文档库 最新最全的文档下载
当前位置:文档库 › C++中堆和栈的区别

C++中堆和栈的区别

C++中堆和栈的区别
C++中堆和栈的区别

C++中堆和栈的区别,自由存储区、全局/静态存储区和常量存储区

文章来自一个论坛里的回帖,哪个论坛记不得了!

在C++中,内存分成5个区,他们分别是堆、栈、自由存储区、全局/静态存储区和常量存储区。

栈,就是那些由编译器在需要的时候分配,在不需要的时候自动清楚的变量的存储区。里面的变量通常是局部变量、函数参数等。

堆,就是那些由new分配的内存块,他们的释放编译器不去管,由我们的应用程序去控制,一般一个new就要对应一个delete。如果程序员没有释放掉,那么在程序结束后,操作系统会自动回收。

自由存储区,就是那些由malloc等分配的内存块,他和堆是十分相似的,不过它是用free来结束自己的生命的。

全局/静态存储区,全局变量和静态变量被分配到同一块内存中,在以前的C语言中,全局变量又分为初始化的和未初始化的(初始化的全局变量和静态变量在一块区域,未初始化的全局变量与静态变量在相邻的另一块区域,同时未被初始化的对象存储区可以通过void*来访问和操纵,程序结束后由系统自行释放),在C++里面没有这个区分了,他们共同占用同一块内存区。

常量存储区,这是一块比较特殊的存储区,他们里面存放的是常量,不允许修改(当然,你要通过非正当手段也可以修改,而且方法很多)

明确区分堆与栈

在bbs上,堆与栈的区分问题,似乎是一个永恒的话题,由此可见,初学者对此往往是混淆不清的,所以我决定拿他第一个开刀。

首先,我们举一个例子:

void f() { int* p=new int[5]; }

这条短短的一句话就包含了堆与栈,看到new,我们首先就应该想到,我们分配了一块堆内存,那么指针p呢?他分配的是一块栈内存,所以这句话的意思就是:在栈内存中存放了一个指向一块堆内存的指针p。在程序会先确定在堆中分配内存的大小,然后调用operator new分配内存,然后返回这块内存的首地址,放入栈中,他在VC6下的汇编代码如下:

00401028 push 14h

0040102A call operator new (00401060)

0040102F add esp,4

00401032 mov dword ptr [ebp-8],eax

00401035 mov eax,dword ptr [ebp-8]

00401038 mov dword ptr [ebp-4],eax

这里,我们为了简单并没有释放内存,那么该怎么去释放呢?是delete p 么?澳,错了,应该是delete []p,这是为了告诉编译器:我删除的是一个数组,VC6就会根据相应的Cookie信息去进行释放内存的工作。

好了,我们回到我们的主题:堆和栈究竟有什么区别?

主要的区别由以下几点:

1、管理方式不同;

2、空间大小不同;

3、能否产生碎片不同;

4、生长方向不同;

5、分配方式不同;

6、分配效率不同;

管理方式:对于栈来讲,是由编译器自动管理,无需我们手工控制;对于堆来说,释放工作由程序员控制,容易产生memory leak。

空间大小:一般来讲在32位系统下,堆内存可以达到4G的空间,从这个角度来看堆内存几乎是没有什么限制的。但是对于栈来讲,一般都是有一定的空间大小的,例如,在VC6下面,默认的栈空间大小是1M(好像是,记不清楚了)。当然,我们可以修改:

打开工程,依次操作菜单如下:Project->Setting->Link,在Category 中选中Output,然后在Reserve中设定堆栈的最大值和commit。

注意:reserve最小值为4Byte;commit是保留在虚拟内存的页文件里面,它设置的较大会使栈开辟较大的值,可能增加内存的开销和启动时间。

碎片问题:对于堆来讲,频繁的new/delete势必会造成内存空间的不连续,从而造成大量的碎片,使程序效率降低。对于栈来讲,则不会存在这个问题,因为栈是先进后出的队列,他们是如此的一一对应,以至于永远都不可能有一个内存块从栈中间弹出,在他弹出之前,在他上面的后进的栈内容已经被弹出,详细的可以参考数据结构,这里我们就不再一一讨论了。

生长方向:对于堆来讲,生长方向是向上的,也就是向着内存地址增加的方向;对于栈来讲,它的生长方向是向下的,是向着内存地址减小的方向增长。

分配方式:堆都是动态分配的,没有静态分配的堆。栈有2种分配方式:静态分配和动态分配。静态分配是编译器完成的,比如局部变量的分配。动态分配由alloca函数进行分配,但是栈的动态分配和堆是不同的,他的动态分配是由编译器进行释放,无需我们手工实现。

分配效率:栈是机器系统提供的数据结构,计算机会在底层对栈提供支持:分配专门的寄存器存放栈的地址,压栈出栈都有专门的指令执行,这就决定了栈的效率比较高。堆则是C/C++函数库提供的,它的机制是很复杂的,例如为了分配一块内存,库函数会按照一定的算法(具体的算法可以参考数据结构/操作系统)在堆内存中搜索可用的足够大小的空间,如果没有足够大小的空间(可能是由于内存碎片太多),就有可能调用系统功能去增加程序数据段的内存空间,这样就有机会分到足够大小的内存,然后进行返回。显然,堆的效率比栈要低得多。

从这里我们可以看到,堆和栈相比,由于大量new/delete的使用,容易造成大量的内存碎片;由于没有专门的系统支持,效率很低;由于可能引发用户态和核心态的切换,内存的申请,代价变得更加昂贵。所以栈在程序中是应用最广泛的,就算是函数的调用也利用栈去完成,函数调用过程中的参数,返回地址,EBP和局部变量都采用栈的方式存放。所以,我们推荐大家尽量用栈,而不是用堆。

虽然栈有如此众多的好处,但是由于和堆相比不是那么灵活,有时候分配大量的内存空间,还是用堆好一些。

无论是堆还是栈,都要防止越界现象的发生(除非你是故意使其越界),因为越界的结果要么是程序崩溃,要么是摧毁程序的堆、栈结构,产生以想不到的结果,就算是在你的程序运行过程中,没有发生上面的问题,你还是要小心,说不定什么时候就崩掉,那时候debug可是相当困难的:)

对了,还有一件事,如果有人把堆栈合起来说,那它的意思是栈,可不是堆,呵呵,清楚了?

static用来控制变量的存储方式和可见性

函数内部定义的变量,在程序执行到它的定义处时,编译器为它在栈上分配空间,函数在栈上分配的空间在此函数执行结束时会释放掉,这样就产生了一个问题: 如果想将函数中此变量的值保存至下一次调用时,如何实现?最容易想到的方法是定义一个全局的变量,但定义为一个全局变量有许多缺点,最明显的缺点是破坏了此变量的访问范围(使得在此函数中定义的变量,不仅仅受此函数控制)。

需要一个数据对象为整个类而非某个对象服务,同时又力求不破坏类的封装性,即要求此成员隐藏在类的内部,对外不可见。

static的内部机制:

静态数据成员要在程序一开始运行时就必须存在。因为函数在程序运行中被调用,所以静态数据成员不能在任何函数内分配空间和初始化。这样,它的空间分配有三个可能的地方,一是作为类的外部接口的头文件,那里有类声明;二是类定义的内部实现,那里有类的成员函数定义;三是应用程序的main()函数前的全局数据声明和定义处。

静态数据成员要实际地分配空间,故不能在类的声明中定义(只能声明数据成员)。类声明只声明一个类的“尺寸和规格”,并不进行实际的内存分配,所以在类声明中写成定义是错误的。它也不能在头文件中类声明的外部定义,因为那会造成在多个使用该类的源文件中,对其重复定义。

static被引入以告知编译器,将变量存储在程序的静态存储区而非栈上空间,静态

数据成员按定义出现的先后顺序依次初始化,注意静态成员嵌套时,要保证所嵌套的成员已经初始化了。消除时的顺序是初始化的反顺序。

static的优势:

可以节省内存,因为它是所有对象所公有的,因此,对多个对象来说,静态数据成员只存储一处,供所有对象共用。静态数据成员的值对每个对象都是一样,但它的值是可以更新的。只要对静态数据成员的值更新一次,保证所有对象存取更新后的相同的值,这样可以提高时间效率。引用静态数据成员时,采用如下格式:

<类名>::<静态成员名>

如果静态数据成员的访问权限允许的话(即public的成员),可在程序中,按上述格式

来引用静态数据成员。

ps:

(1)类的静态成员函数是属于整个类而非类的对象,所以它没有this指针,这就导致了它仅能访问类的静态数据和静态成员函数。

(2)不能将静态成员函数定义为虚函数。

(3)由于静态成员声明于类中,操作于其外,所以对其取地址操作,就多少有些特殊,变量地址是指向其数据类型的指针,函数地址类型是一个“nonmember函数指针”。

(4)由于静态成员函数没有this指针,所以就差不多等同于nonmember函数,

结果就产生了一个意想不到的好处:成为一个callback函数,使得我们得以将c++和c-based x window系统结合,同时也成功的应用于线程函数身上。

(5)static并没有增加程序的时空开销,相反她还缩短了子类对父类静态成员的访问时间,节省了子类的内存空间。

(6)静态数据成员在<定义或说明>时前面加关键字static。

(7)静态数据成员是静态存储的,所以必须对它进行初始化。

(8)静态成员初始化与一般数据成员初始化不同:

初始化在类体外进行,而前面不加static,以免与一般静态变量或对象相混淆;

初始化时不加该成员的访问权限控制符private,public等;

初始化时使用作用域运算符来标明它所属类;

所以我们得出静态数据成员初始化的格式:

<数据类型><类名>::<静态数据成员名>=<值>

(9)为了防止父类的影响,可以在子类定义一个与父类相同的静态变量,以屏蔽父类的影响。这里有一点需要注意:我们说静态成员为父类和子类共享,但我们有重复定义了静态成员,这会不会引起错误呢?不会,我们的编译器采用了一种绝妙的手法:name-mangling 用以生成唯一的标志。

-----------------------------------------------

【转】全局变量静态变量

static 声明的变量在C语言中有两方面的特征:

1)、变量会被放在程序的全局存储区中,这样可以在下一次调用的时候还可以保持原来的赋值。这一点是它与堆栈变量和堆变量的区别。

2)、变量用static告知编译器,自己仅仅在变量的作用范围内可见。这一点是它与全局变量的区别。

Tips:

A.若全局变量仅在单个C文件中访问,则可以将这个变量修改为静态全局变量,以降低模块间的耦合度;

B.若全局变量仅由单个函数访问,则可以将这个变量改为该函数的静态局部变量,以降低模块间的耦合度;

C.设计和使用访问动态全局变量、静态全局变量、静态局部变量的函数时,需要考虑重入问题;

D.如果我们需要一个可重入的函数,那么,我们一定要避免函数中使用static 变量(这样的函数被称为:带“内部存储器”功能的的函数)

E.函数中必须要使用static变量情况:比如当某函数的返回值为指针类型时,则必须是static的局部变量的地址作为返回值,若为auto类型,则返回为错指针。

函数前加static使得函数成为静态函数。但此处“static”的含义不是指存储方式,而是指对函数的作用域仅局限于本文件(所以又称内部函数)。使用内部函数的好处是:不同的人编写不同的函数时,不用担心自己定义的函数,是否会与其它文件中的函数同名。

扩展分析:术语static有着不寻常的历史.起初,在C中引入关键字static是为了表示退出一个块后仍然存在的局部变量。随后,static在C中有了第二种含义:用来表示不能被其它文件访问的全局变量和函数。为了避免引入新的关键字,所以仍使用static关键字来表示这第二种含义。最后,C++重用了这个关键字,并赋予它与前面不同的第三种含义:表示属于一个类而不是属于此类的任何特定对象的变量和函数(与Java中此关键字的含义相同)。

全局变量、静态全局变量、静态局部变量和局部变量的区别

变量可以分为:全局变量、静态全局变量、静态局部变量和局部变量。

按存储区域分,全局变量、静态全局变量和静态局部变量都存放在内存的静态存储区域,局部变量存放在内存的栈区。

按作用域分,全局变量在整个工程文件内都有效;静态全局变量只在定义它的文件内有效;静态局部变量只在定义它的函数内有效,只是程序仅分配一次内存,函数返回后,该变量不会消失;局部变量在定义它的函数内有效,但是函数返回后失效。

全局变量(外部变量)的说明之前再冠以static 就构成了静态的全局变量。全局变量本身就是静态存储方式,静态全局变量当然也是静态存储方式。这两者在存储方式上并无不同。这两者的区别虽在于非静态全局变量的作用域是整个源程序,当一个源程序由多个源文件组成时,非静态的全局变量在各个源文件中都是有效的。而静态全局变量则限制了其作用域,即只在定义该变量的源文件内有效,在同一源程序的其它源文件中不能使用它。由于静态全局变量的作用域局限于一个源文件内,只能为该源文件内的函数公用,因此可以避免在其它源文件中引起错误。

从以上分析可以看出,把局部变量改变为静态变量后是改变了它的存储方式即改变了它的生存期。把全局变量改变为静态变量后是改变了它的作用域,限制了它的使用范围。

static函数与普通函数作用域不同。仅在本文件。只在当前源文件中使用的函数应该说明为内部函数(static),内部函数应该在当前源文件中说明和定义。对于可在当前源文件以外使用的函数,应该在一个头文件中说明,要使用这些函数的源文件要包含这个头文件

static全局变量与普通的全局变量有什么区别:static全局变量只初使化一次,防止在其他文件单元中被引用;

static局部变量和普通局部变量有什么区别:static局部变量只被初始化一次,下一次依据上一次结果值;

static函数与普通函数有什么区别:static函数在内存中只有一份,普通函数在每个被调用中维持一份拷贝

全局变量和静态变量如果没有手工初始化,则由编译器初始化为0。局部变量的值不可知。

堆和栈内存分配中堆栈和堆有什么区别呀?

对了!这就是说动态分配内存时我们采用了Heap,

静态时就可以使用stack。

VCL的对象因此必须使用new来分配内存,

TForm form;这样的写法在VCL中绝对不允许。

下面Copy paste一下

所有的VCL对象都通过指针进行引用。C++ Builder中不存在任何VCL类的任何静态或局部实例,从表面上看,这主要与VCL是从Object Pascal演变而来有关,而真正的深层次原因是由面向对象技术的关联与委托模型决定的。

基于性能和内存高效分配的原因,在堆(heap)中分配对象比在栈(stack)中分配对象的效率要高。因此,Delphi最大限度地简化了语言的语法,强制用户必须在堆中分配对象。因为Pascal的高度机构性,程序员所面临的指针问题比C++要简单得多。VCL对象的构造函数自动在堆中分配对象而不需要指针的参与。对于程序员来说,没有复杂指针的Delphi确实好用,但程序员必须记住,没有指针事实上意味着指针无处不在——Delphi根本就不允许程序员创建任何一个非指针的对象!注意,所有的其他数据类型,诸如字符串、整数、数组和结构(记录)等,都可以生命为静态的或动态的,此项限制仅适用于对象。

例如以下代码:

var

T: ^TObject;

begin

T := New(TObject, Create);

........

T^.Free;

end;

上述代码在Delphi中是不可能编译通过的。但它事实上就是Delphi处理对象的方式。Delphi对对象声明语法的简化使程序员使用起来更简单。上述代码应改为:

var

T: TObject;

begin

T := TObject.Create;

.....

T.Free;

end;

上述两段代码并不相同,按照程序员对C++的理解,它们不应该生成相同的机器码。但事实上,要是前一段代码在Delphi中能够编译通过的话,它们的机器码是完全相同的。

union和struct的区别

union UTest {

double dlOne;

char chOne;

byte bArray[4];

};

好了,看到上面的定义,很像struct的定义,但是对于union来说,有几点是值得注意的:不能直接对其进行初始化;某个时候只能使用其中的一个元素;最后一点也是最

重要的一点就是内存共享,分配给union内存的Size是其中Size最大的那个元素的Size。说到这里,既然union最重要的是内存共享,那么我们做如下定义:union UTest tEle;然后赋值:tEle.dlOne = 2.0f;现在是dlOne可用,下一步:tEle.chOne = 'A';到这里dlOne失去了其意义,chOne变得可用。

然后,我们再来看看Struct,在struct中每一个元素都是分配内存的,而且都是有单独意义的,也就是说对一个变量的赋值并不影响其它变量的取值。到这里,各位应该明白这两者之间的区别了吧,事实上我个人认为,它们最主要的区别是在内存的分配和使用上。知道这一点,一切也就不难理解了。

最后,在使用union的时候,可能有时候我们会来用其来对字节流进行分解和重组,这样使用的时候一定要注意各种内存对数据的存储,比如Intel是按高高低低的原则存储的,有些则是相反的。因此,这点因该值得注意,否则得到的可能和预期的结果不一样。

举例:使用union结构输出主机字节序

int main ( void ) { union { short s; char c[sizeof(shor)]; }un; un.s = 0x0102; printf ( "%s:", CPU_VENDOR_OS ); if ( 2==sizeof(short) ) { if ( 1==un.c[0] && 2==un.c[1]) { printf ( "big-endian\n" ); } else if ( 2==un.c[0] && 1==un.c[1] ) { printf ( "little-endian\n" ); } else { printf ( "unknown\n" ); } } else { printf ( "sizeof(short) = %d\n", sizeof(short) ); } return 0; }

本文来自CSDN博客,转载请标明出处:https://www.wendangku.net/doc/2e12278483.html,/lvyexiaozi/archive/2008/07/07/2621694.aspx

堆内存

堆内存是区别于栈区、全局数据区和代码区的另一个内存区域。堆允许程序在运行时动态地申请某个大小的内存空间。在学习C程序设计语言时,会遇到两个很相似的术语:堆内存和栈内存。这堆内存和栈内存两个术语虽然只有一字之差,但是所表达的意义还是有差别的,堆内存和栈内存的区别可以用如下的比喻来看出:使用堆内存就象是自己动手做喜欢吃的菜肴,比较麻烦,但是比较符合自己的口味,而且自由度大。使用栈内存就象我们去饭馆里吃饭,只管点菜(发出申请)、付钱和吃(使用),吃饱了就走,不必理会切菜、洗菜等准备工作和洗碗、刷锅等扫尾工作,他的好处是快捷,但是自由度小。操作系统中所说的堆内存和栈内存,在操作上有上述的特点,这里的堆内存实际上指的就是(满足堆内存性质的)优先队列的一种数据结构,第1个元素有最高的优先权;栈内存实际上就是满足先进后出的性质的数学或数据结构 在标准C语言上,使用malloc等内存分配函数获取内存即是从堆中分配内存,而在一个函数体中例如定义一个数组之类的操作是从栈中分配内存。从堆中分配的内存需要程序员手动释放,如果不释放,而系统内存管理器又不自动回收这些堆内存的话(实现这一项功能的系统很少) 动态分配堆内存,那就一直被占用。如果一直申请堆内存,而不释放,内存会越来越少,很明显的结果是系统变慢或者申请不到新的堆内存。而过度的申请堆内存(可以试试在函数中申请一个1G的数组!),会导致堆被压爆,结果是灾难性的。 我们掌握堆内存的权柄就是返回的指针,一旦丢掉了指针,便无法在我们视野内释放它。这便是内存泄露。而如果在函数中申请一个数组,在函数体外调用使用这块堆内存,结果将无法预测。我们知道在c/c++中定义的数组大小必需要事先定义好,他们通常是分配在静态内存空间或者是在栈内存空间内的,但是在实际工作中,我们有时候却需要动态的为数组分配大小,这时就要用到堆内存分配的概念。在堆内存分配时首先应该知道操作系统有一个记录空闲内存地址的链表,当系统收到程序的申请时,会遍历该链表,寻找第一个空间大于所申请空间的堆结点,然后将该结点从空闲结点链表中删除,并将该结点的空间分配给程序,另外,对于大多数系统,会在这块内存空间中的首地址处记录本次分配的大小,这样,代码中的delete语句才能正确的释放本内存空间。另外,由于找到的堆结点的大小不一定正好等于申请的大小,系统会自动的将多余的那部分重新放入空闲链表中。堆内存是向高地址扩展的数据结构,是不连续的内存区域。这是由于系统是用链表来存储的空闲内存地址的,自然是不连续的,而链表的遍历方向是由低地址向高地址。堆内存的大小受限于计算机系统中有效的虚拟内存。由此可见,堆内存获得的空间比较灵活,也比较大。堆内存是由new分配的内存,一般速度比较慢,而且容易产生内存碎片,不过用起来最方便.另外,在WINDOWS

堆与栈

栈是由编译器在需要的时分配的,不需要时自动清除的变量存储区。里面的变量通常是局部变量、函数参数等。堆是有malloc()函数(C++语言为new运算符)分配为内存快,内存的释放由程序员手动控制,在C语言为free()完成(C++中为deleted)。堆和栈的主要区别有以下几点: (1)管理方式不同 栈编译器自动管理,无需程序员手工控制;而堆空间的申请释放工作由程序员控制,容易产生内存泄漏。 (2)空间的大小不同 栈是向低地址扩展的数据结构,是一块连续的内存区域。这句话的意思是栈顶的地址和栈的最大容量是系统预先设定好,当申请的空间超过栈的剩余空间时,将提示溢出。因此,用户能从栈获得空间较小。 堆是向高地址扩展的数据结构,是不连续的内存区域。因为系统是用链表来存储空闲内存地址的,且链表的遍历方向是由低地址向高地址。由此可见,堆获得空间较灵活,也较大。栈中元素都是一一对应的,不会存在一个内存块从中弹出的情况。 (3)是否产生碎片 对于栈来讲,频繁的malloc/free(new/delete)势必会造成内存空间的不连续,从而造成大量的碎片,使程序效率降低(虽然程序在退出后操作系统会对内存进行回收管理)。对于栈来讲,则不会存在这个问题。 (4) 增长方向不同 堆的增长方向是向上的,即向着内存地址增加的方向。栈的增长方向是向下的,即向着内存地址减小的方向。 (5)分配方式不同 堆都是程序中由malloc()函数动态申请分配并由free()函数释放的;栈的分配和释放是由编译器完成的,栈的动态分配由alloca()函数完成,但是栈的动态分配和对不同,它的动态分配是由编译器进行申请和释放的,无需手工实现。 (6)分配效率不同 栈是由机器系统提供的数据结构,计算机会在底层对栈提供支持;分配专门的寄存器存放栈的地址,压栈出栈都有专门的指令进行。堆则是C函数库提供的,它的机制很复杂,例如为了分配一块内存,库函数会按照一定的算法(具体的算法可以参考数据结构/操作系统)在堆内存中搜索可用的足够大的空间,如果没有足够大的空间(可能是由于内存碎片太多),就需要操作系统来重新整理内存空间,这样就有机会分到足够大小的内存,然后返回。 显然堆的效率要比栈低得多。 可执行代码运行时内存结构结构: (1)代码区(text segment)。代码区指令根据程序设计流程依次执行,对于顺序指令,则只会执行一次(每个进程),如果反复,则需要使用跳转指令,如果进行递归,则需要借助栈来实现。 代码区的指令包括操作码和要操作的对象(或对象地址引用)。如果是里技术(及具体的数值),将直接包含在代码中;如果是局部变量,将在栈区分配空间。然后引用该数的地址;如果是BSS去和数据区,在代码中同样是引用该数的地址。

java中堆和栈的区别

Java中堆与栈的区别 简单的说: Java把内存划分成两种:一种是栈内存,一种是堆内存。 在函数中定义的一些基本类型的变量和对象的引用变量都在函数的栈内存中分配。 当在一段代码块定义一个变量时,Java就在栈中为这个变量分配内存空间,当超过变量的作用域后,Java会自动释放掉为该变量所分配的内存空间,该内存空间可以立即被另作他用。 堆内存用来存放由new创建的对象和数组。 在堆中分配的内存,由Java虚拟机的自动垃圾回收器来管理。 1. 栈(stack)与堆(heap)都是Java用来在Ram中存放数据的地方。与C++不同,Java 自动管理栈和堆,程序员不能直接地设置栈或堆。 2. 栈的优势是,存取速度比堆要快,仅次于直接位于CPU中的寄存器。但缺点是,存在栈中的数据大小与生存期必须是确定的,缺乏灵活性。另外,栈数据可以共享,详见第3点。堆的优势是可以动态地分配内存大小,生存期也不必事先告诉编译器,Java的垃圾收集器会自动收走这些不再使用的数据。但缺点是,由于要在运行时动态分配内存,存取速度较慢。 3. Java中的数据类型有两种。 一种是基本类型(primitive types), 共有8种,即int, short, long, byte, float, double, boolean, char(注意,并没有string的基本类型)。这种类型的定义是通过诸如int a = 3; long b = 255L;的形式来定义的,称为自动变量。值得注意的是,自动变量存的是字面值,不是类的实例,即不是类的引用,这里并没有类的存在。如int a = 3; 这里的a是一个指向int类型的引用,指向3这个字面值。这些字面值的数据,由于大小可知,生存期可知(这些字面值固定定义在某个程序块里面,程序块退出后,字段值就消失了),出

C语言堆和栈

在计算机领域,堆栈是一个不容忽视的概念,我们编写的C语言程序基本上都要用到。 但对于很多的初学着来说,堆栈是一个很模糊的概念。堆栈:一种数据结构、一个在程序运 行时用于存放的地方,这可能是很多初学者的认识,因为我曾经就是这么想的和汇编语言中 的堆栈一词混为一谈。我身边的一些编程的朋友以及在网上看帖遇到的朋友中有好多也说不 清堆栈,所以我想有必要给大家分享一下我对堆栈的看法,有说的不对的地方请朋友们不吝 赐教,这对于大家学习会有很大帮助。 首先在数据结构上要知道堆栈,尽管我们这么称呼它,但实际上堆栈是两种数据结构:堆和栈。 堆和栈都是一种数据项按序排列的数据结构。 我们先从大家比较熟悉的栈说起吧,它是一种具有后进先出性质的数据结构,也就是说 后存放的先取,先存放的后取。这就如同我们要取出放在箱子里面底下的东西(放入的比较 早的物体),我们首先要移开压在它上面的物体(放入的比较晚的物体)。而堆就不同了,堆 是一种经过排序的树形数据结构,每个结点都有一个值。通常我们所说的堆的数据结构,是 指二叉堆。堆的特点是根结点的值最小(或最大),且根结点的两个子树也是一个堆。由于 堆的这个特性,常用来实现优先队列,堆的存取是随意,这就如同我们在图书馆的书架上取 书,虽然书的摆放是有顺序的,但是我们想取任意一本时不必像栈一样,先取出前面所有的 书,书架这种机制不同于箱子,我们可以直接取出我们想要的书。 然而我要说的重点并不在这,我要说的堆和栈并不是数据结构的堆和栈,之所以要说数 据结构的堆和栈是为了和后面我要说的堆区和栈区区别开来,请大家一定要注意。 下面就说说C语言程序内存分配中的堆和栈,这里有必要把内存分配也提一下,大家不 要嫌我啰嗦,一般情况下程序存放在Rom或Flash中,运行时需要拷到内存中执行,内存会分 别存储不同的信息,如下图所示:

堆与栈,静态变量和全局变量的区别

堆与栈,静态变量和全局变量的区别 堆与栈,静态变量和全局变量的区别 对和栈的主要的区别由以下几点: 1、管理方式不同; 2、空间大小不同; 3、能否产生碎片不同; 4、生长方向不同; 5、分配方式不同; 6、分配效率不同; 管理方式:对于栈来讲,是由编译器自动管理,无需我们手工控制;对于堆来说,释放工作由程序员控制,容易产生memory leak。 空间大小:一般来讲在32位系统下,堆内存可以达到4G的空间,从这个角度来看堆内存几乎是没有什么限制的。但是对于栈来讲,一般都是有一定的空间大小的,例如,在VC6下面,默认的栈空间大小是1M(好像是,记不清楚了)。当然,我们可以修改: 打开工程,依次操作菜单如下:Project->Setting->Link,在Category 中选中Output,然后在Reserve中设定堆栈的最大值和commit。 注意:reserve最小值为4Byte;commit是保留在虚拟内存的页文件里面,它设置的较大会使栈开辟较大的值,可能增加内存的开销和启动时间。 碎片问题:对于堆来讲,频繁的new/delete势必会造成内存空间的不连续,从而造成大量的碎片,使程序效率降低。对于栈来讲,则不会存在这个问题,因为栈是先进后出的队列,他们是如此的一一对应,以至于永远都不可能有一个内存块从栈中间弹出,在他弹出之前,在他上面的后进的栈内容已经被弹出,详细的可以参考数据结构,这里我们就不再一一讨论了。 生长方向:对于堆来讲,生长方向是向上的,也就是向着内存地址增加的方向;对于栈来讲,它的生长方向是向下的,是向着内存地址减小的方向增长。 分配方式:堆都是动态分配的,没有静态分配的堆。栈有2种分配方式:静态分配和动态分配。静态分配是编译器完成的,比如局部变量的分配。动态分配由alloca函数进行分配,但是栈的动态分配和堆是不同的,他的动态分配是由编译器进行释放,无需我们手工实现。 分配效率:栈是机器系统提供的数据结构,计算机会在底层对栈提供支持:分配专门的寄存器存放栈的地址,压栈出栈都有专门的指令执行,这就决定了栈的效率比较高。堆则是C/C++函数库提供的,它的机制是很复杂的,例如为了分配一块内存,库函数会按照一定的算法(具体的算法可以参考数据结构/操作系统)在堆内存中搜索可用的足够大小的空间,如果没有足够大小的空间(可能是由于内存碎片太多),就有可能调用系统功能去增加程序数据段的内存空间,这样就有机会分到足够大小的内存,然后进行返回。显然,堆的效率比栈要低得多。

两种常见的内存管理方法:堆和内存池

两种常见的内存管理方法:堆和内存池 本文导读 在程序运行过程中,可能产生一些数据,例如,串口接收的数据,ADC采集的数据。若需将数据存储在内存中,以便进一步运算、处理,则应为其分配合适的内存空间,数据处理完毕后,再释放相应的内存空间。为了便于内存的分配和释放,AWorks提供了两种内存管理工具:堆和内存池。 本文为《面向AWorks框架和接口的编程(上)》第三部分软件篇——第9章内存管理——第1~2小节:堆管理器和内存池。 本章导读 在计算机系统中,数据一般存放在内存中,只有当数据需要参与运算时,才从内存中取出,交由CPU运算,运算结束再将结果存回内存中。这就需要系统为各类数据分配合适的内存空间。 一些数据需要的内存大小在编译前可以确定。主要有两类:一类是全局变量或静态变量,这部分数据在程序的整个生命周期均有效,在编译时就为这些数据分配了固定的内存空间,后续直接使用即可,无需额外的管理;一类是局部变量,这部分数据仅在当前作用域中有效(如函数中),它们需要的内存自动从栈中分配,也无需额外的管理,但需要注意的是,由于这一部分数据的内存从栈中分配,因此,需要确保应用程序有足够的栈空间,尽量避免定义内存占用较大的局部变量(比如:一个占用数K内存的数组),以避免栈溢出,栈溢出可能破坏系统关键数据,极有可能造成系统崩溃。 一些数据需要的内存大小需要在程序运行过程中根据实际情况确定,并不能在编译前确定。例如,可能临时需要1K内存空间用于存储远端通过串口发过来的数据。这就要求系统具有对内存空间进行动态管理的能力,在用户需要一段内存空间时,向系统申请,系统选择一段合适的内存空间分配给用户,用户使用完毕后,再释放回系统,以便系统将该段内存空间回收再利用。在AWorks中,提供了两种常见的内存管理方法:堆和内存池。9.1 堆管理器

堆变量和栈变量

全局,静态,new产生的变量都在堆中 动态分配的变量在堆中分配 局部变量在栈里分配 函数中声明的变量在栈中 用了new标示符在堆中 全局变量和static变量都在全局区 程序为栈变量分配动态内存,在程序结束时为栈变量分配的空间将自动释放;而为堆变量分配的空间则不会自动释放,若在程序中没有没有释放堆变量,它将一直占用系统内存。 堆栈是一种执行“后进先出”算法的数据结构。 设想有一个直径不大、一端开口一端封闭的竹筒。有若干个写有编号的小球,小球的直径比竹筒的直径略小。现在把不同编号的小球放到竹筒里面,可以发现一种规律:先放进去的小球只能后拿出来,反之,后放进去的小球能够先拿出来。所以“先进后出”就是这种结构的特点。 堆栈就是这样一种数据结构。它是在内存中开辟一个存储区域,数据一个一个顺序地存入(也就是“压入——push”)这个区域之中。有一个地址指针总指向最后一个压入堆栈的数据所在的数据单元,存放这个地址指针的寄存器就叫做堆栈指示器。开始放入数据的单元叫做“栈底”。数据一个一个地存入,这个过程叫做“压栈”。在压栈的过程中,每有一个数据压入堆栈,就放在和前一个单元相连的后面一个单元中,堆栈指示器中的地址自动加1。读取这些数据时,按照堆栈指示器中的地址读取数据,堆栈指示器中的地址数自动减 1。这个过程叫做“弹出pop”。如此就实现了后进先出的原则。 堆栈是计算机中最常用的一种数据结构,比如函数的调用在计算机中是用堆栈实现的。 堆栈可以用数组存储,也可以用以后会介绍的链表存储。 下面是一个堆栈的结构体定义,包括一个栈顶指针,一个数据项数组。栈顶指针最开始指向-1,然后存入数据时,栈顶指针加1,取出数据后,栈顶指针减1。 #define MAX_SIZE 100 typedef int DATA_TYPE; struct stack { DATA_TYPE data[MAX_SIZE]; int top; }; 在C++中,内存分成5个区,他们分别是堆、栈、自由存储区、全局/静态存储区和常量存储区。 栈,就是那些由编译器在需要的时候分配,在不需要的时候自动清楚的变量的存储区。里面的变量通常是局部变量、函数参数等。 堆,就是那些由new分配的内存块,他们的释放编译器不去管,由我们的应用程

C++中堆和栈的区别

C++中堆和栈的区别,自由存储区、全局/静态存储区和常量存储区 文章来自一个论坛里的回帖,哪个论坛记不得了! 在C++中,内存分成5个区,他们分别是堆、栈、自由存储区、全局/静态存储区和常量存储区。 栈,就是那些由编译器在需要的时候分配,在不需要的时候自动清楚的变量的存储区。里面的变量通常是局部变量、函数参数等。 堆,就是那些由new分配的内存块,他们的释放编译器不去管,由我们的应用程序去控制,一般一个new就要对应一个delete。如果程序员没有释放掉,那么在程序结束后,操作系统会自动回收。 自由存储区,就是那些由malloc等分配的内存块,他和堆是十分相似的,不过它是用free来结束自己的生命的。 全局/静态存储区,全局变量和静态变量被分配到同一块内存中,在以前的C语言中,全局变量又分为初始化的和未初始化的(初始化的全局变量和静态变量在一块区域,未初始化的全局变量与静态变量在相邻的另一块区域,同时未被初始化的对象存储区可以通过void*来访问和操纵,程序结束后由系统自行释放),在C++里面没有这个区分了,他们共同占用同一块内存区。 常量存储区,这是一块比较特殊的存储区,他们里面存放的是常量,不允许修改(当然,你要通过非正当手段也可以修改,而且方法很多) 明确区分堆与栈 在bbs上,堆与栈的区分问题,似乎是一个永恒的话题,由此可见,初学者对此往往是混淆不清的,所以我决定拿他第一个开刀。 首先,我们举一个例子: void f() { int* p=new int[5]; } 这条短短的一句话就包含了堆与栈,看到new,我们首先就应该想到,我们分配了一块堆内存,那么指针p呢?他分配的是一块栈内存,所以这句话的意思就是:在栈内存中存放了一个指向一块堆内存的指针p。在程序会先确定在堆中分配内存的大小,然后调用operator new分配内存,然后返回这块内存的首地址,放入栈中,他在VC6下的汇编代码如下: 00401028 push 14h 0040102A call operator new (00401060) 0040102F add esp,4 00401032 mov dword ptr [ebp-8],eax 00401035 mov eax,dword ptr [ebp-8] 00401038 mov dword ptr [ebp-4],eax 这里,我们为了简单并没有释放内存,那么该怎么去释放呢?是delete p 么?澳,错了,应该是delete []p,这是为了告诉编译器:我删除的是一个数组,VC6就会根据相应的Cookie信息去进行释放内存的工作。 好了,我们回到我们的主题:堆和栈究竟有什么区别? 主要的区别由以下几点: 1、管理方式不同; 2、空间大小不同; 3、能否产生碎片不同; 4、生长方向不同;

JVM内存分配(栈堆)与JVM回收机制

Java 中的堆和栈 简单的说: Java把内存划分成两种:一种是栈内存,一种是堆内存。 在函数中定义的一些基本类型的变量和对象的引用变量都在函数的栈内存中分配。 当在一段代码块定义一个变量时,Java就在栈中为这个变量分配内存空间,当超过变量的作用域后,Java会自动释放掉为该变量所分配的内存空间,该内存空间可以立即被另作他用。 堆内存用来存放由new创建的对象和数组。 在堆中分配的内存,由Java虚拟机的自动垃圾回收器来管理。 在堆中产生了一个数组或对象后,还可以在栈中定义一个特殊的变量,让栈中这个变量的取值等于数组或对象在堆内存中的首地址,栈中的这个变量就成了数组或对象的引用变量。 引用变量就相当于是为数组或对象起的一个名称,以后就可以在程序中使用栈中的引用变量来访问堆中的数组或对象。 具体的说: 栈与堆都是Java用来在Ram中存放数据的地方。与C++不同,Java自动管理栈和堆,程序员不能直接地设置栈或堆。 Java的堆是一个运行时数据区,类的(对象从中分配空间。这些对象通过new、newarray、anewarray和multianewarray等指令建立,它们不需要程序代码来显式的释放。堆是由垃圾回收来负责的,堆的优势是可以动态地分配内存大小,生存期也不必事先告诉编译器,因为它是在运行时动态分配内存的,Java的垃圾收集器会自动收走这些不再使用的数据。但缺点是,由于要在运行时动态分配内存,存取速度较慢。 栈的优势是,存取速度比堆要快,仅次于寄存器,栈数据可以共享。但缺点是,存在栈中的数据大小与生存期必须是确定的,缺乏灵活性。栈中主要存放一些基本类型的变量(,int, short, long, byte, float, double, boolean, char)和对象句柄。 栈有一个很重要的特殊性,就是存在栈中的数据可以共享。假设我们同时定义: int a = 3; int b = 3; 编译器先处理int a = 3;首先它会在栈中创建一个变量为a的引用,然后查找栈中是否有3这个值,如果没找到,就将3存放进来,然后将a指向3。接着处理int b = 3;在创建完b的引用变量后,因为在栈中已经有3这个值,便将b直接指向3。这样,就出现了a与b同时均指向3的情况。这时,如果再令a=4;那么编译器会重新搜索栈中是否有4值,如果没有,则将4存放进来,并令a指向4;如果已经有了,则直接将a指向这个地址。因此a值的改变不会影响到b 的值。要注意这种数据的共享与两个对象的引用同时指向一个对象的这种共享是不同的,因为这种情况a的修改并不会影响到b, 它是由编译器完成的,它有利于节省空间。而一个对象引用变量修改了这个对象的内部状态,会影响到另一个对象引用变量。 String是一个特殊的包装类数据。可以用: String str = new String("abc"); String str = "abc"; 两种的形式来创建,第一种是用new()来新建对象的,它会在存放于堆中。每调用一次就会创建一个新的对象。 而第二种是先在栈中创建一个对String类的对象引用变量str,然后查找栈中有没有存放"abc",如果没有,则将"abc"存放进栈,并令str指向”abc”,如果已经有”abc”则直接令 str指向“abc”。 比较类里面的数值是否相等时,用equals()方法;当测试两个包装类的引用是否指向同一个对象时,用==,下面用例子说明上面的理论。 String str1 = "abc"; String str2 = "abc"; System.out.println(str1==str2); //true

WINDOWS堆栈区别[转]

WINDOWS堆栈区别[转] 堆和栈的区别(转贴) 非本人作也!因非常经典,所以收归旗下,与众人阅之!原作者不祥! 堆和栈的区别 一、预备知识—程序的内存分配 一个由C/C++编译的程序占用的内存分为以下几个部分 1、栈区(STACK)—由编译器自动分配释放,存放函数的参数值,局部变量的值等。其操作方式类似于数据结构中的栈。 2、堆区(HEAP)—一般由程序员分配释放,若程序员不释放,程序结束时可能由OS回收。注意它与数据结构中的堆是两回事,分配方式倒是类似于链表,呵呵。 3、全局区(静态区)(STATIC)—,全局变量和静态变量的存储是放在一块的,初始化的全局变量和静态变量在一块区域,未初始化的全局变量和未初始化的静态变量在相邻的另一块区域。- 程序结束后有系统释放 4、文字常量区—常量字符串就是放在这里的。程序结束后由系统释放 5、程序代码区—存放函数体的二进制代码。 二、例子程序 这是一个前辈写的,非常详细 //MAIN.CPP INT A = 0; 全局初始化区 CHAR *P1; 全局未初始化区 MAIN() { INT B; 栈 CHAR S[] = "ABC"; 栈 CHAR *P2; 栈 CHAR *P3 = "123456"; 123456\0在常量区,P3在栈上。 STATIC INT C =0;全局(静态)初始化区 P1 = (CHAR *)MALLOC(10); P2 = (CHAR *)MALLOC(20); 分配得来得10和20字节的区域就在堆区。 STRCPY(P1, "123456"); 123456\0放在常量区,编译器可能会将它与P3所指向的"123456"优化成一个地方。 } 二、堆和栈的理论知识 2.1申请方式 STACK: 由系统自动分配。例如,声明在函数中一个局部变量INT B; 系统自动在栈中为B开辟空间 HEAP: 需要程序员自己申请,并指明大小,在C中MALLOC函数 如P1 = (CHAR *)MALLOC(10); 在C++中用NEW运算符 如P2 = (CHAR *)MALLOC(10);

Eclipse 堆栈和内存大小设置

1, 设置Eclipse内存使用情况 修改eclipse根目录下的eclipse.ini文件 -vmargs //虚拟机设置,说明后面是VM的参数 -Xms40m //Xms是默认的虚拟机内存大小 -Xmx256m //Xmx是最大内存 -XX:PermSize=128M //非堆内存设置,最小堆大小。一般报内存不足时,都是说这个太小,堆空间剩余小于5%就会警告,建议把这个稍微设 //大一点,不过要视自己机器内存大小来设置 -XX:MaxPermSize=256M 注意:为何将上面的参数写入到eclipse.ini文件Eclipse没有执行对应的设置? 这是因为我们没有遵守eclipse.ini文件的设置规则: 参数形如“项值”这种形式,中间有空格的需要换行书写;如果值中有空格的需要用双引号包括起来。比如我们使用-vm C:/Java/jre1.6.0/bin/javaw.exe参数设置虚拟机,在eclipse.ini文件中要写成这样: 1.-vm 2.C:/Java/jre1.6.0/bin/javaw.exe 按照上面所说的,最后参数在eclipse.ini中可以写成这个样子:

1.-vmargs 2.-Xms128M 3.-Xmx512M 4.-XX:PermSize=64M 5.-XX:MaxPermSize=128M 实际运行的结果可以通过Eclipse中“Help”-“About Eclipse SDK”窗口里面的“Configuration Details”按钮进行查看。 另外需要说明的是,Eclipse压缩包中自带的eclipse.ini文件内容是这样的: 1.-showsplash https://www.wendangku.net/doc/2e12278483.html,.eclipse.platform 3.--launcher.XXMaxPermSize 4.256m 5.-vmargs 6.-Xms40m 7.-Xmx256m 其中–launcher.XXMaxPermSize(注意最前面是两个连接线)跟-XX:MaxPermSize参数的含义基本是一样的,我觉得唯一的区别就是前者是eclipse.exe启动的时候设置的参数,而后者是eclipse所使用的JVM中的参数。其实二者设置一个就可以了,所以这里可以把–launcher.XXMaxPermSize和下一行使用#

关于堆栈的讲解(我见过的最经典的

一、预备知识—程序的内存分配 一个由c/C++编译的程序占用的内存分为以下几个部分 1、栈区(stack)—由编译器自动分配释放,存放函数的参数值,局部变量的值等。其操作方式类似于数据结构中的栈。 2、堆区(heap)—一般由程序员分配释放,若程序员不释放,程序结束时可能由OS回收。注意它与数据结构中的堆是两回事,分配方式倒是类似于链表,呵呵。 3、全局区(静态区)(static)—,全局变量和静态变量的存储是放在一块的,初始化的全局变量和静态变量在一块区域,未初始化的全局变量和未初始化的静态变量在相邻的另一块区域。- 程序结束后有系统释放 4、文字常量区—常量字符串就是放在这里的。程序结束后由系统释放 5、程序代码区—存放函数体的二进制代码。 二、例子程序 这是一个前辈写的,非常详细 //main.cpp int a = 0; 全局初始化区 char *p1; 全局未初始化区 main() { int b; 栈 char s[] = "abc"; 栈 char *p2; 栈 char *p3 = "123456"; 123456\0在常量区,p3在栈上。 static int c =0;全局(静态)初始化区 p1 = (char *)malloc(10); p2 = (char *)malloc(20); 分配得来得10和20字节的区域就在堆区。 strcpy(p1, "123456"); 123456\0放在常量区,编译器可能会将它与p3所指向的"123456"优化成一个地方。 } 二、堆和栈的理论知识 2.1申请方式 stack: 由系统自动分配。例如,声明在函数中一个局部变量int b; 系统自动在栈中为b开辟空间heap: 需要程序员自己申请,并指明大小,在c中malloc函数 如p1 = (char *)malloc(10); 在C++中用new运算符 如p2 = (char *)malloc(10); 但是注意p1、p2本身是在栈中的。

内存区划分、内存分配、常量存储区、堆、栈、自由存储区、全局区[C ][内存管理]

内存区划分、内存分配、常量存储区、堆、栈、自由存储区、全局区 [C++][内存管理] 一.在c中分为这几个存储区 1.栈- 由编译器自动分配释放 2.堆- 一般由程序员分配释放,若程序员不释放,程序结束时可能由OS回收 3.全局区(静态区),全局变量和静态变量的存储是放在一块的,初始化的全局变量和静态变量在一块区域,未初始化的全局变量和未初始化的静态变量在相邻的另一块区域。- 程序结束释放 4.另外还有一个专门放常量的地方。- 程序结束释放 #define不占用内存单元。C++编译器通常并不给const常量分配存储空间,而是把const变量的定义保存在符号表里。在VC中,const变量与一般变量一样,都分配内存空间。 在函数体中定义的变量通常是在栈上,用malloc, calloc, realloc等分配内存的函数分配得到的就是在堆上。在所有函数体外定义的是全局量,加了static修饰符后不管在哪里都存放在全局区(静态区),在所有函数体外定义的static变量表示在该文件中有效,不能extern到别的文件用,在函数体内定义的static 表示只在该函数体内有效。另外,函数中的"adgfdf"这样的字符串存放在常量区。比如: int a = 0; //全局初始化区 char *p1; //全局未初始化区 void main() { int b; //栈 char s[] = "abc"; //栈 char *p2; //栈 char *p3 = "123456"; //123456{post.content}在常量区,p3在栈上 static int c = 0; //全局(静态)初始化区 p1 = (char *)malloc(10); //分配得来得10字节的区域在堆区 p2 = (char *)malloc(20); //分配得来得20字节的区域在堆区 strcpy(p1, "123456"); //123456{post.content}放在常量区,编译器可能会将它与p3所指向的"123456"优化成一块} 二.在C++中,内存分成5个区,他们分别是堆、栈、自由存储区、全局/静态存储区和常量存储区

堆内存与栈内存的区别

一、程序在编译的时候占用的内存分为以下几个部分: 1 、栈区(stack )—由编译器自动分配释放,存放函数的参数值,局部变量的值等。其操作方式类似于数据结构中的栈。栈内存分配运算内置于处理器的指令集中,效率很高,但是分配的内存容量有限. 2 、堆区(heap )—亦称动态内存分配.程序在运行的时候用malloc或new申请任意大小的内存,程序员自己负责在适当的时候用free或delete释放内存。动态内存的生存期可以由我们决定,如果我们不释放内存,程序将在最后才释放掉动态内存.但是,良好的编程习惯是:如果某动态内存不再使用,需要将其释放掉,否则,我们认为发生了内存泄漏现象。注意它与数据结构中的堆是两回事,分配方式倒是类似于链表. 3 、全局区(静态区)(static )—全局变量和静态变量的存储是放在一块的,初始化的全局变量和静态变量在一块区域,未初始化的全局变量和未初始化的静态变量在相邻的另一块区域。程序结束后由有系统释放. 4 、常量区—常量字符串就是放在这里的.程序结束后由系统释放. 5 、程序代码区—存放函数体的二进制代码. 例子程序: 这是一个前辈写的,非常详细 //main.cpp int a = 0; 全局初始化区 char *p1; 全局未初始化区 main() { int b; 栈 char s[] = "abc"; 栈 char *p2; 栈 char *p3 = "123456"; 123456\0在常量区,p3在栈上。 static int c =0;全局(静态)初始化区 p1 = (char *)malloc(10); p2 = (char *)malloc(20); 分配得来得10和20字节的区域就在堆区。 strcpy(p1, "123456"); 123456\0放在常量区,编译器可能会将它与p3所指向的"123456"优化成一个地方。 } 二、堆和栈的理论知识 2.1申请方式 stack: 由系统自动分配。例如,声明在函数中一个局部变量int b; 系统自动在栈中为b开辟空间heap:

堆栈详解(数据与内存中的存储方式)

堆栈详解(数据与内存中的存储方式) char* r = "hello word!";char b[]="hello word!"*r = 'w';*b='w';其实应该是语法错误,可是VC++6.0没有警告或者错误,r指向的是文字常量区,此区域是编译的时候确定的,并且程序结束的时候自动释放的,*r = 'w';企图修改文字常量区引起错误,b的区别在于其空间是在栈上分配的,因此没有错误。const char* r = "hello word!";*r = 'w';一个由 c/C++编译的程序占用的内存分为以下几个部分1、栈区(stack)—由编译器自动分配释放,存放函数的参数值,局部变量的值等。其操作方式类似于数据结构中的栈。2、堆区(heap)—一般由程序员分配释放,若程序员不释放,程序结束时可能由OS回收。注意它与数据结构中的堆是两回事,分配方式倒是类似于链表,呵呵。3、全局区(静态区)(static)—,全局变量和静态变量的存储是放在一块的,初始化的全局变量和静态变量在一块区域,未初始化的全局变量和未初始化的静态变量在相邻的另一块区域。- 程序结束后有系统释放4、文字常量区—常量字符串就是放在这里的。程序结束后由系统释放5、程序代码区—存放函数体的二进制代码。二、例子程序//main.cppint a = 0; 全局初始化区char *p1; 全局未初始化区main(){int b; 栈char s[] = "abc"; 栈char *p2; 栈char *p3 = "123456"; 123456\0在常量区,p3

在栈上。static int c =0;全局(静态)初始化区p1 = (char *)malloc(10);p2 = (char *)malloc(20);分配得来得10和20字节的区域就在堆区。strcpy(p1, "123456"); 123456\0放在常量区,编译器可能会将它与p3所指向的"123456"优化成一个地方。}二、堆和栈的理论知识2.1申请方式stack:由系统自动分配。例如,声明在函数中一个局部变量int b; 系统自动在栈中为b开辟空间heap:需要程序员自己申请,并指明大小,在c中malloc函数如p1 = (char *)malloc(10);在C++中用new运算符如p2 = (char *)malloc(10);但是注意p1、p2本身是在栈中的。 2.2申请后系统的响应栈:只要栈的剩余空间大于所申请空间,系统将为程序提供内存,否则将报异常提示栈溢出。堆:首先应该知道操作系统有一个记录空闲内存地址的链表,当系统收到程序的申请时,会遍历该链表,寻找第一个空间大于所申请空间的堆结点,然后将该结点从空闲结点链表中删除,并将该结点的空间分配给程序,另外,对于大多数系统,会在这块内存空间中的首地址处记录本次分配的大小,这样,代码中的delete语句才能正确的释放本内存空间。另外,由于找到的堆结点的大小不一定正好等于申请的大小,系统会自动的将多余的那部分重新放入空闲链表中。2.3申请大小的限制栈:在Windows下,栈是向低地址扩展的数据结构,是一块连续的内存的区域。这句话的意思是栈顶的地址和栈的最大容量是系统预先规定好的,在WINDOWS下,栈的

堆栈、栈(stack)和堆(heap)三者的区别

一、预备知识(程序的内存分配) 一个由C/C++编译的程序占用的内存分为以下几个部分: 1、栈区(stack):由编译器自动分配释放,存放函数的参数值,局部变量的值等。其操作方式类似于数据结构中的栈。 2、堆区(heap):一般由程序员分配释放,若程序员不释放,程序结束时可能由OS回收。注意它与数据结构中的堆是两回事,其分配方式倒是类似于链表。 3、全局区(静态区static):全局变量和静态变量的存储是放在一块的,初始化的全局变量和静态变量在一块区域,未初始化的全局变量和未初始化的静态变量在相邻的另一块区域。程序结束后有系统释放。 4、文字常量区:常量字符串就是放在这里的。程序结束后由系统释放。 5、程序代码区:存放函数体的二进制代码。 看看下面的例子程序,这是一个前辈写的,非常详细。 //main.cpp int a = 0; 全局初始化区 char *p1; 全局未初始化区 main() { int b; 栈 char s[] = "abc"; 栈 char *p2; 栈 char *p3 = "123456"; 123456\0在常量区,p3在栈上。 static int c =0;全局(静态)初始化区 p1 = (char *)malloc(10); p2 = (char *)malloc(20); 分配得来得10和20字节的区域就在堆区。 strcpy(p1, "123456"); 123456\0放在常量区,编译器可能会将它与p3所指向的"123456"优化成一个地方。 } 二、堆和栈的理论知识 2.1、申请方式 stack:由系统自动分配。例如:声明在函数中一个局部变量int b,系统自动在栈中为b开辟空间。heap:需要程序员自己申请,并指明大小,在c中用malloc函数,如p1 = (char *)malloc(10); 在C++中用new运算符:如p2 = (char *)malloc(10); 但是注意p1、p2本身是在栈中的。 2.2 、申请后系统的响应 stack:只要栈的剩余空间大于所申请空间,系统将为程序提供内存,否则将报错提示栈溢出。heap:首先应该知道操作系统有一个记录空闲内存地址的链表,当系统收到程序的申请时,会遍历该链表,寻找第一个空间大于所申请空间的堆结点,然后将该结点从空闲结点链表中删除,并将该结点的空间分配给程序。另外,对于大多数系统,会在这块内存空间中的首地址处记录本次分配的大小。这样,代码中的delete语句才能正确的释放本内存空间。另外,由于找到的堆结点的大小不一定正好等于申请的大小,系统会自动的将多余的那部分重新放入空闲链表中。 2.3、申请大小的限制 stack:在Windows下,栈是向低地址扩展的数据结构,是一块连续的内存的区域。这句话的意思是

静态数据区 堆区 栈区的区别

一、内存基本构成 可编程内存在基本上分为这样的几大部分:静态存储区、堆区和栈区。他们的功能不同,对他们使用方式也就不同。 静态存储区:内存在程序编译的时候就已经分配好,这块内存在程序的整个运行期间都存在。它主要存放静态数据、全局数据和常量。 栈区:在执行函数时,函数内局部变量的存储单元都可以在栈上创建,函数执行结束时这些存储单元自动被释放。栈内存分配运算内置于处理器的指令集中,效率很高,但是分配的内存容量有限。 堆区:亦称动态内存分配。程序在运行的时候用malloc或new申请任意大小的内存,程序员自己负责在适当的时候用free或delete释放内存。动态内存的生存期可以由我们决定,如果我们不释放内存,程序将在最后才释放掉动态内存。但是,良好的编程习惯是:如果某动态内存不再使用,需要将其释放掉,否则,我们认为发生了内存泄漏现象。 二、三者之间的区别 我们通过代码段来看看对这样的三部分内存需要怎样的操作和不同,以及应该注意怎样的地方。 例一:静态存储区与栈区 char* p = “Hello World1”; char a[] = “Hello World2”; p[2] = …A?; a[2] = …A?; char* p1 = “Hello World1;” 这个程序是有错误的,错误发生在p[2] = …A?这行代码处,为什么呢,是变量p和变量数组a都存在于栈区的(任何临时变量都是处于栈区的,包括在main()函数中定义的变量)。但是,数据“Hello World1”和数据“Hello World2”是存储于不同的区域的。 因为数据“Hello World2”存在于数组中,所以,此数据存储于栈区,对它修改是没有任何问题的。因为指针变量p仅仅能够存储某个存储空间的地址,数据“Hello World1”为字符串常量,所以存储在静态存储区。虽然通过p[2]可以访问到静态存储区中的第三个数据单元,即字符…l?所在的存储的单元。但是因为数据“Hello World1”为字符串常量,不可以改变,所以在程序运行时,会报告内存错误。并且,如果此时对p和p1输出的时候会发现p和p1

Java中的堆和栈

Heap与stack的研究 Think in java第四章的内容是关于内存分配和初始化的,对这一章的学习带出了我以往学习中的一个模糊点:究竟什么是堆存储(Heap)?什么是栈存储(Stack)?有什么区别呢?翻了不少资料,补了这一课,觉得非常受用. 2.1 内存分配策略 按照编译原理的观点,程序运行时的内存分配有三种策略,分别是静态的,栈式的,和堆式的. 静态存储分配是指在编译时就能确定每个数据目标在运行时刻的存储空间需求,因而在编译时就可以给他们分配固定的内存空间.这种分配策略要求程序代码中不允许有可变数据结构(比如可变数组)的存在,也不允许有嵌套或者递归的结构出现,因为它们都会导致编译程序无法计算准确的存储空间需求. 栈式存储分配也可称为动态存储分配,是由一个类似于堆栈的运行栈来实现的.和静态存储分配相反,在栈式存储方案中,程序对数据区的需求在编译时是完全未知的,只有到运行的时候才能够知道,但是规定在运行中进入一个程序模块时,必须知道该程序模块所需的数据区大小才能够为其分配内存.和我们在数据结构所熟知的栈一样,栈式存储分配按照先进后出的原则进行分配。 静态存储分配要求在编译时能知道所有变量的存储要求,栈式存储分配要求在过程的入口处必须知道所有的存储要求,而堆式存储分配则专门负责在编译时或运行时模块入口处都无法确定存储要求的数据结构的内存分配,比如可变长度串和对象实例.堆由大片的可利用块或空闲块组成,堆中的内存可以按照任意顺序分配和释放. 2.2 堆和栈的比较 上面的定义从编译原理的教材中总结而来,除静态存储分配之外,都显得很呆板和难以理解,下面撇开静态存储分配,集中比较堆和栈: 从堆和栈的功能和作用来通俗的比较,堆主要用来存放对象的,栈主要是用来执行程序的.而这种不同又主要是由于堆和栈的特点决定的: 在编程中,例如C/C++中,所有的方法调用都是通过栈来进行的,所有的局部变量,形式参数都是从栈中分配内存空间的。实际上也不是什么分配,只是从栈顶向上用就行,就好像工厂中的传送带(conveyor belt)一样,Stack Pointer会自动指引你到放东西的位置,你所要做的只是把东西放下来就行.退出函数的时候,修改栈指针就可以把栈中的内容销毁.这样的模式速度最快,当然要用来运行程序了.需要注意的是,在分配的时候,比如为一个即将要调用的程序模块分配数据区时,应事先知道这个数据区的大小,也就说是虽然分配是在程序运行时进行的,但是分配的大小多少是确定的,不变的,而这个"大小多少"是在编译时确定的,不是在运行时. 堆是应用程序在运行的时候请求操作系统分配给自己内存,由于从操作系统管理的内存分配,所以在分配和销毁时都要占用时间,因此用堆的效率非常低.但是堆的优点在于,编译

相关文档
相关文档 最新文档