定函数的两个要素:定义域和对应法则。定义域是自变量和因变量能相互联系构成函数关系的条件,无此条件,函数就没意义。对应法则是正确理解函数概念的关键。函数关系不同于一般的依赖关系,“y是x的函数”并不意味着y随x的变化而变化。函数关系也不同于因果关系。例如一昼夜的气温变化与时间变化是函数关系,但时间变化并不是气温变化的实际原因。y=f(x)中的“f”表示从x到y的对应法则,“f”是一个记号,不是一个数,不能把f(x)看作f乘以x。如果函数是用公式给出的,则“f”表示公式里的全部运算。 (2) 函数与函数表达式不同。函数表达式是表示函数的一种形式,表示函数还可以用其他的形式,不要以为函数就是式子。 (3) f(x)与f(a)是有区别的。f(x)是函数的记号,f(a)是函数值的记号,是f(x)当x=a时的函数值。 (4)两个函数,当其定义域相同,对应法则一样时,此二函数才是相同的。 二、函数的有界性、单调性、周期性和奇偶性: 对函数的有界性、单调性、周期性和奇偶性的学习应注意以下几点: (1) 并不是函数都具有这些特性,而是在研究函数时,常要研究函数是否具有这些特性。 (2) 函数是否“有界”或“单调”,与所论区间有关系。 (3) 具有奇、偶性的函数,其定义域是关于原点对称的。如果f(x)是奇函数,则f(0)=0。存在着既是奇函数,又是偶函数的函数,例f(x)=0。f(x)+f(-x)=0是判别f(x)是否为奇函数的有效方法。 (4) 周期函数的周期通常是指其最小正周期,但不是任何周期函数都有最小周期。

高等数学同济第七版7版下册习题全解

第十章重积分9 5 y 2 D2 -1 O i T -2 图 10 - 1 数,故 /, = Jj( x 2 + y 1 ) 3 d(j = 2jj ( x2 + y 1 )3 dcr. fh i)i 又由于 D 3关于 ; t 轴对称,被积函数 ( / + r2) 3关于 y 是偶函数,故jj( x2 + j2 ) 3dcr = 2j( x2+ y2) 3 da =2/ 2 . Dy 1): 从而得 /, = 4/ 2 . ( 2)利用对称性来计算二重积分还有以下两个结论值得注意: 如果积分区域关于 ^ 轴对称,而被积函数 / ( x, y) 关于 y 是奇函数,即 fix, -y) = -f(x,y) , PJ jf/ ( x, y)da = 0; D 如果积分区域 D 关于: K 轴对称,而被积函数 / ( x, y) 关于: c 是奇函数,即 / ( ~x, y) = - / ( 太, y) ,则 = 0. D ? 3. 利用二重积分定义证明: ( 1 ) jj da = ( 其 中 ( 7 为的面积 ) ; IJ (2) JJ/c/( X , y) drr = Aj | y’ (

A: , y) do■ ( 其 中 A :为常数 ) ; o n (3 ) JJ/( x,y)clcr = JJ/( x,y)drr + jJ/( x ,y) dcr ,其中/) = /)! U /) 2,, A 为两个 I) b \ lh 尤公共内点的 WK 域 . 证 ( 丨 ) 由于被 枳函数. / U, y) = 1 , 故山 二 t 积分定义得n "

9 6 一、 《高等数学》 (第七版 )下册习题全解 jj'ltr = Hm y^/( ,rji) A

(完整版)同济大学高等数学上第七版教学大纲(64学时)

福建警察学院 《高等数学一》课程教学大纲 课程名称:高等数学一 课程编号: 学分:4 适用对象: 一、课程的地位、教学目标和基本要求 (一)课程地位 高等数学是各专业必修的一门重要的基础理论课程,它具有高度的抽象性、严密的逻辑性和应用的广泛性,对培养和提高学生的思维素质、创新能力、科学精神、治学态度以及用数学解决实际问题的能力都有着非常重要的作用。高等数学课程不仅仅是学习后继课程必不可少的基础,也是培养理性思维的重要载体,在培养学生数学素养、创新意识、创新精神和能力方面将会发挥其独特作用。 (二)教学目标 通过本课程的学习,逐步培养学生使其具有数学运算能力、抽象思维能力、空间想象能力、科学创新能力,尤其具有综合运用数学知识、数学方法结合所学专业知识去分析和解决实际问题的能力,一是为后继课程提供必需的基础数学知识;二是传授数学思想,培养学生的创新意识,逐步提高学生的数学素养、数学思维能力和应用数学的能力。 (三)基本要求 1、基本知识、基本理论方面:掌握理解极限和连续的基本概念及其应用;熟悉导数与微分的基本公式与运算法则;掌握中值定理及导数的应用;掌握不定积分的概念和积分方法;掌握定积分的概念与性质;掌握定积分在几何上的应用。 2、能力、技能培养方面:掌握一元微积分的基本概念、基本理论、基本运算技能和常用的数学方法,培养学生利用微积分解决实际问题的能力。

二、教学内容与要求 第一章函数与极限 【教学目的】 通过本章学习 1、理解函数的概念,了解函数的几种特性(有界性),掌握复合函数的概念及其分 解,掌握基本初等函数的性质及其图形,理解初等函数的概念。 2、理解数列极限的概念、掌握数列极限的证明方法、了解收敛数列的性质。 3、理解函数极限和单侧极限的概念,掌握函数极限的证明方法、理解极限存在与 左、右极限之间的关系,了解函数极限的性质。 4、理解无穷小和无穷大的概念、掌握无穷大和无穷小的证明方法。 5、掌握极限运算法则。 6、了解极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极 限的方法。 7、掌握无穷小的比较方法,会用等价无穷小求极限。 8、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。 9、了解连续函数的运算和初等函数的连续性, 10、了解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理), 并会应用这些性质。 【教学重点与难点】 本章重点是求函数极限的方法(极限运算法则、两个重要极限、无穷小的比较、初等函数的连续性)。难点是数列、函数极限的证明方法。 【教学内容】 第一节映射与函数 一、映射 1.映射概念

第一章 函数与极限的练习解答

一、P21:1;5 1.设),(),(∞+∞=55--A ,) ,【310-B =,写出 B A B A B A -=\,A B ,及)()\(\B A A B A A --=的表达式。 解:),5()3,(+∞-∞= B A )5,10[-=B A ),5)10,(\+∞--∞=-=( B A B A )5,10[)()\(\--=--=B A A B A A 5.下列各题中,函数)(x f 和)x g (是否相同?为什么? (1) x x g x x f lg 2)(,lg )(2== 解:不同。定义域不同,),0()0,(+∞-∞= f D ),0(+∞=g D 。 (2) 2 )(,)(x x g x x f == 解:不同。对应法则不同,即:值域不同。),0[,+∞==g f R R R 。 (3) 3 3 4 )(x x x f -=, 3 1)(-?=x x x g 解:相同。因为定义域和对应法(或值域)则相同。 (4) x x x g x f 2 2tan sec )(,1)(-== 解:不同。定义域不同,R D f = },1,0,2 { ±=+ ≠=k k x x D g π π。 二、P21:4(1)、(3)、(5)、(7)、(9);6;7(2); P22:10(1)、(4)、(5);11(1)、(3)、(5);15(1)、(3);16. 4.求下列函数的自然定义域:

(1) 23+=x y ; 解:32023-≥?≥+x x 。即:),3 2 [+∞-=D 。 (3)211x x y --=; 解:???≤≤-≠????≥-≠1 10 0102 x x x x 。即:]1,0()0,1[ -=D 。 (5) x y sin =; 解:0≥x 。即:),0[+∞=D (7))3arcsin(-=x y ; 解:42131≤≤?≤-≤-x x 。即:]4,2[=D 。 (9))1ln(+=x y 解:101->?>+x x 。即:),1(+∞-=D 6.设,3 ,3,0,sin )(ππ?≥

高等数学(同济第七版)上册-知识点总结

高等数学(同济第七版)上册-知识点总结 第一章 函数与极限 一. 函数的概念 1.两个无穷小的比较 设0)(lim ,0)(lim ==x g x f 且l x g x f =) () (lim (1)l = 0,称f (x)是比g(x)高阶的无穷小,记以f (x) = 0[)(x g ],称g(x)是比f(x)低阶的无穷小。 (2)l ≠ 0,称f (x)与g(x)是同阶无穷小。 (3)l = 1,称f (x)与g(x)是等价无穷小,记以f (x) ~ g(x) 2.常见的等价无穷小 当x →0时 sin x ~ x ,tan x ~ x ,x arcsin ~ x ,x arccos ~ x , 1? cos x ~ 2/2^x , x e ?1 ~ x ,)1ln(x + ~ x ,1)1(-+αx ~ x α 二.求极限的方法 1.两个准则 准则 1. 单调有界数列极限一定存在 准则 2.(夹逼定理)设g (x ) ≤ f (x ) ≤ h (x ) 若A x h A x g ==)(lim ,)(lim ,则A x f =)(lim 2.两个重要公式 公式11sin lim 0=→x x x 公式2e x x x =+→/10 )1(lim 3.用无穷小重要性质和等价无穷小代换 4.用泰勒公式 当x 0→时,有以下公式,可当做等价无穷小更深层次 ) ()! 12()1(...!5!3sin ) (! ...!3!2112125332++++-+++-=++++++=n n n n n x x o n x x x x x x o n x x x x e )(! 2)1(...!4!21cos 2242n n n x o n x x x x +-+++-= )()1(...32)1ln(132n n n x o n x x x x x +-++-=++ )(! ))1()...(1(...!2)1(1)1(2n n x o x n n x x x +---++-++=+ααααααα )(1 2)1(...53arctan 121 2153+++++-+-+-=n n n x o n x x x x x 5.洛必达法则

1第一章 函数与极限答案

第一章 函数与极限 第一节 映射与函数 1.填空题: (1)函数)(x f y =与其反函数)(x y ?=的图形关于 x y = 对称. (2 )函数 2 1 ()1f x x = +-的定义域为__________________________; (3)若)(x f 的定义域是[0,1],则)1(2+x f 的定义域是 {0} . (4)设b ax x f +=)(,则=-+= h x f h x f x ) ()()(? a . (5)若,11)(x x f -=则=)]([x f f x x 1- ,=)]}([{x f f f x . (6)函数2 x x e e y --=的反函数为 。 (7 )函数y =: x ≥0,值域: 0≤y <1 ,反函数: x =-ln(1-y 2), 0≤y <1 2. 选择题: (1)下列正确的是:(B ,C ) A.2 lg )(x x f =与x x g lg 2)(=是同一函数. B.设)(x f 为定义在],[a a -上的任意函数,则)()(x f x f -+必为偶函数,)()(x f x f --必为奇函数. C.?? ? ??<-=>==0,10,00,1sgn x x x x y 是x 的奇函数. D.由任意的)(u f y =及)(x g u =必定可以复合成y 为x 的函数. . (2))sin()(2 x x x f -=是( A ). A.有界函数; B. 周期函数; C. 奇函数; D. 偶函数. (3)设54)(2 ++=bx x x f ,若38)()1(+=-+x x f x f ,则b 为( B ). A.1; B.–1; C.2; D.–2. (4)函数 2 1 arccos 1++-=x x y 的定义域是( )

高数第一次课随堂练习函数与极限

随堂练习 一 第一章 函数与极限 一、填空题 1、43 2lim 23=-+-→x k x x x ,则k= 。 2、函数x x y sin = 有间断点 ,其中 为其可去间断点。 3、若当0≠x 时 ,x x x f 2sin )(= ,且0)(=x x f 在处连续 ,则=)0(f 。 4、=++++∞→3 52352) 23)(1(lim x x x x x x 。 5、3) 2 1(lim -∞ →=+e n kn n ,则k= 。 6、函数2 31 22+--=x x x y 的间断点是 。 7、当+∞→x 时, x 1 是比 3-+x 8、当0→x 时,无穷小x --11与x 相比较是 无穷小。 9、函数x e y 1=在x=0处是第 类间断点。 10、设1 1 3 --= x x y ,则x=1为y 的 间断点。 11、已知33=?? ? ??πf ,则当a 为 时,函数x x a x f 3sin 31sin )(+=在3π=x 处连续。 12、设?? ???>+<=0)1(02sin )(1x ax x x x x f x 若)(lim 0 x f x →存在 ,则a= 。 13、设? ??>≤+=0,cos 0 ,)(x x x a x x f 在0=x 连续 ,则常数a= 。 二、计算题 1、计算下列极限 (1))2141211(lim n n ++++ ∞ → ; (2)2)1(321lim n n n -++++∞→ ;

(3)35lim 22-+→x x x ; (4)1 1 2lim 221-+-→x x x x (5))12)(11(lim 2x x x -+ ∞ → ; (6)x x x 1 sin lim 20→ ; (7)x x x x +---→131lim 21 ; (8))1(lim 2 x x x x -++∞ → ; 2、计算下列极限 (1)x wx x sin lim 0→ ; (2)x x x 5sin 2sin lim 0→ ; (3)x x x cot lim 0→ ; (4)x x x x )1( lim +∞→ ; (5)1 )11(lim -∞→-+x x x x ; (6)x x x 1 )1(lim -→ ; 3、比较无穷小的阶 (1)32220x x x x x --→与,时 ; (2))1(2 1 112 x x x --→与,时 ; (3)当0→x 时 , 232-+x x 与x 。 4、利用等价无穷小性质求极限 (1)30sin sin tan lim x x x x -→ ; (2)),()(sin ) sin(lim 0是正整数m n x x m n x → ; 5、讨论函数的连续性 。 在? ??=>-≤-=11,31 ,1)(x x x x x x f 6、利用函数的连续性求极限 (1))(lim 22 x x x x x -- ++∞ →; (2)x x x sin ln lim 0 → (3)x x x 2)11(lim + ∞→; (4))1 1 (lim ,)1(lim )(1 --=+ →∞→t f n x x f t n n 求设 (5))1(lim 2 x x x x -++∞ → ; (6)1)1232( lim +∞→++x x x x ; (7)3 0sin tan lim x x x x -→ ; 7、设函数???≥+<=0 ,0 ,)(x x a x e x f x 应当怎样选择a ,使得) ()(∞+-∞,成为在x f 内的连续函数。 8、证明方程135 =-x x 至少有一个根介于1和2之间。 9、设????? ≤+>=0 ,0,1sin )(2 x x a x x x x f 要使),()(∞+-∞在x f 内连续, 应当怎样选择数a ?

(完整版)高等数学第一章函数与极限试题2

高等数学第一章函数与极限试题 一. 选择题 1.设F(x)是连续函数f(x)的一个原函数,""N M ?表示“M 的充分必要条件是N ”,则必有 (A ) F(x)是偶函数?f(x)是奇函数. (B ) F(x)是奇函数?f(x)是偶函数. (C ) F(x)是周期函数?f(x)是周期函数. (D ) F(x)是单调函数?f(x)是单调函数 2.设函数,1 1 )(1 -= -x x e x f 则 (A ) x=0,x=1都是f(x)的第一类间断点. (B ) x=0,x=1都是f(x)的第二类间断点 (C ) x=0是f(x)的第一类间断点,x=1是f(x)的第二类间断点. (D ) x=0是f(x)的第二类间断点,x=1是f(x)的第一类间断点. 3.设f (x)=x x 1-,x ≠0,1,则f [)(1 x f ]= ( D ) A ) 1-x B ) x -11 C ) X 1 D ) x 4.下列各式正确的是 ( C ) A ) lim 0 + →x )x 1 +1(x =1 B ) lim 0 + →x )x 1 +1(x =e C ) lim ∞ →x )x 1 1-(x =-e D ) lim ∞ →x )x 1 +1(x -=e

5.已知9)( lim =-+∞→x x a x a x ,则=a ( C )。 A.1; B.∞; C.3ln ; D.3ln 2。 6.极限:=+-∞→x x x x )1 1(lim ( C ) A.1; B.∞; C.2-e ; D.2e 7.极限:∞ →x lim 332x x +=( A ) A.1; B.∞; C.0; D.2. 8.极限:x x x 11lim 0 -+→ =( C ) A.0; B.∞; C 2 1; D.2. 9. 极限:)(lim 2x x x x -+∞ +→=( D ) A.0; B.∞; C.2; D. 2 1 . 10.极限: x x x x 2sin sin tan lim 30-→=( C ) A.0; B.∞; C. 16 1; D.16. 二. 填空题 11.极限1 2sin lim 2+∞ →x x x x = 2 . 12. lim 0 →x x arctanx =_______________. 13. 若)(x f y =在 点 x 连续,则 f )]()([lim 0→-0 x f x f x x =______f ’(xo)_________; 14. =→x x x x 5sin lim 0_________0.2__; 15. =-∞→n n n )2 1(lim _______e*e__________; 16. 若函数2 31 22+--=x x x y ,则它的间断点是___________2___1_____

大一高等数学总结

第一讲函数、连续与极限 一、理论要求 1.函数概念与性质函数的基本性质(单调、有界、奇偶、周期) 几类常见函数(复合、分段、反、隐、初等函数) 2.极限极限存在性与左右极限之间的关系 夹逼定理和单调有界定理 会用等价无穷小和罗必达法则求极限 3.连续函数连续(左、右连续)与间断 理解并会应用闭区间上连续函数的性质(最值、有界、介值) 二、题型与解法 A.极限的求法(1)用定义求 (2)代入法(对连续函数,可用因式分解或有理化消除零因子) (3)变量替换法 (4)两个重要极限法 (5)用夹逼定理和单调有界定理求 (6)等价无穷小量替换法 (7)洛必达法则与Taylor级数法 (8)其他(微积分性质,数列与级数的性质) 1. (等价小量与洛必达) 2.已知

(洛必达) 3. (重要极限) 4.已知a、b为正常数, (变量替换)5. 解:令 6. (变量替换)

7.已知在x=0连续,求a 解:令(连续性的概念) 三、补充习题(作业) 1.(洛必达) 2.(洛必达或Taylor) 第二讲导数、微分及其应用 一、理论要求 1.导数与微分导数与微分的概念、几何意义、物理意义 会求导(基本公式、四则、复合、高阶、隐、反、参数方程求导) 会求平面曲线的切线与法线方程 2.微分中值定理理解Roll、Lagrange、Cauchy、Taylor定理 会用定理证明相关问题 3.应用会用导数求单调性与极最值、凹凸性、渐进线问题,能画简图 会计算曲率(半径) 二、题型与解法

A.导数微分的计 算 基本公式、四则、复合、高阶、隐函数、参数方程求导 1.决定,求 2.决定,求 解:两边微分得x=0时,将x=0代入等式得y=1 3.决定,则 B.曲线切法线问题5.f(x)为周期为5的连续函数,它在x=1可导,在x=0的某邻域内满足f(1+sinx)-3f(1-sinx)=8x+o(x)。求f(x)在(6,f(6))处的切线方程。 解:需求,等式取x->0的极限有:f(1)=0 C.导数应用问题 6.已知, ,求点的性质。 解:令,故为极小值点。 7.,求单调区间与极值、凹凸区间与拐点、渐进线。 解:定义域

考研数学高数公式:函数与极限解读

考研数学高数公式:函数与极限 第一章:函数与极限 第一节:函数 函数属于初等数学的预备知识,在高数的学习中起到铺垫作用,直接考察的内容比较少,但是如果这章节有所缺陷对以后的学习都会有所影响。 基础阶段: 1.理解函数的概念,能在实际问题的背景下建立函数关系; 2.掌握并会计算函数的定义域、值域和解析式; 3.了解并会判断函数的有界性、单调性、周期性、奇偶性等性质; 4.理解复合函数和反函数的概念,并会应用它们解决相关的问题; 强化阶段: 1.了解函数的不同表现形式:显式表示,隐式表示,参数式,分段表示; 2.掌握基本初等函数的性质及其图形,了解初等函数的概念。 冲刺阶段: 1.综合应用函数解决相关的问题; 2.掌握特殊形式的函数(含极限的函数,导函数,变上限积分,并会讨论它们的相关性质。 第二节:极限

极限可以说是高等数学的基础,极限的计算也是高等数学中最基本的运算。在考试大纲中明确要求考生熟练掌握的基本技能之一。虽在考试中站的分值不大。但是在其他的试题中得到广泛应用。因此这部分学习直接营销到整个学科的复习结果 基础阶段 1.了解极限的概念及其主要的性质。 2.会计算一些简单的极限。 3.了解无穷大量与无穷小量的关系,了解无穷小量的比较方法,记住常见的等价无穷小量。 强化阶段: 1.理解极限的概念,理解函数左右极限的概念及其与极限的关系(数一数二/了解数列 极限和函数极限的概念(数三; ▲2.掌握计算极限的常用方法及理论(极限的性质,极限的四则运算法则,极限存在的两个准则,两个重要极限,等价无穷小替换,洛必达法则,泰勒公式; 3.会解决与极限的计算相关的问题(确定极限中的参数; 4.理解无穷大量和无穷小量的概念及相互关系,会进行无穷小量的比较,记住常见的等价无穷小量并能在计算极限时加以应用(数一数二/理解无穷小量的概念,会进行无穷小量的比较,记住常见的等价无穷小量并能在计算极限时加以应用,了解无穷大量的概念及其与无穷小量的关系(数三。 冲刺阶段: 深入理解极限理论在微积分中的中心地位,理解高等数学中其它运算(求导,求积分与极限之间的关系,建立完整的理论体系。

答案高等数学第一章函数与极限试题

答案: 一.选择题 1.A 【分析】 本题可直接推证,但最简便的方法还是通过反例用排除法找到答案. 【详解】 方法一:任一原函数可表示为 ?+=x C dt t f x F 0 )()(,且).()(x f x F =' 当F(x)为偶函数时,有)()(x F x F =-,于是)()1()(x F x F '=-?-',即 )()(x f x f =--,也即)()(x f x f -=-,可见 f(x)为奇函数; 反过来,若f(x)为奇函数,则? x dt t f 0 )(为偶函数,从而 ?+=x C dt t f x F 0 )()(为偶函数,可见(A)为正确选项. 方法二:令f(x)=1, 则取F(x)=x+1, 排除(B)、(C); 令f(x)=x, 则取F(x)=2 2 1x , 排除(D); 故应选(A). 【评注】 函数f(x)与其原函数F(x)的奇偶性、周期性和单调性已多次考查过. 请读者思考f(x)与其原函数F(x)的有界性之间有何关系? 2. D 【分析】 显然x=0,x=1为间断点,其分类主要考虑左右极限. 【详解】 由于函数f(x)在x=0,x=1点处无定义,因此是间断点. 且 ∞=→)(lim 0 x f x ,所以 x=0为第二类间断点; 0)(lim 1=+ →x f x ,1)(lim 1 -=- →x f x ,所以x=1为第一类间断点,故 应选(D).

【评注】 应特别注意:+∞=-+ →1 lim 1x x x ,.1 lim 1-∞=-- →x x x 从而 +∞=-→+ 1 1lim x x x e ,.0lim 1 1 =-→- x x x e 3 C 4 A 5 C 6 C 7 A 8 C ∵x →∞时,分母极限为令,不能直接用商的极限法则。先恒等变形,将函数“有理化”: 原式 = 2 1111lim )11() 11)(11(lim 0 =++=++++-+→→x x x x x x x . (有理化法) 9 D 10 C 解 原式 16 1821lim )2()cos 1(tan lim 32 030=?=-=→→x x x x x x x x . ▌ 注 等价无穷小替换仅适用于求乘积或商的极 的每项作等价替换,则 原式0)2(l i m 3 =-=→x x x x .

高等数学同济第七版上册课后答案

习题1-10 1.证明方程x5-3x=1至少有一个根介于1和2之间. 证明设f(x)=x5-3x-1,则f(x)是闭区间[1, 2]上的连续函数. 因为f(1)=-3,f(2)=25,f(1)f(2)<0,所以由零点定理,在(1, 2)内至少有一点ξ(1<ξ<2),使f(ξ)=0,即x=ξ是方程x5-3x=1的介于1和2之间的根. 因此方程x5-3x=1至少有一个根介于1和2之间. 2.证明方程x=a sin x+b,其中a>0,b>0,至少有一个正根,并且它不超过a+b. 证明设f(x)=a sin x+b-x,则f(x)是[0,a+b]上的连续函数. f(0)=b,f(a+b)=a sin (a+b)+b-(a+b)=a[sin(a+b)-1]≤0. 若f(a+b)=0,则说明x=a+b就是方程x=a sin x+b的一个不超过a+b的根; 若f(a+b)<0,则f(0)f(a+b)<0,由零点定理,至少存在一点ξ∈(0,a+b),使f(ξ)=0,这说明x=ξ也是方程x=a sin x+b的一个不超过a+b的根. 总之,方程x=a sin x+b至少有一个正根,并且它不超过a+b. 3.设函数f(x)对于闭区间[a,b]上的任意两点x、y,恒有 |f(x)-f(y)|≤L|x-y|,其中L为正常数,且f(a)?f(b)<0.证明:至少有一点ξ∈(a,b),使得f(ξ)=0. 证明设x0为(a,b)内任意一点.因为

0||lim |)()(|lim 0000 0=-≤-≤→→x x L x f x f x x x x , 所以 0|)()(|lim 00 =-→x f x f x x , 即 )()(lim 00 x f x f x x =→. 因此f (x )在(a , b )内连续. 同理可证f (x )在点a 处左连续, 在点b 处右连续, 所以f (x )在[a , b ]上连续. 因为f (x )在[a , b ]上连续, 且f (a )?f (b )<0, 由零点定理, 至少有一点ξ∈(a , b ), 使得f (ξ)=0. 4. 若f (x )在[a , b ]上连续, a

第一章函数和极限答案

第一章 函数与极限 一 函数(见§1.1) Ⅰ 内容要求 (ⅰ)在中学已有函数知识的基础上,加深对函数概念的理解和函数性质(奇偶性、单调 性、周期性和有界性)的了解。 (ⅱ)理解复合函数的概念,了解反函数的概念,了解分段函数的概念。 (ⅲ)记忆基本初等函数的图象,了解初等函数的概念,自学双曲函数及反双曲函数。 (ⅳ)学会建立简单实际问题中的函数关系式。 Ⅱ 基本题型 (ⅰ)有关确定函数定义域的题型 1.(4分)1 )2ln()(+-= x x x f 的定义域为 21<<-x 2.(4分)) 2ln(1 )(x x x f -+= 的定义域为 [))2,1(1,1Y - 3.(4分))32arcsin(-=x y 的定义域为--------------- ( D ) A )2,1( B )2,1[ C ]2,1( D ]2,1[ 4.设)(x f 的定义域D = ]1,0[,求下列各函数的定义域: (1)(6分))(2 x f []1,1-∈x (2)(6分))2(x f (]0,∞-∈x (3)(7分))31 ()31(-++x f x f ?? ????∈32,31x (ⅱ)有关确定函数(反函数)表达式的题型 5.(4分)已知: x x f cos 1)2 (sin +=,则)(x f =)1(22 x - 6.(4分)设???????>=<-=0,10,00,1)(x x x x f ,则=)]([x f f ??? ? ???>=<-=0,10,00,1)(x x x x f 7.求下列函数的反函数 (1)(4分)31+=x y 1,13 3-=-=x y y x (2)(4分)x x y +-= 11 x x y y y x +-=+-=11,11 )1(-≠x

相关文档
相关文档 最新文档