文档库 最新最全的文档下载
当前位置:文档库 › 湍流模型概述

湍流模型概述

湍流模型概述
湍流模型概述

大多数飞行器都是在高Re数下飞行,表面的流态是湍流。为了准确地确定湍流流态下的摩阻、热流,湍流成为一个重要而困难的研究课题。

(一)DNS

目前处理湍流数值计算问题有三种方法,第一种方法即所谓直接数值模拟方法(DNS方法),直接求解湍流运动的N-S方程,得到湍流的瞬时流场,即各种尺度的随机运动,可以获得湍流的全部信息。随着现代计算机的发展和先进的数值方法的研究,DNS方法已经成为解决湍流的一种实际的方法。但由于计算机条件的约束,目前只能限于一些低Re数的简单流动,不能用于工程应用。目前国际上正在做的湍流直接数值模拟还只限于较低的需诺数(Re~200)和非常简单的流动外形,如平板边界层、完全发展的槽道流,以及后台阶流动等。用直接数值模拟方法处理工程中的复杂流动问题,即使是当前最先进的计算机也还差三个量级。

(二)LES

另一种方法称做大涡模拟方法(LES方法)。这是一种折衷的方法,即对湍流脉动部分直接地模拟,将N-S方程在一个小空间域内进行平均(或称之为滤波),以使从流场中去掉小尺度涡,导出大涡所满足的方程。小涡对大涡的影响会出现在大涡方程中,再通过建立模型(亚格子尺度模型)来模拟小涡的影响。由于湍流的大涡结构强烈地依赖于流场的边界形状和边界条件,难以找出普遍的湍流模型来描述具有不同的边界特征的大涡结构,宜做直接模拟。相反地,小尺度涡对边界条件不存在直接依赖关系,而且一般具有各向同性性质。所以亚格子模型具有更大的普适性,比较容易构造,这是它比雷诺平均方法要优越的地方。自从1970年Deardorff第一次给出具有工程意义的LES计算以来,LES方法已经成为计算湍流的最强有力的工具之一,应用的方向也在逐步扩展,但是仍然受计算机条件等的限制,使之成为解决大量工程问题的成熟方法仍有很长的路要走。

(三)RANS

目前能够用于工程计算的方法就是模式理论。所谓湍流模式理论,就是依据湍流的理论知识、实验数据或直接数值模拟结果,对Reynolds应力做出各种假设,即假设各种经验的和半经验的本构关系,从而使湍流的平均Reynolds方程封闭。随着计算流体力学的发展,湍流模式理论也有了很大的进步,有了非常丰硕的成果。从对模式处理的出发点不同,可以将湍流模式理论分类成两大类:一类称为二阶矩封闭模式,另一类称涡粘性封闭模式。

(1)雷诺应力模式

所谓二阶矩封闭模式,是从Reynolds应力满足的方程出发,将方程右端未知的项(生成项,扩散项,耗散项等)用平均流动的物理量和湍流的特征尺度表示出来。典型的平均流动的变量是平均速度和平均温度的空间导数。这种模式理论,由于保留了Reynolds应力所满足的方程,如果模拟的好,可以较好地反映Reynolds应力随空间和时间的变化规律,因而可以较好地反映湍流运动规律。因此,二阶矩模式是一种较高级的模式,但是,由于保留了Reynolds应力的方程,加上平均运动的方程整个方程组总计15个方程,是一个庞大的方程组,应用这样一个庞大的方程组来解决实际工程问题,计算量很大,这就极大地限制了二阶矩模式在工程问题中的应用。

(2)涡粘性模式

在工程湍流问题中得到广泛应用的模式是涡粘性模式。这是由Boussinesq 仿照分子粘性的思路提出的,即设Reynolds 应力为,

ij ij k k i j j i T j i k U U U u u δδν3

2

)32(,,,+++-= () 这里j i u u k 2

1

=

是湍动能,T ν称为涡粘性系数,这是最早提出的基准涡粘性模式,即假设雷诺应力与平均速度应变率成线性关系,当平均速度应变率确定后,六个雷诺应力只需要通过确定一个涡粘性系数T ν就可完全确定,且涡粘性系数各向同性,可以通过附加的湍流量来模化,比如湍动能k ,耗散率ε,比耗散率ω以及其它湍流量ετ/k =,ε/2/3k l =,

k q =,根据引入的湍流量的不同,可以得到不同的涡粘性模式,比如常见的ε-k ,k-w

模式,以及后来不断得到发展的τ-k ,q -w ,k-l 等模式,涡粘性系数可以分别表示为 ενμ/2

k C T =,ω

νμ

k

C T =,τνμk C T =,ω

νμ

2

q C T =,.l k C T μν=

为了使控制方程封闭,引入多少个附加的湍流量,就要同时求解多少个附加的微分方程,根据求解的附加的微分方程的数目,一般可将涡粘性模式划分为三类:零方程模式,半方程模型,一方程模式,两方程模式。 1) 零方程模式

所谓零方程模式是试图直接用平均流动物理量模化T ν,而不引入任何湍流量(如ε,k 等)。例如,Prandttl 的混合长理论就是一种零方程模式:

y

U

l T ??∝2

ν (5.7) 式中l 称为混合长。

在零方程模式的框架下,得到最为广泛应用的是Baldwin-Lomax 模式

[22]

。该模式是对

湍流边界层的内层和外层采用不同的混合长假设。这是因为靠近壁面处,湍流脉动受到很大的抑制,含能涡的尺度减小很多,因此长度尺度减小很多;另一方面,在边界层外缘,湍流呈间歇状,质量、动量和能量的输运能力大大下降,即湍流的扩散能力减小。这样,应用混合长理论来确定涡粘性系数在这两个不同的区域应该有不同的形式。Baldwin-Lomax 模式的具体数学描述如下。

??

?>≤=c

ont

T c inn

T T y y y y )()(ννν (5.8)

这里c y 是ont inn )()(T T νν=的离壁面最小距离y 值。 对于内层,即c y y ≤,有

Ω=2T )(l inn ν (5.9)

Ω是涡量,l U j k ijk ,

,ε=Ω是长度尺度

))/(1(++--=A y exy ky l (5.10) 其中k=0.4是Karman 常数,A +

是模化常数,+y 是无量纲法向距离:

w y U y ντ/=+

而τu 是摩擦速度,其含义为

,w

y

U u ??=ν

τ

此处下标w 表示壁面。 对于外层,即c y y >,有

)(()(T y F F kleb wake out =ν (5.11) 其中

)/,min(max 2

max max max F U y C F y F dif wk wake =

max F 是下列函数的最大值: ))/exp(1()(++--Ω=A y y y F

而max y 是)(y F 达到最大值的位置。kleb F 是所谓的Klebanoff 间歇函数:

1

6max )(5.51)(-???

? ???+=y y C y F kleb kleb dif U 是平均速度分布中最大值和最小值之差。

几个模化常数的值如下: .4.0;,0.1;3.0;

02668.0;

0.26=====+K C C C A wk kleb

由上述模化关系中可以看出,Reynolds 应力完全地由当时当地的平均流参数用代数关系式所决定。平均流场的任何变化立刻为当地的湍流所感知,这表明零方程模式是一个平衡态模式,假定湍流运动永远处于和平均运动的平衡之中。实际上对大多数湍流运动而言,并非如此,特别是对平均流空间和时间有剧烈变化的情形,再有因为坐标y 显式地出现在湍流模式中,零方程模式不具有张量不变性,当将它应用到复杂几何外形的流动的数值模拟会带来困难。当流动发生分离时,Baldwin-Lomax 模式会遇到困难,这是因为在分离点和再附点附近,摩擦速度τu 为零,此时要引入一些人为的干涉来消除这些困难。

计算实践表明,只要流动是附体的,零方程模式一般都可以较好地确定压强分布,但是摩阻和传热率的估算不够准确,特别是当流动有分离和再附时。这是因为附体流压强分布对湍流应力不敏感。总之,对附体流动,如果只关心压强分布,应用零方程模式通常可以给出满意的结果,而且模式应用起来十分简便。但是对于我们计算摩阻的需求,零方程模式是不能满足要求。对于有分离、再附等复杂流动,零方程模式是不适用的。

2)半方程模式

为了能计算具有较强压强梯度,特别是较强逆压梯度的非平衡湍流边界层,Johnson-King于1985年提出了一个非平衡代数模型,该模型仍采用涡粘性假设,把涡粘性的分布与最大剪切应力联系在一起,内层涡粘性与外层涡粘性分布用一个指数函数作光滑拟合,外层涡粘性系数作为一个自由参数,由描述最大剪切应力沿流向变化的常微分方程来确定,此常微分方程是由湍流动能方程导出的,故此模型又称为半方程模型。JK模型虽然仍采用涡粘性假设,却包含有雷诺应力模型的特点。由于求解常微分方程比一方程,二方程模型中求解偏微分方程要简单,省时的多,故用JK模型的工作量只略高于通常平衡状态的零方程代数模型的工作量

JK模型后又经不断修正,发展了JK1990A,JK1990J以及JK1992等改进型3)一方程模式

Baldwin-Barth(BB) 模型是在二方程模型中,将某一导出的应变量作为基本物理量而得到的,应用此一方程模型可避免求解两方程时会遇到的某些数值困难。BB一方程模型所选择的导出应变量为“湍流雷诺数”Rt。BB模型对计算网格的要求低,壁面的网格可以与采用BL代数模型的相当,而不象两方程k-e模型那样要求壁面网格很细,这样就避免了在k-e模型中流场求解的刚性问题。

Spalart-Allmaras(SA)模型与BB模型不同,不是直接利用k-e模型两方程模型加于简化而得,而是从经验和量纲分析出发,由针对简单流动在逐渐补充发展而适用于带有层流

ν相关的量ν~,除流动的固壁湍流流动的一方程模型,模型中选用的应变量是与涡粘性

T

在粘性次层外,ν~与Tν是相等的。

上述两种一方程模型具有相似的特点,它们不象代数模型那样需要分为内层模型,外层模型或壁面模型,尾流模型,同时亦不需要沿法向网格寻找最大值,因此易于用到非结构网格中去;但由于在每个时间步长内,需要对整个流场求解一组偏微分方程,故比BL 和JK模型更费机时

4)两方程模式

2.1 k-ε两方程模式

2.1.1 标准k-ε两方程模式

k-ε模式是最为人所知和应用最广泛的两方程涡粘性模式,为积分到壁面的不可压缩/可压缩湍流的两方程涡粘性模式,各种不同版本的k-ε模式常见于各种文献中,选择

Jones-Launder模式作为一般性介绍。

k-ε模式最初的发展是为了改善混合长(mixing-length)模式和避免复杂流动中湍流长度尺度(turbulent length scale)的代数表示(algebraic prescription)。它求解两个湍流标量k和ε的输运方程。k方程表示湍动能输运方程,ε方程表示湍动能的耗散率。

该模式对较小压力梯度(relatively small pressure gradients)下的自由剪切流(free-shear-layer flows)具有较好的结果。对于壁面流动(wall bounded flows),在零或者小平均压力梯度下,模式结果和实验结果符合得较为一致,但是对大的逆压梯度(adverse pressure gradients),其结果就不太正确了。另外,在壁面附近,该模式需要壁面衰减函数(wall-damping functions)和较好的网格分布。 a. 模式方程

雷诺应力的涡粘性模型为

32)3(2ij ij nn ij t j tij k S S u u δρδμρτ--=-=

这里

t μ为涡粘性(eddy viscosity),ij S 为平均速度应变率张量(mean-velocity

strain-rate tensor),ρ为流体密度,k 为湍动能,ij δ为克罗内克算子(Kronecker delta)。涡粘性定义为湍动能k 和湍流耗散率ε的函数

ερμμμ2k f c t =

基于量纲分析,涡粘性由流体密度ρ,湍流速度尺度 (turbulent velocity scale) 2

k 和长度尺度 (length-scale) ε3k 来标度,衰减函数μf 由湍流雷诺数εμρ2Re k t =来

模化。

湍流输运方程可表示成以下形式 湍流能量输运方程

k ij tij j

k j j j

S x k

x k u x t k φ+-=???

?

?

??????? ??

+-????

+??ρετσμμρρτ 能量耗散输运方程

εεεετ

ερτεε

σμμερρεφ2221+-=???

?

?

??????? ??

+-??

+??k f c S k c x u x t ij tij j

j j

这里右端项分别表示生成项(production term)耗散项(dissipation term)和壁面项(wall term)。 b. 模式常数和参数

模式中各常数的定义为

09.0=μc 45.11=εc 92.12=εc

0.1=k σ 3.1=εσ 9.0Pr =t

近壁衰减函数

)

Re exp(3.01))Re 02.01(4.3exp(222

t t f f --=+-=μ 和 με

ρ2

Re k t =

壁面项

2

2φ???? ????=y

k

k μ 和 2

222φ???

? ????=y u s

t ρμμε 这里s u 为平行于壁面的流动速度。

c. 边界条件

积分到壁面的无滑移边界条件为

0=k 0=ε

2.1.2 可实现性ε-k 模式

上述标准ε-k 模式,对于高平均切变率流动会出现非物理的结果(例如当7.3/>εSk 时,其中ij ij S S S 2=

)。为了保证模式的可实现性,模式函数μC 不应该是常数,而应当

是平均庆变率的函数。实验表明,对边界层流动和均匀切变流,μC 的值是非常不同的。为此人们根据可实现性对模式的约束条件,建议采用以下形式的μC (Reynolds, 1987, Shih, 1994)

ε

μk

U A A C s *

01+=

(5.19)

式中

k

ijk ij ij k

ijk ij ij ij

ij ij ij S S U ωεωε-Ω=Ω-Ω=ΩΩΩ+=2*

*

**

而ij Ω是在以角速度k ω旋转的旋转坐标系中得到的平均旋转速率。

.~,~

)

6(cos 3

1

,cos 63

1ij ij ki jk ij s S S S S S S S W w A ====-?? (5.20)

上述关系式中唯一未确定的系数是A 。为简单起见,可以设其为常数。对边界层流动。可以取A 0 = 4.0。对其他流动,A 0的数值可以调节。

2.1.3 低Reynolds 数ε-k

上述几种ε-k 模式适用于高Reynolds 数情形。但是对近壁区,湍流需诺数很低,对湍流动力学而言粘性效应非常重要,此时湍流Reynolds 数的效应必须加以考虑。我们研究摩阻的计算关注的恰恰是近壁区,因此低Reynolds 数ε-k 模式的研究是十分重要的。

现将有关结果整理如下:

低Reynolds 数下的涡粘性和ε-k 模式方程为 ε

ενρμμμ)

(+=k k f c T (5.22)

)

23.5()()()(,,,,,ρε

ρσμ

μρρ--??????+=+j i j i j

j k T i i t U u u k k U k j j T j

j T i i t S S C k f C S f c U ,,32

2211,,,,)()()(ρμμενερερεσμμερερε++-+??????+=+

式中

)

3

2

(32)(2

1

,2,,,,,ij k k i j j i T ij j i i j j i ij ij ij U U U k u u U U S S S S δμδρρ-++-=-+=

=

所有模化常数如下:

(

){}

(){}

?

??

?

??--='+'+'+'+'--=++++--=-==

ΩΩ+=

====??

?

?

??+=+=

36exp 22.01exp 1exp 13

1,2

.1,0.10

.1,9.15,43.0max 4122554433

2

2

1

1

554433221,*

***

321*

t ij

k k ij ij ij ij ij ij k s R f R a R a R a R

a R a f R a R a R a R a R a f U S S Sk

S S U C C C k

U A C μεμδε

ησσηηε

其中

ε

νε

νεν2

2

321,

)

(k R k k R t =

+=

此处μf 和21,f f 称为阻尼函数,是一个经验公式用来反映近壁区低雷诺数效应,系数i i a a '和列表如下:

I

1 2 3 4 5 i a 3.3×10-3

-6.0×10-5

6.6×10-7

-3.6×10-9

8.4×10-12

i a '

2.53×10-3

-5.7×10-5

6.55×10-7

-3.6×10-9

8.3×10-12

2.1.4 常见k-ε两方程模式

在文献中有许多种ε-k 涡粘性模式。为了便于比较,我们将几种常见的ε-k 模式作一归类。它们的主要区别一是在ε和k 的方程及其边界条件,另一方面是阻尼函数μf 的取法。

模 式 代 号

作 者 Ch Chien, 1982 LB Lam and Bremhorst, 1981 NT Nagano and Tagawa, 1990 LS Launder and Sharma, 1974 MK Myong and Kasagi, 1988 YS Yang and Shih, 1991 S&L Shih and Lumley, 1993 CMOTT

Zhu and Shih, 1995

所有上述八种模式都可以用一个统一的方程组表示:

Γ=k f C t ρμμμ (5)

D x U x k x dt k d j i

tij i k t i +-??+???

??????????? ?

?+??

=ρετσμμρ (6) E f C x U f C x x dt d j i tij i t

i

+Γ-??Γ+???

??????????? ??+??=ε

ρτεσμμεεεε22111 (7) 有关的项,D ,E ,T 列表如下:

Model

T

D

E

Ch

ε

k

2

2y k ν-

)5.0exp(22+

--

y y

εν

LB

εk 0 0

NT

εk 0 0

LS εk

2

2???

? ?

???-y

k ν

2

2

22???

? ?

???y U T νν

MK ε

k

YS

ε

ε

ν+k

2

2

2

????

????y

U

T νν

S&L εk

2

2

2???? ????y U T νν

CMOTT ε

k 0 2

2

2???

? ?

???y U T νν

阻尼函数21,f f f 和μ对不同的模式有不同的表示式。

Model

μf

1f

2f

Ch

)115.0exp(1+

--y

1

)36

exp(22.12

t R --

LB

)5.201()1(2165.0t

R R e

k

+--

3

05.1???

?

??+μf

)exp(12t R --

NT

???

?

??+?????

????? ??--+4

/32

1

.4126exp 1t R y 1

2

2

)]

6

exp(1[)])5.6(

exp(3.1[+--?--y R t

LS

???

? ??+-2)50/1(4.3exp t R 1

)exp(3.12t R -- MK

))70exp(1)(45

.31(+

--+

y R t

1

2

2)]

5

exp(1[)]

36

exp(92

1[+--?--y R t

YS

)

825004.exp(14

3

2

8

6

5+-+-+-+-+---y e y

e y e y 1

)36exp(22.12

t R --

S&L

)

825004.exp(1432

8

6

5+-+-+-+-+---k

k

k k R e R

e R e R 1

)36exp(22.12

t R --

CMOTT

)

825004.exp(1432

8

6

5+-+-+-+-+---k

k

k k R e R

e R e R 1

)36

exp(22.12

t R --

式中t k R y R 和+,定义为 .,,2

ε

νν

ν

τk R y

u y y

k R t k =

=

=

+

模式中出现的模化常数分别为

Model μC

1εC

2εC

k σ

εσ

Ch .09 1.35 1.80 1.0 1.3 LB .09 1.44 1.92 1.0 1.3 NT .09 1.45 1.90 1.4 1.3 LS .09 1.44 1.92 1.0 1.3 MK .09 1.40 1.80 1.4 1.3 YS .09 1.44 1.92 1.0 1.3 S&L .09

1.44 1.92 1.0 1.3 CMOT T

q E (5.19)

1.44

1.92

1.0

1.3

对不同的模式有不同的处理连界条件的方法:

Model

w k for C B ..

w for C B ε..

Ch

LB 0

2

2y k ??ν

NT 0

2

2y k ??ν

LS 0

MK 0

2

2y k ??ν

YS 0

2

2???

? ?

???y k ν

S&L

2

25.0τu ?

ν

τ4

251.0u ?

CMOTT

2

25.0τu ?

ν

τ4

251.0u ?

2.2 其它双方程模式

涡粘性系数的量纲为速度×长度,当用ε,k 来模化时,它们之间的关系为

ενμ/2k C T =。我们注意到,对标准ε-k 模式的ε方程,在固壁上有奇点问题(壁面上

湍动能0=k ),这是因为模式不尽合理带来的非物理的奇点。此外在计算中由于ε,k 在壁面附近变化剧烈,必须在物面附近将网格划分得非常小,才能得到合理的结果。为了克服这些困难,人们试图寻找其它的湍流量来代替ε,k 。可能的选择有

,,/,/,/2/3k q k l k k ====εετεω相应地,涡粘性系数可表示成:

.,,,2

l k C q C k C k

C T T T T μμ

μμ

νω

ντνω

ν====

现在就来介绍几种典型的模式: 2.2.1 k-w 两方程模式 (Wilcox)

k-ω模式是最为人所知和应用最广泛的两方程涡粘性模式,为积分到壁面的不可压缩/可压缩湍流的两方程涡粘性模式,最主要文献来自Wilcox 。

求解湍动能k 和它的,,/,/,

/2/3k q k l k k ====εετεω (specific

dissipation rate)的对流输运方程

已经证明Wilcox k-ω模式在粘性子层比k-ε具有更好的数值稳定性。由于壁面附近,ω值较大,模式不象k-ε模式或者其它两方程模式,它不需要显式的壁面衰减函数。对于比较缓的逆压梯度流动,该模式在对数区域给出的结果和实验数据较为符合。 a. 模式方程

雷诺应力的涡粘性模型为

32)(2ij ij nn ij t tij k S S δρδμτ--=

这里

t μ为涡粘性(eddy viscosity),ij S 为平均速度应变率张量(mean-velocity

strain-rate tensor), ρ为流体密度, k 为湍动能, ij δ为克罗内克算子(Kronecker delta)。涡粘性定义为湍动能k 和比耗散率ω的函数

ωρμk t =

k 和ω的输运方程为

k -S )(*ij *ρωβτμσμρρtij j t j j x k k u x t k =???

?

?

?

??+-??

+?? 2ij -S )(βρωτωαωσμμωρρωtij j t j j

k x u x t =???

?

?

?

??+-??

+?? b. 模式常数和参数

模式中各常数的定义为

9

5=

α 403=β 1009*

5.0=σ 5.0*=σ 9.0Pr =t

c. 边界条件

对边界层流动,壁面无滑移边界条件为

0=k 和 2

1)

(610

y βρμ

ω= 这里y 1为离开壁面第一个点的距离,且y 1+

<1。

对称边界条件采用零梯度条件,各种附加的边界条件将在具体流动中讨论。 2.2.2 SST 两方程模式(Menter)

k-ω SST 剪切应力输运(shear-stress-transport)模式在近壁处采用Wilcox k-ω模式,在边界层边缘(boundary layer edges)和自由剪切层(free-shear layers)采用k-ε模式( k-ω

形式),其间通过一个混合函数(blending function )来过渡,属于积分到壁面的不可压缩/可压缩湍流的两方程涡粘性模式。

为了有效结合k-ω和k-ε模式,统一写成k-ω形式 a. 模式方程

涡粘性定义为

()

211;m ax F a k

a T Ω=ων

这里Ω是涡量的绝对值,31.01=a ,2F 是混合函数。

??

????????????

????????=2

22500,99.02max tanh ωρμωy y k F

T ν的形式解决了湍流剪切应力在逆压梯度边界层的输运。k 和ω由相应的模式输运方

程得到。

湍动能输运方程

k S x k k u x t k ij tij j t k j j

ρωβτμσμρρ*-=???

?

??

??+-??+??)( 湍流比耗散率方程

j j j t j j

x x k F P x u x t ????-+-=???

?

?

?

??+-??

+??ωωρσβρωωμσμωρρωωωω212)1(2)( 上式中最后一项代表交错扩散项(cross-diffusion term), 生成项

()22Ω≈-=γρδωγρωij

ij nn ij S S S P b. 模式常数和参数

??

????????????

????????????????=2

22214,500,99.0max min tanh y CD k y y k F k ωωρσωρμω 这里 ???

?????????=-20

210,2max j j k x x k CD ωωρσωω

这里ωk CD 代表k-ω模式中的交叉扩散(cross-diffusion)。 SST 模式常数

31.01=a 09.0*=β 41.0=κ

模式参数ωσσγβ,,,k 由φ来表示,用21,φφ分别表示原始k-ω模式系数和转化的k-ε模式系数

()21111φφφφ-+=F 这里 {}γβσσφω,,,k =

? Inner model 系数:

85.01=k σ 5.01=ωσ 075.01=β

553.0*2

1*11=-=βκσββγω

? Outer model 系数:

0.12=k σ 856.02=ωσ 0828.02=β

440.0*2

2*22=-=βκσββγω

2.2.3 τ-k 模式

方程为

τσννk

U u u k Dt Dk j

i j i i

i k T --?????????? ??+=,,, (5.29) 2,1,,,,2C U u u k

C Dt

D j i j i i i T i i T ++???? ??+-?????????? ??+=τ

τττσνντσνντττ (5.30) 模化常数为

.5.1,4.0,92.0,12

2221==≈???

? ??--=T T k e C k C C σσμ

对低雷诺数流动有 ??

?

?

?

?+

=k k f C T τντνμμ (5.31) {}

)(exp 13

32

21 +++--=R a R a R a f μ (5.32) 其中

1

)]36/exp(22.01[92.1)(22---=+???

? ??+=t p R C u u k R τντντ 在τ-k 模式的框架下,Speziale(1990)[33]

提出了下列的模式:

ε

ττνμμk

k f C T =

=, (5.33)

τσννk U u u k Dt Dk j

i j i i

i k T --?????????? ??+=,,, (5.34)

)1()1(2222,1,,1,,2,,2-+-+???

? ??++???? ??+-?????????? ??

+=f C U u u k C k k Dt D j i j i i i T i

i T i

i T τ

τσννττσννττσννττττ (5.35)

模化常数及参数分列如下:

Model

k σ

1τσ

2τσ

C 1 C 2

μC

SAA 1.36

1.36

1.36

1.44

)]36

exp(92

1[83.12t R --

0.09

2f μf

???

? ?

?--+

9

.4exp 1y ??

?

??????? ??--???

? ??++70exp 145.31y R t

2.2.4 ω-q 模式

Coakley(1983)

[24]

建议采用如下的ω-q 涡粘性模式:

k q k

q f C T ==

=,,2

ε

ωω

νμ

μ (5.39)

22,,,ωσννq U q u u q Dt Dq j i j i i

i q T -

-???????????? ??+= (5.40) 22,,,1,,)(ωωσννωμωC U U U C C Dt D j i i j j i i

i T -++?????????? ??+= (5.41)

Model

q σ ωσ

μC

C 1 C 2

μf

Co

1.0

1.3

.09

045.405.+μf

.92

)

0065.exp(1k R --

2.3 双尺度两方程模式

选择两个长度尺度,一个是典型大涡的尺度,用下标p 表示,一个是小涡尺度,用下标

t 表示。大涡的p k ~和p

ε~输运方程为 1

2~~)~(]~)[(~

fc y u y k y t

D k D p T p k T p

p

+-??+??+??=ερμσμμρ (5) 2222

1~~~)~(~~]~)[(~fc k Cp y u k Cp y y t D D p p T p p p T p

p

+-??+??+??=ερμεεσμμερε (6)

大涡的输运方程反映了大涡对涡动能产生的贡献,由于它是大尺度的,它和边界条件有关,与平均流的应变率密切相关,直接受到可压缩性的影响。这些在大涡输运方程的模化平均应加以考虑。其中1fc 为湍动能和内能之间的交换,Sarkar 等得到

p t T t M y

u M fc εραμα~)~(23221+??-=,a k k M t p t ~)]

~~(2[2

1+=为湍流马赫数,2.0,15.032==αα,2fc 是由于小激波产生的能谱输运的增加。最后有p k ~和p

ε~输运方程为 p

t T t p

k T p M y u M y k y t

D k D p

εραμασμμρ~)1()~()1(]~)[(~

2322~--??-+??+??= (7) p p

t T p p p T p

k M Cp Cp y u k Cp y y t D D p ~~)()~(~~]~)[(~223221~ερμεεσμμερε--??+??+??= (8)

小涡t k ~和t

ε~输运方程为 t

p t k T t y k y t

D k D t

ερερσμμρ~~]~

)[(~~-+??+??= (9) t

t

t

t p t T t

k Ct k Ct y y t D D t

~~~

~~]~)[(~221~ερεερ

εσμμερε-+??+??

= (10)

小涡的主要贡献是湍动能的耗散。可以注意到,(9)式中右端p

ε~是大涡的能量耗散,它恰好成为小涡湍动能的来源,反映了湍流能量的级串效应。

双尺度模式的涡粘性系数采用了大涡和小涡的平均值,为

p

t p t p T k k k k ul ερρμ~)~~()~~(~2

31++≈≈

模式参数21)1(Cp Cp αβαβ+-

=,n

n Cp 1

2+=

,ββ2111Ct Ct +-=,1

1~~

~~22-++-=

p

t p

t k k k k Cp Ct β

βββ,其中n =1.2,α=2.2,β=1.05。

几种湍流模型

解决湍流的模型总计就是那几个方程,Flue nt又从工程和数值的角度进行了整理,下面就是这些湍流模型的详细说明。 FLUENT提供了以下湍流模型: ?Spalart-Allmaras 模型 ?k-e模型 —标准k-e模型 —Ren ormalizatio n-group (RNG^e 模型 —带旋流修正k-e模型 ?k-3模型 —标准k- 3模型 —压力修正k- 3模型雷诺兹压力模型大漩涡模拟模型 几个湍流模型的比较: 从计算的角度看Spalart-Allmaras模型在FLUENT中是最经济的湍流模型,虽然只有一种方程可以解。由于要解额外的方程,标准ke模型比Spalart-Allmaras模型耗费更多的计算机资 源。带旋流修正的k-e模型比标准ke模型稍微多一点。由于控制方程中额外的功能和非线性,RN&七模型比标准k-e模型多消耗10?15%的CPU时间。就像k七模型,k-3模型也是两个方程的模型,所以计算时间相同。 比较一下k◎莫型和k-3模型,RSM模型因为考虑了雷诺压力而需要更多的CPU时间。然而高效的程序大大的节约了CPU时间。RSM模型比k-e模型和k-3模型要多耗费50?60%的CPU 时间,还有15?20%的内存。 除了时间,湍流模型的选择也影响FLUENT勺计算。比如标准k-e模型是专为轻微的扩散 设计的,然而RNGk-e模型是为高张力引起的湍流粘度降低而设计的。这就是RNG莫型的缺点。同样的,RSM模型需要比k-e模型和k-3模型更多的时间因为它要联合雷诺压力和层流。 概念:1?雷诺平均:在雷诺平均中,在瞬态N-S方程中要求的变量已经分解为时均常量和变量。 相似的,像压力和其它的标量 ;(10.2-2) i「 这里??表示一个标量如压力,动能,或粒子浓度。 2. Boussinesq逼近从雷诺压力转化模型:禾U用Bouss in esq假设把雷诺压力和平均速度梯度 联系起来: +茁飞(肚+川亦)也(10 2-O) Boussinesq假设使用在Spalart-Allmaras模型、k-e模型和k- 3模型中。这种逼近方法好处是对计算机的要求不高。在Spalart-Allmaras模型中只有一个额外的方程要解。k-e模型和k-3模型 中又两个方程要解。Bouss inesq假设的不足之处是假设u t是个等方性标量,这是不严格的。

湍流模型的选择依据

解决湍流的模型总计就就是那几个方程,Fluent 又从工程与数值的角度进行了整理,下面就就是这些湍流模型的详细说明。 FLUENT 提供了以下湍流模型: ·Spalart-Allmaras 模型 ·k-e 模型 -标准k-e 模型 -Renormalization-group (RNG) k -e 模型 -带旋流修正k -e 模型 ·k-ω模型 -标准k-ω模型 -压力修正k-ω模型 雷诺兹压力模型 大漩涡模拟模型 几个湍流模型的比较: 从计算的角度瞧Spalart-Allmaras 模型在FLUENT 中就是最经济的湍流模型,虽然只有一种方程可以解。由于要解额外的方程,标准k -e 模型比Spalart-Allmaras 模型耗费更多的计算机资源。带旋流修正的k -e 模型比标准k -e 模型稍微多一点。由于控制方程中额外的功能与非线性,RNG k -e 模型比标准k -e 模型多消耗10~15%的CPU 时间。就像k -e 模型,k -ω模型也就是两个方程的模型,所以计算时间相同。 比较一下k -e 模型与k -ω模型,RSM 模型因为考虑了雷诺压力而需要更多的CPU 时间。然而高效的程序大大的节约了CPU 时间。RSM 模型比k -e 模型与k -ω模型要多耗费50~60%的CPU 时间,还有15~20%的内存。 除了时间,湍流模型的选择也影响FLUENT 的计算。比如标准k -e 模型就是专为轻微的扩散设计的,然而RNG k -e 模型就是为高张力引起的湍流粘度降低而设计的。这就就是RNG 模型的缺点。 同样的,RSM 模型需要比k -e 模型与k -ω模型更多的时间因为它要联合雷诺压力与层流。 概念: 1、雷诺平均:在雷诺平均中,在瞬态N-S 方程中要求的变量已经分解位时均常量与变量。 相似的,像压力与其它的标量 )22.10('-+=ΛΛΛi i i φφφ 这里φ表示一个标量如压力,动能,或粒子浓度。 2、 Boussinesq 逼近从雷诺压力转化模型:利用Boussinesq 假设把雷诺压力与平均速度梯度联系起来: Boussinesq 假设使用在Spalart-Allmaras 模型、k -e 模型与k -ω模型中。这种逼近方法好处就是对计算机的要求不高。在Spalart-Allmaras 模型中只有一个额外的方程要解。k -e 模型与k -ω模型中又两个方程要解。Boussinesq 假设的不足之处就是假设u t 就是个等方性标量,这就是不严格的。 1. Spalart-Allmaras 模型(1equ):

Fluent湍流模型选取的准则

Fluent湍流模型选取的准则 湍流模型选取的准则:流体是否可压、建立特殊的可行的问题、精度的要求、计算机的能力、时间的限制。为了选择最好的模型,你需要了解不同条件的适用范围和限制。 FLUENT软件中提供以下湍流模型:1 Spalart-Allmaras 模型;2 k-ε模型; 3 k-ω模型; 4 雷诺应力模型(RSM); 5 大涡模拟模型(LES)。 1 Spalart-Allmaras 模型 应用范围: Spalart-Allmaras模型是设计用于航空领域的,主要是墙壁束缚 (wall-bounded)流动,而且已经显示出很好的效果。在透平机械中的应用也愈加广泛。 在湍流模型中利用Boussinesq逼近,中心问题是怎样计算漩涡粘度。这个模型被Spalart-Allmaras提出,用来解决因湍流动粘滞率而修改的数量方程。 模型评价: Spalart-Allmaras模型是相对简单的单方程模型,只需求解湍流粘性的输运方程,不需要求解当地剪切层厚度的长度尺度;由于没有考虑长度尺度的变化,这对一些流动尺度变换比较大的流动问题不太适合;比如平板射流问题,从有壁面影响流动突然变化到自由剪切流,流场尺度变化明显等问题。 Spalart-Allmaras模型中的输运变量在近壁处的梯度要比k-ε中的小,这使得该模型对网格粗糙带来数值误差不太敏感。 Spalart-Allmaras模型不能断定它适用于所有的复杂的工程流体。例如不能依靠它去预测均匀衰退,各向同性湍流。 2 k-ε模型 ① 标准的k-ε模型: 最简单的完整湍流模型是两个方程的模型,要解两个变量,速度和长度尺度。在FLUENT中,标准k-ε模型自从被Launder and Spalding提出之后,就变成工程流场计算中主要的工具了。适用范围广、经济、合理的精度。它是个半经验的公式,是从实验现象中总结出来的。 湍动能输运方程是通过精确的方程推导得到,耗散率方程是通过物理推理,数学上模拟相似原型方程得到的。

湍流模型概述

大多数飞行器都是在高Re数下飞行,表面的流态是湍流。为了准确地确定湍流流态下的摩阻、热流,湍流成为一个重要而困难的研究课题。 (一)DNS 目前处理湍流数值计算问题有三种方法,第一种方法即所谓直接数值模拟方法(DNS方法),直接求解湍流运动的N-S方程,得到湍流的瞬时流场,即各种尺度的随机运动,可以获得湍流的全部信息。随着现代计算机的发展和先进的数值方法的研究,DNS方法已经成为解决湍流的一种实际的方法。但由于计算机条件的约束,目前只能限于一些低Re数的简单流动,不能用于工程应用。目前国际上正在做的湍流直接数值模拟还只限于较低的需诺数(Re~200)和非常简单的流动外形,如平板边界层、完全发展的槽道流,以及后台阶流动等。用直接数值模拟方法处理工程中的复杂流动问题,即使是当前最先进的计算机也还差三个量级。 (二)LES 另一种方法称做大涡模拟方法(LES方法)。这是一种折衷的方法,即对湍流脉动部分直接地模拟,将N-S方程在一个小空间域内进行平均(或称之为滤波),以使从流场中去掉小尺度涡,导出大涡所满足的方程。小涡对大涡的影响会出现在大涡方程中,再通过建立模型(亚格子尺度模型)来模拟小涡的影响。由于湍流的大涡结构强烈地依赖于流场的边界形状和边界条件,难以找出普遍的湍流模型来描述具有不同的边界特征的大涡结构,宜做直接模拟。相反地,小尺度涡对边界条件不存在直接依赖关系,而且一般具有各向同性性质。所以亚格子模型具有更大的普适性,比较容易构造,这是它比雷诺平均方法要优越的地方。自从1970年Deardorff第一次给出具有工程意义的LES计算以来,LES方法已经成为计算湍流的最强有力的工具之一,应用的方向也在逐步扩展,但是仍然受计算机条件等的限制,使之成为解决大量工程问题的成熟方法仍有很长的路要走。 (三)RANS 目前能够用于工程计算的方法就是模式理论。所谓湍流模式理论,就是依据湍流的理论知识、实验数据或直接数值模拟结果,对Reynolds应力做出各种假设,即假设各种经验的和半经验的本构关系,从而使湍流的平均Reynolds方程封闭。随着计算流体力学的发展,湍流模式理论也有了很大的进步,有了非常丰硕的成果。从对模式处理的出发点不同,可以将湍流模式理论分类成两大类:一类称为二阶矩封闭模式,另一类称涡粘性封闭模式。 (1)雷诺应力模式 所谓二阶矩封闭模式,是从Reynolds应力满足的方程出发,将方程右端未知的项(生成项,扩散项,耗散项等)用平均流动的物理量和湍流的特征尺度表示出来。典型的平均流动的变量是平均速度和平均温度的空间导数。这种模式理论,由于保留了Reynolds应力所满足的方程,如果模拟的好,可以较好地反映Reynolds应力随空间和时间的变化规律,因而可以较好地反映湍流运动规律。因此,二阶矩模式是一种较高级的模式,但是,由于保留了Reynolds应力的方程,加上平均运动的方程整个方程组总计15个方程,是一个庞大的方程组,应用这样一个庞大的方程组来解决实际工程问题,计算量很大,这就极大地限制了二阶矩模式在工程问题中的应用。 (2)涡粘性模式

FLUENT中常用的湍流模型

The Spalart-Allmaras模型 对于解决动力漩涡粘性,Spalart-Allmaras 模型是相对简单的方程。它包含了一组新的方程,在这些方程里不必要去计算和剪应力层厚度相关的长度尺度。Spalart-Allmaras 模型是设计用于航空领域的,主要是墙壁束缚流动,而且已经显示出很好的效果。在透平机械中的应用也愈加广泛。 在原始形式中Spalart-Allmaras 模型对于低雷诺数模型是十分有效的,要求边界层中粘性影响的区域被适当的解决。在FLUENT中,Spalart-Allmaras 模型用在网格划分的不是很好时。这将是最好的选择,当精确的计算在湍流中并不是十分需要时。再有,在模型中近壁的变量梯度比在k-e模型和k-ω模型中的要小的多。这也许可以使模型对于数值的误差变得不敏感。想知道数值误差的具体情况请看5.1.2。 需要注意的是Spalart-Allmaras 模型是一种新出现的模型,现在不能断定它适用于所有的复杂的工程流体。例如,不能依靠它去预测均匀衰退,各向同性湍流。还有要注意的是,单方程的模型经常因为对长度的不敏感而受到批评,例如当流动墙壁束缚变为自由剪切流。 标准k-e模型 最简单的完整湍流模型是两个方程的模型,要解两个变量,速度和长度尺度。在FLUENT中,标准k-e模型自从被Launder and Spalding提出之后,就变成工程流场计算中主要的工具了。适用范围广、经济,有合理的精度,这就是为什么它在工业流场和热交换模拟中有如此广泛的应用了。它是个半经验的公式,是从实验现象中总结出来的。 由于人们已经知道了k-e模型适用的范围,因此人们对它加以改造,出现了RNG k-e模型和带旋流修正k-e 模型。k-ε模型中的K和ε物理意义:k是紊流脉动动能(J),ε是紊流脉动动能的耗散率(%);k越大表明湍流脉动长度和时间尺度越大,ε越大意味着湍流脉动长度和时间尺度越小,它们是两个量制约着湍流脉动。 RNG k-e模型 RNG k-e模型来源于严格的统计技术。它和标准k-e模型很相似,但是有以下改进: ?RNG模型在e方程中加了一个条件,有效的改善了精度。 ?考虑到了湍流漩涡,提高了在这方面的精度。 ?RNG理论为湍流Prandtl数提供了一个解析公式,然而标准k-e模型使用的是用户提供的常数。 ?然而标准k-e模型是一种高雷诺数的模型,RNG理论提供了一个考虑低雷诺数流动粘性的解析公式。这些公式的效用依靠正确的对待近壁区域 这些特点使得RNG k-e模型比标准k-e模型在更广泛的流动中有更高的可信度和精度。 带旋流修正的k-e模型 带旋流修正的k-e模型是近期才出现的,比起标准k-e模型来有两个主要的不同点。 ?带旋流修正的k-e模型为湍流粘性增加了一个公式。 ?为耗散率增加了新的传输方程,这个方程来源于一个为层流速度波动而作的精确方程。 术语“realizable”,意味着模型要确保在雷诺压力中要有数学约束,湍流的连续性。带旋流修正的k-e模型直接的好处是对于平板和圆柱射流的发散比率的更精确的预测。而且它对于旋转流动、强逆压梯度的边界层流动、流动分离和二次流有很好的表现。带旋流修正的k-e模型和RNG k-e模型都显现出比标准k-e模型在强流线弯曲、漩涡和旋转有更好的表现。由于带旋流修正的k-e模型是新出现的模型,所以现在还没有确凿的证据表明它比RNG k-e模型有更好的表现。但是最初的研究表明带旋流修正的k-e模型在所有k-e模型中流动分离和复杂二次流有很好的作用。带旋流修正的k-e模型的一个不足是在主要计算旋转和静态流动区域时不能提供自然的湍流粘度。这是因为带旋流修正的k-e模型在定义湍流粘度时考虑了平均旋度的影响。这种额外的旋转影响已经在单一旋转参考系中得到证实,而且表现要好于标准k-e模型。由于这些修改,把它应用于多重参考系统中需要注意。 标准k-ω模型 标准k-ω模型是基于Wilcox k-ω模型,它是为考虑低雷诺数、可压缩性和剪切流传播而修改的。Wilcox k-ω模型预测了自由剪切流传播速率,像尾流、混合流动、平板绕流、圆柱绕流和放射状喷射,因而可以应用于墙壁束缚流动和自由剪切流动。标准k-e模型的一个变形是SST k-ω模型,它在FLUENT中也是可用的,将在10.2.9中介绍它。 剪切压力传输(SST)k-ω模型

fluent湍流模型

第十章湍流模型 本章主要介绍Fluent所使用的各种湍流模型及使用方法。 各小节的具体内容是: 10.1 简介 10.2 选择湍流模型 10.3 Spalart-Allmaras 模型 10.4 标准、RNG和k-e相关模型 10.5 标准和SST k-ω模型 10.6 雷诺兹压力模型 10.7 大型艾迪仿真模型 10.8 边界层湍流的近壁处理 10.9 湍流仿真模型的网格划分 10.10 湍流模型的问题提出 10.11 湍流模型问题的解决方法 10.12 湍流模型的后处理 10.1 简介 湍流出现在速度变动的地方。这种波动使得流体介质之间相互交换动量、能量和浓度变化,而且引起了数量的波动。由于这种波动是小尺度且是高频率的,所以在实际工程计算中直接模拟的话对计算机的要求会很高。实际上瞬时控制方程可能在时间上、空间上是均匀的,或者可以人为的改变尺度,这样修改后的方程耗费较少的计算机。但是,修改后的方程可能包含有我们所不知的变量,湍流模型需要用已知变量来确定这些变量。 FLUENT 提供了以下湍流模型: ·Spalart-Allmaras 模型 ·k-e 模型 -标准k-e 模型 -Renormalization-group (RNG) k-e模型 -带旋流修正k-e模型 ·k-ω模型 -标准k-ω模型 -压力修正k-ω模型 -雷诺兹压力模型 -大漩涡模拟模型 10.2 选择一个湍流模型 不幸的是没有一个湍流模型对于所有的问题是通用的。选择模型时主要依靠以下几点:流体是否可压、建立特殊的可行的问题、精度的要求、计算机的能力、时间的限制。为了选择最好的模型,你需要了解不同条件的适用范围和限制 这一章的目的是给出在FLUENT中湍流模型的总的情况。我们将讨论单个模型对cpu 和内存的要求。同时陈述一下一种模型对那些特定问题最适用,给出一般的指导方针以便对于你需要的给出湍流模型。 10.2.1 雷诺平均逼近vs LES 在复杂形体的高雷诺数湍流中要求得精确的N-S方程的有关时间的解在近期内不太可能实现。两种可选择的方法用于把N-S方程不直接用于小尺度的模拟:雷诺平均和过滤。

湍流模型

我们知道,描述流体运动(层流)的流体力学基本方程组是封闭的,而描述湍流运动的方程组由于采用了某种平均(时间平均或网格平均等)而不封闭,须对方程组中出现的新未知量采用模型而使其封闭,这就是CF D中的湍流模型。湍流模型的主要作用是将新未知量和平均速度梯度联系起来。目前,工程应用中湍流的数值模拟主要分三大类:直接数值模拟(D NS);基于雷诺平均N-S方程组(RANS)的模型和大涡模拟(LES)。DNS是直接数值求解N-S方程组,不需要任何湍流模型,是目前最精确的方法。其优点在于可以得出流场内任何物理量(如速度和压力)的时间和空间演变过程,旋涡的运动学和动力学问题等。由于直接求解N-S方程,其应用也受到诸多方面的限制。第一:计算域形状比较简单,边界条件比较单一;第二:计算量大。影响计算量的因素有三个:网格数量、流场的时间积分长度(与计算时间长度有关)和最小旋涡的时间积分长度(与时间步长有关),其中网格数量是重要因素。为了得到湍流问题足够精确的解,要求能够数值求解所有旋涡的运动,因此要求网格的尺度和最小旋涡的尺度相当,即使采用子域技术,其网格规模也是巨大的。为了求解各个尺度旋涡的运动,要求每个方向上网格节点的数量与Re3/4成比例,考虑一个三维问题,网格节点的数量与Re9/4成比例。目前,DNS能够求解Re(104)的范围。 基于RANS的湍流模型采用雷诺平均的概念,将物理量区分为平均量和脉动量,将脉动量对平均量的影响用模型表示出来。目前,基于RANS方程已经发展了许多模型,几乎能对所有雷诺数范围的工程问题求解,并得出一些有用的结果。其缺点在于:第一:不同的模型解决不同类型的问题,

湍流模型概述

大多数飞行器都是在高Re数下飞行,表面的流态是湍流.为了准确地确定湍流流态下的摩阻、热流,湍流成为一个重要而困难的研究课题。 (一)DNS 目前处理湍流数值计算问题有三种方法,第一种方法即所谓直接数值模拟方法(DNS方法),直接求解湍流运动的N-S方程,得到湍流的瞬时流场,即各种尺度的随机运动,可以获得湍流的全部信息。随着现代计算机的发展和先进的数值方法的研究,DNS方法已经成为解决湍流的一种实际的方法。但由于计算机条件的约束,目前只能限于一些低Re数的简单流动,不能用于工程应用.目前国际上正在做的湍流直接数值模拟还只限于较低的需诺数(Re~200)和非常简单的流动外形,如平板边界层、完全发展的槽道流,以及后台阶流动等。用直接数值模拟方法处理工程中的复杂流动问题,即使是当前最先进的计算机也还差三个量级.(二)LES 另一种方法称做大涡模拟方法(LES方法).这是一种折衷的方法,即对湍流脉动部分直接地模拟,将N—S方程在一个小空间域内进行平均(或称之为滤波),以使从流场中去掉小尺度涡,导出大涡所满足的方程.小涡对大涡的影响会出现在大涡方程中,再通过建立模型(亚格子尺度模型)来模拟小涡的影响。由于湍流的大涡结构强烈地依赖于流场的边界形状和边界条件,难以找出普遍的湍流模型来描述具有不同的边界特征的大涡结构,宜做直接模拟。相反地,小尺度涡对边界条件不存在直接依赖关系,而且一般具有各向同性性质。所以亚格子模型具有更大的普适性,比较容易构造,这是它比雷诺平均方法要优越的地方。自从1970年Deardorff第一次给出具有工程意义的LES计算以来,LES方法已经成为计算湍流的最强有力的工具之一,应用的方向也在逐步扩展,但是仍然受计算机条件等的限制,使之成为解决大量工程问题的成熟方法仍有很长的路要走。 (三)RANS 目前能够用于工程计算的方法就是模式理论。所谓湍流模式理论,就是依据湍流的理论知识、实验数据或直接数值模拟结果,对Reynolds应力做出各种假设,即假设各种经验的和半经验的本构关系,从而使湍流的平均Reynolds方程封闭.随着计算流体力学的发展,湍流模式理论也有了很大的进步,有了非常丰硕的成果。从对模式处理的出发点不同,可以将湍流模式理论分类成两大类:一类称为二阶矩封闭模式,另一类称涡粘性封闭模式。 (1)雷诺应力模式 所谓二阶矩封闭模式,是从Reynolds应力满足的方程出发,将方程右端未知的项(生成项,扩散项,耗散项等)用平均流动的物理量和湍流的特征尺度表示出来。典型的平均流动的变量是平均速度和平均温度的空间导数.这种模式理论,由于保留了Reynolds应力所满足的方程,如果模拟的好,可以较好地反映Reynolds应力随空间和时间的变化规律,因而可以较好地反映湍流运动规律。因此,二阶矩模式是一种较高级的模式,但是,由于保留了Reynolds应力的方程,加上平均运动的方程整个方程组总计15个方程,是一个庞大的方程组,应用这样一个庞大的方程组来解决实际工程问题,计算量很大,这就极大地限制了二阶矩模式在工程问题中的应用。 (2)涡粘性模式

几种湍流模型

解决湍流的模型总计就是那几个方程,Fluent 又从工程和数值的角度进行了整理,下面就是这些湍流模型的详细说明。 FLUENT 提供了以下湍流模型: ·Spalart-Allmaras 模型 ·k-e 模型 -标准k-e 模型 -Renormalization-group (RNG) k -e 模型 -带旋流修正k -e 模型 ·k-ω模型 -标准k-ω模型 -压力修正k-ω模型 雷诺兹压力模型 大漩涡模拟模型 几个湍流模型的比较: 从计算的角度看Spalart-Allmaras 模型在FLUENT 中是最经济的湍流模型,虽然只有一种方程可以解。由于要解额外的方程,标准k -e 模型比Spalart-Allmaras 模型耗费更多的计算机资源。带旋流修正的k -e 模型比标准k -e 模型稍微多一点。由于控制方程中额外的功能和非线性,RNG k -e 模型比标准k -e 模型多消耗10~15%的CPU 时间。就像k -e 模型,k -ω模型也是两个方程的模型,所以计算时间相同。 比较一下k -e 模型和k -ω模型,RSM 模型因为考虑了雷诺压力而需要更多的CPU 时间。然而高效的程序大大的节约了CPU 时间。RSM 模型比k -e 模型和k -ω模型要多耗费50~60%的CPU 时间,还有15~20%的内存。 除了时间,湍流模型的选择也影响FLUENT 的计算。比如标准k -e 模型是专为轻微的扩散设计的,然而RNG k -e 模型是为高张力引起的湍流粘度降低而设计的。这就是RNG 模型的缺点。 同样的,RSM 模型需要比k -e 模型和k -ω模型更多的时间因为它要联合雷诺压力和层流。 概念: 1.雷诺平均:在雷诺平均中,在瞬态N-S 方程中要求的变量已经分解为时均常量和变量。 相似的,像压力和其它的标量 )2 2.10('-+= i i i φφφ 这里φ表示一个标量如压力,动能,或粒子浓度。 2. Boussinesq 逼近从雷诺压力转化模型:利用Boussinesq 假设把雷诺压力和平均速度梯度联系起来: Boussinesq 假设使用在Spalart-Allmaras 模型、k -e 模型和k -ω模型中。这种逼近方法好处是对计算机的要求不高。在Spalart-Allmaras 模型中只有一个额外的方程要解。k -e 模型和k -ω模型中又两个方程要解。Boussinesq 假设的不足之处是假设u t 是个等方性标量,这是不严格的。

气固两相湍流模型的分类

气固两相湍流模型的分类 对两相流的研究有两种不同的观点:一是把流体作为连续介质,在欧拉坐标系内加以描述,而把颗粒群作为离散体系,在拉氏坐标系内加以描述;而另一是除了把流体作为连续介质外,还把颗粒群当作拟连续介质或拟流体,两相在空间共存和互相渗透,两相都在欧拉坐标系内加以描述。不同观点描述两相流所得数学模型也不同,目前常用的模拟模型有:单流体模型(无滑移模型)、小滑移模型、双流体模型(多流体模型或滑移-扩散的多连续介质模型)、颗粒轨道模型。 单流体模型 把单相流体力学概念直接推广到两相流中,把含有颗粒群流体看成一个单一的流体,提出了一种模拟气粒两相流动简化模型,即单流体模型或无滑移模型。与单相流体流动方程相比,单流体模型仅增加了几个颗粒相连续方程(类似于气相组分扩散方程),并在气相方程中增加了颗粒源项,因此该模型相当简单。该模型的主要优点是处理方法简单,计算方便。其缺点是未考虑颗粒相及气相之间的阻力作用(即假设气体与颗粒之间无速度和温度滑移),以及认为颗粒扩散系数和气体扩散系数相等,与实际的气固两相流动情况差异很大,故目前应用的较少。 小滑移模型 小滑移模型则是在单流体模型的基础上发展的,在此模型中,或者颗粒相对流体流动的影响被认为是小扰动,或者该影响被完全忽略。模型中假设颗粒的运动单纯由流体流动引起,流体与颗粒的速度滑移相对于平均流动来说是小量,这一滑移是颗粒扩散的结果。它考虑了颗粒的滑移并涉及了颗粒和气相间因滑移而引起的阻力,从而增加了颗粒群的动量方程,但求解典型程序仍与无滑移模型相同。其优点是考虑了颗粒的湍流扩散、湍流粘性以及滑移引起的阻力,相对接近于实际情况。 双流体模型 该模型的出发点是把颗粒群和气体都作为连续介质,两者相互渗透组成双流体或多流体系统,在欧拉坐标系下考察气粒两相流动,即欧拉—欧拉模拟湍流两相流动。近年来双流体模型已用于模拟一维非定常水汽两相流、炮膛内非定常二维湍流气粒两相流、气粒两相射流、有蒸发的液雾气体射流、闭式同轴射流中气体液雾流动与燃烧、带有或不带高速射流的突扩燃烧室中二维及三维湍流回流气粒两相流动和燃烧、四角喷燃炉中三维湍流旋流回流气粒两相流动和流化床中二维气化过程等。 颗粒轨道模型 颗粒轨道模型可分为:颗粒群轨道模型和随机轨道模型。前者假设不存在颗粒扩散,而后者利用Monte-Carlo法计算,考虑了颗粒扩散。 颗粒轨道模型的主要优点是计算工作量小,对有蒸发、挥发和异相反应的颗粒相复杂经历时,能较好的追踪颗粒的运动,颗粒相用拉格朗日处理数值计算也不会产生伪扩散。其缺点是对颗粒湍流扩散缺乏较好的处理方法,不能全面模拟颗粒的紊流扩散过程,而且计算所得到的拉氏

湍流模型发展综述

湍流模型发展综述 摘要:在概述了湍流问题的基础上,本文简要介绍了湍流的四种模型,对湍流模型在不同情况下的模拟能力进行了对比,最后简述了湍流模型的发展方向。 关键词:湍流模型;Navier-Stokes方程组;J-K模型 Abstract:On the basis of introducing the problems of turbulence, this paper briefly analyzed four kinds of turbulence models and compared their ability of simulation in different situations. At last, the paper expounded the development direction of the turbulence model. Key words:Turbulence model; Navier-Stokes equations; J-K model 一、引言 湍流又称紊流,是自然界中常见的一种很不规则的流动现象。当粘性阻尼无法消除惯性的影响时,自然界中的绝大部分流动都是湍流。 湍流运动的实验研究表明,虽然湍流结构十分复杂,但它仍然遵循连续介质的一般动力学规律,湍流流动的各物理量的瞬时值也应该服从一般的N-S方程。对粘性流体服从的N-S方程进行时均化,就可以得到雷诺平均方程。与定常的N-S方程相比,不同之处是在该式右边多了九项与脉动量有关的项,这脉动量的乘积的平均值与密度的乘积是湍流流动中的一种应力,称为湍流应力或雷诺应力。其中,法向雷诺应力和切向雷诺应力各有三个。 湍流问题就是在给定的边界条件下解雷诺方程。由于雷诺平均方程中未知数个数远多于方程个数而出现了方程不封闭的问题,这就需要依据各种半经验理论提出相应的补充方程式,即各种湍流模型。一般按照所用湍流量偏微分方程的物理含义或者数量进行区分,分别称为梅罗尔—赫林方法和雷诺方法。而后者又将湍流模型分成四类。(1)零方程模型;(2)一方程模型;(3)二方程模型;(4)应力方程模型。下面就对这些模型进行简单的描述。 二、湍流模型简介 1、零方程模型 最初的湍流模型只考虑了一阶湍流计算统计量的动力学微分方程,即平均方程,没有引进高阶统计量的微分方程,因而称之为一阶封闭模式或零方程模型。零方程模型又称为代数模型,代数模型又可以分成以下几种模型:(1)Cebeci —Smith 模型,(2)Baldwin—Lomax 模型,(3)Johnson—King 模型。 其中,B-L与C-S模型的不同之处在于外层湍流粘性系数取法不同。后者适用于湍流边界层,而前者则可用于 N-S方程的计算。此两模型已在工程计算中

四种湍流模型介绍

由于航发燃烧室中的流动特性极其复杂,要想提高数值计算的预测能力,必须要慎重选择湍流模型。用四种不同的湍流模型对带双径向旋流杯的下游流场进行数值模拟,将计算结果与实验结果作对比,比较各湍流模型的原理和物理基础,优劣,并分析流场速度分布和回流区特性。 涉及的湍流模型: 标准k-ε湍流模型(SKE) 1标准k-ε湍流模型有较高的稳定性,经济性和计算精度,应用广泛,适合高雷诺数湍流,但不适合旋流等各向异性较强的流动。 2简单的湍流模型是两个方程的模型,需要解两个变量,即速度和长度。在fluent中,标准 k-ε湍流模型自从被Launderand Spalding 提出之后,就变成流场计算中的主要工具。其在工业上被普遍应用,其计算收敛性和准确性都非常符合工程计算的要求。 3但其也有某些限制,如ε方程包含不能在壁面计算的项,因此必须使用壁面函数。另外,其预测强分离流,包含大曲率的流动和强压力梯度流动的结果较弱。 它是个半经验的公式,是从实验现象中总结出来的。 动能输运方程是通过精确的方程推导得到,耗散率方程是通过物理推理,数学上模拟相似原型方程得到的。 应用范围:该模型假设流动为完全湍流,分子粘性的影响可以忽略,此标准κ-ε模型只适合完全湍流的流动过程模拟。 可实现的k-ε模型是才出现的,比起标准k-ε模型来有两个主要的不同点:·可实现的k-ε模型为湍流粘性增加了一个公式。 ·为耗散率增加了新的传输方程,这个方程来源于一个为层流速度波动而作的精确方程。 术语“realizable”,意味着模型要确保在雷诺压力中要有数学约束,湍流的连续性。 应用范围: 可实现的k-ε模型直接的好处是对于平板和圆柱射流的发散比率的更精确的预测。而且它对于旋转流动、强逆压梯度的边界层流动、流动分离和二次流有很好的表现。 可实现的k-ε模型和RNG k-ε模型都显现出比标准k-ε模型在强流线弯曲、漩涡和旋转有更好的表现。由于带旋流修正的k-ε模型是新出现的模型,所以还没有确凿的证据表明它比RNGk-ε模型有更好的表现。但是最初的研究表明可实现的k-ε模型在所有k-ε模型中流动分离和复杂二次流有很好的作用。 该模型适合的流动类型比较广泛,包括有旋均匀剪切流,自由流(射流和混合层),腔道流动和边界层流动。对以上流动过程模拟结果都比标准k-ε模型的结果好,特别是可再现k-ε模型对圆口射流和平板射流模拟中,能给出较好的射流扩张。

湍流模型

湍流模型概述 湍流是一种复杂的非稳态三维流动,通常把瑞流定义为具有随机性、扩散性、高雷诺数、三维祸量脉动性、耗散性及连续性特征的复杂流动。虽然瑞流具有多种特性,但瑞流不是流体本身具有的某些特征而是流体流动的特征,仍是一种连续流动,仍然同层流一样满足流动的基本方程。从数学的观点看,瑞流是N-S方程的 通解,求解端流与求解层流无本质区别,目前己具有足以求解瑞流问题的有关方程式。端流还可以看作是由多种大尺度祸流和小尺度祸流组成的特殊流动。大尺度的祸流主要由流动的边界条件和流动区域的几何形状所决定,是引起流场中低频 脉动的主要原因;小尺度的祸流主要是點性力所决定,是引起流场中高频脉动的主要原因。瑞流的物理量的脉动特点就是由于流体内各种不同尺度祸流的随机运动造成。 用数值方法直接计算瑞流单元运动规律时,计算网格尺寸要小于瑞流单元 尺度,并在瑞流单元尺度内计算N-S方程的通解。但是在实际工程中具有重要意 义的不是端流的精细结构,而是瑞流对于时间的平均(时均)效应。因此,雷诺首先提出了将N-S方程对某一时间比例尺取平均,得到时均N-S方程。虽然瑞流的N-S 方程经过时均化处理后方程式的形式可以保持不变,但是出现了脉动应力项(雷诺应力),因此需要提出相应的端流模型(一个或一组数学方程)使时均方程得到封闭。这种方法按雷诺应力方程模型化方法的不同可分为两类:一类是直接就雷诺应力 建立模型化方程的雷诺应力方程模型;另一类是在雷诺应力与局部时均速度梯度 成比例的Boussinesq假设下引入的瑞流黏度系数模型。另一种瑞流数值计算方法是亚网格尺度模拟,即大祸模拟(LES),由N-S方程出发直接模拟大尺度祸流,小尺度祸流的影响可以通过近似模型来考虑。但是由于大祸模拟计算量仍很大,也只能 模拟一些简单的情况。 工程上通常需要深入了解的是温度场、时均速度场、瑞流脉动时均特性等, 并不需要了解瑞流产生和发展的详细过程。因此,利用雷诺提出的时均值的概念 来研究瑞流运动的方法是一种有效的简化,从N-S方程导出瑞流平均运动方程和 雷诺方程,还导出了连续性方程和能量方程等基本方程。雷诺平均法将瑞流物理 量代入不可压缩瞬态连续性方程、动量方程得到端流平均运动的连续性方程和动量方程。但是在雷诺时均方程组中除了瞬态连续性方程和动量方程外还有一项是

几种湍流模型

解决湍流的模型总计就是那几个方 程, 就是这些湍流模型的详细说明。FLUENT 提供了以下湍流模型: ·Spalart-Allmaras 模型Fluen t 又从工程和数值的角度进行了整理,下面 ·k- e 模型 -标准k-e模型 -Renormalization-group(RNG)k-e 模型-带旋流修正k-e模型 ·k-ω模型 -标准k-ω模型 -压力修正k-ω模型 雷诺兹压力模型 大漩涡模拟模型 几个湍流模型的比较: 从计算的角度看Spalart-Allmaras模型在FLUENT中是最经济的湍流模型,虽然只有一 种方程可以解。由于要解额外的方程,标准k-e模型比Spalart-Allmaras模型耗费更多的计 算机资源。带旋流修正的k-e模型比标准k-e模型稍微多一点。由于控制方程中额外的功能和 非线性,RNGk-e模型比标准k-e模型多消耗10~15%的CPU时间。就像k-e模型,k-ω模型 也是两个方程 的模型,所以计算时间相同。 比较一下k-e模型和k-ω模型,RSM模型因为考虑了雷诺压力而需要更多的CPU时间。然 而高效的程序大大的节约了CPU时间。RSM模型比k-e模型和k-ω模型要多耗费50~60%的CPU 时间,还有15~20%的内存。 除了时间,湍流模型的选择也影响FLUENT的计算。比如标准 k-e模型是专为轻微的扩散 设计的,然而RNGk-e模型是为高张力引起的湍流粘度降低而设计的。这就是RNG模型的缺点。 同样的,RSM模型需要比k-e模型和k-ω模型更多的时间因为它要联合雷诺压力和层流。 概念: 1.雷诺平均:在雷诺平均中,在瞬态N-S方程中要求的变量已经分解为时均常量和变量。 相似的,像压力和其它的标量 ' (10.22) i i i 这里表示一个标量如压力,动能,或粒子浓度。 2.Boussinesq逼近从雷诺压力转化模型:利用Boussinesq假设把雷诺压力和平均速度梯度 联系起来: Boussinesq假设使用在Spalart-Allmaras模型、k-e模型和k-ω模型中。这种逼近方法好处是对 计算机的要求不高。在Spalart-Allmaras模型中只有一个额外的方程要解。k-e模型和k-ω模型中又两个方程要解。 Boussinesq假设的不足之处是假设ut是个等方性标量,这是不严格的。

湍流理论发展概述

湍流理论发展概述 一、湍流模型的研究背景 自然环境和工程装置中的流动常常是湍流流动,模拟任何实际过程首先遇到的就是湍流问题,而湍流问题本身又是流体力学理论上的难题。对于某些简单的均匀时均流场,如果湍流脉动是各向均匀及各向同性的,可以用经典的统计理论来分析,但实际上的湍流往往是不均匀的,这就给理论分析带来了极大地困难。这也就引发了对湍流过程进行模拟的想法。 对湍流最根本的模拟方法是在湍流尺度的网格尺寸内求解瞬态的三维N-S 方程的全模拟方法,此时无需引进任何模型。然而由于计算方法及计算机运算水平的限制,该种方法不易实现。另一种要求稍低的方法是亚网格尺寸度模拟即大涡模拟(LES),也是由N-S 方程出发,其网格尺寸比湍流尺度大,可以模拟湍流发展过程的一些细节,但由于计算量仍然很大,只能模拟一些简单的情况,直接应用于实际的工程问题也存在很多问题[1]。目前数值模拟主要有三种方法:1. 平均N-S方程的求解,2.大涡模拟(LES),3.直接数值模拟(DNS),而模拟的前提是建立合适的湍流模型。 所谓的湍流模型,就是以雷诺平均运动方程与脉动运动方程为基础,依靠理论与经验的结合,引进一系列模型假设,而建立起的一组描写湍流平均量的封闭方程组。目前常用的湍流模型可根据所采用的微分方程数进行分类为:零方程模型、一方程模型、两方程模型、四方程模型、七方程模型等。对于简单流动而言,一般随着方程数的增多,精度也越高,计算量也越大、收敛性也越差。但是,对于复杂的湍流运动,则不一定。湍流模型可根据微分方程的个数分为零方程模型、一方程模型、二方程模型和多方程模型。这里所说的微分方程是指除了时均N-S 方程外,还要增加其他方程才能是方程封闭,增加多少个方程,则该模型就被成为多少个模型。

湍流模型介绍

湍流模型介绍 因为湍流现象是高度复杂的,所以至今还没有一种方法能够全面、准确地对所有流动问题中的湍流现象进行模拟。在涉及湍流的计算中,都要对湍流模型的模拟能力以及计算所需系统资源进行综合考虑后,再选择合适的湍流模型进行模拟。FLUENT 中采用的湍流模拟方法 包括Spalart-Allmaras模型、standard(标准)k ?ε模型、RNG(重整化群)k ?ε模型、Realizable(现实)k ?ε模型、v2 ?f 模型、RSM(Reynolds Stress Model,雷诺应力模型)模型和LES(Large Eddy Simulation,大涡模拟)方法。 7.2.1 雷诺平均与大涡模拟的对比 因为直接求解NS 方程非常困难,所以通常用两种办法对湍流进行模拟,即对NS 方程进行雷诺平均和滤波处理。这两种方法都会增加新的未知量,因此需要相应增加控制方程的数量,以便保证未知数的数量与方程数量相同,达到封闭方程组的目的。雷诺平均NS 方程是流场平均变量的控制方程,其相关的模拟理论被称为湍流模式理论。湍流模式理论假定湍流中的流场变量由一个时均量和一个脉动量组成,以此观点处理NS 方程可以得出雷诺平均NS 方程(简称RNS 方程)。在引入Boussinesq 假设,即认为湍流雷诺应力与应变成正比之后,湍流计算就归结为对雷诺应力与应变之间的比例系数(即湍流粘性系数)的计算。根据计算中使用的变量数目和方程数目的不同,湍流模式理论中所包含的湍流模型又被分为二方程模型、一方程模型和零方程模型(代数模型)等大类。 FLUENT 中使用的三种k ?ε模型、Spalart-Allmaras 模型、k ?ω模型及雷诺应力模型RSM)等都属于湍流模式理论。 大涡模拟(LES)方法是通过滤波处理计算湍流的,其主要思想是大涡结构(又称拟 序结构)受流场影响较大,小涡则可以认为是各向同性的,因而可以将大涡计算与小涡计算分开处理,并用统一的模型计算小涡。在这个思想下,大涡模拟通过滤波处理,首先将小于某个尺度的旋涡从流场中过滤掉,只计算大涡,然后通过求解附加方程得到小涡的解。过滤尺度一般就取为网格尺度。显然这种方法比直接求解NS 方程的DNS 方程效率更高,消耗系统资源更少,但却比湍流模式方法更精确。尤其应该注意的是,湍流模式理论无法准确模拟大涡结构,因此在需要模拟大涡结构时,只能采用LES 方法1。 尽管大涡模拟理论比湍流模式理论更精确,但是因为大涡模拟需要使用高精度的网格,对计算机资源的要求比较高,所以还不能在工程计算中被广泛使用。在绝大多数情况下,湍流计算还要采用湍流模式理论,大涡模拟则可以在计算资源足够丰富的时候尝试使用。 7.2.2 Spalart-Allmaras 模型 Spalart-Allmaras 模型是一方程模型里面最成功的一个模型,最早被用于有壁面限制情 况的流动计算中,特别在存在逆压梯度的流动区域内,对边界层的计算效果较好,因此经常被用于流动分离区附近的计算,后来在涡轮机械的计算中也得到广泛应用。 最早的Spalart-Allmaras 模型是用于低雷诺数流计算的,特别是在需要准确计算边界层 粘性影响的问题中效果较好。FLUENT 对Spalart-Allmaras 进行了改进,主要改进是可以在网格精度不高时使用壁面函数。在湍流对流场影响不大,同时网格较粗糙时,可以选用这个模型。 Spalart-Allmaras 模型是一种新出现的湍流模型,在工程应用问题中还没有出现多少成

湍流模型概述

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 大多数飞行器都是在高Re数下飞行,表面的流态是湍流。为了准确地确定湍流流态下的摩阻、热流,湍流成为一个重要而困难的研究课题。 (一)DNS 目前处理湍流数值计算问题有三种方法,第一种方法即所谓直接数值模拟方法(DNS方法),直接求解湍流运动的N-S方程,得到湍流的瞬时流场,即各种尺度的随机运动,可以获得湍流的全部信息。随着现代计算机的发展和先进的数值方法的研究,DNS方法已经成为解决湍流的一种实际的方法。但由于计算机条件的约束,目前只能限于一些低Re数的简单流动,不能用于工程应用。目前国际上正在做的湍流直接数值模拟还只限于较低的需诺数(Re~200)和非常简单的流动外形,如平板边界层、完全发展的槽道流,以及后台阶流动等。用直接数值模拟方法处理工程中的复杂流动问题,即使是当前最先进的计算机也还差三个量级。 (二)LES 另一种方法称做大涡模拟方法(LES方法)。这是一种折衷的方法,即对湍流脉动部分直接地模拟,将N-S方程在一个小空间域内进行平均(或称之为滤波),以使从流场中去掉小尺度涡,导出大涡所满足的方程。小涡对大涡的影响会出现在大涡方程中,再通过建立模型(亚格子尺度模型)来模拟小涡的影响。由于湍流的大涡结构强烈地依赖于流场的边界形状和边界条件,难以找出普遍的湍流模型来描述具有不同的边界特征的大涡结构,宜做直接模拟。相反地,小尺度涡对边界条件不存在直接依赖关系,而且一般具有各向同性性质。所以亚格子模型具有更大的普适性,比较容易构造,这是它比雷诺平均方法要优越的地方。自从1970年Deardorff第一次给出具有工程意义的LES计算以来,LES方法已经成为计算湍流的最强有力的工具之一,应用的方向也在逐步扩展,但是仍然受计算机条件等的限制,使之成为解决大量工程问题的成熟方法仍有很长的路要走。 (三)RANS 目前能够用于工程计算的方法就是模式理论。所谓湍流模式理论,就是依据湍流的理论知识、实验数据或直接数值模拟结果,对Reynolds应力做出各种假设,即假设各种经验的和半经验的本构关系,从而使湍流的平均Reynolds方程封闭。随着计算流体力学的发展,湍流模式理论也有了很大的进步,有了非常丰硕的成果。从对模

相关文档