文档库 最新最全的文档下载
当前位置:文档库 › 3.2 离散傅里叶变换的基本性质

3.2 离散傅里叶变换的基本性质

3.2 离散傅里叶变换的基本性质
3.2 离散傅里叶变换的基本性质

第3章 离散傅里叶变换(DFT)
3.2 离散傅里叶变换的基本性质
3.2.1 线性性质
如果x1(n)和x2(n)是两个有限长序列, 长度分别为N1 和N2。 若 y(n)=ax1(n)+bx2(n) 式中a、 b为常数. 取N=max[N1, N2] , 则y(n)的N点DFT为 Y(k)=DFT[y(n)]=aX1(k)+bX2 (k), 0≤k≤N-1 (3.2.1) 其中X1(k)和X2(k)分别为x1(n)和x2(n)的N点DFT。
1
PDF 文件使用 "pdfFactory Pro" 试用版本创建 https://www.wendangku.net/doc/33372242.html,
X

第3章 离散傅里叶变换(DFT)
3.2.2
循环移位性质
1. 序列的循环移位 设x(n)为有限长序列, 长度为N, 则x(n)的循环 移位定义为 y(n)=x((n+m))NRN(n) (3.2.2)
2
PDF 文件使用 "pdfFactory Pro" 试用版本创建 https://www.wendangku.net/doc/33372242.html,
X

第3章 离散傅里叶变换(DFT) x(n)
n 0 1 2 3 4 5 6 7
% x ( n)

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13

n
% x(n + 2)

-7 -6 -5 -4 -3 -2 -1
3

0 1 2 3 4 5 6 7 8 9 10 11 12 13
n
图 3.2.1
循环移位过程示意图 (N=8)
X
PDF 文件使用 "pdfFactory Pro" 试用版本创建 https://www.wendangku.net/doc/33372242.html,

第3章 离散傅里叶变换(DFT)
x((n + 2)) N R(n) N
n 0 1 2 3 4 5 6 7
图 3.2.1
循环移位过程示意图 (N=8) (续)
4
PDF 文件使用 "pdfFactory Pro" 试用版本创建 https://www.wendangku.net/doc/33372242.html,
X

第3章 离散傅里叶变换(DFT)
2. 时域循环移位定理 设x(n) 是长度为N的有限长序列, y(n)为x(n)的循 环移位, 即 则 其中 y(n)=x((n+m))NRN(n)
? Y (k ) = DFT [ y (n)] = WN km X (k )
(3.2.3)
X(k)=DFT[x(n)], 0≤k≤N-1。
5
PDF 文件使用 "pdfFactory Pro" 试用版本创建 https://www.wendangku.net/doc/33372242.html,
X

第3章 离散傅里叶变换(DFT)
3. 频域循环移位定理 如果 X(k)=DFT[x(n)], 0≤k≤N-1 Y(k)=X((k+l))NRN(k) 则
y (n) = IDFT [Y (k )] = W x (n)
nl N
(3.2.4)
6
PDF 文件使用 "pdfFactory Pro" 试用版本创建 https://www.wendangku.net/doc/33372242.html,
X

第3章 离散傅里叶变换(DFT)
3.2.3
循环卷积定理
一、时域循环卷积定理: 有限长序列x1(n)和x2(n), 长度分别为N1和N2,取 N=max[ N1, N2 ]。 x1(n)和x2(n)的N点DFT分别为: X1(k)=DFT[x1(n)] 如果 则 或 X(k)=X1(k)·X2(k)
x(n) = IDFT[ X (k)] = [∑ x1(m)x2 ((n ? m))N ]RN (n)
N?1
X2(k)=DFT[x2(n)] (3.2.5)
x(n) = IDFT[ X (k )] = [∑ x2 (m) x1 ((n ? m))N ]RN (n)
m=0
m=0 N ?1
一般称(3.2.5)式所表示的运算为x1(n)与x2(n)的 7 循环卷积。
PDF 文件使用 "pdfFactory Pro" 试用版本创建 https://www.wendangku.net/doc/33372242.html,
X

第3章 离散傅里叶变换(DFT)
证明: 直接对(3.2.5)式两边进行DFT
X ( k ) = DFT [ x ( n )] = ∑ [ ∑ x1 ( m ) x2 (( n ? m )) N R N ( n )]W Nkn
n =0 m=0 N ?1 N ?1
=
m=0

N ?1
x1 ( m ) ∑ x2 (( n ? m )) N W Nkn
n=0
N ?1
令n-m=n′, 则有
X (k ) = =
m =0

N ?1
N ?1 ? m
x1 ( m )
n ′= ? m km N

x 2 (( n ′)) N W Nk ( n ′+ m )
x2 ((n′)) N WNkn′, 以N为周期, 所以对其 因为上式中
m =0

N ?1
N ?1 ? m
x1 ( m )W
n ′= ? m

x 2 (( n ′)) N W Nkn ′
在任一个周期上求和的结果不变。 8
PDF 文件使用 "pdfFactory Pro" 试用版本创建 https://www.wendangku.net/doc/33372242.html,
X

第3章 离散傅里叶变换(DFT)
因此
X (k ) = ∑ x1 (m)WNkm ∑ x2 (n′)WNkn′
N ?1
N ?1
X (k ) = X 1 (k ) X 2 (k ),
记为
N ?1
m =0
n′ = 0
0 ≤ k ≤ N ?1
x(n) = x1 (n) ? x2 (n)
= ∑ x1 (m) x 2 ((n ? m)) N R N (n)
m =0
x(n) = IDFT [ X (k )] = x1 (n) ? x2 (n) = x2 (n) ? x1 (n)
即循环卷积亦满足交换律。
9
(3.2.5)式的循环卷积过程如图3.2.2所示.
X
PDF 文件使用 "pdfFactory Pro" 试用版本创建 https://www.wendangku.net/doc/33372242.html,

x(n) = x1 (n) ? x2 (n) = ∑ x1 (m) x 2 ((n ? m)) N R N (n)
m =0
N ?1
x1 (n) x1 (m)
1.循环过程中,求和变量为m, n为参变量.
n=0
2.先将x2(m)周期化, 形成 x2((m))N, 再反转形成 x2((-m))N, 取主值序列x2((-m))NRN(m). 称之为x2(m)的循环反转.
PDF 文件使用 "pdfFactory Pro" 试用版本创建 https://www.wendangku.net/doc/33372242.html,

第3章 离散傅里叶变换(DFT)
n=1
3.对x2(m)的循环反转序列 x2((-m))NRN(m)移位n, 形成 x2((n-m))NRN(m).
n=2
4.当n=0,1,2,…..N-1时,分别将 x1(m)与x2((n-m))NRN(m)相乘, 并对m在0~(N-1)区间上求和, 便得到x1(n)与x2(n)的循环卷 积x(n).
图3.2.2 循环卷积过程示意图
11
PDF 文件使用 "pdfFactory Pro" 试用版本创建 https://www.wendangku.net/doc/33372242.html,
X

第3章 离散傅里叶变换(DFT)
讨论:循环卷积的长度与结果的关系 设 h(n) = 2 R4 (n), x(n) = δ (n) ? δ ( n ? 2) (1) (2)
yl ( n ) = h ( n ) ? x ( n )
= 2δ (n) + 2δ (n ? 1) ? 2δ (n ? 4) ? 2δ (n ? 5)
yc (n) = h(n) ? x(n)
3 m =0
N =4
= ∑ x (m)h((n ? m)) 4 R4 (n) =0
12
PDF 文件使用 "pdfFactory Pro" 试用版本创建 https://www.wendangku.net/doc/33372242.html,
X

第3章 离散傅里叶变换(DFT)
(3) y ( n ) = h ( n ) ? x ( n ) c
5 m =0
N =6
= ∑ x(m)h((n ? m)) 6 R6 (n)
= 2δ (n) + 2δ (n ? 1) ? 2δ (n ? 4) ? 2δ (n ? 5)
13
PDF 文件使用 "pdfFactory Pro" 试用版本创建 https://www.wendangku.net/doc/33372242.html,
X

第3章 离散傅里叶变换(DFT) h(n)
2 1
x(n) n
n
0
0
~ h(n)
N=4

0

n
~ h (n)
N=6
~ h(?m)
N=6

0

n

0

m
14
PDF 文件使用 "pdfFactory Pro" 试用版本创建 https://www.wendangku.net/doc/33372242.html,
X

第3章 离散傅里叶变换(DFT)
二、频域循环卷积定理: 如果 x(n)=x1(n)x2(n) 1 则 X (k ) = DFT [ x(n)] = X 1 (k ) ? X 2 (k )
N 1 = N

l =0
N ?1
X 1 (l ) X 2 ((k ? l )) N RN (k )

1 X (k ) = X 2 (k ) ? X 1 (k ) N 1 N ?1 = ∑ X 2 (l ) X1 ((k ? l )) N RN (k ) N l =0
其中
15
X1(k)=DFT[x1(n)] X2(k)=DFT[x2(n)] 0≤k≤N-1
X
PDF 文件使用 "pdfFactory Pro" 试用版本创建 https://www.wendangku.net/doc/33372242.html,

第3章 离散傅里叶变换(DFT)
3.2.4 复共轭序列的DFT 设x*(n)是x(n)的复共轭序列, 长度为N X(k)=DFT[x(n)] 则 且 DFT[x*(n)]=X*(N-k), 0≤k≤N-1 (3.2.7) X(N)=X(0)
同样可以得到 DFT[x*(N-n)]=X*(k), 0≤k≤N-1 (3.2.8)
16
PDF 文件使用 "pdfFactory Pro" 试用版本创建 https://www.wendangku.net/doc/33372242.html,
X

第3章 离散傅里叶变换(DFT)
3.2.5
DFT的共轭对称性
1. 有限长共轭对称序列和共轭反对称序列 用xep(n)和xop(n)分别表示有限长共轭对称序列和 共轭反对称序列. 则二者满足如下定义式: xep(n)=x*ep(N-n), xop(n)= -x*op(N-n), 0≤n≤N-1 (3.2.9) 0≤n≤N-1 (3.2.10)
17
PDF 文件使用 "pdfFactory Pro" 试用版本创建 https://www.wendangku.net/doc/33372242.html,
X

第3章 离散傅里叶变换(DFT)
任何有限长序列x(n)都可以表示成其共轭对称分量 和共轭反对称分量之和, 即 x(n)=xep(n)+xop(n), 0≤n≤N-1 (3.2.11) xep(n)=[x(n)+x*(N-n)]/2 (3.2.13) xop(n)=[x(n)-x*(N-n)]/2 (3.2.14) 类似的x(n)的DFT[x(n)]=X(k)也可以表示成其共轭 对称分量Xep(k)和共轭反对称分量Xop(k)之和, 即 X(k)=DFT[x(n)]=Xep(k)+Xop(k) 其中 Xep(k) =[X(k)+X*(N-k)]/2
18
式中
X(k)的共轭对称分量 X(k)的共轭反对称分量
X
Xop(k) =[X(k)-X*(N-k)]/2
PDF 文件使用 "pdfFactory Pro" 试用版本创建 https://www.wendangku.net/doc/33372242.html,

第3章 离散傅里叶变换(DFT)
2. DFT的共轭对称性
x(n) = xr (n) + jxi (n) = xep (n) + xop (n)
b DFT b DFT b DFT b DFT b DFT
X (k ) = X ep ( k ) + X op ( k ) = X R (k ) + jX I (k )
19
PDF 文件使用 "pdfFactory Pro" 试用版本创建 https://www.wendangku.net/doc/33372242.html,
X

第3章 离散傅里叶变换(DFT)
3.设x(n)是长度为N的实序列, 且 X(k)=DFT[x(n)]. 则 ① X(k)=X*(N-k),0≤k≤N-1 ② 如果 x(n)=x(N-n) 即
此性质可用于 求频域序列的 后半段
(3.2.19)
则X(k)实偶对称, (3.2.20)
X(k)=X(N-k)
③ 如果 x(n)= - x(N-n), 则X(k)纯虚奇对称, 即 X(k)= -X(N-k) (3.2.21)
对实序列的进行DFT,可以利用上述对称性减少计算量.
20
PDF 文件使用 "pdfFactory Pro" 试用版本创建 https://www.wendangku.net/doc/33372242.html,
X

傅里叶变换在信号与系统系统中的应用

河北联合大学 本科毕业设计(论文) 题目傅里叶变换在信号与系统中的应用 院系理学院 专业班级07数学一班 学生姓名刘帅 学生学号200710050113 指导教师佟玉霞 2011年5月24日

题目傅里叶变换在信号与系统中的应用 专业数学与应用数学姓名刘帅学号200710050113 主要内容、基本要求、主要参考资料等 主要内容 傅里叶变换是一种重要的变换,且在与通信相关的信号与系统中有着广泛的应用。本文主要研究傅里叶变换的基本原理;其次,掌握其在滤波,调制、解调,抽样等方面中的应用。分析了信号在通信系统中的处理方法,通过傅里叶变换推导出信号调制解调的原理,由此引出对频分复用通信系统的组成原理的介绍。 基本要求 通过傅里叶变换实现一个高通滤波,低通滤波,带通滤波。用傅里叶变换推导出信号调制解调的原理。通过抽样实现连续信号离散化,简化计算。另外利用调制的原理推导出通信系统中的时分复用和频分复用。 参考资料 [1]《信号与系统理论、方法和应用》徐守时著中国科技大学出版社 2006年3月修订二版 [2]《信号与系统》第二版上、下册郑君里、应启珩、杨为理著高等教育出版社 [3]《通信系统》第四版 Simon Haykin 著宋铁成、徐平平、徐智勇等译沈 连丰审校电子工业出版社 [4]《信号与系统—连续与离散》第四版 Rodger E.Ziemer 等著肖志涛等译 腾建辅审校电子工业出版社 [5]《现代通信原理》陶亚雄主编电子工业出版社 [6]《信号与系统》乐正友著清华大学出版社 [7]《信号与线性系统》阎鸿森、王新风、田惠生编西安交通大学出版社 [8]《信号与线性系统》张卫钢主编郑晶、徐琨、徐建民副主编西安电 子科技大学出版社 [9] https://www.wendangku.net/doc/33372242.html,/view/191871.htm//百度百科傅里叶变换 [10]《通信原理》第六版樊昌信曹丽娜编著国防工业出版社 [11]A.V.Oppenheim,A.S.Willsky with S.H.Nawab.Siganals and systems(Second edition).Prentice-Hall,1997.中译:刘树棠。信号与系统。西安交通工业大学出版社 完成期限 指导教师 专业负责人

傅里叶变换的性质

§3–4傅里叶变换的性质 设f(t) ←→F(jω),f1(t) ←→F1(jω),f2(t) ←→F2(jω);α、α1、α2为实数, 则有如下性质: 一、线性:α1 f1(t) + α2 f2(t)←→α1F1(jω) + α2 F2(jω) 二、对称性:F(jt)←→2πf(-ω) 证明: 将上式中的t换为ω,将原有的ω换为t, 或: , 即:F(jt)←→2π f(-ω) P.67例3-3:已知 , 再令 ==> ←→2πG(-ω) 三、尺度变换: (α≠0的实数) 可见信号持续时间与占有频带成反比(此性质易由积分变量代换证得)。 推论(折叠性):f(-t) ←→F(-jω) 四、时移性: (此性质易由傅氏变换的定义证得) 推论(同时具有尺度变换与时移): P.69-70例3-4请大家浏览。

五、频移性:

(此性质易由傅氏变换的定义证得) π.70例3-5请大家浏览。 频移性的重要应用——调制定理: 欧拉公式 ? 例如门信号的调制:

显然,当ω0足够大时,就可使原频谱密度函数被向左、右复制时几乎不失真。 六、时域卷积: f1(t)* f2(t) ←→F1(jω)F2(jω) 证明: 时域卷积的重要应用——求零状态响应的频域法: 时域:yf(t) = f(t)* h(t) ==> 频域:Y f(jω) = F(jω)H(jω) 七、频域卷积:f1(t). f2(t) ←→1/2π[F1(jω)*F2(jω)] 八、时域微分性:df(t)/dt←→ jωF(jω) (其证明请自学P.72-73有关内容) 推论: 条件: 例如:d(t) ←→1 ==>δ'(t) ←→jω 九、时域积分性:

离散傅里叶变换应用举例

x=[1,1,1,1];w=[0:1:500]*2*pi/500; [H]=freqz(x,1,w); magH=abs(H);phaH=angle(H); subplot(2,1,1);plot(w/pi,magH);grid;xlabel('');ylabel('|X|'); title('DTFT的幅度') subplot(2,1,2);plot(w/pi,phaH/pi*180);grid; xlabel('以pi为单位的频率');label('度'); title('DTFT的相角')

N=4;w1=2*pi/N;k=0:N-1; X=fft(x,N); magX=abs(X);phaX=angle(X)*180/pi; subplot(2,1,1);plot(w*N/(2*pi),magH,'--');axis([-0.1,4.1,0,5]);hold on; stem(k,magX);ylabel('|X(k)|');title('DFT的幅度:N=4');text(4.3,-1,'k'); hold off; subplot(2,1,2);plot(w*N/(2*pi),phaH*180/pi,'--');axis([-0.1,4.1,-200,200]); hold on; stem(k,phaX);ylabel('度');title('DFT的相角:N=4');text(4.3,-200,'k')

n=(0:1:9);x=cos(0.48*pi*n)+cos(0.52*pi*n); w=[0:1:500]*2*pi/500; X=x*exp(-1i*n'*w); magx=abs(X); x1=fft(x);magx1=abs(x1(1:1:10)); k1=0:1:9;w1=2*pi/10*k1; subplot(3,1,1);stem(n,x);title('signalx(n),0<=n<=9'); axis([0,10,-2.5,2.5]);line([0,10],[0,0]); subplot(3,1,2);plot(w/pi,magx);title('DTFT幅度');xlabel('w');axis([0,1,0,10]); subplot(3,1,3);stem(w1/pi,magx1);title('DFT幅度'); xlabel('频率(单位:pi)');axis([0,1,0,10]) 实验总结:补零运算提供了一个较密的频谱和较好的图示形式,但因为在信号中只是附加了零,而没有增加任何新的信息,因此不能提供高分辨率的频谱。

离散傅里叶变换

第三章离散傅里叶变换 离散傅里叶变换不仅具有明确的物理意义,相对于DTFT他更便于用计算机处理。但是,直至上个世纪六十年代,由于数字计算机的处理速度较低以及离散傅里叶变换的计算量较大,离散傅里叶变换长期得不到真正的应用,快速离散傅里叶变换算法的提出,才得以显现出离散傅里叶变换的强大功能,并被广泛地应用于各种数字信号处理系统中。近年来,计算机的处理速率有了惊人的发展,同时在数字信号处理领域出现了许多新的方法,但在许多应用中始终无法替代离散傅里叶变换及其快速算法。 § 3-1 引言 一.DFT是重要的变换 1.分析有限长序列的有用工具。 2.在信号处理的理论上有重要意义。 3.在运算方法上起核心作用,谱分析、卷积、相关都可以通DFT在计算机上实现。 二.DFT是现代信号处理桥梁 DFT要解决两个问题: 一是离散与量化, 二是快速运算。 傅氏变换 § 3-2 傅氏变换的几种可能形式 一.连续时间、连续频率的傅氏变换-傅氏变换

对称性: 时域连续,则频域非周期。 反之亦然。 二.连续时间、离散频率傅里叶变换-傅氏级数 时域信号 频域信号 连续的 非周期的 非周期的 连续的 t ? ∞ ∞ -Ω-= Ωdt e t x j X t j )()(:? ∞ ∞ -ΩΩ Ω= d e j X t x t j )(21 )(:π 反

*时域周期为Tp, 频域谱线间隔为2π/Tp 三.离散时间、连续频率的傅氏变换 --序列的傅氏变换 p T 0= Ω时域信号 频域信号 连续的 周期的 非周期的 离散的 ? -Ω-= Ω2 /2 /00)(1 )(:p p T T t jk p dt e t x T jk X 正∑ ∞ -∞ =ΩΩ= k t jk e jk X t x 0)()(:0反

傅里叶变换及应用

傅里叶变换在MATLZB里的应用 摘要:在现代数学中,傅里叶变换是一种非常重要的变换,且在数字信号处理中有着广泛的应用。本文首先介绍了傅里叶变换的基本概念、性质及发展情况;其次,详细介绍了分离变数法及积分变换法在解数学物理方程中的应用。傅立叶变换将原来难以处理的时域信号转换成了易于分析的频域信号,再利用傅立叶反变换将这些频域信号转换成时域信号。应用MATLAB实现信号的谱分析和对信号消噪。 关键词:傅里叶变换;MA TLAB软件;信号消噪 Abstract: In modern mathematics,Fourier transform is a transform is very important ,And has been widely used in digital signal processing.This paper first introduces the basic concepts, properties and development situation of Fourier transform ;Secondly, introduces in detail the method of separation of variables and integral transform method in solving equations in Mathematical Physics.Fourier transformation makes the original time domain signal whose analysis is difficult easy, by transforming it into frequency domain signal that can be transformed into time domain signal by inverse transformation of Fourier. Using Mat lab realizes signal spectral analysis and signal denoising. Key word: Fourier transformation, software of mat lab ,signal denoising 1、傅里叶变换的提出及发展 在自然科学和工程技术中为了把较复杂的运算转化为较简单的运算,人们常常采用所谓变换的方法来达到目的"例如在初等数学中,数量的乘积和商可以通过对数变换化为较简单的加法和减法运算。在工程数学里积分变换能够将分析运算(如微分,积分)转化为代数运算,正是积分变换这一特性,使得它在微分方程和其它方程的求解中成为重要方法之一。 1804年,法国科学家J-.B.-J.傅里叶由于当时工业上处理金属的需要,开始从事热流动的研究"他在题为<<热的解析理论>>一文中,发展了热流动方程,并且指出如何求解"在求解过程中,他提出了任意周期函数都可以用三角级数来表示的想法。他的这种

3.2 离散傅里叶变换的基本性质

第3章 离散傅里叶变换(DFT)
3.2 离散傅里叶变换的基本性质
3.2.1 线性性质
如果x1(n)和x2(n)是两个有限长序列, 长度分别为N1 和N2。 若 y(n)=ax1(n)+bx2(n) 式中a、 b为常数. 取N=max[N1, N2] , 则y(n)的N点DFT为 Y(k)=DFT[y(n)]=aX1(k)+bX2 (k), 0≤k≤N-1 (3.2.1) 其中X1(k)和X2(k)分别为x1(n)和x2(n)的N点DFT。
1
PDF 文件使用 "pdfFactory Pro" 试用版本创建 https://www.wendangku.net/doc/33372242.html,
X

第3章 离散傅里叶变换(DFT)
3.2.2
循环移位性质
1. 序列的循环移位 设x(n)为有限长序列, 长度为N, 则x(n)的循环 移位定义为 y(n)=x((n+m))NRN(n) (3.2.2)
2
PDF 文件使用 "pdfFactory Pro" 试用版本创建 https://www.wendangku.net/doc/33372242.html,
X

第3章 离散傅里叶变换(DFT) x(n)
n 0 1 2 3 4 5 6 7
% x ( n)

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13

n
% x(n + 2)

-7 -6 -5 -4 -3 -2 -1
3

0 1 2 3 4 5 6 7 8 9 10 11 12 13
n
图 3.2.1
循环移位过程示意图 (N=8)
X
PDF 文件使用 "pdfFactory Pro" 试用版本创建 https://www.wendangku.net/doc/33372242.html,

傅里叶变换的应用.

傅立叶变换在图像处理中有非常非常的作用。因为不仅傅立叶分析涉及图像处理的很多方面,傅立叶的改进算法, 比如离散余弦变换,gabor与小波在图像处理中也有重要的分量。 印象中,傅立叶变换在图像处理以下几个话题都有重要作用: 1.图像增强与图像去噪 绝大部分噪音都是图像的高频分量,通过低通滤波器来滤除高频——噪声; 边缘也是图像的高频分量,可以通过添加高频分量来增强原始图像的边缘; 2.图像分割之边缘检测 提取图像高频分量 3.图像特征提取: 形状特征:傅里叶描述子 纹理特征:直接通过傅里叶系数来计算纹理特征 其他特征:将提取的特征值进行傅里叶变换来使特征具有平移、伸缩、旋转不变性 4.图像压缩 可以直接通过傅里叶系数来压缩数据;常用的离散余弦变换是傅立叶变换的实变换; 傅立叶变换 傅里叶变换是将时域信号分解为不同频率的正弦信号或余弦函数叠加之和。连续情况下要求原始信号在一个周期内满足绝对可积条件。离散情况下,傅里叶变换一定存在。冈萨雷斯版<图像处理>里面的解释非常形象:一个恰当的比喻是将傅里叶变换比作一个玻璃棱镜。棱镜是可以将光分解为不同颜色的物理仪器,每个成分的颜色由波长(或频率)来决定。傅里叶变换可以看作是数学上的棱镜,将函数基于频率分解为不同的成分。当我们考虑光时,讨论它的光谱或频率谱。同样,傅立叶变换使我们能通过频率成分来分析一个函数。 傅立叶变换有很多优良的性质。比如线性,对称性(可以用在计算信号的傅里叶变换里面); 时移性:函数在时域中的时移,对应于其在频率域中附加产生的相移,而幅度频谱则保持不变; 频移性:函数在时域中乘以e^jwt,可以使整个频谱搬移w。这个也叫调制定理,通讯里面信号的频分复用需要用到这个特性(将不同的信号调制到不同的频段上同时传输); 卷积定理:时域卷积等于频域乘积;时域乘积等于频域卷积(附加一个系数)。(图像处理里面这个是个重点) 信号在频率域的表现 在频域中,频率越大说明原始信号变化速度越快;频率越小说明原始信号越平缓。当频率为0时,表示直流信号,没有变化。因此,频率的大小反应了信号的变化

离散傅里叶变换性质证明

1. [][]()()j j ax n by n aX e bX e ωω+?+ Proof: ([][])[][]()() j n j n j n j j ax n by n e a x n e b y n e aX e bX e ωωωωω∞ --∞ ∞∞ ---∞-∞ +=+=+∑∑∑ 2. (1)[]()d j n j d x n n X e e ωω--? Proof: ()[][].()d d j n d n j n n j n d n j n j x n n e x n n e e X e e ωωωωω∞-=-∞∞---=-∞--=-=∑ ∑ (2) 00()[]()j n j e x n X e ωωω-? Proof: 000()()[][]()j n j n j n j n n e x n e x n e X e ωωωωωω∞∞ ----=-∞=-∞==∑ ∑ 3. []()j x n X e ω--? Proof: ()[][]()j n j n j n n x n e x n e X e ωωω∞∞ ---=-∞=-∞-=-=∑ ∑ if []x n is real ()j X e ω-=*()j X e ω 4. ()[]j dX e nx n j d ωω? Proof: ()[]() ()[]()[]j j n n j j n n j j n n X e x n e dX e jn x n e d dX e j nx n e d ωωωωωωωω∞-=-∞∞-=-∞∞-=-∞=?=-?=∑∑∑

5. (1)22 1|[]||()|2j n x n X e d πωπωπ∞ =-∞-=∑ ? Proof: 2*2221 |()|21 ()()21 [][]21 |[]|21 |[]| 2|[]|j j j j n j n n n n n n X e d X e X e d x n e x n e d x n d x n d x n πωππωωππωωπππππωπ ωπ ωπ ωπ ωπ---∞∞-=-∞=-∞-∞=-∞ -∞=-∞ -∞=-∞ =====??∑∑?∑?∑ ?∑ (2) **1[][]()()2j j n x n y n X e Y e d π ωωπωπ∞=-∞-=∑ ? Proof: *****1 ()()21 ()()21 [][]21[][]21 [][] 2[][] j j j j j n j n n n n n n n X e Y e d X e Y e d x n e y n e d x n y n d x n y n d x n y n πωωππωωππωωπππππωπ ωπ ωπ ωπ ωπ---∞∞-=-∞=-∞-∞ =-∞-∞ ∞=-∞ =-∞-∞=-∞====??∑∑?∑?∑ ∑?∑ 6. []*[]()()j j x n y n X e Y e ωω? Proof:

实验3 傅里叶变换及其性质

实验3 傅里叶变换及其性质 1. 实验目的 学会运用MATLAB 求连续时间信号的傅里叶(Fourier )变换;学会运用MATLAB 求连续时间信号的频谱图;学会运用MATLAB 分析连续时间信号的傅里叶变换的性质。 2. 实验原理及实例分析 傅里叶变换的实现 信号()f t 的傅里叶变换定义为: ()[()]()j t F F f t f t e dt ωω∞ --∞==?, 傅里叶反变换定义为:11()[()]()2j t f t F F f e d ωωωωπ ∞--∞==?。 信号的傅里叶变换主要包括MATLAB 符号运算和MATLAB 数值分析两种方 法,下面分别加以探讨。同时,学习连续时间信号的频谱图。 MATLAB 符号运算求解法 MATLAB 符号数学工具箱提供了直接求解傅里叶变换与傅里叶反变换的函 数fourier( )和ifourier( )。Fourier 变换的语句格式分为三种。 (1) F=fourier(f):它是符号函数f 的Fourier 变换,默认返回是关于ω的函数。 (2) F=fourier(f,v):它返回函数F 是关于符号对象v 的函数,而不是默认的ω, 即()()jvt F v f t e dt ∞ --∞=?。 (3) F=fourier(f,u,v):是对关于u 的函数f 进行变换,返回函数F 是关于v 的 函数,即()()jvu F v f t e du ∞ --∞=?。 傅里叶反变换的语句格式也分为三种。 (1) f=ifourier(F):它是符号函数F 的Fourier 反变换,独立变量默认为ω,默 认返回是关于x 的函数。 (2) f=ifourier(F,u):它返回函数f 是u 的函数,而不是默认的x 。 (3) f=ifourier(F,u,v):是对关于v 的函数F 进行反变换,返回关于u 的函数f 。 值得注意的是,函数fourier( )和ifourier( )都是接受由sym 函数所定义的符号 变量或者符号表达式。

傅里叶变换的基本性质.

傅里叶变换的基本性质(一) 傅里叶变换建立了时间函数和频谱函数之间转换关系。在实际信号分析中,经常 需要对信号的时域和频域之间的对应关系及转换规律有一个清楚而深入的理解。 因此有必要讨论傅里叶变换的基本性质,并说明其应用。 一、线性 傅里叶变换是一种线性运算。若-'1 ' 一 1 一八 餐丄I 则 嗽(0 +罰⑷ G 迅(j 由)+ 碍(Jtu ) (3-55) 其中a 和b 均为常数,它的证明只需根据傅里叶变换的定义即可得出。 例3-6利用傅里叶变换的线性性质求单位阶跃信号的频谱函数 ,; 「" 由式(3-55)得 =侔7(/)}=-屛1} + - (sgn( /)}=丄 K 刼罠珂 + 丄用2 二足飢也)+ — 2 2 2 2 JtD J QJ 、对称性 (3-56) 则」 将上式中变量少换为x ,积分结果不变,即 证明因为 fC )二丄「EQ 讣叫田 N J 2^(i) = f F(J 噪叫 a 2^(-1)=「F(j 嫌小咕 J —TO

」一 再将t用夕代之,上述关系依然成立,即 2戒(―型)-[ Jr-CD 最后再将x用t代替,则得—Lm—? ” 所以,fl- —■-'■ ■■* 证毕 若八」是一个偶函数,即-'二丿■,相应有-,:"J,则式(3-56) 尺〔血—2对'(创)C3-57) 成为 可见,傅里叶变换之间存在着对称关系,即信号波形与信号频谱函数的波形有着互相置换的关系,其幅度之比为常数二丁。式中的-兰表示频谱函数坐标轴必须正负对调。例如:/(0 =郭)一S)=l FS)= 1一2才㈣=2斶眄 例3-7若信号;二的傅里叶变换为 < r 72 G3> r <2 试求。 解将中的"换成t,并考虑;-";1为兰的实函数,有 M |r|G 戈 0 |t|>r/2 该信号的傅里叶变换由式(3-54)可知为 頁恥)卜2氓旳(号)

离散傅里叶变换及其快速算法

第五章 离散傅里叶变换及其快速算法 1 离散傅里叶变换(DFT)的推导 (1) 时域抽样: 目的:解决信号的离散化问题。 效果:连续信号离散化使得信号的频谱被周期延拓。 (2) 时域截断: 原因:工程上无法处理时间无限信号。 方法:通过窗函数(一般用矩形窗)对信号进行逐段截取。 结果:时域乘以矩形脉冲信号,频域相当于和抽样函数卷积。 (3) 时域周期延拓: 目的:要使频率离散,就要使时域变成周期信号。 方法:周期延拓中的搬移通过与)(s nT t -δ的卷积来实现。 表示:延拓后的波形在数学上可表示为原始波形与冲激串序列的卷积。 结果:周期延拓后的周期函数具有离散谱。 (4) 1。 图1 DFT 推导过程示意图 (5) 处理后信号的连续时间傅里叶变换:∑∑ ∞ -∞=-=π--δ???? ? ????= k N n N kn j s kf f e nT h f H )()()(~ 010/2

(i) )(~f H 是离散函数,仅在离散频率点S NT k T k kf f = ==00处存在冲激,强度为k a ,其余各点为0。 (ii) )(~ f H 是周期函数,周期为s s T NT N T N Nf 1 00= == ,每个周期内有N 个不同的幅值。 (iii) 时域的离散时间间隔(或周期)与频域的周期(或离散间隔)互为倒数。 2 DFT 及IDFT 的定义 (1) DFT 定义:设()s nT h 是连续函数)(t h 的N 个抽样值1,,1,0-=N n ,这N 个点的宽度为 N 的DFT 为:[])1,...,1,0(,)()(1 0/2-=??? ? ? ?==? -=π-∑N k NT k H e nT h nT h DFT s N n N nk j s s N (2) IDFT 定义:设??? ? ??s NT k H 是连续频率函数)(f H 的N 个抽样值1,,1,0-=N k , 这N 个点的宽度为N 的IDFT 为: ())1,...,1,0(,11 0/21 -==??? ? ? ?=???????????? ???-=π--∑ N k nT h e NT k H N NT k H DFT s N k N nk j s s N (3) N nk j e /2π-称为N 点DFT 的变换核函数,N nk j e /2π称为N 点IDFT 的变换核函数。它们 互为共轭。 (4) 同样的信号,宽度不同的DFT 会有不同的结果。DFT 正逆变换的对应关系是唯一的, 或者说它们是互逆的。 (5) 引入N j N e W /2π-= (i) 用途: (a) 正逆变换的核函数分别可以表示为nk N W 和nk N W -。 (b) 核函数的正交性可以表示为:() )(* 1 0r n N W W kr N N k kn N -δ=∑-= (c) DFT 可以表示为:)1,,1,0(,)(10 -==? ??? ??∑ -=N k W nT h NT k H N n nk N s s (d) IDFT 可以表示为:)1,,1,0(,1 )(1 0-=??? ? ? ?= ∑ -=-N n W NT k H N nT h N k nk N s s (ii) 性质:周期性和对称性: (a) 12==π-j N N e W (b) 12 /-==π-j N N e W (c) r N r N N N r N N W W W W ==+ (d) r N r N N N r N N W W W W -=-=+2/2/ (e) )(1Z m W m N ∈?= (f) ),(/2/2Z n m W e e W n N N n j m N m n j m n m N ∈?===π-π- 3 离散谱的性质 (1) 离散谱定义:称)(Z k NT k H H S k ∈???? ? ?=? 为离散序列)0)((N n nTs h <≤的DFT 离散谱,简称离散谱。 (2) 性质: (i) 周期性:序列的N 点的DFT 离散谱是周期为N 的序列。 (ii) 共扼对称性:如果)0)((N n nTs x <≤为实序列,则其N 点的DFT 关于原点和N /2都

实验四 离散傅里叶变换的性质

实验四离散傅里叶变换的性质 一、实验目的 1. 熟悉matlab软件中离散傅里叶变换的实现方法及FFT函数的使用方法; 2. 通过软件仿真,加深对离散傅里叶变换性质的理解。 二、实验内容 1. 验证离散傅里叶变换的线性性质; 2. 掌握用matlab实现圆周移位的方法; 3. 验证圆周卷积与线性卷积的关系。 三、实验步骤 1. 验证线性性质 设两个有限长序列分别为xn1=[3,1,-2,2,3,4],xn2=[1,1,1,1],做4DFT[xn1]+2DFT[xn2],及DFT[4xn1+2xn2]的运算,比较它们的结果。 代码如下: clear,N=20;n=[0:1:N-1]; xn1=[3,1,-2,2,3,4];n1=0:length(xn1)-1; %定义序列xn1 xn2=[1,1,1,1];n2=0:length(xn2)-1; %定义序列xn2 yn1=4*xn1;yn2=2*xn2;[yn,ny]=seqadd(yn1,n1,yn2,n2); %计算4xn1+2xn2 xk1=fft(xn1,N);xk2=fft(xn2,N); %分别求DFT[xn1] 和DFT[xn2] yk0=4*xk1+2*xk2; %计算4DFT[xn1]+2DFT[xn2] yk=fft(yn,N); %计算DFT[4xn1+2xn2] subplot(2,1,1);stem(n,yk0);title('傅里叶变换之和') %显示4DFT[xn1]+2DFT[xn2] subplot(2,1,2);stem(n,yk);title('序列和之傅里叶变换') %显示DFT[4xn1+2xn2] 运行结果如图1所示,从图中可知,用两种方法计算的DFT完全相等,所以离散傅里叶变换的线性性质得到验证。

傅里叶变换及其在图像处理中的应用

傅里叶变换及其在数字图像处理中的应用 王家硕 学号:1252015 一、 Fourier 变换 1. 一维连续傅里叶变换 设 f (x)为x 的实变函数,如果f (x)满足下面的狄里赫莱条件: (1)具有有限个间隔点。 (2)具有有限个极点。 (3)绝对可积。 则 f (x )的傅里叶变换(Fourier Transformation ,FT )定义为: Fourier 正变换:dt e t f t f f F t j ? +∞ ∞ --==ωω)()]([)(; Fourier 逆变换:ωωπ ωd e f t F f t f t j ? ∞ +∞ ---= =)(21)]([)(1 , 式中:1-= j ,ω 为频域变量。 f (x )与F (w )构成傅里叶变换对,可以证明傅里叶变换对总是存在的。由于f (x )为实函数,则它的傅里叶变换F (w )通常是复函数,于是F (w )可写成 F (w ) = R (w ) + j I (w ) (1) 式中:R (w )和I (w )分别是F (w )的实部和虚部。公式1可表示为指数形式: 式中: F (w ) 为f (x )的傅里叶幅度谱,f (w )为f (x )的相位谱。 2. 二维连续傅里叶变换 如果二维函数f (x , y )是连续可积的,即∞

离散傅里叶变换(DFT)试题

第一章 离散傅里叶变换(DFT ) 填空题 (1) 某序列的DFT 表达式为 ∑-==1 0)()(N n kn M W n x k X ,由此可以看出,该序列时域的长 度为 ,变换后数字频域上相邻两个频率样点之间的间隔是 。 解:N ; M π 2 (2)某序列DFT 的表达式是 ∑-==1 0)()(N k kl M W k x l X ,由此可看出,该序列的时域长度 是 ,变换后数字频域上相邻两个频率样点之间隔是 。 解: N M π2 } (3)如果希望某信号序列的离散谱是实偶的,那么该时域序列应满足条件 。 解:纯实数、偶对称 (4)线性时不变系统离散时间因果系统的系统函数为2 52) 1(8)(2 2++--=z z z z z H ,则系统 的极点为 ;系统的稳定性为 。系统单位冲激响应)(n h 的初值为 ;终值 )(∞h 。 解: 2,2 1 21-=- =z z ;不稳定 ;4)0(=h ;不存在 (5) 采样频率为Hz F s 的数字系统中,系统函数表达式中1 -z 代表的物理意义是 ,其中时域数字 序列)(n x 的序号 n 代表的样值实际位置是 ;)(n x 的N 点DFT )k X (中,序号k 代表的样值实际 位置又是 。 解:延时一个采样周期F T 1=,F n nT =,k N k πω2= (6)已知 }{}{4,3,2,1,0;0,1,1,0,1][,4,3,2,1,0;1,2,3,2,1][=-===k n h k n x ,则][n x 和 ][n h 的5点循环卷积为 。 解:{}]3[]2[][][][][---+?=?k k k k x k h k x δδδ {}4,3,2,1,0;2,3,3,1,0])3[(])2[(][55==---+=k k x k x k x [ (7)已知}{}{3,2,1,0;1,1,2,4][,3,2,1,0;2,0,2,3][=--=== k n h k n x 则][][n h n x 和的 4点循环卷积为 。

数字信号处理 离散傅里叶变换的性质及应用

数字信号处理实验 题目:离散傅里叶变换的性质及应用 学院: 专业: 学生姓名:班级/学号 指导老师: 一、实验目的 1.了解DFT的性质及其应用 2.熟悉MATLAB编程特点 二、实验仪器及材料 计算机,MATLAB软件

三、实验内容及要求 1.用三种不同的DFT 程序计算8()()x n R n =的256点离散傅里叶变换()X k ,并比较三种程序计算机运行时间。 (1)编制用for loop 语句的M 函数文件dft1.m ,用循环变量逐点计算()X k ; (2)编写用MATLAB 矩阵运算的M 函数文件dft2.m ,完成下列矩阵运算: 000 0121 012(1) (1)(1) (0)(0) (1)(1) (1)(1) N N N N N N N N N N N N N N N N N X x W W W W X x W W W W x N X N W W W W -----?????? ????????????=???????????? --???????????? (3)调用fft 库函数,直接计算()X k ; (4)分别调用上述三种不同方式编写的DFT 程序计算序列()x n 的离散傅里叶变换 ()X k ,并画出相应的幅频和相频特性,再比较各个程序的计算机运行时 间。 M 函数文件如下: dft1.m: function[Am,pha]=dft1(x) N=length(x); w=exp(-j*2*pi/N); for k=1:N sum=0; for n=1:N sum=sum+x(n)*w^((k-1)*(n-1)); end Am(k)=abs(sum); pha(k)=angle(sum); end dft2.m: function[Am,pha]=dft2(x) N=length(x); n=[0:N-1];

MATLAB离散傅里叶变换及应用资料

MATLAB 离散傅里叶变换及应用 一、DFT 与IDFT 、DFS 、DTFT 的联系 1、 序列的傅里叶变换(DFT)和逆变换(IDFT) 在实际中常常使用有限长序列。如果有限长序列信号为x(n),则该序列的离散傅里叶变换对可以表示为 1N ,0,1,k , W x(n)DFT [x(n)]X(k)1 N 0n nk N -===∑-= (12-1) 1N ,0,1,n , W X(k)N 1IDFT[X(k)]x(n)1N 0 k nk N -===∑-=- (12-2) 已知x(n)=[0,1,2,3,4,5,6,7],求x(n)的DFT 和IDFT 。要求: (1)画出序列傅里叶变换对应的|X(k)|和arg [X(k)]图形。 (2)画出原信号与傅里叶逆变换IDFT [X(k)]图形进行比较。 程序源代码: xn=[0,1,2,3,4,5,6,7]; N=length(xn); n=0:(N-1);k=0:(N-1); Xk=xn*exp(-j*2*pi/N).^(n'*k); x=(Xk*exp(j*2*pi/N).^(n'*k))/N; subplot(2,2,1),stem(n,xn); title('x(n)');

subplot(2,2,2),stem(n,abs(x)); title('IDFT|X(k)|'); subplot(2,2,3),stem(k,abs(Xk)); title('|X(k)|'); subplot(2,2,4),stem(k,angle(Xk)); title('arg|X(k)|'); 运行图如下: x(n) IDFT|X (k)| 2 4 6 8 |X (k)| 2 4 6 8 arg|X (k)| 从得到的结果可见,与周期序列不同的是,有限长序列本身是仅有N 点的离散序列,相当于周期序列的主值部分。因此,其频谱也对应序列的主值部分,是含N 点的离散序列。 2、 序列DFT 与周期序列DFS 已知周期序列的主值x(n)=[0,1,2,3,4,5,6,7],

傅里叶变换算法详细介绍

从头到尾彻底理解傅里叶变换算法、上 前言 第一部分、DFT 第一章、傅立叶变换的由来 第二章、实数形式离散傅立叶变换(Real DFT) 从头到尾彻底理解傅里叶变换算法、下 第三章、复数 第四章、复数形式离散傅立叶变换 /***************************************************************************************************/ 这一片的傅里叶变换算法,讲解透彻,希望对大家会有所帮助。感谢原作者们(July、dznlong)的精心编写。 /**************************************************************************************************/ 前言: ―关于傅立叶变换,无论是书本还是在网上可以很容易找到关于傅立叶变换的描述,但是大都是些故弄玄虚的文章,太过抽象,尽是一些让人看了就望而生畏的公式的罗列,让人很难能够从感性上得到理解‖---dznlong, 那么,到底什么是傅里叶变换算法列?傅里叶变换所涉及到的公式具体有多复杂列? 傅里叶变换(Fourier transform)是一种线性的积分变换。因其基本思想首先由法国学者傅里叶系统地提出,所以以其名字来命名以示纪念。 哦,傅里叶变换原来就是一种变换而已,只是这种变换是从时间转换为频率的变化。这下,你就知道了,傅里叶就是一种变换,一种什么变换列?就是一种从时间到频率的变化或其相互转化。 ok,咱们再来总体了解下傅里叶变换,让各位对其有个总体大概的印象,也顺便看看傅里叶变换所涉及到的公式,究竟有多复杂: 以下就是傅里叶变换的4种变体(摘自,维基百科)

MATLAB的离散傅里叶变换的仿真

应用MATLAB对信号进行频谱分析及滤波 设计目的 要求学生会用MATLAB语言进行编程,绘出所求波形,并且运用FFT求对连续信号进行分析。 一、设计要求 1、用Matlab产生正弦波,矩形波,并显示各自的时域波形图; 2、进行FFT变换,显示各自频谱图,其中采样率、频率、数据长度自选,要求注明; 3、绘制三种信号的均方根图谱; 4、用IFFT回复信号,并显示恢复的正弦信号时域波形图。 二、系统原理 用FFT对信号作频谱分析是学习数字信号处理的重要内容。经常需要进行频谱分析的信号是模拟信号和时域离散信号。频谱分辨率直接和FFT的变换区间N有关,因为FFT能够实现频率分辨率是2π/N。 x(n)是一个长度为M的有限长序列,则x(n)的N点离散傅立叶变换为: N?1?2?kn)(nx j?W W NN e?0?n N X(k)=DFT[x(n)]=,k=0,1,...,N-1N?11?kn?)(WXk N N0?n x(n) =IDFT[X(k)]= 逆变换:,k=0,1,...,N-1 但FFT是一种比DFT更加快速的一种算法,提高了DFT的运算速率,为数字信号处理技术应用于各种信号处理创造了条件,大大提高了数字信号处理技术的发展。本实验就是采用FFT,IFFT对信号进行谱分析。 三、程序设计 fs=input('please input the fs:');%设定采样频率 N=input('please input the N:');%设定数据长度 t=0:0.001:1; f=100;%设定正弦信号频率 %生成正弦信号 x=sin(2*pi*f*t); figure(1); subplot(211); plot(t,x);%作正弦信号的时域波形 axis([0,0.1,-1,1]); title('正弦信号时域波形'); z=square(50*t); subplot(212) plot(t,z) axis([0,1,-2,2]); title('方波信号时域波形');grid;

傅里叶变换的基本性质 (2)

3-5 傅里叶变换的基本性质 傅里叶变换建立了时间函数和频谱函数之间转换关系。在实际信号分析中,经常需 要对信号的时域和频域之间的对应关系及转换规律有一个清楚而深入的理解。因此有必要讨论傅里叶变换的基本性质,并说明其应用。 一、 线性 傅里叶变换是一种线性运算。若 则 其中a 和b 均为常数,它的证明只需根据傅里叶变换的定义即可得出。 例3-6 利用傅里叶变换的线性性质求单位阶跃信号的频谱函数)(ωj F 。 解 因 由式(3-55)得 二、对称性 若 证明 因为 有 将上式中变量ω换为x ,积分结果不变,即 再将t 用ω代之,上述关系依然成立,即 最后再将x 用t 代替,则得 所以 证毕 若)(t f 是一个偶函数,即)()(t f t f =-,相应有)()(ωωf f =-,则式(3-56)成为 可见,傅里叶变换之间存在着对称关系,即信号波形与信号频谱函数的波形有着互相置换的关系,其幅度之比为常数π2。式中的ω-表示频谱函数坐标轴必须正负对调。例如

例3-7 若信号)(t f 的傅里叶变换为 试求)(t f 。 解 将)(ωj F 中的ω换成t ,并考虑)(ωj F 为ω的实函数,有 该信号的傅里叶变换由式(3-54)可知为 根据对称性 故 再将)(ω-f 中的ω-换成t ,则得 )(t f 为抽样函数,其波形和频谱如图3-20所示。 三、折叠性 若 则 四、尺度变换性 观看动画 若 则 证明 因a >0,由 令at x =,则adt dx =,代入前式,可得 函数)(at f 表示)(t f 沿时间轴压缩(或时间尺度扩展) a 倍,而 ) (a j F ω 则表示 )(ωj F 沿频率轴扩展(或频率尺度压缩) a 倍。 该性质反映了信号的持续时间与其占有频带成反比,信号持续时间压缩的倍数恰好等于占有频带的展宽倍数,反之亦然。 例3-8 已知 ,求频谱函数)(ωj F 。 解 前面已讨论了

傅里叶变换和拉普拉斯变换的性质及应用

1.前言 1.1背景 利用变换可简化运算,比如对数变换,极坐标变换等。类似的,变换也存在于工程,技术领域,它就是积分变换。积分变换的使用,可以 使求解微分方程的过程得到简化,比如乘积可以转化为卷积。什么是积 分变换呢?即为利用含参变量积分,把一个属于A函数类的函数转化属 于B函数类的一个函数。傅里叶变换和拉普拉斯变换是两种重要积分变 换。分析信号的一种方法是傅立叶变换,傅里叶变换能够分析信号的成 分,也能够利用成分合成信号。可以当做信号的成分的波形有很多,例 如锯齿波,正弦波,方波等等。傅立叶变换是利用正弦波来作为信号的 成分。Pierre Simon Laplace 拉普拉斯变换最早由法国数学家天文学家 (拉普拉斯)(1749-1827)在他的与概率论相关科学研究中引入,在他 的一些基本的关于拉普拉斯变换的结果写在他的著名作品《概率分析理 论》之中。即使在19世纪初,拉普拉斯变换已经发现,但是关于拉普拉 斯变换的相关研究却一直没什么太大进展,直至一个英国数学家,物理 学家,同时也是一位电气工程师的Oliver Heaviside奥利弗·亥维赛 (1850-1925)在电学相关问题之中引入了算子运算,而且得到了不少 方法与结果,对于解决现实问题很有好处,这才引起了数学家对算子理 论的严格化的兴趣。之后才创立了现代算子理论。算子理论最初的理论 依据就是拉普拉斯变换的相关理论,拉普拉斯变换相关理论的继续发展 也是得益于算理理论的更进一步发展。这篇文章就是针对傅里叶变换和 拉普拉斯变换的相关定义,相关性质,以及相关应用做一下简要讨论, 并且分析傅里叶变换和拉普拉斯变换的区别与联系。 1.2预备知识 定理1.2.1(傅里叶积分定理) 若在(-∞,+∞)上,函数满足一下条件:

相关文档