文档库 最新最全的文档下载
当前位置:文档库 › 函数的上下极限及其应用【毕业,绝对极品】

函数的上下极限及其应用【毕业,绝对极品】

函数的上下极限及其应用【毕业,绝对极品】
函数的上下极限及其应用【毕业,绝对极品】

函数与极限习题与答案

第一章 函数与极限 (A ) 一、填空题 1、设x x x f lg lg 2)(+-= ,其定义域为 。 2、设)1ln()(+=x x f ,其定义域为 。 3、设)3arcsin()(-=x x f ,其定义域为 。 4、设)(x f 的定义域是[0,1],则)(sin x f 的定义域为 。 5、设)(x f y =的定义域是[0,2] ,则)(2x f y =的定义域为 。 6、43 2lim 23=-+-→x k x x x ,则k= 。 7、函数x x y sin = 有间断点 ,其中 为其可去间断点。 8、若当0≠x 时 ,x x x f 2sin )(= ,且0)(=x x f 在处连续 ,则=)0(f 。 9、=++++++∞→)21(lim 222 n n n n n n n n 。 10、函数)(x f 在0x 处连续是)(x f 在0x 连续的 条件。 11、=++++∞→352352) 23)(1(lim x x x x x x 。 12、3) 2 1(lim -∞ →=+e n kn n ,则k= 。 13、函数2 31 22+--=x x x y 的间断点是 。 14、当+∞→x 时, x 1 是比3-+x 15、当0→x 时,无穷小x --11与x 相比较是 无穷小。 16、函数x e y 1=在x=0处是第 类间断点。 17、设1 1 3 --= x x y ,则x=1为y 的 间断点。 18、已知33=?? ? ??πf ,则当a 为 时,函数x x a x f 3sin 31sin )(+=在3π=x 处连续。

19、设?? ???>+<=0)1(02sin )(1x ax x x x x f x 若)(lim 0 x f x →存在 ,则a= 。 20、曲线2sin 2 -+=x x x y 水平渐近线方程是 。 21、1 14)(2 2-+ -= x x x f 的连续区间为 。 22、设?? ?>≤+=0 ,cos 0 ,)(x x x a x x f 在0=x 连续 ,则常数 a= 。 二、计算题 1、求下列函数定义域 (1)2 11 x y -= ; (2)x y sin = ; (3)x e y 1= ; 2、函数)(x f 和)(x g 是否相同?为什么? (1)x x g x x f ln 2)(,ln )(2 == ; (2)2)(,)(x x g x x f = = ; (3)x x x g x f 22tan sec )(, 1)(-== ; 3、判定函数的奇偶性 (1))1(2 2 x x y -= ; (2)3 2 3x x y -= ;

高等数学函数极限与连续习题及答案

1、函数 ()12 ++=x x x f 与函数()11 3--=x x x g 相同. 错误 ∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。 ∴()12 ++=x x x f 与()11 3--=x x x g 函数关系相同,但定义域不同,所以()x f 与 ()x g 是不同的函数。 2、如果()M x f >(M 为一个常数),则()x f 为无穷大. 错误 根据无穷大的定义,此题是错误的。 3、如果数列有界,则极限存在. 错误 如:数列()n n x 1-=是有界数列,但极限不存在 4、a a n n =∞ →lim ,a a n n =∞ →lim . 错误 如:数列()n n a 1-=,1)1(lim =-∞ →n n ,但n n )1(lim -∞ →不存在。 5、如果()A x f x =∞ →lim ,则()α+=A x f (当∞→x 时,α为无穷小). 正确 根据函数、极限值、无穷小量的关系,此题是正确的。 6、如果α~β,则()α=β-αo . 正确 ∵1lim =α β ,是 ∴01lim lim =?? ? ??-=-αβαβα,即βα-是α的高阶无穷小量。 7、当0→x 时,x cos 1-与2x 是同阶无穷小. 正确 ∵2122sin 412lim 2sin 2lim cos 1lim 2 02 2020=????? ? ????==-→→→x x x x x x x x x 8、 01 sin lim lim 1sin lim 000=?=→→→x x x x x x x . 错误 ∵x x 1 sin lim 0→不存在,∴不可利用两个函数乘积求极限的法则计算。 9、 e x x x =?? ? ??+→11lim 0 . 错误 ∵e x x x =?? ? ??+∞ →11lim 10、点0=x 是函数x x y =的无穷间断点. 错误 =-→x x x 00lim 1lim 00-=--→x x x ,=+→x x x 00lim 1lim 00=+→x x x ∴点0=x 是函数x x y =的第一类间断点. 11、函数()x f x 1 =必在闭区间[]b a ,内取得最大值、最小值.

高考数学常考知识点之极限

高考数学常考知识点之极限 考试内容: 教学归纳法.数学归纳法应用. 数列的极限. 函数的极限.根限的四则运算.函数的连续性. 考试要求: (1)理解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题. (2)了解数列极限和函数极限的概念. (3)掌握极限的四则运算法则;会求某些数列与函数的极限. (4)了解函数连续的意义,了解闭区间上连续函数有最大值和最小值的性质. §13. 极 限 知识要点 1. ⑴第一数学归纳法:①证明当n 取第一个0n 时结论正确;②假设当k n =(0,n k N k ≥∈+)时,结论正确,证明当1+=k n 时,结论成立. ⑵第二数学归纳法:设)(n P 是一个与正整数n 有关的命题,如果 ①当0n n =(+∈N n 0)时,)(n P 成立; ②假设当k n ≤(0,n k N k ≥∈+)时,)(n P 成立,推得1+=k n 时,)(n P 也成立. 那么,根据①②对一切自然数0n n ≥时,)(n P 都成立. 2. ⑴数列极限的表示方法: ①a a n n =∞ →lim ②当∞→n 时,a a n →. ⑵几个常用极限: ①C C n =∞ →lim (C 为常数) ②),(01 lim 是常数k N k n k n ∈=∞→ ③对于任意实常数, 当1|| a 时,0lim =∞ →n n a 当1=a 时,若a = 1,则1lim =∞→n n a ;若1-=a ,则n n n n a )1(lim lim -=∞ →∞→不存在 当1 a 时,n n a ∞ →lim 不存在 ⑶数列极限的四则运算法则: 如果b b a a b n n n ==∞ →∞→lim ,lim ,那么 ①b a b a n n n ±=±∞ →)(lim

高等数学(同济五版)第一章 函数与极限知识点

第一章函数与极限 一、对于函数概念要注意以下几点: (1) 函数概念的本质特征是确定函数的两个要素:定义域和对应法则。定义域是自变量和因变量能相互联系构成函数关系的条件,无此条件,函数就没意义。对应法则是正确理解函数概念的关键。函数关系不同于一般的依赖关系,“y是x的函数”并不意味着y随x的变化而变化。函数关系也不同于因果关系。例如一昼夜的气温变化与时间变化是函数关系,但时间变化并不是气温变化的实际原因。y=f(x)中的“f”表示从x到y的对应法则,“f”是一个记号,不是一个数,不能把f(x)看作f乘以x。如果函数是用公式给出的,则“f”表示公式里的全部运算。 (2) 函数与函数表达式不同。函数表达式是表示函数的一种形式,表示函数还可以用其他的形式,不要以为函数就是式子。 (3) f(x)与f(a)是有区别的。f(x)是函数的记号,f(a)是函数值的记号,是f(x)当x=a时的函数值。 (4)两个函数,当其定义域相同,对应法则一样时,此二函数才是相同的。 二、函数的有界性、单调性、周期性和奇偶性: 对函数的有界性、单调性、周期性和奇偶性的学习应注意以下几点: (1) 并不是函数都具有这些特性,而是在研究函数时,常要研究函数是否具有这些特性。 (2) 函数是否“有界”或“单调”,与所论区间有关系。 (3) 具有奇、偶性的函数,其定义域是关于原点对称的。如果f(x)是奇函数,则f(0)=0。存在着既是奇函数,又是偶函数的函数,例f(x)=0。f(x)+f(-x)=0是判别f(x)是否为奇函数的有效方法。 (4) 周期函数的周期通常是指其最小正周期,但不是任何周期函数都有最小周期。

大一高数第一章--函数、极限与连续

第一章 函数、极限与连续 由于社会和科学发展的需要,到了17世纪,对物体运动的研究成为自然科学的中心问题.与之相适应,数学在经历了两千多年的发展之后进入了一个被称为“高等数学时期”的新时代,这一时代集中的特点是超越了希腊数学传统的观点,认识到“数”的研究比“形”更重要,以积极的态度开展对“无限”的研究,由常量数学发展为变量数学,微积分的创立更是这一时期最突出的成就之一.微积分研究的基本对象是定义在实数集上的函数. 极限是研究函数的一种基本方法,而连续性则是函数的一种重要属性.因此,本章内容是整个微积分学的基础.本章将简要地介绍高等数学的一些基本概念,其中重点介绍极限的概念、性质和运算性质,以及与极限概念密切相关的,并且在微积分运算中起重要作用的无穷小量的概念和性质.此外,还给出了两个极其重要的极限.随后,运用极限的概念引入函数的连续性概念,它是客观世界中广泛存在的连续变化这一现象的数学描述. 第一节 变量与函数 一、变量及其变化范围的常用表示法 在自然现象或工程技术中,常常会遇到各种各样的量.有一种量,在考察过程中是不断变化的,可以取得各种不同的数值,我们把这一类量叫做变量;另一类量在考察过程中保持不变,它取同样的数值,我们把这一类量叫做常量.变量的变化有跳跃性的,如自然数由小到大变化、数列的变化等,而更多的则是在某个范围内变化,即该变量的取值可以是某个范围内的任何一个数.变量取值范围常用区间来表示.满足不等式a x b ≤≤的实数的全体组成的集合叫做闭区间,记为,a b ????,即 ,{|}a b x a x b =≤≤????; 满足不等式a x b <<的实数的全体组成的集合叫做开区间,记为(,)a b ,即 (,){|}a b x a x b =<<; 满足不等式a x b <≤(或a x b ≤<)的实数的全体组成的集合叫做左(右)开右(左)闭区间,记为 (,a b ?? (或),a b ??),即 (,{|}a b x a x b =<≤?? (或),{|}a b x a x b =≤

函数极限与连续知识梳理

知识梳理函数极限内容网络图 内容提要与释疑解难内容提要与释疑解难

一、函数极限的概念 1. 。 2. 把1中“”换成“”。 3.把1中“”换成“”。 定理且 4.设在的某空心邻域内有定义,若存在一个常数A, ,都有。 5.设在的某左半邻域内有定义,若存在一个常数A, 时,都有。 此时也可用记号或表示左极限值A,因此可写成 6. 设在的某右半邻域内有定义,若存在一个常数 ,当时,都有。此时也可用或 表示右极限。因此可写成。 定理且 该定理是求分界点两侧表达式不同的分段函数在该分界点极限是否存在的方法,而如果在的左右极限存在且相等,则在该点的极限存在,否则不存在。 7.时,都有。此时称 时,是无穷大量。 而,只要把公式中“”改成“”,,只要把上式中“”改成“”。 8.。当时,都有。

读者同理可给出定义。 注:(常数)与的区别,前者是表明函数极限存在,后者指函数极限不存在,但还是有个趋于无穷大的趋势。因此,给它一个记号,但还是属于极限不存在之列,以后,我们说函数极限存在,指的是函数极限值是个常数。 9.。称当是无穷小量。这里的可以是常数,也可以是。 定理。 其中。 10.若时,都有,称时是有界量。 二、无穷小量阶的比较,无穷小量与无穷大量关系 设, (这里可以是常数,也可以是,以后我们不指出都是指的这个意思) (1)若,称当时是的高阶无穷小量,记作 。 (2)若,称时是的同价无穷小量。 (3)若,称时是的等价无穷小量,记作,此时(2)式也可记作。 (4)若,称时是的k阶无穷小量。 由等价无穷量在求极限过程中起到非常重要的作用,因此,引入 若。记作, 如果均是无穷小量,称为等价无穷小量;如果均是无穷大量,称为等价无穷大量;如

函数与极限练习题

第一章 函数与极限 §1 函数 一、是非判断题 1、)(x f 在X 上有界,)(x g 在X 上无界,则)()(x g x f +在X 上无界。 [ ] 2、)(x f 在X 上有界的充分必要条件是存在数A 与B ,使得对任一X x ∈都有 B x f A ≤≤)( [ ] 3、)(),(x g x f 都在区间I 上单调增加,则)(·)(x g x f 也在I 上单调增加。 [ ] 4、定义在(∞+∞-,)上的常函数是周期函数。 [ ] 5、任一周期函数必有最小正周期。 [ ] 6、)(x f 为(∞+∞-,)上的任意函数,则)(3x f 必是奇函数。 [ ] 7、设)(x f 是定义在[]a a ,-上的函数,则)()(x f x f -+必是偶函数。 [ ] 8、f(x)=1+x+ 2 x 是初等函数。 [ ] 二.单项选择题 1、下面四个函数中,与y=|x|不同的是 (A )||ln x e y = (B )2x y = (C )44x y = (D )x x y sgn = 2、下列函数中 既是奇函数,又是单调增加的。 (A )sin 3x (B )x 3+1 (C )x 3+x (D )x 3-x 3、设[])(,2)(,)(22x x f x x f x ??则函数==是 (A )x 2log (B )x 2 (C )22log x (D )2 x 4、若)(x f 为奇函数,则 也为奇函数。 (A));0(,)(≠+c c x f (B) )0(,)(≠+-c c x f (C) );()(x f x f + (D) )].([x f f - 三.下列函数是由那些简单初等函数复合而成。 1、 y=) 1arctan(+x e 2、 y=x x x ++ 3、 y=x ln ln ln

第一章 函数、极限与连续

第一章 函数、极限与连续 (一) 1.区间[)+∞,a 表示不等式( ) A .+∞<

函数极限与导数高中数学基础知识与典型例题

知识网 数学归纳法、数列的极限与运算1.数学归纳法: (1)由特殊事例得出一般结论的归纳推理方法,通常叫做归纳法. 归纳法包含不完全归纳法和完全归纳法. ①不完全归纳法:根据事物的部分(而不是全部)特殊事例得出一般结论的推理方法. ②完全归纳法: 根据事物的所有特殊事例得出一般结论的推理方法 数学归纳法常与不完全归纳法结合起来使用,用不完全归纳法发现规律, 用数学归纳法证明结论. (2)数学归纳法步骤: ①验证当n取第一个 n时结论 () P n成立; ②由假设当n k =( , k N k n + ∈≥)时,结论() P k成立,证明当1 n k =+时,结论(1) P k+成立; 根据①②对一切自然数 n n ≥时,() P n都成立. 2.数列的极限 (1)数列的极限定义:如果当项数n无限增大时,无穷数列{}n a的项n a无限地趋近于某个常数a(即 n a a -无限地接近于),那么就说数列 {} n a以a为极限,或者说a是数列{} n a的极限.记为 lim n n a a →∞ =或当n→∞时, n a a →. (2)数列极限的运算法则: 如果{}n a、{}n b的极限存在,且lim,lim n n n n a a b b →∞→∞ ==, 那么lim() n n n a b a b →∞ ±=±;lim(); n n n a b a b →∞ ?=?lim(0) n n n a a b b b →∞ =≠ 特别地,如果C是常数,那么lim()lim lim n n n n n C a C a Ca →∞→∞→∞ ?=?=. ⑶几个常用极限: ①lim n C C →∞ =(C 为常数)②lim0 n a n →∞ = k (,a k 均为常数且N* ∈ k) ③ (1) 1 lim0(1) (1或1) 不存在 n n q q q q q ④首项为 1 a,公比为q(1 q<)的无穷等比数列的各项和为lim 1 n n a S q →∞ = - . 注:⑴并不是每一个无穷数列都有极限. ⑵四则运算法则可推广到任意有限个极限的情况,但不能推广到无限个情况. 数 学 归 纳 法 、数 列 的 极 限 与 运 算 例 1. 某个命题与正整数有关,若当) (* N k k n∈ =时该命题成立,那么可推得当 = n1 + k时该命题也成立,现已知当5 = n时该命题不成立,那么可推得() (A)当6 = n时,该命题不成立(B)当6 = n时,该命题成立 (C)当4 = n时,该命题成立(D)当4 = n时,该命题不成立 例2.用数学归纳法证明:“)1 ( 1 1 1 2 1 2≠ - - = + + + + + +a a a a a a n n ”在验证1 = n时,左端 计算所得的项为 ( ) (A)1 (B)a + 1 (C)2 1a a+ + (D)3 2 1a a a+ + + 例3.2 2 21 lim 2 n n n →∞ - + 等于( ) (A)2 (B)-2 (C)- 2 1 (D) 2 1 例4. 等差数列中,若 n n S Lim ∞ → 存在,则这样的数列( ) (A)有且仅有一个(B)有无数多个 (C)有一个或无穷多个(D)不存在 例5.lim(1) n n n n →∞ +-等于( ) (A) 1 3 (B)0 (C) 1 2 (D)不存在 例6.若2 012 (2)n n n x a a x a x a x +=++++, 12 n n A a a a =+++,则2 lim 83 n n n A A →∞ - = + ( ) (A) 3 1 -(B) 11 1(C) 4 1(D) 8 1 - 例7. 在二项式(13)n x +和(25)n x+的展开式中,各项系数之和记为,, n n a b n是正整 数,则 2 lim 34 n n n n n a b a b →∞ - - =. 例8. 已知无穷等比数列{}n a的首项N a∈ 1 ,公比为q,且 n n a a a S N q + + + = ∈ 2 1 , 1, 且3 lim= ∞ → n n S,则= + 2 1 a a_____ . 例9. 已知数列{ n a}前n项和1 1 (1) n n n S ba b =-+- + , 其中b是与n无关的常数,且0 <b<1,若lim n n S →∞ =存在,则lim n n S →∞ =________. 例10.若数列{ n a}的通项21 n a n =-,设数列{ n b}的通项 1 1 n n b a =+,又记 n T是数 列{ n b}的前n项的积. (Ⅰ)求 1 T, 2 T, 3 T的值;(Ⅱ)试比较 n T与 1+ n a的大小,并证明你的结论. 例 1.D 2.C 例 3.A 例 4.A例 5.C将分子局部有理化,原式 =11 lim lim 2 11 11 n n n n n n →∞→∞ == ++ ++ 例6.A例7. 1 2 例8. 3 8 例9.1 例10(见后面)

函数与极限测试题及答案一

函数与极限测试题(一) 一、 填空题 1、若1ln 11ln x f x x +??= ?-??,则()f x =_____。 2、函数()f x 的定义域为[],a b ,则()21f x -的定义域为_____。 3、若0x →时,无穷小2 21ln 1x x -+ 与2sin a 等价,则常数a =_____。 4、设()()21lim 1n n x f x nx →∞-=+,则()f x 的间断点为x =_____。 二、 单选题 1、当0x →时,变量211sin x x 是( ) A 、无穷小 B 、无穷大 C 、有界的,但不是无穷小 D 、无界的,也不是无穷大 2、设函数()bx x f x a e = +在(),-∞+∞上连续,且()lim 0x f x →-∞=,则常数,a b 满足( ) A 、0,0a b << B 、0,0a b >> C 、0,0a b ≥< D 、0,0a b ≤> 3、设()232x x f x =+-,则当0x →时( ) A 、()f x 与x 是等价无穷小 B 、()f x 与x 是同阶但非等价无穷小 C 、()f x 是x 的高阶无穷小 D 、()f x 是x 的低阶无穷小 4、设对任意的x ,总有()()()x f x g x ?≤≤,且()()lim 0x g x x ?→∞-=????,则()lim x f x →∞为( ) A 、存在且等于零 B 、存在但不一定等于零 C 、一定不存在 D 、不一定存在 例:()()()11,,221x x f x x g x x x x ?==+ =+++ 三、 求下列极限 1 、lim x 2、()221212lim 1x x x x x -→?? ?+??

最全大学高等数学函数极限和连续

第一章 函数、极限和连续 §1.1 函数 一、 主要内容 ㈠ 函数的概念 1. 函数的定义: y=f(x), x ∈D 定义域: D(f), 值域: Z(f). 2.分段函数: ???∈∈=21)()(D x x g D x x f y 3.隐函数: F(x,y)= 0 4.反函数: y=f(x) → x=φ(y)=f -1 (y) y=f -1 (x) 定理:如果函数: y=f(x), D(f)=X, Z(f)=Y 是严格单调增加(或减少)的; 则它必定存在反函数: y=f -1(x), D(f -1)=Y, Z(f -1 )=X 且也是严格单调增加(或减少)的。 ㈡ 函数的几何特性 1.函数的单调性: y=f(x),x ∈D,x 1、x 2∈D 当x 1<x 2时,若f(x 1)≤f(x 2), 则称f(x)在D 内单调增加( ); 若f(x 1)≥f(x 2), 则称f(x)在D 内单调减少( ); 若f(x 1)<f(x 2), 则称f(x)在D 内严格单调增加( ); 若f(x 1)>f(x 2), 则称f(x)在D 内严格单调减少( )。 2.函数的奇偶性:D(f)关于原点对称 偶函数:f(-x)=f(x) 奇函数:f(-x)=-f(x) 3.函数的周期性: 周期函数:f(x+T)=f(x), x ∈(-∞,+∞) 周期:T ——最小的正数 4.函数的有界性: |f(x)|≤M , x ∈(a,b) ㈢ 基本初等函数 1.常数函数: y=c , (c 为常数) 2.幂函数: y=x n , (n 为实数) 3.指数函数: y=a x , (a >0、a ≠1) 4.对数函数: y=log a x ,(a >0、a ≠1) 5.三角函数: y=sin x , y=con x y=tan x , y=cot x y=sec x , y=csc x

函数、极限与连续复习题参考答案Word版

函数、极限与连续 复习题 一.填空题: 1. 函数1 1ln +-=x x y 的奇偶性是奇函数. 2. 设1 2)11(-=-x x x f ,则=)(x f 1 1x -. 3. 函数x e y -=1的复合过程是,1u y e u x ==-. 4. 函数y =sin ,12y u u v x ===+. 5. 设)(x f 的定义域是[0,1] , 则函数y=)(ln x f 的定义域[1,]e 6. =∞→x x x sin lim 0 . 7. =-∞→n n n )1 1(lim 1e - 8. 5 432lim 42-+-∞→n n n n =0 9. 设43 2lim 23=-+-→x k x x x ,则k =___-3_. 10. 设b ax x x x f ++-+= 1 3 4)(2,0)(lim =∞→x f x ,则=a __-4_,=b __-4. 11. 设0→x 时,b ax 与x x sin tan -为等价无穷小,则=a __1 2 __,=b __3__. 12. 函数3 21 2 --=x x y 的间断点有x=-1,x=3 连续区间是(,1),(1,3),(3,)-∞--+∞. 二、选择题 1、ln(1) y x =+ A ) A 、(—1,+∞) B 、]1,1(- C 、(—1,1) D 、(1,+∞) 2、当0→x 时,下列变量为无穷小量的是( D ) A 、x 1sin B 、x 1 cos C 、x e 1 D 、) 1ln(2x +

3、A x f x x =→)(lim 0 (A 为常数),则)(x f 在0x 处( D ) A 、一定有定义 B 、一定无定义 C 、有定义且A x f =)(0 D 、不一定有定义 4、设???≥+<=0,20,)(2x a x x e x f x 当时;当在点0=x 连续,则a 的值等于(D ) A 、0 B 、1 C 、—1 D 、2 1 5、函数)(x f = 3 2 -x ,则x=3是函数)(x f 的(D ) A 、连续点 B 、可去间断点 C 、跳跃间断点 D 、无穷间断点 6、)(x f 在0x 处左、右极限存在是)(x f 在0x 处连续的( B ) A 、充分条件 B 、必要条件 C 、充要条件 D 、以上都不是 三.求下列极限: 1. )1(lim 2x x x x -++∞ → 解:)1(lim 2 x x x x -++∞ → =lim x lim x = lim x =1 2 2. 3 tan sin lim x x x x →- 解:30tan sin lim x x x x →-=32 00 sin (1cos )sin 11cos lim lim()cos cos x x x x x x x x x x x →→--= =20 1cos lim x x x →-=2 202lim x x x →=12 3. x x x x ?? ? ??+-∞→11lim 解:x x x x ??? ??+-∞→11lim =11lim 11x x x x →∞??- ? ? ? +? ?=1e e -=2e - 4. x x x x x 3sin 2sin lim 0-+→

函数与极限重点知识归纳

函数与极限重点知识归纳-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

常量与变量 变量的定义 我们在观察某一现象的过程时,常常会遇到各种不同的量,其中有的量在过程中不起变化,我们把其称之为常量;有的量在过程中是变化的,也就是可以取不同的数值,我们则把其称之为变量。 注:在过程中还有一种量,它虽然是变化的,但是它的变化相对于所研究的对象是极其微小的,我们则把它看作常量。 变量的表示 如果变量的变化是连续的,则常用区间来表示其变化范围。 区间的名 称区间的满足的不等式区间的记号区间在数轴上的表示 闭区间a≤x≤b[a,b] 开区间a<x<b(a,b) 半开区间a<x≤b或a≤x<b(a,b]或[a,b) 以上我们所述的都是有限区间,除此之外,还有无限区间: [a,+∞):表示不小于a的实数的全体,也可记为:a≤x<+∞; (-∞,b):表示小于b的实数的全体,也可记为:-∞<x<b; (-∞,+∞):表示全体实数R,也可记为:-∞<x<+∞ 注:其中-∞和+∞,分别读作"负无穷大"和"正无穷大",它们不是数,仅仅是记号。 邻域 设α与δ是两个实数,且δ>0.满足不等式│x-α│<δ的实数x的全体称为点α的δ邻域,点α称为此邻域的中心,δ称为此邻域的半径。 函数 函数的定义 如果当变量x在其变化范围内任意取定一个数值时,量y按照一定的法则总有确定的数值与它对应,则称y是x的函数。变量x的变化范围叫做这个函数的定义域。通常x叫做自变量,y叫做因变量。 注:为了表明y是x的函数,我们用记号y=f(x)、y=F(x)等等来表示.这里的字母"f"、"F"表示y与x之间的对应法则即函数关系,它们是可以任意采用不同的字母来表示的. 注:如果自变量在定义域内任取一个确定的值时,函数只有一个确定的值和它对应,这种函数叫做单值函数,否则叫做多值函数。这里我们只讨论单值函数。 函数的有界性 如果对属于某一区间I的所有x值总有│f(x)│≤M成立,其中M是一个与x无关的常数,那么我们就称f(x)在区间I有界,否则便称无界。 注意:一个函数,如果在其整个定义域内有界,则称为有界函数 例题:函数cosx在(-∞,+∞)内是有界的. 函数的单调性 如果函数在区间(a,b)内随着x增大而增大,即:对于(a,b)内任意两点x1及x2,当x1<x2时,有 ,

函数与极限重点知识归纳

常量与变量 变量的定义 我们在观察某一现象的过程时,常常会遇到各种不同的量,其中有的量在过程中不起变化,我们把其称之为常量;有的量在过程中是变化的,也就是可以取不同的数值,我们则把其称之为变量。 注:在过程中还有一种量,它虽然是变化的,但是它的变化相对于所研究的对象是极其微小的,我们则把它看作常量。 变量的表示 如果变量的变化是连续的,则常用区间来表示其变化范围。 在数轴上来说,区间是指介于某两点之间的线段上点的全体。 以上我们所述的都是有限区间,除此之外,还有无限区间: [a,+∞):表示不小于a的实数的全体,也可记为:a≤x<+∞; (-∞,b):表示小于b的实数的全体,也可记为:-∞<x<b; (-∞,+∞):表示全体实数R,也可记为:-∞<x<+∞ 注:其中-∞和+∞,分别读作"负无穷大"和"正无穷大",它们不是数,仅仅是记号。 邻域 设α与δ是两个实数,且δ>0.满足不等式│x-α│<δ的实数x的全体称为点α的δ邻域,点α称为此邻域的中心,δ称为此邻域的半径。 函数 函数的定义 如果当变量x在其变化范围内任意取定一个数值时,量y按照一定的法则总有确定的数值与它对应,则称y是x的函数。变量x的变化范围叫做这个函数的定义域。通常x叫做自变量,y叫做因变量。 注:为了表明y是x的函数,我们用记号y=f(x)、y=F(x)等等来表示.这里的字母"f"、"F"表示y与x之间的对应法则即函数关系,它们是可以任意采用不同的字母来表示的. 注:如果自变量在定义域内任取一个确定的值时,函数只有一个确定的值和它对应,这种函数叫做单值函数,否则叫做多值函数。这里我们只讨论单值函数。 函数的有界性 如果对属于某一区间I的所有x值总有│f(x)│≤M成立,其中M是一个与x无关的常数,那么我们就称f(x)在区间I有界,否则便称无界。 注意:一个函数,如果在其整个定义域内有界,则称为有界函数 例题:函数cosx在(-∞,+∞)内是有界的. 函数的单调性

函数与极限计算题1

计算题(共 200 小题) 1、设x x x f +=12)(,求)(x f 的定义域及值域。 2、设x x x f -+= 11)(,确定)(x f 的定义域及值域。 3、设)ln(2)(2 2 x x x x x f -+-= ,求)(x f 的定义域。 4、的定义域 ,求设)(sin 5 12arcsin )(x f x x x f π+-=。 5、的定义域 ,求设?? ? ??++-=x f x f x x x f 1)(22ln )(。 6、的定义域 求函数2 2112arccos )(x x x x x f --++=。 7、设)(x f 的定义域为[) )()()(m x f m x f x F b a ++-=,.,)0(++=。 19、及其定义域,求,设)(02)(ln 2x f x x x x f +∞<<+-=。

函数极限连续概念解析

函数、极限、连续概念解析 1、下列各函数对中,( )中的两个函数相等。 A. x x g x x f ==)(,)()(2 B. 1)(,11)(2+=--=x x g x x x f C. x x g x x f ln 2)(,ln )(2== D. 1)(,cos sin )(22=+=x g x x x f 分析:从函数的两个要素可知,两个函数相等,当且仅当他们的定义域相同,对应规则相同,而与自变量或因变量所用的字母无关。 正确答案:D 2、下列结论中正确的是( )。 A. 周期函数都是有界函数 B. 基本初等函数都是单调函数 C. 奇函数的图形关于坐标原点对称 D. 偶函数的图形关于坐标原点对称 分析:首先要清楚函数的有界性、单调性、奇偶性和周期性的定义,还要知道奇偶函数的图形特点。 正确答案:C 3、周期函数是否一定有最小正周期? 答:不一定有最小正周期.尽管我们所学的周期函数函数一般都有最小正周期,但周期函数不一定有最小正周期.例如常值函数()f x C =是一个以任意正数为周期的周期函数,它没有最小正周期。 4、判断下列数列的极限:(1)(1)n n ??-????, (2)1n e ???????? ?????? ?。 分析:本题只要求对数列的极限作出判断,根据数列极限的定义,利用观察法,看在n →∞的过程中数列通项n x 的变化趋势。 解:(1)因为n →∞时虽然(1)n n x n -=的符号时正时负,但(1)10n n n -=→,

所以数列(1)n n ??-????的极限为0。 (2)因为数列的通项11n n n x e e ??== ???,当n →∞时分母n e →∞,所以10n e →,故该数列的极限是0。 5、无界数列必发散吗? 分析:已知性质:收敛数列必有界.用反证法。 正确答案:无界数列必发散。 6、发散数列一定无界吗?有界数列必收敛吗? 分析:发散数列除了lim n n x →∞ =∞的情况外,还有其它情况。例如:数列(1)n n x =-发散,但有界。 正确答案:发散数列不一定无界,有界数列也不一定收敛。 7、无穷小量是很小的数,对吗?零是无穷小量吗? 分析:无穷小量是指趋于零的变量。 正确答案:无穷小量不是很小的数,但零是无穷小量。 8、连续函数的三个要求缺一不可吗? 分析:连续函数的三个要求为:①()f x 在0x 点有定义;②0lim ()x x f x →存在;③00lim ()()x x f x f x →=。三者如缺一,则为间断(不连续)。例如:①1()sin f x x =在0x =点无定义,故间断;②1sin ,0()1,0x f x x x ?≠?=??=? 在0x =点虽然有定义,01limsin x x →不存在,故也间断;③1sin ,0()1, 0x x f x x x ?≠?=??=? 在0x =点虽然有定义,且01lim sin 0x x x →=,但01lim sin 01(0)x x f x →=≠=,故间断。

考研数学高数公式:函数与极限解读

考研数学高数公式:函数与极限 第一章:函数与极限 第一节:函数 函数属于初等数学的预备知识,在高数的学习中起到铺垫作用,直接考察的内容比较少,但是如果这章节有所缺陷对以后的学习都会有所影响。 基础阶段: 1.理解函数的概念,能在实际问题的背景下建立函数关系; 2.掌握并会计算函数的定义域、值域和解析式; 3.了解并会判断函数的有界性、单调性、周期性、奇偶性等性质; 4.理解复合函数和反函数的概念,并会应用它们解决相关的问题; 强化阶段: 1.了解函数的不同表现形式:显式表示,隐式表示,参数式,分段表示; 2.掌握基本初等函数的性质及其图形,了解初等函数的概念。 冲刺阶段: 1.综合应用函数解决相关的问题; 2.掌握特殊形式的函数(含极限的函数,导函数,变上限积分,并会讨论它们的相关性质。 第二节:极限

极限可以说是高等数学的基础,极限的计算也是高等数学中最基本的运算。在考试大纲中明确要求考生熟练掌握的基本技能之一。虽在考试中站的分值不大。但是在其他的试题中得到广泛应用。因此这部分学习直接营销到整个学科的复习结果 基础阶段 1.了解极限的概念及其主要的性质。 2.会计算一些简单的极限。 3.了解无穷大量与无穷小量的关系,了解无穷小量的比较方法,记住常见的等价无穷小量。 强化阶段: 1.理解极限的概念,理解函数左右极限的概念及其与极限的关系(数一数二/了解数列 极限和函数极限的概念(数三; ▲2.掌握计算极限的常用方法及理论(极限的性质,极限的四则运算法则,极限存在的两个准则,两个重要极限,等价无穷小替换,洛必达法则,泰勒公式; 3.会解决与极限的计算相关的问题(确定极限中的参数; 4.理解无穷大量和无穷小量的概念及相互关系,会进行无穷小量的比较,记住常见的等价无穷小量并能在计算极限时加以应用(数一数二/理解无穷小量的概念,会进行无穷小量的比较,记住常见的等价无穷小量并能在计算极限时加以应用,了解无穷大量的概念及其与无穷小量的关系(数三。 冲刺阶段: 深入理解极限理论在微积分中的中心地位,理解高等数学中其它运算(求导,求积分与极限之间的关系,建立完整的理论体系。

函数极限与连续知识梳理

知识梳理? ? ? ? 函数极限内容网络图 内容提要与释疑解难内容提要与释疑解难 一、函数极限的概念

1. 。 2. 把1中“”换成“”。 3.把1中“”换成“”。 定理且 4.设在的某空心邻域内有定义,若存在一个常数A, ,都有。 5.设在的某左半邻域内有定义,若存在一个常数A, 时,都有。 此时也可用记号或表示左极限值A,因此可写成 6. 设在的某右半邻域内有定义,若存在一个常数 ,当时,都有。此时也可用或 表示右极限。因此可写成。 定理且 该定理是求分界点两侧表达式不同的分段函数在该分界点极限是否存在的方法,而如果在的左右极限存在且相等,则在该点的极限存在,否则不存在。 7.时,都有。此时称 时,是无穷大量。 而,只要把公式中“”改成“”,,只要把上式中“”改成“”。 8.。当时,都有。

读者同理可给出定义。 注:(常数)与的区别,前者是表明函数极限存在,后者指函数极限不存在,但还是有个趋于无穷大的趋势。因此,给它一个记号,但还是属于极限不存在之列,以后,我们说函数极限存在,指的是函数极限值是个常数。 9.。称当是无穷小量。这里的可以是常数,也可以是。 定理。 其中。 10.若时,都有,称时是有界量。 二、无穷小量阶的比较,无穷小量与无穷大量关系 设, (这里可以是常数,也可以是,以后我们不指出都是指的这个意思) (1)若,称当时是的高阶无穷小量,记作 。 (2)若,称时是的同价无穷小量。 (3)若,称时是的等价无穷小量,记作,此时(2)式也可记作。 (4)若,称时是的k阶无穷小量。 由等价无穷量在求极限过程中起到非常重要的作用,因此,引入 若。记作, 如果均是无穷小量,称为等价无穷小量;如果均是无穷大量,称为等价无穷大量;如

数列、函数上下极限的性质及其应用文献综述

文献综述 数列、函数上下极限的性质及其应用 一、前言部分 极限的概念是数学分析中最基本的概念之一,也是高等数学中的一个最重要的理论部分.极限思想在数学中起着非常重要的作用.数学家拉夫纶捷夫曾说:“数学极限法的创造是对那些不能够用算术、代数和初等几何的简单方法来求解的问题进行了许多世纪的顽强探索的结果.” 极限思想 揭示了变量与常量、无限与有限的对立统一关系,是唯物辩证法的对立统一规律在数学领域中的应用。借助极限思想,人们可以从有限认识无限,从直线形认识曲线形从不变认识变,从量变认识质变,从近似认识精确. 极限思想是社会实践的产物.极限的思想可以追溯到古代,在我国春秋战国时期虽已有极限思想的萌芽.但从现在的史料来看,这种思想主要局限于哲学领域,还没有应用到数 学上,当然更谈不上应用极限方法来解决数学问题.直到公元3世纪,我国魏晋时期的数学 家刘徽在注释《九章算术》时创立了有名的“割圆术”.由于他所采用的圆的半径为1,这样 圆的面积在数值上即等于圆周率,所说刘徽成功地创立了科学的求圆周率的方法.刘徽采用的具体做法是:在半径为一尺的圆内,作圆的内接正六边形,然后逐渐倍增边数,依次算出内 接正6边形、正12边形、… 、直至562?(192)边形的面积。他利用公式22 n n r l s n ?=?(n l 为内接正n 边形的边长,2n s 为内接2n 边形的面积)来求正多边形的面积.他的极限思想是“割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体而无所失”.第一个创造性地将极限思想应用到数学领域.这种无限接近的思想就是后来建立极限概念的基础. 刘徽的割圆术是建立在直观基础上的一种原始的极限思想的应用:古希腊人的穷竭 法也蕴含了极限思想,但由于希腊人“对无限的恐惧”,他们避免明显地“取极限”,而是借助于间接证法——归谬法来完成了有关的证明.到了16世纪,荷兰数学家斯泰文在考查三角形重心的过程中改进了古希腊人的穷竭法,他借助几何直观运用极限思想思考问题 ,放弃 了归谬法的证明.如此,他在无意中将极限发展成为一个实用概念.从这一时期开始,极限与微积分开始形成密不可分的关系,并且最终成为微积分的直接基础。尽管极限概念被明确提出,可是它仍然过于直观,与数学上追求严密的原则相抵触.到18世纪时,罗宾斯、达朗贝尔与罗伊里艾等人先后明确地表示必须将极限作为微积分的基础,并且都对极限做

相关文档
相关文档 最新文档