文档库 最新最全的文档下载
当前位置:文档库 › 参与细胞信号转导通路的蛋白简写及全拼

参与细胞信号转导通路的蛋白简写及全拼

参与细胞信号转导通路的蛋白简写及全拼
参与细胞信号转导通路的蛋白简写及全拼

参与细胞信号转导通路的蛋白简写及全拼

4E-BP eIF4E binding protein

Abl Ableson protein tyrosine kinase

ACTR A histone acetyltransferase

AIF Programmed cell death protein 8

ANT Adenine nucleotide translocation channel

Apaf-1 Apoptotic protease activating factor 1

APP beta-Amyloid precursor protein

APPs Acute phase proteins

ASIP Agouti switch protein

ASK Apoptosis signal-regulating kinase (e.g., ASK1)

ATF-2 Activating transcription factor 2

ATM Ataxia telangiectasia?mutated protein kinase

ATR ATM and Rad3?related protein kinase

Bam32 B-cell adaptor molecule 32 kDa

BCAP B-cell adaptor for PI3K

Bcl-10 B-cell leukemia 10 protein

Bfl-1 Bcl-2-related protein A1

Bid A BH3 domain?only death agonist protein

Bimp1 B-lymphocyte-induced maturation protein 1

BLNK B-cell linker protein

BRCA Breast cancer growth suppressor protein

Btk Brutonís tyrosine kinase

C3G Guanine nucleotide?releasing factor 2

CAD Caspase-activated deoxyribonuclease

Cam Calmodulin

CaMK Calcium/calmodulin-dependent kinase

CAP c-Cbl-associated protein

Cas p130CAS, Crk-associated substrate

Caspase Cysteine proteases with aspartate specificity

CBL Cellular homologue of the v-Cbl oncogene

CBP CREB binding protein

CD19 B-lymphocyte antigen CD19

CD22 B-cell receptor CD22

CD40 B-cell surface antigen CD40

CD45 Leukocyte common antigen, a phospho-tyrosine phosphatase

CD5 Lymphocyte antigen CD5

cdc2 Cell division cycle protein 2, CDK1

cdc34 Cell division cycle protein 34, a ubiquitin conjugating (E2) enzyme cdc42 Cell division cycle protein 42, a G-protein

CDK Cyclin-dependent kinase

Chk Checkpoint kinase

CHOP C/EBP homologous protein 10

Cip CDK-interacting protein

CIS Cytokine inducible SH2-containing protein

c-Myb Cellular homologue of avian myeloblastosis virus oncogene

c-Myc Cellular homologue of avian myelocytomatosis virus oncogene

CREB cAMP response element?binding protein

CRK Proto-oncogene c-Crk

CrkII One of three cellular homologues of the v-Crk oncogene

DAG Diacylglycerol

Daxx Fas death domain?associated protein

Diablo Direct IAP binding protein with low pI

DNA-PK DNA-activated protein kinase

DP1 Member of the E2F transcription factor family

DPC4 Deleted in pancreatic cancer locus 4 (also Smad4)

DR3 Death receptor 3

dsRNA Double-stranded RNA

E2F Transcription factor family including E2F- and DP-like subunits

eEF Eukaryotic elongation factor

Egr-1 Early growth response protein 1

eIF Eukaryotic initiation factor

Elk-1 Ets domain protein

ENaC Epithelial sodium channel

EPAC Exchange protein activated by cAMP

ER Endoplasmic reticulum

ER Estrogen receptor

Erk Extracellular signal-regulated kinase

ETS C-ets-1 protein, a transcription factor

FADD Fas-associated protein with death domain

FAK Focal adhesion kinase

RII Immunoglobulin gamma Fc region receptor II-B Fc

FKHR Forkhead in rhabdomyosarcoma

FLIP FLICE (Caspase-8) inhibitory protein

FRAP FKBP12-rapamycin-associated protein

FRS2 Lipid anchored Grb2 binding protein activated by FGF receptor

Fyn A Src family proto-oncogene tyrosine-protein kinase

Gab1 GRB2-associated binder-1

GADD34 Growth arrest and DNA damage protein 34

GADD45 Growth arrest and DNA damage protein 45

GAP GTPase activating proteins

GAS IFNgamma-activated sequences

Gas2 Growth arrest?specific gene 2

GCK Germinal center kinase

GCN2 General control of amino acid biosynthesis protein 2, an S/T kinase

GCN5 General control of amino acid biosynthesis protein 5, a histone acetyltransferase GEF Guanine nucleotide exchange factor

GLUT-4 Glucose transporter type 4

GPCR G-protein coupled receptor

GRB2 Growth factor receptor?bound protein 2

GRB10 Growth factor receptor?bound protein 10

GRIP Glucocorticoid receptor interacting protein, a histone acetyltransferase GRK G-protein coupled receptor kinase

Glycogen synthase kinase-3 betaβGSK-3

HDAC Histone deacetylase

HMG High mobility group

HPK Hematopoietic progenitor kinase

HRI Hemin-regulated inhibitor

Hrk/DP5 Harakiri protein, an activator of apoptosis

HSP27 Heat shock protein 27

IAP Inhibitor of apoptosis

ICAD Inhibitor of caspase-activated deoxyribonuclease

B Inhibitor of NF-kappa BκI

IKK I-kappa-B kinase

INK4 Inhibitor of CDK4

IRS Insulin receptor substrate (e.g., IRS-1)

ISRE Interferon-stimulated response element

Jak Janus-family tyrosine kinase

JIP-1 JNK interacting protein 1

信号通路9—MAPK Signaling

信号通路9—MAPK Signaling APExBIO 图▲ MAPK信号通路图 丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK, MAP kinase)是一种对丝氨酸,苏氨酸和酪氨酸特异的蛋白激酶(即丝氨酸/苏氨酸特异性蛋白激酶)。由于MAPK是培养细胞在受到生长因子等丝裂原刺激时被激活而被鉴定的,因而得名。MAPKs参与引导细胞反应至各类刺激物,如有丝分裂原,渗透压,热休克和促炎细胞因子。MAPKs调节多种细胞功能,包括增殖,基因表达,分化,有丝分裂,细胞存活和凋亡。 MAPKs仅在真核生物中发现。MAPKs属于CMGC(CDK / MAPK / GSK3 / CLK)激酶组。CDK相关程度最大。

MAPK链由3类蛋白激酶组成:上游激活蛋白→MAPK激酶激酶(MAPKKK)→MAPK激酶(MAPKK)→MAPK,通过依次磷酸化将上游信号传递至下游应答分子。 经典的MAPK通路激活开始于细胞膜,在这里,小GTP酶和各种蛋白激酶磷酸化并激活MAPKKK(MAP kinase kinase kinase,MAP3K或MKKK,MAPK激酶激酶)。随后,MAPKKK直接磷酸化MAPKK(MAP kinase kinase,MAP2K 或MKK,MAPK激酶),MAPKK一旦被激活就会磷酸化并激活MAPK。MAPK 的激活导致特异性MAPK激活蛋白激酶(MAPKAPK,MAPK-activated protein kinase)的磷酸化和活化,例如RSK,MSK或MNK家族成员和MK2/3/5。 MKKK的4个亚族已得到鉴定: A. Raf亚族。研究的最为透彻,包括B-Raf、A-Raf、Raf1。 B. MEKK亚族。由4种MEKK构成:MEKK1~MEKK4。

常见的信号通路

1JAK-STAT信号通路 1)JAK与STAT蛋白 JAK-STAT信号通路是近年来发现的一条由细胞因子刺激的信号转导通路,参与细胞的增殖、分化、凋亡以及免疫调节等许多重要的生物学过程。与其它信号通路相比,这条信号通路的传递过程相对简单,它主要由三个成分组成,即酪氨酸激酶相关受体、酪氨酸激酶JAK和转录因子STAT。(1)酪氨酸激酶相关受体(tyrosinekinaseassociatedreceptor) 许多细胞因子和生长因子通过JAK-STAT信号通路来传导信号,这包括白介素2?7(IL-2?7)、GM-CSF(粒细胞/巨噬细胞集落刺激因子)、GH(生 长激素)、EGF(表皮生长因子)、PDGF(血小板衍生因子)以及IFN(干扰素)等等。这些细胞因子和生长因子在细胞膜上有相应的受体。这些受体的共同特点是受体本身不具有激酶活性,但胞内段具有酪氨酸激酶JAK 的结合位点。受体与配体结合后,通过与之相结合的JAK的活化,来磷酸化各种靶蛋白的酪氨酸残基以实现信号从胞外到胞内的转递。 (2)酪氨酸激酶JAK(Januskinase) 很多酪氨酸激酶都是细胞膜受体,它们统称为酪氨酸激酶受体(receptor tyrosinekinase,RTK),而JAK却是一类非跨膜型的酪氨酸激酶。JAK是英文Januskinase的缩写,Janus在罗马神话中是掌管开始和终结的两面神。之所以称为两面神激酶,是因为JAK既能磷酸化与其相结合的细胞因子受体,又能磷酸、JAK1个成员:4蛋白家族共包括JAK结构域的信号分子。SH2化多个含特定

JAK2、JAK3以及Tyk2,它们在结构上有7个JAK同源结构域(JAKhomologydomain,JH),其中JH1结构域为激酶区、JH2结构域是“假”激酶区、JH6和JH7是受体结合区域。 (3)转录因子STAT(signaltransducerandactivatoroftranscription)STAT被称为“信号转导子和转录激活子”。顾名思义,STAT在信号转导和转录激活上发挥了关键性的作用。目前已发现STAT家族的六个成员,即STAT1-STAT6。STAT蛋白在结构上可分为以下几个功能区段:N-端保守序列、DNA结合区、SH3结构域、SH2结构域及C-端的转录激活区。其中,序列上最保守和功能上最重要的区段是SH2结构域,它具有与酪氨酸激酶Src的SH2结构域完全相同的核心序列“GTFLLRFSS”。 2)JAK-STAT信号通路 与其它信号通路相比,JAK-STAT信号通路的传递过程相对简单。信号传 递过程如下:细胞因子与相应的受体结合后引起受体分子的二聚化,这使得与受体偶联的JAK激酶相互接近并通过交互的酪氨酸磷酸化作用而活化。JAK激活后催化受体上的酪氨酸残基发生磷酸化修饰,继而这些磷酸化的酪氨酸位点与周围的氨基酸序列形成“停泊位点”(dockingsite),同时含有SH2结构域的STAT蛋白被招募到这个“停泊位点”。最后,激酶JAK 催化结合在受体上的STAT蛋白发生磷酸化修饰,活化的STAT蛋白以二 聚体的形式进入细胞核内与靶基因结合,调控基因的转录。值得一提的是,一种JAK激酶可以参与多种细胞因子的信号转导过程,一种细胞因子的信号通路也可以激活多个JAK激酶,但细胞因子对激活的STAT分子却具有一定的选择性。例如IL-4激活STAT6,而IL-12 。STAT4却特异性激活

细胞信号通路大全

1 PPAR信号通路:过氧化物酶体增殖物激活受体( PPARs) 是与维甲酸、类固醇 和甲状腺激素受体相关的配体激活转录因子超家族核激素受体成员。它们作为脂 肪传感器调节脂肪代谢酶的转录。PPARs由PPARα、PPARβ和PPARγ 3种亚型组成。PPARα主要在脂肪酸代谢水平高的组织,如:肝、棕色脂肪、心、肾和骨骼肌表达。他通过调控靶基因的表达而调节机体许多生理功能包括能量代谢、生 长发育等。另外,他还通过调节脂质代谢的生物感受器而调节细胞生长、分化与 凋亡。PPARa同时也是一种磷酸化蛋白,他受多种磷酸化酶的调节包括丝裂原激活蛋白激酶( ERK-和p38.M APK) ,蛋白激酶A和C( PKA,PKC) ,AM PK和糖原合成酶一3( G SK3) 等调控。调控PPARa生长信号的酶报道有M APK、PKA和G SK3。PPARβ广泛表达于各种组织,而PPAR γ主要局限表达在血和棕色脂肪,其他组织如骨骼肌和心肌有少量表达。PPAR-γ在诸如炎症、动脉粥样硬化、胰岛素抵抗和糖代谢调节,以及肿瘤和肥胖等方面均有着举足轻重的作用, 而其众多生物学效应则是通过启动或参与的复杂信号通路予以实现。鉴于目前人 们对PPAR—γ信号通路尚不甚清,PPARs通常是通过与9-cis维甲酸受体( RXR)结合实现其转录活性的。 2 MAPK信号通路:mapk简介:丝裂原激活蛋白激酶(mitogen—activated protein kinase,MAPK)是广泛存在于动植物细胞中的一类丝氨酸/苏氨酸蛋白激酶。作用主要是将细胞外刺激信号转导至细胞及其核内,并引起细胞的生物化学反应(增殖、分化、凋亡、应激等)。 MAPKs家族的亚族 :ERKs(extracellular signal regulated kinase):包括ERK1、ERK2。生长因子、细胞因子或激素激活此通路,介导细胞增殖、分化。 JNKs(c-Jun N-terminal kinase)包括JNK1、JNK2、JNK3。此亚族成员能使 Jun转录因子N末端的两个氨基酸磷酸化而失活,因此称为Jun N末端激酶(JNKs)。物理、化学的因素引起的细胞外环境变化以及致炎细胞因子调节此通路。P38 MAPKs:丝氨酸/络氨酸激酶,包括p38 α、p38β、p38γ、p38δ。p38 MAP K参与多种细胞内信息传递过程 ,能对多种细胞外刺激发生反应,可磷酸化其它细胞质蛋白,并能从胞浆移位至细胞核而调节转录因子的活性来改变基因的表达水平 ,从而介导细胞生长、发育、分化及死亡的全过程。 ERK5:是一种非典型的MAPK通路,也叫大MAPK通路,只有一个成员。它可被各种刺激因素激活。不仅可以通过磷酸化作用使底物活化,并且通过C端的物理性结合作用激活底物。 3 ERBB信号途径:ErbB 蛋白属于跨膜酪氨酸激酶的 EGF 受体家族成员。ErbB 的命名来源于在禽红白血病 B( v-Erb-B) 发现的 EGF 受体的突变体,因而 EGF 受体 亦称为“ ErbB1”。人源 ErbB2 称为HER2, 特指人的 EGF 受体。ErbB 家族的

干货 细胞信号通路图解之MAPK通路【值得珍藏】

干货细胞信号通路图解之MAPK通路【值得珍藏】 科研小助手原创,转载请注明来源。公众号内回复“Cell Signaling Pathway”获取全套信号通路图本文由百度贴吧nosce吧吧主黄杰投稿一、MAPK信号通路: (1)有丝分裂原激活的蛋白激酶(MAPK)是一族在真核生物中非常保守的丝/苏氨酸蛋白激酶,在许多细胞活动中起作用,如生长增殖,细胞分化,细胞运动或死亡。MAPK级联信号传导由3 个不同层次的分子所组成。MAPK被MAPK的激 酶( MAPKK)磷酸化后激活,MAPKK被MAPKK的激酶(MAPKKK )磷酸化而激活。而MAPKKK通过与小GTPase 和/或其他蛋白酶相互作用而被激活,从而将MAPK和细胞 表面的受体以及胞外的信号联系在一起。 (2)许多参与生长和分化的受体都能够激活MAPK/ERK信号通路,比如说受体酪氨酸激酶(RTK),整合素,和离子通道。响应特定信号所涉及到的具体分子会相差很大,但通路的结构是一致的,那就是接头分子(adaptor,如Shc, GRB2, Crk等)将鸟苷酸交换因子(SOS, C3G 等)和受体连接在一起,然后把信号向小GTP 结合蛋白(Ras, Rap1)传递,后者又激活核心的级联反应,这是由一个MAPKKK( Raf) ,一个MAPKK( MEK1/2)和MAPK( Erk)所构成的。活化的ERK 二聚体能调节胞浆中的目标分子,也可以转移到细胞核中,然

后对一系列转录因子进行磷酸化以调节基因表达。SciRes(3)很多外部的刺激都能够激活G蛋白偶联受体(GPCR)。在受体活化以后,G 蛋白将GDP 转换成GTP ,然后结合了GTP的α和β/γ亚基从受体脱离开,启动信号向胞内的传导。与不同亚型的异质三聚体G 蛋白结合的受体可以采取不同 的手段激活小G 蛋白/MAPK级联反应,至少有三个不同家族的酪氨酸激酶参与其中。Src家族激酶响应活化的PI3Kγ,而后者被β/γ亚基激活。它们还能够响应受体的内化,受体酪氨酸激酶的交叉活化,以及有Pyk2 和/或FAK参与的整 合素途径信号。GPCRs同样可以通过PLCβ去激活PKC 和CaMKII ,对下游的MAPK通路可以有激活或抑制的影响。SciRes(4)压力激活的蛋白激酶(Stress-activated protein kinase, SAPK)或称Jun氨基端激酶(Jun amino-terminal kinase, JNK) 是MAPK的家族成员,能被一系列的环境压力,炎症细胞因子,生长因子和GPCR激动剂所激活。压力信号通过Rho家族的小GTP 酶(small GTPase)向这条级联通路传导,这些小GTP酶包括(Rac, Rho, cdc42) 。和其他的MAPK情况一样,靠近膜的激酶是一个MAPKKK,一般 是MEKK1-4 ,或者是一个混合激酶去磷酸化并激活 MKK4(SEK)或MKK7,它们是SAPK/JNK的激酶。另外,MKK4/7也可以被生发中心激酶(germinal center kinase, GCK)以一种GTPase 依赖的方式激活。活化后的

MAPK信号通路

MAPK 细胞最基本的生命活动是细胞的生长、分化与分裂。 细胞分裂周期可分为DNA 及蛋白质合成作准备的G1 期、DNA 合成的S 期、为有丝分裂作准备的G2 期与有丝分裂的M 期以及细胞呈相对稳定状态的G0 期。 生物信息通过一系列复杂的信号传递过程来诱导相关基因的表达、调控细胞分裂,决定细胞的转归。衰老细胞的细胞周期常阻滞于G1/ S 期或G2/M期,尤其是G1 末期的限制性调控点“R”点的阻滞。 促分裂素原活化蛋白激酶(mitogen-activated protein kinases,MAP激酶,MAPK)链是真核生物信号传递网络中的重要途径之一,在基因表达调控和细胞质功能活动中发挥关键作用。MAPK 链由3类蛋白激酶MAP3K-MAP2K-MAPK组成,通过依次磷酸化将上游信号传递至下游应答分子. MAPK信号通路包括:MAP激酶(MAPK)、MAPK激酶(MEK、MKK或MAPK 激酶)和MEK 激酶(MEKK、MKKK或MAPK激酶激酶)。在哺乳动物机体中,已经发现五种不同的MAPK 信号转导通路。其中ERK1/2信号转导通路调控细胞生长和分化,JNK和p38 MAPK信号转导通路在炎症与细胞凋亡等应激反应中发挥重要作用。使用这一芯片试剂盒检测RNA实验标本,操作者通过杂交反应技术,即可研究实验系统中与MAPK信号通路相关基因表达水平改变。 MAPK属于一种Ser/Thr蛋白激酶,可在多种不同的信号转导途径中充当一种共同的信号转导成份,且在细胞周期调控中发挥重要的作用。目前MAPK家族中至少有4个成员已被纯化和深入研究。如p42mapk,p44erk1,p54MAPK及p44mpk。 MAPK可促进血管内皮细胞增殖和新血管生成。新血管生成后可为肿瘤提供更多的营养,加速肿瘤的生长,促进癌细胞的扩散。 MAPK有4个主要亚族:ERK、JNK、p38MAPK和ERK5。

MAPK p38 信号通路总结

THE P38 SIGNALING PATHWAY p38 MAPK is phosphorylated and activated by either MKK3 or MKK6. Similar to the MAPKKs in the JNK andERK pathways, MKK3 and MKK6 phosphorylate the MAPK component, in this case p38, on both a tyrosine and threonine residue. MKK3 and MKK6 are directly downstream of a kinase known as MLK3 in this pathway. MLK3 is activated by the small G-proteins Rac1 and cdc42 (162). Both growth factor receptors and members of the TNF family of receptors are known to activate this pathway. The TNF family of receptors activate the p38 pathway via the activation of cdc42 (95), whereas growth factor receptors have been proposed to active this pathway via the sequential activation of RAS and Rac1 (63, 151). Thus, many of the initial proteins and activation events in the JNK pathway are also involved in the activation of the p38 pathway. ASK1 is also able to induce the activation of the p38 pathway. This activation is thought to occur via ASK1 phosphorylation of MKK3 and 6 (75). In some cases growth factor removal can result in the activation of the p38 pathway (9). Targets of p38 kinase activity include multiple transcription factors such as MEF2 (184), ATF-2 (106), Elk-1 (188), and indirectly CREB (138, 154). The p38 pathway is the only MAPK pathway that does not induce an antioxidant response via the phosphorylation of Nrf2. In fact, signaling via the p38 pathway may actually inhibit Nrf2 phosphorylation by other MAPK pathways (126, 190). This finding may explain the ability of this pathway to strongly promote apoptosis (182). The ability of RAS to activate Rho, and subsequently the p38 signaling pathway, may be the reason that transfection with RAS can lead to or augment apoptosis in some cases (54, 168, 173). Removal of IL-3 from cultures of the cytokine-dependent TF-1 hematopoietic cell line results in the induction of apoptosis, and activation of the JNK and p38 pathways (9). The p38 pathway under these conditions appeared to be important for the induction of apoptosis because inhibitors of p38 prevented IL-3-deprived TF-1 cells from undergoing apoptosis. To determine if the balance between the ERK and p38 signaling pathways determines the fate of the cell, Birkenkamp et al. incubated cells with IL-1 (9). IL-1 will induce the activation of the ERK, JNK, and p38 signaling pathways, whereas IL-3 removal only induced JNK and p38 expression. They found that IL-1, unlike cytokine withdrawal, did not induce apoptosis in these cells. These investigators then demonstrated that inhibition of the ERK signaling pathway with PD98059 allowed IL-1 to induce apoptosis in these cells. These data suggest that although the activation of the p38 pathway may be required for growth factor withdrawal-induced apoptosis, in the presence of high enough levels of ERK activation, p38 activation may not be sufficient in itself for apoptosis to occur. These data also demonstrate that the effects of the ERK signaling pathway can overcome the pro-apoptotic effects of the p38 signaling pathways, at least in certain experimental conditions (Fig. 3) ACTIVATION OF THE P38 PATHWAY BY OXIDATIVE STRESS Singlet oxygen (25, 91, 195), hydrogen peroxide (65), nitric oxide (98, 99), and peroxynitrite (143) all activate the p38MAPK pathway. The p38 MAPK pathway is known to be activated in a number of different cell types in response to reactive oxygen intermediates. These cell types include: Jurkat, 3T3, HeLa, fibroblasts, and endothelial cells (90). The mechanism by which this occurs is likely very similar to the mechanisms by which JNK activation occurs, as many of the same signals activate both pathways concurrently and in many of the same cell types. RAS activation and subsequent signaling via Rho can also activate this pathway as does ligation of the TNF receptor (75, 121, 162). Thus, the ability of oxygen radicals to induce receptor signaling by the TNF receptor in the absence of any receptor ligand binding could also have a potential role in activating the p38 pathway. The ability of nitric oxide to increase RAS activity indicates a potential mechanism by which reactive nitrogen intermediates can induce signaling via the p38 pathway (98). Similar to the JNK pathway, ASK1 has a role in oxidant-induced activation of the p38 pathway (112, 114) and is yet another mechanism by which oxygen radicals may induce p38 activation. Deletion of ASK1 protects against hydrogen peroxide-induced apoptosis in fibroblasts and also prevents prolonged p38 activation, suggesting an apoptotic role for p38 in response to oxidative stress (164). These data also suggest that the kinetics of p38 activation may also be important in determining the fate of the cell.

ERK信号转导通路

ERK信号转导通路 在MAPK家族中,ERK是最先被发现并被了解最多的成员。ERK包括了两种异构体ERKl 和ERK2(分别为P44和P42)。两个磷酸化受体位点即酪氨酸和苏氨酸被谷氨酸残基分隔开来,故其磷酸化位点基序是TEY。目前认为,P38和JNK属于“应激诱导”的MAPK,而ERK被认为是与细胞增殖、转化和分化相关的MAPK。 ERK级联反应包括典型的3个层次MAPKs的序贯激活过程。Raf蛋白(MAPKKK)的激活能磷酸化MEKl/2(MAPKK),并使后者激活,从而使随后的ERKl/2(MAPK)发生双重磷酸化而被缉获。ERK的激活对于Ras诱导的细胞反应、转录因子(如Elkl、cEtsl和c—Ets2)的激活以及激酶(如P90rskl、MNKl和MNK2)的激活是至关重要的。 ERK通路的激活包括了以下3种方式:酪氨酸激酶受体对Ras的激活、Ca2+对Ras的激活以及PKC对ERK通路的激活。生长因子与细胞表面的受体酪氨酸激酶(RTK)结合,诱发生长因子受体胞质中的酪氨酸残基自身磷酸化,导致受体二聚体化与活化。细胞表面的生长因子受体具有募集Grb2和SOS复合物的能力。SOS在与生长因子受体结合的过程中移位至胞质,并与Ras相互作用,促进Ras与GTP结合,使Ras活化。此外,Ca2+可通过不同的作用机制激活Ras蛋白:①通过l型电压依赖性的钙离子通道流人细胞内,经由Src家族蛋白激酶的介导,导致表皮生长因子受体(EGFR)酪氨酸磷酸化,进而通过Shc—Grb2—SOS复合物激活Ras;②通过Ca2+敏感性的Ras鸟嘌呤核苷酸释放因子(Ras—GRF)和Ca2+—钙调蛋白复合物与Ras—GRF结合,通过诱导Ras进行GTP交换而激活Ras;③在大鼠嗜铬细胞瘤PCI2细胞中,胞质Ca2+的升高,可诱发酪氨酸磷酸化,激活蛋白酪氨酸激酶(PYK2)。PYK2与Grb2和SOS形成复合物,同时伴随着Shc的激活。活化的PYK2通过直接募集Srb2—SOS复合物,或间接通过Shc而激活Ras。Ras是一种G蛋白,可通过与Grb2—SOS复合物发生相互作用而被激活。在这一过程中,SOS催化鸟嘌吟二磷酸盐发生转位,从而形成Ras—GTP复合体,使Ras激活,成为具有功能活性的Ras蛋白。Ras被激活后将Raf募集于细胞膜,随后Raf 发生磷酸化作用和寡聚化作用。PKC的同工酶也可以磷酸化并激活Raf—1蛋白激酶,使Raf —1发生自身磷酸化。 Raf家族属于MAPKKK,是高度保守的丝氨酸—苏氨酸激酶,通过与Ras蛋白的相互作用而被缉获。Raf家族成员包括A—Raf、B—Raf和Raf—1(即c—Raf或c—Raf—1)。每一异构体包括3个保守区域,称为CRl、CR2和CR3。前面的两个保守区域位于氨基末端,并含有调节Raf催化区域的部分,其激酶区域位于CR3。Raf被激活后使MEKl/2磷酸化,最终使ERKl/2发生磷酸化而被激活。激活的ERKl/2转位至核内,通过使P90RSK、MSK以及转录因子ELK—1、Stat3磷酸化而激活转录,引起细胞生长、增殖与分化。

参与细胞信号转导通路的蛋白简写及全拼

参与细胞信号转导通路的蛋白简写及全拼 4E-BP eIF4E binding protein Abl Ableson protein tyrosine kinase ACTR A histone acetyltransferase AIF Programmed cell death protein 8 ANT Adenine nucleotide translocation channel Apaf-1 Apoptotic protease activating factor 1 APP beta-Amyloid precursor protein APPs Acute phase proteins ASIP Agouti switch protein ASK Apoptosis signal-regulating kinase (e.g., ASK1) ATF-2 Activating transcription factor 2 ATM Ataxia telangiectasia?mutated protein kinase ATR ATM and Rad3?related protein kinase Bam32 B-cell adaptor molecule 32 kDa BCAP B-cell adaptor for PI3K Bcl-10 B-cell leukemia 10 protein Bfl-1 Bcl-2-related protein A1 Bid A BH3 domain?only death agonist protein Bimp1 B-lymphocyte-induced maturation protein 1 BLNK B-cell linker protein BRCA Breast cancer growth suppressor protein Btk Brutonís tyrosine kinase C3G Guanine nucleotide?releasing factor 2 CAD Caspase-activated deoxyribonuclease Cam Calmodulin CaMK Calcium/calmodulin-dependent kinase CAP c-Cbl-associated protein Cas p130CAS, Crk-associated substrate Caspase Cysteine proteases with aspartate specificity CBL Cellular homologue of the v-Cbl oncogene CBP CREB binding protein CD19 B-lymphocyte antigen CD19 CD22 B-cell receptor CD22 CD40 B-cell surface antigen CD40 CD45 Leukocyte common antigen, a phospho-tyrosine phosphatase CD5 Lymphocyte antigen CD5 cdc2 Cell division cycle protein 2, CDK1 cdc34 Cell division cycle protein 34, a ubiquitin conjugating (E2) enzyme cdc42 Cell division cycle protein 42, a G-protein CDK Cyclin-dependent kinase Chk Checkpoint kinase CHOP C/EBP homologous protein 10

肿瘤常见信号通路

1 JAK-STAT 信号通路 1) JAK 与STAT 蛋白 JAK-STAT 信号通路是近年来发现的一条由细胞因子刺激的信号转导通路,参与细胞的增殖、分化、凋亡以及免疫调节等许多重要的生物学过程。与其它信号通路相比,这条信号通路的传递过程相对简单,它主要由三个成分组成,即酪氨酸激酶相关受体、酪氨酸激酶JAK和转录因子STAT。 (1) 酪氨酸激酶相关受体( tyrosine kinase associated receptor ) 许多细胞因子和生长因子通过JAK-STAT 信号通路来传导信号,这包括白介素2?7 (IL-2?7 )、GM-CSF (粒细胞/巨噬细胞集落刺激因子)、GH (生长激素)、EGF (表皮生长因子)、PDGF (血小板衍生因子)以及IFN (干扰素)等等。这些细胞 因子和生长因子在细胞膜上有相应的受体。这些受体的共同特点是受体本身不具有激酶活性,但胞内段具有酪氨酸激酶JAK 的结合位点。受体与配体结合后,通过与之相结合的JAK 的活化,来磷酸化各种靶蛋白的酪氨酸残基以实现信号从胞外到胞内的转递。 (2) 酪氨酸激酶JAK ( Janus kinase ) 很多酪氨酸激酶都是细胞膜受体,它们统称为酪氨酸激酶受体( receptor tyrosine kinase, RTK ),而JAK 却是一类非跨膜型的酪氨酸激酶。JAK 是英文Janus kinase 的缩写,Janus 在罗马神话中是掌管开始和终结的两面神。之所以称为两面神激酶,是因为JAK既能磷酸化与其相结合的细胞因子受体,又能磷酸化多个含特定 SH2结构域的信号分子。JAK蛋白家族共包括4个成员:JAK1、JAK2、JAK3以及Tyk2,它们在结构上有7个JAK同源结构域(JAK homology domain, JH ),其中JH1结构域为激酶区、JH2结构域是“假”激酶区、JH6和JH7是受体结合区域。 (3) 转录因子STAT ( signal transducer and activator of transcription ) STAT 被称为“信号转导子和转录激活子”。顾名思义,STAT在信号转导和转录激活上发挥了关键性 的作用。目前已发现STAT家族的六个成员,即STAT1-STAT6。STAT蛋白在结构上可分为以下几个功能区段:N-端保守序列、DNA结合区、SH3结构域、SH2结构域及C-端的转录激活区。其中,序列上最保守和功能上最重要的区段是SH2结构域,它具 有与酪氨酸激酶Src的SH2结构域完全相同的核心序列“ GTFLLRFSS ”。 2) JAK-STAT 信号通路 与其它信号通路相比,JAK-STAT 信号通路的传递过程相对简单。信号传递过程如下:细胞因子与相应的受体结合后引起受体分子的二聚化,这使得与受体偶联的JAK激酶相互接近并通过交互的酪氨酸磷酸化作用而活化。JAK激活后催化受体上的酪氨酸残 基发生磷酸化修饰,继而这些磷酸化的酪氨酸位点与周围的氨基酸序列形成“停泊位

第九章 细胞信号转导知识点总结

第九章细胞信号转导 细胞通讯:一个信号产生细胞发出的信息通过介质(又称配体)传递到另一个靶细胞并与其相应的受体相互作用,然后通过信号转导产生靶细胞内一系列的生理生化变化,最终表现为靶细胞整体的生物学效应。 信号传导:是指信号分子从合成的细胞中释放出来,然后进行传递。信号传导强调信号的产生、分泌与传送。 信号转导:是指信号的识别、转移与转换,包括配体与受体的结合、第二信使的产生及其后的级联反应等。信号转导强调信号的接收与接收后信号转换的方式与结果。 受体:是一类能够结合细胞外特异性信号分子并启动细胞反应的蛋白质。 第二信使:细胞外信号分子不能进入细胞,它作用于细胞表面受体,经信号转导,在细胞内产生非蛋白类小分子,这种细胞内信号分子称为第二信使。 分子开关:细胞信号传递级联中,具有关闭和开启信号传递功能的分子。 信号通路:细胞接受外界信号,通过一整套特定机制,将胞外信号转化为胞内信号,最终调节特定基因表达,引起细胞的应答反应,这种反应系列称为细胞信号通路。 G蛋白偶联受体:指配体-受体复合物与靶细胞的作用是要通过与G蛋白的偶联,在细胞内产生第二信使,从而将细胞外信号跨膜传递到胞内影响细胞行为的受体。 cAMP信号通路:细胞外信号与细胞相应受体结合,导致细胞内第二信使cAMP 水平的变化而引起细胞反应的信号通路。 (磷脂酰肌醇信号通路)双信使系统:胞外信号分子与细胞表面G蛋白偶联受体结合,激活膜上的磷脂激酶C,使质膜上的PIP2分解成IP3和DAG两个第二信使,将胞外信号转导为胞内信号,两个第二信使分别激活两种不同的信号通路,即IP3-Ca2+和DAG-PKC途径,实现对胞外信号的应答,因此将这种信号通路称为“双信使系统”。 钙调蛋白:真核细胞中普遍存在的Ca2+应答蛋白。 Ras蛋白:Ras基因的产物,分布于质膜胞质侧,结合GTP时为活化状态,结合GDP时失活状态,因此Ras蛋白属于GTP结合蛋白,具有GTP酶活性,具有分子开关的作用。

常见的信号通路

1 JAK-STAT信号通路 1) JAK与STAT蛋白 JAK-STAT信号通路是近年来发现的一条由细胞因子刺激的信号转导通路,参与细胞的增殖、分化、凋亡以及免疫调节等许多重要的生物学过程。与其它信号通路相比,这条信号通路的传递过程相对简单,它主要由三个成分组成,即酪氨酸激酶相关受体、酪氨酸激酶JAK和转录因子STAT。 (1) 酪氨酸激酶相关受体(tyrosine kinase associated receptor) 许多细胞因子和生长因子通过JAK-STAT信号通路来传导信号,这包括白介素2?7(IL-2?7)、GM-CSF(粒细胞/巨噬细胞集落刺激因子)、GH(生长激素)、EGF(表皮生长因子)、PDGF (血小板衍生因子)以及IFN(干扰素)等等。这些细胞因子和生长因子在细胞膜上有相应的受体。这些受体的共同特点是受体本身不具有激酶活性,但胞内段具有酪氨酸激酶JAK的结合位点。受体与配体结合后,通过与之相结合的JAK的活化,来磷酸化各种靶蛋白的酪氨酸残基以实现信号从胞外到胞内的转递。 (2) 酪氨酸激酶JAK(Janus kinase) 很多酪氨酸激酶都是细胞膜受体,它们统称为酪氨酸激酶受体(receptor tyrosine kinase, RTK),而JAK却是一类非跨膜型的酪氨酸激酶。JAK是英文Janus kinase的缩写,Janus在罗马神话中是掌管开始和终结的两面神。之所以称为两面神激酶,是因为JAK既能磷酸化与其相结合的细胞因子受体,又能磷酸化多个含特定SH2结构域的信号分子。JAK蛋白家族共包括4个成员:JAK1、JAK2、JAK3以及Tyk2,它们在结构上有7个JAK同源结构域(JAK homology domain, JH),其中JH1结构域为激酶区、JH2结构域是“假”激酶区、JH6和JH7是受体结合区域。 (3) 转录因子STAT(signal transducer and activator of transcription)STAT被称为“信号转导子和转录激活子”。顾名思义,STAT在信号转导和转录激活上发挥了关键性的作用。目前已发现STAT家族的六个成员,即STAT1-STAT6。STAT蛋白在结构上可分为以下几个功能区段:N-端保守序列、DNA结合区、SH3

细胞信号通路大全

1PPAR信号通路:过氧化物酶体增殖物激活受体(PPARs)是与维甲酸、类固醇和甲状腺激素受 体相关的配体激活转录因子超家族核激素受体成员。它们作 为脂肪传感器调节脂肪代谢酶的转录。PPARs由PPARα、PPARβ和PPARγ3种亚型组成。PPARα主要在脂肪酸代谢水平高的组织,如:肝、棕色脂肪、心、肾和骨骼肌表达。他通过 调控靶基因的表达而调节机体许多生理功能包括能量 代谢、生长发育等。另外,他还通过调节脂质代谢的生物感受器而调节细胞生长、分化与凋亡。PPARa同时也是一种磷酸化蛋白,他受多种磷酸化酶的调节包括丝裂原激活蛋白激酶(ERK-和 p38.MAPK),蛋白激酶A和C(PKA,PKC),AMPK和糖原合成酶一3(GSK3)等调控。调控PPARa 生长信号的酶报道有MAPK、PKA和GSK3。PPARβ广泛表达于各种组织,而PPARγ主 要局限表达在血和棕色脂肪,其他组织如骨骼肌和心肌有少量表达。PPAR-γ在诸如炎症、动 脉粥样硬化、胰岛素抵抗和糖代谢调节,以及肿瘤和肥胖等方面 均有着举足轻重的作用,而其众多生物学效应则是通过启动或参与的复杂信号 通路予以实现。鉴于目前人们对PPAR—γ信号通路尚不甚清,PPARs通常是通过与9-cis维 甲酸受体(RXR)结合实现其转录活性的。 2MAPK信号通路:mapk简介:丝裂原激活蛋白激酶(mitogen—activatedproteinkinase,MAPK)是广泛存在于动植物细胞中的一类丝氨酸/苏氨酸蛋 白激酶。作用主要是将细胞外刺激信号转导至细胞及其核内,并引起细胞的生物化学反 应(增殖、分化、凋亡、应激等)。 MAPKs家族的亚族:ERKs(extracellularsignalregulatedkinase) :包括 ERK1、ERK2。生长因子、细胞因子或激素激活此通路,介导细胞增殖、分化。 JNKs(c-JunN-terminalkinase)包括JNK1、JNK2、JNK3。此亚族成员能使Jun转录因子N末 端的两个氨基酸磷酸化而失活,因此称为JunN末端激酶(JNKs)。物理、化学的因素引起的 细胞外环境变化以及致炎细胞因子调节此通 路。 P38MAPKs:丝氨酸/络氨酸激酶,包括p38α、p38β、p38γ、p38δ。p38MAPK参与多种细胞内信息传递过程,能对多种细胞外刺激发生反应,可磷酸化 其它细胞质蛋白,并能从胞浆移位至细胞核而调节转录因子的活性来改变基因的表达水平,从而 介导细胞生长、发育、分化及死亡的全过程。 ERK5:是一种非典型的MAPK通路,也叫大MAPK通路,只有一个成员。它可 被各种刺激因素激活。不仅可以通过磷酸化作用使底物活化,并且通过C端的物理性结合作用 激活底物。 3ERBB信号途径:ErbB蛋白属于跨膜酪氨酸激酶的EGF受体家族成员。ErbB的命名来源于在禽 红白血病B(v-Erb-B)发现的EGF受体的突变体,因而EGF

细胞信号传导通路

细胞信号传导通路 1. 信息传导通路的基本组成 人体细胞之间的信息转导可通过相邻细胞的直接接触来实现,但更重要的也是更为普遍的则是通过细胞分泌各种化学物质来调节自身和其他细胞的代谢和功能,因此在人体中,信息传导通路通常是由分泌释放信息物质的特定细胞、信息物质(包含细胞间与细胞内的信息物质和运载体、运输路径等)以及靶细胞 (包含特异受体等)等构成。 信号转导通常包括以下步骤: 释放信息物质→信息物质经扩散或血循 环到达靶细胞→与靶细胞的受体特异性 结合→受体对信号进行转换并启动细胞 内信使系统→靶细胞产生生物学效应 【1】。通过这一系列的过程,生物体对外界刺激作出反应。 3. 信息物质及其分类 信息物质可分为细胞间信息物质与细胞内信息分子。 凡由细胞分泌的调节靶细胞生命活动的化学物质统称为细胞间信息物质,即第一信使,按照细胞分泌信息物质的方式又可将细胞间信息物质分为神经递质、内分泌激素、局部化学介质和气体信号分子。在细胞内传递细胞调控信号的化学物质称为细胞内信息物质,其组成多样化。通常将Ca2+、cAMP、cGMP、DAG、IP3、Cer、花生四烯酸及其代谢物等这类在细胞内传递信息的小分子化合物称为第二信使。责细胞核内外信息传递的物质称为第三信使,能与靶基因特异序列结合,发挥着转录因子或转录调节因子的作用。 研究发现一些信息物质能与位于分泌细胞自身的受体结合而起调节作用,称为自分泌信号。如肝癌细胞能分泌多种血管生成因子,其中VEGF是目前发现的刺激肿瘤血管形成最重要的促进因子,研究表示,肿瘤细胞分泌的VEGF除选择性作用于肿瘤血管内皮细胞上的特异性VEGF受体(Flt-1和KDR),通过酪氨酸激酶介导的信号转导,调控内皮细胞分化和血管形成外,肿瘤细胞自身也有VEGF受体的表达,而且针对VEGF及其受体的干预措施可以改变这些肿瘤细胞的体外增殖活性和其他生物学特征,这些研究表示肿瘤中存在VEGF的自分泌机制【2】。自分泌所产生的信息物质也具有其独特而重要的生理功能。4. 受体分类及与受体相关的信息转导途径 受体是细胞膜上或细胞内能识别生物活性分子并与之结合的成分,他能把识别和接受的信号正确无误地放大并传递到细胞内部,进而引起生物学效应。存在于细胞质膜上的受体称为膜受体,化学本质绝大部分是糖镶嵌蛋白;位于胞液和细胞核中的受体称为胞内受体,它们

相关文档
相关文档 最新文档