文档库 最新最全的文档下载
当前位置:文档库 › 待定系数法求解析式

待定系数法求解析式

待定系数法求解析式
待定系数法求解析式

待定系数法求函数解析式

【要点梳理】

一.已知三点求抛物线解析式

例1 二次函数的图象经过点(1,4),(-1,0)和(-2,5),求二次函数的解析式.

例2若抛物线经过A(-1,0)和B(3,0),且与y轴交于点(0,-3),求此抛物线的解析式及顶点坐标.

二.已知顶点坐标及另一点坐标求抛物线解析式例3 已知抛物线的顶点坐标是(-2,3)且过(-1,5),求抛物线的解析式.

三.已知两点及对称轴,求抛物线解析式

例4已知抛物线过A(1,0),B(0,-3)两点,且对称轴为直线x=2,求抛物线解析式.

四.已知x轴上两点坐标及另一点坐标求抛物线解析式

例5若抛物线经过A(-2,0)和B(4,0),且与y轴交点(0,-3),求此抛物线的解析式及顶点坐标.

五.求平移后新抛物线解析式

例6把抛物线2x

y-

=向左平移1个单位,然后

向上平移3个单位,求平移后新的抛物线解析式.

六.求沿坐标轴翻折后新抛物线解析式

例7 在一张纸上作出函数3

2

2+

-

=x

x

y的图

象,沿x轴把这张纸对折,描出与函数

3

2

2+

-

=x

x

y的图象关于x轴对称的抛物线,

并写出新抛物线解析式.

【课堂操练】

1.求下列条件下的二次函数解析式:

(1)过点(-1,0),(0,2)和(4,0).

(2)顶点为(2,-3),且过点(-1,15).

2.已知二次函数c

bx

ax

y+

+

=2的图象如图所

示,求它关于y轴对称的抛物线解析式.

3.已知二次函数c

bx

ax

y+

+

=2的图象如图所

示,求它关于x轴对称的抛物线解析式.

4.已知二次函数c

bx

x

y+

+

=2

2

1

的图象过点A

(c,-2),,求证:这

个二次函数图象的对称轴是直线x=3,题目中横线

上方部分是被墨水污染了无法辨认的文字.

(1)根据已知和结论中现有信息,你能否求出题

目中的二次函数解析式?若能,请写出解题过程;

若不能,请说明理由.

(2)请你根据已有的信息,在原题中的横线上添

加一个适当的条件,把原题补充完整.

【课后巩固】

1.将抛物线2

y x

=的图像向右平移3个单位,则

平移后的抛物线的解析式为___________.

2.二次函数3

4

2+

+

=x

x

y的图象可以由二次

函数2x

y=的图象平移而得到,下列平移正确的

是()

A、先向左平移2个单位长度,再向上平移1个单

位长度

B、先向左平移2个单位长度,再向下平移1个单

位长度

C、先向右平移2个单位长度,再向上平移1个单

位长度

D、先向右平移2个单位长度,再向下平移1个单

位长度

3.已知2

y ax bx c

=++的图象过(-2,-6)、

(2,10)和(3,24)三点,求函数解析式.

4.已知函数2

y ax bx c

=++,当x=1时,有最

大值-6,且经过点(2,-8),求出此抛物线的

解析式.

5.已知二次函数的图象与x轴的交点横坐标分别

为2和3,与y轴交点的纵坐标是72,求它的解

析式.

6.已知抛物线22

(2)4y m x mx n =--+的对称轴是x =2,且它的最高点在直线1

12

y x =

+上,求此抛物线的解析式.

7.已知抛物线2

y ax bx c =++(a ≠0)经过 (0,1)和(2,-3)两点. (1)如果抛物线开口向下,对称轴在y 轴的左侧,求a 的取值范围.

(2)若对称轴为x =-1,求抛物线的解析式.

8. 二次函数图象过A 、B 、C 三点,点A 的坐标为(-1,0),点B 的坐标为(4,0),点C 在y 轴正半轴上,且AB =OC . (1)求C 的坐标;

(2)求二次函数的解析式,并求出函数最大值.

9.在平面直角坐标系中,△AOB 的位置如图所示.已知∠AOB =90°,AO =BO ,点A 的坐标为 (-3,1).

(1)求点B 的坐标,

(2)求过A ,O ,B 三点的抛物线的解析式, (3)设点B 关于抛物线的对称轴的对称点为B l ,求△AB l B 的面积.

10.已知点A (-2,-c )向右平移8个单位得到 点A ',A 与A '两点均在抛物线2y ax bx c =++上, 且这条抛物线与y 轴的交点的纵坐标为-6,求这 条抛物线的顶点坐标.

11.在直角坐标平面内,二次函数图象的顶点为A (1,-4),且过点B (3,0). (1)求该二次函数的解析式;

(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x 轴的另一个交点的坐标.

12.一次函数y =x -3的图象与x 轴,y 轴分别交

于点A ,B .一个二次函数y =x 2

+bx +c 的图象经过点A ,B .

(1)求点A ,B 的坐标,并画出一次函数y =x -3的图象;

(2)求二次函数的解析式及它的最小值.

13.在平面直角坐标系中,已知二次函数

k x a y +-=2)1(的图像与x 轴相交于点A 、B ,

顶点为C ,点D 在这个二次函数图像的对称轴上,若四边形ABCD 时一个边长为2且有一个内角为60°的菱形,求此二次函数的表达式.

14.关于x 的函数22

(4)22y x k x k =-+-+-以y 轴为对称轴,且与y 轴的交点在x 轴上方. (1)求此抛物线的解析式,并在下面的直角坐标系中画出函数的草图;

(2)设A 是y 轴右侧抛物线上的一个动点,过点A 作AB 垂直于x 轴于点B ,再过点A 作x 轴的平行线交抛物线于点D ,过点D 作DC 垂直于x 轴于点C ,得到矩形ABCD .设矩形ABCD 的周长为l ,点A 的横坐标为x ,试求l 关于x 的函数关系式; (3)当点A 在y 轴右侧的抛物线上运动时,矩形ABCD 能否成为正方形.若能,请求出此时正方形的周长;若不能,请说明理由.

待定系数法 习题训练

待定系数法 习题训练 Ⅰ、再现性题组: 1. 设f(x)=x 2 +m ,f(x)的反函数f -1(x)=nx -5,那么m 、n 的值依次为_____。 A. 52 , -2 B. -52 , 2 C. 52 , 2 D. -52 ,-2 2. 二次不等式ax 2+bx +2>0的解集是(-12,13 ),则a +b 的值是_____。 A. 10 B. -10 C. 14 D. -14 3. 在(1-x 3)(1+x )10的展开式中,x 5的系数是_____。 A. -297 B.-252 C. 297 D. 207 4. 函数y =a -bcos3x (b<0)的最大值为32,最小值为-12 ,则y =-4asin3bx 的最小正周期是_____。 5. 与直线L :2x +3y +5=0平行且过点A(1,-4)的直线L ’的方程是_______________。 6. 与双曲线x 2-y 2 4=1有共同的渐近线,且过点(2,2)的双曲线的方程是____________。 【简解】1小题:由f(x)= x 2 +m 求出f -1(x)=2x -2m ,比较系数易求,选C ; 2小题:由不等式解集(-12,13),可知-12、13是方程ax 2+bx +2=0的两根,代入两根,列出关于系数a 、b 的方程组,易求得a +b ,选D ; 3小题:分析x 5的系数由C 105与(-1)C 102两项组成,相加后得x 5的系数,选D ; 4小题:由已知最大值和最小值列出a 、b 的方程组求出a 、b 的值,再代入求得答案23π; 5小题:设直线L ’方程2x +3y +c =0,点A(1,-4)代入求得C =10,即得2x +3y +10=0; 6小题:设双曲线方程x 2-y 2 4=λ,点(2,2)代入求得λ=3,即得方程x 23-y 212=1。 Ⅱ、示范性题组: 例1. 已知函数y =mx x n x 22431 +++的最大值为7,最小值为-1,求此函数式。 【分析】求函数的表达式,实际上就是确定系数m 、n 的值;已知最大值、最小值实际是就是已知函数的值域,对分子或分母为二次函数的分式函数的值域易联想到“判别式法”。 【解】 函数式变形为: (y -m)x 2 -43x +(y -n)=0, x ∈R, 由已知得y -m ≠0 ∴ △=(-43)2-4(y -m)(y -n)≥0 即: y 2-(m +n)y +(mn -12)≤0 ① 不等式①的解集为(-1,7),则-1、7是方程y 2-(m +n)y +(mn -12)=0的两根,

用待定系数法求函数的解析式教案

运用待定系数法求函数的解析式(教案) 教学目标: 1.了解用待定系数法求函数解析式的一般步骤; 2.掌握用待定系数法求函数的解析式的方法; 3.通过自主、合作学习,培养学生勇于探索、勤于思考的精神. 教学重点:用待定系数法求函数的解析式 教学难点:选设适当形式的函数解析式并用待定系数法求出解析式 教学设计: 一、基础扫描 1.已知一次函数y=kx+3的图像经过两点A(2,-1),则k=__________. 2.已知反比例函数 k y x =的图象经过(1,-2).则k=__. 3.在平面直角坐标系中,已知A、B、C三点的坐标分别为A(-2,0),B(6,0),C(0,3).求经过A、B、C三点的抛物线的解析式. 4.抛物线的顶点为(-2,-3),且过点(0,-7),求该抛物线的解析式. 问题1:结合上述四题,说说何为待定系数法?(板书课题) 问题2:谈谈用待定系数法求一次函数、反比例函数、二次函数解析式的一般步骤. 二、课内探究 活动一:一次函数的解析式的确定 1.与直线y=x平行,并且经过点P(1,2)的一次函数解析式为_________. 2.如图,在平面直角坐标系中,A、B均在边长为1的正方形网格格点上. (1)求线段AB所在直线的函数解析式,并写出当02 y ≤≤时,自变量x的 取值范围; (2)将线段AB绕点B逆时针旋转90,得到线段BC,请在图中画出线段 BC.若直线BC的函数解析式为y kx b =+, 则y随x的增大而(填“增大”或“减小”). 活动二:反比例函数解析式的确定 1.如图,某反比例函数的图象过点(-2,1),则此反比例函数表达式为() A. 2 y x =B. 2 y x =-C. 1 2 y x =D. 1 2 y x =-

待定系数法求函数的解析式练习题集

用待定系数法求函数解析式 姓名 一、填空: 1、抛物线832 +-=x y 的开口 ,对称轴方程..... 是 ,顶点坐标为 。 2、已知()1222---=n n x n y 是二次函数,且它的开口向上,则n = ,解析式为 , 此抛物线顶点坐标是 。 3、把抛物线23x y -=向左平移2个单位,再向下平移4个单位,得到的解析式是 , 此函数图象的顶点坐标是: 。 4、与抛物线22 1x y =的形状和开口方向相同,顶点为(3,1)的二次函数解析式为 。 5、把函数253212--- =x x y 配方成()k h x a y +-=2的形式为 , 当x = 时,函数y 有最 值,为 ;当x 时,y 随x 增大而减小。 6、抛物线652--=x x y 与x 轴交点坐标是 ,与y 轴交点坐标为 。 7、二次函数()4122 ++-=x k x y 顶点在y 轴上,则k = ;若顶点在x 轴上,则k = 。 8、抛物线c bx x y ++=2的顶点是(2,4),则b = ,c = 。 9、二次函数c bx ax y ++=2图象如图所示,则a 0,b 0,c 0,b 2-4ac 0, a + b + c 0,a -b +c 0。 10、已知二次函数c bx ax y ++=2 中,a <0,b >0,c <0,则此函数图象不经过第 象限。 二、解答下列各题: 1、已知抛物线c bx ax y ++=2经过三点A(0,2)、B(1,3)、C(-1,-1), 求抛物线解析式以及图象与x 轴的交点坐标。 2、已知抛物线c bx ax y ++=2中,21=a ,最高点的坐标是??? ? ?-251,,求此函数解析式。 3、已知抛物线经过以下三点(-1,0),(3,0),(1,-5)。 求该抛物线的解析式。

专题用待定系数法求二次函数的解析式

精心整理 精心整理 专题1-用待定系数法求二次函数的解析式 二次函数的解析式常见的三种表达形式: 一般式:y =ax 2+bx +c (a ≠0) 顶点式:y=a(x -h)2+k (a ≠0,(h ,k )是抛物线的顶点坐标) 交点式:y=a(x -x 1)(x -x 2)(a ≠0,x 1、x 2是抛物线与x 轴交点的横坐标) 例1.如果二次函数y =ax 2+bx +c 的图象的顶点坐标为(-2,4),且经过原点,求二次函数解析式. 求二次4例2x=-1x=-11. 2.3.4.二次函数y=ax 2+bx+c 的对称轴为x=3,最小值为-2,,且过(0,1),求此函数的解析式。 5.已知二次函数的图象与x 轴的交点为(-5,0),(2,0),且图象经过(3,-4),求解析式 6.抛物线的顶点为(-1,-8),它与x 轴的两个交点间的距离为4,求此抛物线的解析式。 7.二次函数的图象与x 轴两交点之间的距离是2,且过(2,1)、(-1,-8)两点,求此二次函数的解析式。 8.把二次函数25 3212++=x x y 的图象向右平移2个单位,再向上平移3个单位,求所得二次函数的

精心整理 精心整理 解析式。 9.二次函数y=ax 2+bx+c ,当x <6时y 随x 的增大而减小,x >6时y 随x 的增大而增大,其最小值为-12,其图象与x 轴的交点的横坐标是8,求此函数的解析式。 10.已知一个二次函数的图象过(1,5)、(1,1--)、(2,11)三点,求这个二次函数的解析式。 11.已知二次函数图象的顶点为(2,k ),在一次函数y=x+1上,并且点(1,1)在图像上,求此二次函数解析式 12.已知二次函数y=ax 2-2ax+c(a 不为0)的图像与x 轴交于A 、B 两点,A 左B 右,与y 轴正半轴交于点C ,AB=4,OA=OC,求二次函数的解析式 13. 2且x 114.3,0), (1Q 点坐15(1(2)

高中数学解题思路大全:用待定系数法求三角函数最值

用待定系数法求三角函数最值 武增明 用均值不等式求三角函数最值时,“各数相等”及“和(或积)为定值”是两个需要刻意凑出的条件,从何处入手,怎样拆项,如何凑出定值且使等号成立,又能使解答过程简捷明快,这确实既“活”又“巧”,对此问题,现利用待定系数法探析。 例1. 设x ∈(0,π),求函数x sin 22x sin y +=的最小值。 分析:拿到此题,很容易想到下面的解法。 因为 sinx >0, 所以2x sin 22x sin 2x sin 22x sin y =?≥+=。故y min =2。 显然,这种解法是错误的!错误的原因是没有考虑“=”号成立的条件。由 x sin 22x sin =得sinx=2,这样的x 不存在,故为错解。 事实上,此题是可以用均值不等式来解答的,但需要拆项,如何拆,既能使其积为定值,又能使“=”号成立,这确实是一个难点,笔者认为,待定系数法就能很好地解决这 个问题,为此,先引入一个待定系数λ(0<λ<2,使x sin 2x sin 2x sin y λ-+λ+=。由均值不等式及正弦函数的有界性,得λ-+λ≥λ-+λ?≥22x sin 2x sin 2x sin 2y 。 当且仅当x sin 2x sin λ=且sinx=1,即λ=21时,上式等号成立。将λ=21代入,得y min =2 5。 另解:y=)x sin 4x (sin 21+。 令sinx=t(0<t ≤1=,易证)t 4t (21y +=在(0,1]上单调递减,所以25)141(21y min =+=。 例2. 当x ∈(0,2π)时,求函数x cos 2x sin 36y +=的最小值。 分析:因为x ∈(0, 2 π),所以sinx >0,cosx >0,引入大于零的待定系数k ,则函数x cos 2x sin 36y +=可变形为x cos 1x cos 1x sin k x sin 33x sin 33y 2++++=+kcos 2x -k ≥

利用待定系数法因式分解和分式的拆分等

第2讲利用待定系数法因式分解、分式的拆分等 一、 方法技巧 1. 待定系数法运用于因式分解、分式的拆分等问题中,其理论依据是多项式恒等,也就是利用了 多项式()()f x g x =的充要条件是:对于一个任意的x=a 值,都有()()f x g x =;或者两个多项 式各关于x 的同类项的系数对应相等. 2. 使用待定系数法解题的一般步骤是: (1)确定所求问题含待定系数的一般解析式; (2)根据恒等条件,列出一组含待定系数的方程(组); (3)解方程(组),从而使问题得到解决. 例如:“已知()22 52x a x bx c -=-?++,求a ,b ,c 的值.” 解答此题,并不困难.只需将右式与左式的多项式中的对应项的系数加以比较后,就可得到a , b , c 的值.这里的a ,b ,c 是有待于确定的系数,这种解决问题的方法就是待定系数法. 3. 格式与步骤: (1)确定所求问题含待定系数的解析式. 上面例题中,解析式就是:()2 2a x bx c -?++ (2)根据恒等条件,列出一组含待定系数的方程. 在这一题中,恒等条件是: 210 5a b c -=??=??=-? (3)解方程或消去待定系数,从而使问题得到解决. ∴10 5a b c =??=??=-? 二、应用举例 类型一 利用待定系数法解决因式分解问题 【例题1】已知多项式432237x x ax x b -+++能被22x x +-整除. (1)求a ,b (2)分解因式:432237x x ax x b -+++ 【答案】(1) 12 6a b =-=和 (2)()()4322223127 6 2253x x x x x x x x --++=+--- 【解析】

待定系数法练习题

待定系数法练习题 一.选择题(共10小题) 1.已知正比例函数y=kx(k≠0)的图象经过点(1,﹣3),则此正比例函数的关系式为() A.y=3x B.y=﹣3x C.D. 2.已知某条经过原点的直线还经过点(2,1),下列结论正确的是() A.直线的解析式为y=2x B.函数图象经过二、四象限 C.函数图象一定经过点(﹣2,﹣1)D.y随x的增大而减小 3.已知y﹣1与x成正比,当x=2时,y=9;那么当y=﹣15时,x的值为() A.4 B.﹣4 C.6 D.﹣6 4.函数y=kx+2,经过点(1,3),则y=0时,x=() A.﹣2 B.2 C.0 D.±2 5.一次函数的图象经过点(2,1)和(﹣1,﹣3),则它的解析式为() A.B.C. D. 6.一次函数y=kx+b的图象如图,则() A.B.C.D. 7.如图,矩形OABC的边OA在x轴上,O与原点重合,OA=1,OC=2,点D的坐标为(2,0),则直线BD 的函数表达式为() A.y=﹣x+2 B.y=﹣2x+4 C.y=﹣x+3 D.y=2x+4

8.已知y是x的一次函数,下表中列出了部分对应值,则m等于() x ﹣1 0 1 y 1 m ﹣5 A.﹣1 B.0 C.﹣2 D. 9.已知一次函数y=kx+b,当0≤x≤2时,对应的函数值y的取值范围是﹣2≤y≤4,则k的值为() A.3 B.﹣3 C.3或﹣3 D.k的值不确定 10.把正比例函数y=2x的图象向下平移3个单位后,所得图象的函数关系式为() A.y=2(x﹣3)B.y=2x﹣3 C.y=2x+3 D.y=2x 二.填空题(共8小题) 11.已知一次函数y=kx+b的图象经过两点A(0,1),B(2,0),则当x时,y≤0. 12.如图,在直角坐标系中,已知矩形ABCD的两个顶点A(3,0)、B(3,2),对角线AC所在的直线L,那么直线L对应的解析式是. 13.如图,一次函数的y=kx+b图象经过A(2,4)、B(0,2)两点,与x轴交于点C,则△AOC的面积为. 14.已知一次函数y=kx+b,当x减少3时,y增加2,则k的值是. 15.已知函数y=kx+b(k≠0)的图象与y轴交点的纵坐标为﹣2,且当x=2时,y=1.那么此函数的解析式 为. 16.正方形ABCO的边长是2,边OA,OC分别在y轴、x轴的正半轴上,且点E是BC的中点,则直线AE 的解析式是. 17.已知点A(2a﹣1,3a+1),直线l经过点A,则直线l的解析式是. 18.一次函数y=kx+b 的图象过点A(﹣1,2),且与y轴交于点B,△OAB的面积是2,则这个一次函数的表达式为. 三.解答题(共6小题) 19.在直角坐标系中,一条直线经过A(﹣1,5),P(﹣2,a),B(3,﹣3)三点.

第7讲 待定系数法求二次函数的解析式(基础课程讲义例题练习含答案)

待定系数法求二次函数的解析式—知识讲解(基础) 【学习目标】 1. 能用待定系数法列方程组求二次函数的解析式; 2. 经历探索由已知条件特点,灵活选择二次函数三种形式的过程,正确求出二次函数的解析式,二次函数三种形式是可以互相转化的. 【要点梳理】 要点一、用待定系数法求二次函数解析式 1.二次函数解析式常见有以下几种形式 : (1)一般式:2 y ax bx c =++(a ,b ,c 为常数,a ≠0); (2)顶点式:2 ()y a x h k =-+(a ,h ,k 为常数,a ≠0); (3)交点式:12()()y a x x x x =--(1x ,2x 为抛物线与x 轴交点的横坐标,a ≠0). 2.确定二次函数解析式常用待定系数法,用待定系数法求二次函数解析式的步骤如下 第一步,设:先设出二次函数的解析式,如2 y ax bx c =++或2 ()y a x h k =-+, 或12()()y a x x x x =--,其中a ≠0; 第二步,代:根据题中所给条件,代入二次函数的解析式中,得到关于解析式中待定系数的方程(组); 第三步,解:解此方程或方程组,求待定系数; 第四步,还原:将求出的待定系数还原到解析式中. 要点诠释: 在设函数的解析式时,一定要根据题中所给条件选择合适的形式:①当已知抛物线上的三点坐标时,可设函数的解析式为2 y ax bx c =++;②当已知抛物线的顶点坐标或对称轴或最大值、最小值时.可设函数的解析式为2()y a x h k =-+;③当已知抛物线与x 轴的两个交点(x 1,0),(x 2,0)时,可设函数的解析式为12()()y a x x x x =--. 【典型例题】 类型一、用待定系数法求二次函数解析式 1.已知二次函数的图象过(-1,-9)、(1,-3)和(3,-5)三点,求此二次函数的解析式. 【答案与解析】 本题已知三点求解析式,可用一般式.设此二次函数的解析式为y=ax 2 +bx+c(a ≠0),由题意得: ?? ?? ?-=++-=++-=+-5 3939c b a c b a c b a 解得?????-==-=531c b a

待定系数法求解析式

待定系数法求函数解析式 【要点梳理】 一.已知三点求抛物线解析式 例1 二次函数的图象经过点(1,4),(-1,0)和(-2,5),求二次函数的解析式. 例2若抛物线经过A(-1,0)和B(3,0),且与y轴交于点(0,-3),求此抛物线的解析式及顶点坐标. 二.已知顶点坐标及另一点坐标求抛物线解析式例3 已知抛物线的顶点坐标是(-2,3)且过(-1,5),求抛物线的解析式. 三.已知两点及对称轴,求抛物线解析式 例4已知抛物线过A(1,0),B(0,-3)两点,且对称轴为直线x=2,求抛物线解析式. 四.已知x轴上两点坐标及另一点坐标求抛物线解析式 例5若抛物线经过A(-2,0)和B(4,0),且与y轴交点(0,-3),求此抛物线的解析式及顶点坐标. 五.求平移后新抛物线解析式 例6把抛物线2x y- =向左平移1个单位,然后 向上平移3个单位,求平移后新的抛物线解析式. 六.求沿坐标轴翻折后新抛物线解析式 例7 在一张纸上作出函数3 2 2+ - =x x y的图 象,沿x轴把这张纸对折,描出与函数 3 2 2+ - =x x y的图象关于x轴对称的抛物线, 并写出新抛物线解析式. 【课堂操练】 1.求下列条件下的二次函数解析式: (1)过点(-1,0),(0,2)和(4,0). (2)顶点为(2,-3),且过点(-1,15). 2.已知二次函数c bx ax y+ + =2的图象如图所 示,求它关于y轴对称的抛物线解析式. 3.已知二次函数c bx ax y+ + =2的图象如图所 示,求它关于x轴对称的抛物线解析式. 4.已知二次函数c bx x y+ + =2 2 1 的图象过点A (c,-2),,求证:这 个二次函数图象的对称轴是直线x=3,题目中横线 上方部分是被墨水污染了无法辨认的文字. (1)根据已知和结论中现有信息,你能否求出题 目中的二次函数解析式?若能,请写出解题过程; 若不能,请说明理由. (2)请你根据已有的信息,在原题中的横线上添 加一个适当的条件,把原题补充完整. 【课后巩固】 1.将抛物线2 y x =的图像向右平移3个单位,则 平移后的抛物线的解析式为___________. 2.二次函数3 4 2+ + =x x y的图象可以由二次 函数2x y=的图象平移而得到,下列平移正确的 是() A、先向左平移2个单位长度,再向上平移1个单 位长度 B、先向左平移2个单位长度,再向下平移1个单 位长度 C、先向右平移2个单位长度,再向上平移1个单 位长度 D、先向右平移2个单位长度,再向下平移1个单 位长度 3.已知2 y ax bx c =++的图象过(-2,-6)、 (2,10)和(3,24)三点,求函数解析式. 4.已知函数2 y ax bx c =++,当x=1时,有最 大值-6,且经过点(2,-8),求出此抛物线的 解析式. 5.已知二次函数的图象与x轴的交点横坐标分别 为2和3,与y轴交点的纵坐标是72,求它的解 析式.

《待定系数法》习题

《待定系数法》习题 一、基础过关 1.将二次函数y =x 2的图象沿y 轴向下平移h 个单位,沿x 轴向左平移k 个单位得到y =x 2-2x +3的图象,则h ,k 的值分别为 ( ) A .-2,-1 B .2,-1 C .-2,1 D .2,1 2.已知()()2231x x x ax b +-=-+,则a ,b 的值分别为 ( ) A .2,3 B .2,-3 C .-2,3 D .-2,-3 3.已知二次函数的图象顶点为(2,-1),且过点(3,1),则函数的解析式为 ( ) A .()2221y x =-- B .()2221y x =+- C .()2221y x =++ D .()2221y x =-+ 4.已知二次函数221y x ax =-+在区间(2,3)内是单调函数,则实数a 的取值范围是( ) A .a≤2或a≥3 B .2≤a≤3 C .a≤-3或a≥-2 D .-3≤a≤-2 5.二次函数的图象与x 轴交于A (-2,0),B (2,0), 并且在y 轴上的截距为4,则函数的解析式为________________________________________________________________________. 6.如图所示,抛物线()2 213y x m x m =-++++与x 轴交于A 、B 两点,且OA =3OB ,则m =________. 7.已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,求此二次函数的解析式. 二、能力提升 8.已知函数2 y ax bx c =++,如果a>b>c ,且a +b +c =0,则它的图象可能是图中的( )

用待定系数法求数解析式

用待定系数法求数解析式

————————————————————————————————作者:————————————————————————————————日期:

用待定系数法求二次函数解析式 二次函数是初中数学主要内容之一,也是联系高中数学的重要纽带。它是初中《代数》中“函数及其图象”中的难点,求二次函数的解析式又是重点。求二次函数的解析式,要观察题目中给出的条件,灵活选用方法。一般地,有三个点且点不是特殊点时,一般采用一般式;若有三个点,且有二点为函数图像与x 轴交点时,采用交点式;若有顶点时,一般采用顶点式。同时,在采用交点式时,要注意二次项系数a 不能漏掉。应根据题目的特点灵活选用二次函数解析式的形式,运用待定系数法求解。即:根据已知条件列出关于a 、b 、c 或h 、k 及x 1、x 2的方程(注意有几个未知数就列出几个方程);解方程组求出待定的系数;写出解析式,要化为一般式. (1)一般式:y=ax 2+bx+c(a ≠0) ⑵顶点式:y=a(x-h)2+k(a ≠0),(h,k )是抛物线顶点坐标。 (3)交点式:y=a(x-x 1)(x-x 2)(a ≠0),x 1,x 2分别是抛物线与x 轴的两个交点的横坐标. 思路1、已知图象过三点,求二次函数的解析式,一般用它的一般形式: 较方便。 例1 图像过A(0,1),B(1,2),C(2,-1)三点,求这个二次函数的关系式. 解:分析:因为图像过三点,且三个点不属于特殊点。因此,只能采用一般式求解。 设函数解析式为y=ax 2+bx+c ∵抛物线过(0,1),(1,2),(2,-1) c=1 ∴ a+b+c=2 4a+2b+c=-1 解之得a=-2,b=3,c=1; ∴函数解析式为y=-2x 2+3x+1 小结:此题是典型的根据三点坐标求其解析式,关键是:(1)熟悉待定系数法;(2)点在函数图象上时,点的坐标满足此函数的解析式;(3)会解简单的三元一次方程组。 思路2、已知顶点坐标,对称轴、最大值或最小值,求二次函数解析式,一般用它的顶点式 较方便。 例2 已知一个二次函数的图象过点(0,1),它的顶点坐标是(8,9),求这个二次函数的关系式. 分析 因为这个二次函数的图象的顶点是(8,9),因此,可以设函数关系式为y =a (x -8)2+9. 根据它的图象过点(0,1),容易确定a 的值. 小结:此题利用顶点式求解较易,用一般式也可以求出,但仍要利用顶点坐标公式。试一试,比较一下。 思路3、已知图象与 轴两交点坐标,可用交点 的形式,其中x 1、x 2, 为抛物线与 轴的交点的横坐标,也是一元二次方程 的两个根。 一般地,函数y =ax 2+bx +c 的图象与x 轴交点的横坐标即为方程ax 2+bx +c =0的解;当二次函数y =ax 2+bx +c 的函数值为0时,相应的自变量的值即为方程ax 2+bx +c =0的解,这一结论反映了二次函数与一元二次方程的关系。所以,已知抛物线与x 轴的两个交点坐标时,可选用二次函数的交点式:y =a(x -x 1)(x -x 2),其中x 1 ,x 2 为两交点的横坐标。 例3已知二次函数的图象过(-2,0)、(4,0)、(0,3)三点,求这个二次函数的关系式. 解 设所求二次函数为,y=a(x+2)(x-4),由于这个函数的图象过(0,3),可以得到a(0+2)×(0-4)=3 解这个方程组,得a= -38 所以: y= -38(x+2)(x-4)= 233 384 x x -++. 所以,所求二次函数的关系式是y= 233 384 x x -++. 思路4、已知图象与 轴两交点间距离 ,求解析式,可用︱x 1-x 2︱2=(x 1+x 2)2 -2x 1x 2的形式来求,其中︱x 1-x 2︱ 为两交点之间的距离, x 1、x 2为图象与 轴相交的交点的横坐标。 4、二次函数的图象与 轴两交点之间的距离是2,且过(2,1)、(-1,-8)两点,求此二次函数的解析式。 思路5、由已知图象的平移求解析式,一般是把已知图象的解析式写成y=a(x-h)2+k 的形式,若图象向左(右)移动m 个单位,括号里-h 的值就加(减)m 个单位;若图象向上(下)平移 n

待定系数法求函数的解析式练习题集

待定系数法求一次函数得解析式练习题 一、旧知识回顾 1,填空题: (1)若点A(-1,1)在函数y=kx得图象上则k= 、 (2)在一次函数y=kx-3中,当x=3时y=6则k= 、 (3)一次函数y=3x-b过A(-2,1)则b= ,。 3、解方程组: 3.练习: (1)已知一次函数得图象经过点(1,-1)与点(-1,2)。求这个函数得解析式。 (2)已知一次函数y=kx+b中,当x=1时,y=3,当x=-1时,y=7。求这个函数得解析式。且求当x=3时,y得值。 (3)师:已知直线上两点坐标,能求出这条直线得解析式,若不直接告诉两点得坐标,已知这条直线得图象,能否求出它得解析式? 如: 5.练习: 1.选择题: 1)一次函数得图象经过点(2,1)与(1,5),则这个一次函数( ) A、y=4x+9 B、 y=4x-9 C、 y=-4x+9 D、 y=-4x-9 (2)已知点P得横坐标与纵坐标之与为1,且这点在直线y=x+3上,则该点就是( ) A、(-7,8) B、 (-5,6) C、 (-4,5) D、 (-1,2) 3)若点A(-4,0)、B(0,5)、C(m,-5)在同一条直线上,则m得值就是( ) A、8 B、4 C、-6 D、-8 (4)一次函数得图象如图所示,则k、b得值分别为( ) A、k=-2,b=1 B、k=2,b=1 C、k=-2,b=-1 D、k=2,b=-1 2、尝试练习: (1)已知一次函数 y=kx+2,当x=5时,y得值为4,求k得值。 (2)已知直线y=kx+b经过(9,0)与点(24,20),求这个函数得解析式。 (3)一次函数y=kx+5与直线y=2x-1交于点P(2,m),求k、m得值、 (4)一次函数y=3x-b过A(-2,1)则b= ,该图象经过点B( ,-1)与点C(0, )、 (5)已知函数y=kx+b得图象与另一个一次函数y=-2x-1得图象相交于y轴上得点A,且x轴下方得一点B(3,n)在一次函数y=kx+b得图象上,n满足关系n2=9、求这个函数得解析式、

利用待定系数法求函数解析式练习题

20.已知点A( 1,)、B 、O(0,0),试说明A、O、B三点在同一条直线上。 22.为缓解用电紧张矛盾,某电力公司特制定了新的用电收费标准,每月用电量x(度)与应付电费y(元)的关系如图所示.分别求出当0≤x≤50和x>50时,y与x的函数关系式; 23.已知一个正比例函数和一个一次函数,它们的图象都经过点P(-2,1),且一次函数图象与y轴交于点Q(0,3)。 (1)求出这两个函数的解析式; (2)在同一个坐标系内,分别画出这两个函数的图象。 24..若一次函数的图象与直线y=-3x+2交y轴于同一点,且过点(2,-6),求此函数解析式25、某一次函数的图像与直线y=6-x交于点A(5,k),且与直线y=2x-3无交点,求此函数的解析式. 26、已知直线y=kx+b在y轴上的截距为-2,且过点(-2,3). (1)求函数y的解析式;(2)求直线与x轴交点坐标;(3)x取何值时,y>0; 27、直线x-2y+1=0 在y轴上的截距为______. 28.一次函数y=kx+b(k≠0)的自变量的取值范围是-3≤x≤6相应函数值的范围是-5≤y≤-2,求这个函数的解析式. 29. 一次函数y=kx+b的图象过点(-2,5),并且与y轴相交于点P,直线y=-1/2x+3与y轴相交于点Q,点Q与点P关于x轴对称,求这个一次函数解析式 30、正比例函数y=k1x与一次函数y=k2x+b的图象如图所示,它们的交点A的坐标为(3,4),并且OB=5 (1)求△OAB的面积 (2)求这两个函数的解析式 3)3 ,1 (- -

6.一次函数y=kx+b中,kb>0,且y随x的增大而减小,则它的图象大致为() 8.下面是y=k1x+k2与y=k2x在同一直角坐标系中的大致图象,其中正确的是( )

待定系数法求函数的解析式

一次函数的解析式 1、把y=kx+b (k ≠0,b 为常数)叫做一次函数的标准解析式,简称标准式。 直线过()11,y x , ()22,y x =>2121x x y y k --=,或1212x x y y k --= b:与y 轴交点的刻度( 纵坐标) 1:若点A (2,4)在直线y=kx-2上,则k=( ) A .2 B .3 C .4 D .0 2:一条直线通过A (2,6),B (-1,3)两点,求此直线的解析式。 3:一条直线通过A (1,6),B (0,3)两点,求此直线的解析式。 4:若A (0,2),B (-2,1),C (6,a )三点在同一条直线上,则a 的值为( ) A .-2 B .-5 C .2 D .5 5.已知点M (4,3)和N (1,-2),点P 在y 轴上,且PM+PN 最短,则点P 的坐标是( ) A .(0,0) B .(0,1) C .(0,-1) D .(-1,0) 6.如图,已知一次函数y=kx+b 的图象经过A (0,1)和B (2,0),当x >0时,y 的取值范围是( ) A .y <1 B .y <0 C .y >1 D .y <2 7.已知一次函数y=kx+b 的图象如图所示 (1)当x <0时,y 的取值范围是______。 (2)求k ,b 的值.

用待定系数法求二次函数解析式 二次函数的解析式有三种基本形式: 1、一般式:y=ax2+bx+c (a≠0)。 C:与y轴交点刻度(纵坐标) 2、顶点式:y=a(x-h)2+k (a≠0),其中点(h,k)为顶点,对称轴为x=h。 3、交点式:y=a(x-x 1)(x-x 2 ) (a≠0),其中x 1 ,x 2 是抛物线与x轴的交点 的横坐标。 1.已知一个二次函数的图象过点(0,-3)(4,5),(-1, 0)三点,求这个函数的解析式? 2.已知二次函数的图象经过点)4 ,0( ), 5 ,1 (- - -和)1,1(.求这个二次函数的解析式. 3. 已知抛物线的顶点为(1,-4),且过点(0,-3),求抛物线的解析式? 4.过点(2,4),且当x=1时,y有最值为6;求抛物线的解析式? 5.. 已知一个二次函数的图象过点(0,-3)(4,5),对称轴为直线x=1,求这个函数的解析式? 6.如图,已知两点A(-8,0),(2,0),与y轴正半轴交于点C(0、4)。求经过A、B、C 三点的抛物线的解析式。

用待定系数法求一下函数解析式

求一次函数解析式教案 京山县石龙镇中学赖光彩 教学目标: 1、理解待定系数法,并会用待定系数法求一次函数的解析式; 2、能结合一次函数的图象和性质,灵活运用待定系数法求一次函数解析式; 3、能根据函数图象确定一次函数的表达式,并由此进一步体会数形结合的思想; 4、通过引入待定系数法的过程,向学生渗透转化的思想,培养学生分析问题,解决问题的能力. 教学重点与难点: 1、重点:用待定系数法求一次函数的解析式; 2、难点:结合一次函数的性质,用待定系数法确定一次函数的解析式. 教学方法:引导探究法 教学过程: 一.创设情境,提出问题 1.练一练:画出函数y= 2x与y= -3/2 x +3的图象 反思:你在作这两个函数图象时,分别描了几个点?你为何选取这几个点?可以有不同取法吗? 2.引入新课:上节课我们学习了给定解析式的前提下,可以画函数的图像,反之,如果给你图像,能否求出函数的解析式呢?这将是本节课我们要研究的问题。二.提出问题,探究新知: 1.求下图中直线的解析式 考考你:1、已知一次函数解析式如何画它的函数图象? 2、已知一次函数的图象怎样求它的函数解析式? 形成概念:像这样先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法,叫做待定系数法. 三.应用举例,感悟新知: 例1、已知一次函数的图象过点(3,5)与(-4,9)求这个一次函数的解析式.教师引导学生想一想:已知函数图像和点的坐标,怎样求函数的解析式,

大家讨论以后再表述出来。 师生共同归纳:用待定系数法求一次函数关系的一般步骤: 可归纳为:“一设、二列、三解、四写” 一设:设出函数关系式的一般形式y=kx+b; 二列:根据已知两点的坐标列出关于k、b的二元一次方程组; 三解:解这个方程组,求出k、b的值; 四写:把求得的k、b的值代入y=kx+b,写出函数关系式. 四.综合运用: 小试牛刀:1.已知y是x的一次函数,当x=-1时y=3, 当x =2 时y=-3,求y关于x 的一次函数解析式. 2.判断三点A(3,1)B(0,-2)C(4,2)是否在同一条直线上. [分析] 由于两点确定一条直线,故选取其中两点,求经过 这两点的函数表达式,再把第三个点的坐标代入表达式中, 若成立,说明在此直线上;若不成立,说明不在此直线上 例2、若一次函数的图象经过点A(2,0),且与直线y=-x+3平行,求其解析式。解:∵一次函数图象与直线y=-x+3平行∴设一次函数解析式为y=-x+b.由直线经过点A(2,0)得0=-2+b 解得b=2 ∴函数解析式为y= -x+2五.当堂检测:1、若一次函数y=3x-b的图象经过点P(1,-1),则该函数图象必过点() A (-1,1) B (2,2) C (-2,2) D (2,一2) 2、若函数y=kx+b的图象平行于y= -2x的图象,且经过点(0, 4),则k= ,b= 。 3、若一次函数的图象与直线y=-3x+2交y轴于同一点,且过点(2,-6),求此函数解析式 4. 在某个范围内,某产品的购买量y(单位:kg)与单价x(单位:元)之间满足一次函数,若购买1000kg,单价为800元;若购买2000kg,单价为700元.若一客户购买 400kg,单价是多少? 六.课堂小结: 通过本节课学习,你有哪些收获?

用待定系数法求二次函数的解析式

26.1.5用待定系数法求二次函数的解析式(一) 教学目标 1、通过对用待定系数法求二次函数解析式的探究,掌握求解析式的方法。 2、能灵活的根据条件恰当地选取选择解析式,体会二次函数解析式之间的转化。 3、从学习过程中体会学习数学知识的价值,从而提高学习数学知识的兴趣。 教学过程重点难点: 重点:通过对用待定系数法求二次函数解析式的探究,掌握求解析式的方法 难点:能灵活的根据条件恰当地选取选择解析式,体会二次函数解析式之间的转化 教具准备:多媒体课件,三角尺 教学方法:探究式 一、合作交流 例题精析 1、一般地,形如y =ax 2+bx +c (a,b,c 是常数,a ≠0)的函数,叫做二次函数,所以,我们把________________________叫做二次函数的一般式。 例1 已知二次函数的图象过(1,0),(-1,-4)和(0,-3)三点,求这个二次函数解析式。 小结:此题是典型的根据三点坐标求其解析式,关键是:(1)熟悉待定系数法;(2)点在函数图象上时,点的坐标满足此函数的解析式;(3)会解简单的三元一次方程组。 2、二次函数y =ax 2+bx +c 用配方法可化成:y =a(x -h)2+k ,顶点是(h ,k)。配方: y =ax 2+bx +c = __________________=___________________=__________________=a(x +b 2a )2+4ac -b 24a 。对称轴是x =-b 2a ,顶点坐标是(-b 2a ,4ac -b 24a ), h =-b 2a ,k=4ac -b 24a , 所以,我们把_____________叫做二次函数的顶点式。 例2 已知二次函数的图象经过原点,且当x =1时,y 有最小值-1, 求这个二次函数的解析式。 小结:此题利用顶点式求解较易,用一般式也可以求出,但仍要利用顶点坐标公式。请大家试一试,比较它们的优劣。 3、一般地,函数y =ax 2+bx +c 的图象与x 轴交点的横坐标即为方程ax 2+bx +c =0的解;当二次函数y =ax 2+bx +c 的函数值为0时,相应的自变量的值即为方程ax 2+bx +c =0的解,这一结论反映了二次函数与一元二次方程的关系。所以,已知抛物线与x 轴的两个交点坐标时,可选用二次函数的交点式:y =a(x -x 1)(x -x 2),其中x 1 ,x 2 为两交点的横坐标。 例3 已知二次函数的图象与x 轴交点的横坐标分别是x 1=-3,x 2=1,且与y 轴交点为(0,-3),求这个二次函数解析式。 想一想:还有其它方法吗? 二、应用迁移 巩固提高 1、根据下列条件求二次函数解析式 (1)已知一个二次函数的图象经过了点A (0,-1),B (1,0),C (-1,2); (2)已知抛物线顶点P(-1,-8),且过点A(0,-6) (3)二次函数图象经过点A (-1,0),B (3,0),C (4,10); (4)已知二次函数的图象经过点(4,-3),并且当x=3时有最大值4; (5)已知二次函数的图象经过一次函数y =-—x+3的图象与x 轴、y 轴的交点,且过(1,1); (6)已知抛物线顶点(1,16),且抛物线与x 轴的两交点间的距离为8;

待定系数法求解析式

19,2 待定系数法求一次函数解析式 在经历探索求一次函数解析式的过程中感悟数学中的数与形的结合 解决抽象的函数问题 【学习过程】 一, 1 一次函数的一般形式是什么? 2当b=0时,一次函数y=kx +b(常数k不为0),也叫做什么函数? 3 你知道它们的图像是什么? 二,想一想 由一次函数y=kx+b的图象如何确定k、b的符号 图略 三,练一练 画出函数y= 2 x与y= -1.5 x +3的图象 图略 你在作这两个函数图象时,分别描了几个点?你为何选取这几个点?可以有不同取法吗? 四,应用举例 已知一次函数的图象经过点(3,5)与(-4,-9),求这个一次函数的表达式。

解:设这个一次函数的解析式为y=kx+b 。 因为y=kx+b 的图象过点(3,5)与(-4,-9), 所以 解得 这个一次函数的解析式为y=2x-1 先设出函数解析式,再根据条件确定解析式中未知数,从而具体写出边个式子的方法,叫做待定系数法. 五,归纳 用待定系数法确定一次函数表达式的一般步骤 (1) 设函数表达式为y=kx+b ; (2) 将已知点的坐标代入函数表达式; (3) 解方程(组); (4) 写出函数表达式。 六,数形结合流程 函数解析式y=kx+b 满足条件的两定点(x1,y1)与(x2,y2) 一次函数的图象 七,用待定系数法求一次函数的解析式的步骤 解:设一次函数的解析式为y=kx+b 把(__ ,__)(__ ,__)代入函数解析式 得 ???-=+-=+9453b k b k ???- ==12b k

解得 这个一次函数的解析式为y=__x+__ 八,拓展举例 已知一次函数y=kx+b的图象如图所示,求函数表达式. 九,课堂练习 判断三点A(3,1),B(0,-2),C(4,2)是否在同一条直线上.十,作业与小结 习题19·2 第5题、第6题,第7题 本节课你学到了什么?

用待定系数法求an

用待定系数法求an=Aan-1+B型数列通项 例:数列{an}满足a1=1且an+1+2an=1,求其通项公式。 解:由已知,an+1+2an=1,即an=-2 an—1+1 令an+x=-2(an-1+x),则an=-2 an-1-3x,于是-3x=1,故x=-13 ∴an-13 =-2(an-1-13 ) 故{ an-13 }是公比q为-2,首项为an-13 =23 的等比数列 ∴an-13 =23 (-2)n-1=1-(-2)n3 评注:一般地,当A≠1时令an+x=A(an-1+x)有an=A an-1+(A-1)x,则有 (A-1)x=B知x=BA-1 ,从而an+BA-1 =A(an-1+BA-1 ),于是数列{an+BA-1 }是首项为a1+BA -1 、公比为A的等比数列,故an+BA-1 =(a1+BA-1 )An-1,从而 an=(a1+BA-1 )An-1-BA-1 ;特别地,当A=0时{an}为等差数列;当A≠0,B=0时,数列{an}为等比数列。 推广:对于an=A an-1+f(n)(A≠0且A∈R)型数列通项公式也可以用待定系数法求通项公式。 例:数列{an}满足a1=1且an=2an-1+13n(n≥2),求an。 解:令an+x?13n=2(an+x?13n-1)则an=2an-1+ 2x?13n-1-x?13n=53 x?13n-1=5x?13n 而由已知an=2an-1+13n故5x=1,则x=15 。故an+15 ?13n=2(an-1+15 ?13n-1) 从而{an+15 ?13n}是公比为q=2、首项为a1+15 ?13=1615 的等比数列。 于是an+15 ?13n=1615 ×2n-1,则an=1615 ×2n-1-15 ?13n=115 (2n+3-13n-1) 评注:一般情况,对条件an=Aan-1+f(n)而言,可设an+g(n)=A[an-1+g(n-1)],则有Ag(n -1)-g(n)=f(n),从而只要求出函数g(n)就可使数列{ an+g(n)}为等比数列,再利用等比数列通项公式求出an。值得注意的是an+g(n)与an-1+g(n-1)中的对应关系。特别地,当f(n)=B(B 为常数)时,就是前面叙述的例8型。 这种做法能否进一步推广呢?对于an=f(n)an-1+g(n)型数列可否用待定系数法求通项公式呢? 我们姑且类比做点尝试:令an+k(n)=f(n)[an-1+k(n-1)],展开得到 an =f(n)an-1+f(n)k(n-1)-k(n),从而f(n)k(n-1)-k(n)= g(n),理论上讲,通过这个等式k(n)可以确定出来,但实际操作上,k(n)未必能轻易确定出来,请看下题: 数列{an}满足a1=1且an=n2nan-1+1n+1 ,求其通项公式。 在这种做法下得到n2nk(n-1)-k(n)=1n+1 ,显然,目前我们用高中数学知识还无法轻易地求出k (n)来。 通过Sn求an 例10:数列{an}满足an =5Sn-3,求an。 解:令n=1,有a1=5an-3,∴a1=34 。由于an =5Sn-3………① 则an-1 =5 Sn-1-3………② ①-②得到an-an-1=5(Sn-Sn-1)∴an-an-1 =5an 故an=-14 an-1,则{an}是公比为q=-14 、首项an=34 的等比数列,则an=34 (-14 )n-1 评注:递推关系中含有Sn,通常是用Sn和an的关系an=Sn-Sn-1(n≥2)来求通项公式,具体来说有两类:一是通过an=Sn-Sn-1将递推关系揭示的前n项和与通项的关系转化为项与项的关系,再根据新的递推关系求出通项公式;二是通过an=Sn-Sn-1将递推关系揭示的前n项和与通项的关系转化为前n 项和与前n-1项和的关系,再根据新的递推关系求出通项公式

相关文档
相关文档 最新文档