文档库 最新最全的文档下载
当前位置:文档库 › 直角坐标系坐标转换公式解析

直角坐标系坐标转换公式解析

直角坐标系坐标转换公式解析
直角坐标系坐标转换公式解析

平面直角坐标系经典题含答案

第六章 平面直角坐标系水平测试题(一) 一、(本大题共10小题,每题3分,共30分. 在每题所给出的四个选项中,只有一项是符合题意的.把所选项前的字母代号填在题后的括号内. 相信你一定会选对!) 1.某同学的座位号为(),那么该同学的位置是( ) (A )第2排第4列 (B )第4排第2列 (C )第2列第4排 (D )不好确定 2.下列各点中,在第二象限的点是( ) (A )(2,3) (B )(2,-3) (C )(-2,-3) (D )(-2,3) 3.若轴上的点到轴的距离为3,则点的坐标为( ) (A )(3,0) (B )(0,3) (C )(3,0)或(-3,0) (D )(0,3)或(0,-3) 4.点(,)在轴上,则点坐标为( ). (A )(0,-4) (B )(4,0) (C )(-2,0) (D )(0,-2) 5.一个长方形在平面直角坐标系中三个顶点的坐标为(-1,-1),(-1,2),(3,-1)?,则第四个顶点的坐标为( ) (A )(2,2) (B )(3,2) (C )(3,3) (D )(2,3) 6.线段AB 两端点坐标分别为A (),B (),现将它向左平移4个单位长度,得到线段A 1B 1,则A 1、B 1的坐标分别为( ) (A )A 1(),B 1() (B )A 1(), B 1(0,5) (C )A 1() B 1(-8,1) (D )A 1() B 1() 7、点P (m+3,m+1)在x 轴上,则P 点坐标为( ) A .(0,-2) B .(2,0) C .(4,0) D .(0,-4) 8、点P (x,y )位于x 轴下方,y 轴左侧,且x =2 ,y =4,点P 的坐标是( ) A .(4,2) B .(-2,-4) C .(-4,-2) D .(2,4) 9、点P (0,-3),以P 为圆心,5为半径画圆交y 轴负半轴的坐标是 ( ) A .(8,0) B .( 0,-8) C .(0,8) D .(-8,0) 10、将某图形的横坐标都减去2,纵坐标保持不变,则该图形 ( ) A .向右平移2个单位 B .向左平移2 个单位 C .向上平移2 个单位 D .向下平移2 个单位 11、点 E (a,b )到x 轴的距离是4,到y 轴距离是3,则有 ( ) A .a=3, b=4 B .a=±3,b=±4 C .a=4, b=3 D .a=±4,b=±3 12、如果点M 到x 轴和y 轴的距离相等,则点M 横、纵坐标的关系是( ) A .相等 B .互为相反数 C .互为倒数 D .相等或互为相反数 13、已知P(0,a)在y 轴的负半轴上,则Q(2 1,1a a ---+)在( ) A 、y 轴的左边,x 轴的上方 B 、y 轴的右边,x 轴的上方 14.七年级(2)班教室里的座位共有7排8列,其中小明的座位在第3排第7列,简记为(3,7),小华坐在第5排第2列,则小华的座位可记作__________. 15. 若点P (,)在第二象限,则点Q (,)在第_______象限. 16. 若点P 到轴的距离是12,到轴的距离是15,那么P 点坐标可以是________. 17.小华将直角坐标系中的猫的图案向右平移了3个单位长度,平移前猫眼的坐标为(-4,3),(-2,3),则移动后

空间大地坐标系与平面直角坐标系转换公式

§2.3.1 坐标系的分类 正如前面所提及的,所谓坐标系指的是描述空间位置的表达形式,即采用什么方法来表示空间位置。人们为了描述空间位置,采用了多种方法,从而也产生了不同的坐标系,如直角坐标系、极坐标系等。 在测量中常用的坐标系有以下几种: 一、空间直角坐标系 空间直角坐标系的坐标系原点位于参考椭球的中心,Z 轴指向参考椭球的北极,X 轴指向起始子午面与赤道的交点,Y 轴位于赤道面上且按右手系与X 轴呈90°夹角。某点在空间中的坐标可用该点在此坐标系的各个坐标轴上的投影来表示。空间直角坐标系可用图2-3来表示: 图2-3 空间直角坐标系 二、空间大地坐标系 空间大地坐标系是采用大地经、纬度和大地高来描述空间位置的。纬度是空间的点与参考椭球面的法线与赤道面的夹角;经度是空间中的点与参考椭球的自转轴所在的面与参考椭球的起始子午面的夹角;大地高是空间点沿参考椭球的法线方向到参考椭球面的距离。空间大地坐标系可用图2-4来表示:

图2-4空间大地坐标系 三、平面直角坐标系 平面直角坐标系是利用投影变换,将空间坐标空间直角坐标或空间大地坐标通过某种数学变换映射到平面上,这种变换又称为投影变换。投影变换的方法有很多,如横轴墨卡托投影、UTM 投影、兰勃特投影等。在我国采用的是高斯-克吕格投影也称为高斯投影。UTM 投影和高斯投影都是横轴墨卡托投影的特例,只是投影的个别参数不同而已。 高斯投影是一种横轴、椭圆柱面、等角投影。从几何意义上讲,是一种横轴椭圆柱正切投影。如图左侧所示,设想有一个椭圆柱面横套在椭球外面,并与某一子午线相切(此子午线称为中央子午线或轴子午线),椭球轴的中心轴CC ’通过椭球中心而与地轴垂直。 高斯投影满足以下两个条件: 1、 它是正形投影; 2、 中央子午线投影后应为x 轴,且长度保持不变。 将中央子午线东西各一定经差(一般为6度或3度)范围内的地区投影到椭圆柱面上,再将此柱面沿某一棱线展开,便构成了高斯平面直角坐标系,如下图2-5右侧所示。 图2-5 高斯投影 x 方向指北,y 方向指东。 可见,高斯投影存在长度变形,为使其在测图和用图时影响很小,应相隔一定的地区,另立中央子午线,采取分带投影的办法。我国国家测量规定采用六度带和三度带两种分带方法。六度带和三度带与中央子午线存在如下关系: 366 N L =中; n L 33=中 其中,N 、n 分别为6度带和3度带的带号。

空间直角坐标系与大地坐标系转换程序

空间直角坐标系与大地坐标系转换程序 #include #include #include using namespace std; #define PI (2.0*asin(1.0)) void main() { double a,b,c,d1,d2,f1,f2,m1,m2,B,L,H,X,Y,Z,W,N,e; //cout<<"请分别输入椭球的长半轴、短半轴(国际单位)"<>a>>b; a=6378137; //以WGS84为例 b=6356752.3142; e=sqrt(a*a-b*b)/a; c=a*a/b; int x; cout<<"请输入0或1,0:大地坐标系到空间直角坐标系;1:空间直角坐标系到大地坐标系"<>x; switch(x) { case 0: { cout<<"请分别输入该点大地纬度、经度、大地高(国际单位,纬度经度请按度分秒,分别输入)"<>d1>>f1>>m1>>d2>>f2>>m2>>H; B=PI*(d1+f1/60+m1/3600)/180; L=PI*(d2+f2/60+m2/3600)/180; W=sqrt(1-e*e*sin(B)*sin(B)); N=a/W; X=(N+H)*cos(B)*cos(L); Y=(N+H)*cos(B)*sin(L); Z=(N*(1-e*e)+H)*sin(B); cout<<"空间直角坐标系中X,Y,Z,坐标值(国际单位)分别为"<>X>>Y>>Z; double t,m,n, P,k,B0; m=Z/sqrt(X*X+Y*Y); //t0 B0=atan(m); //初值 n=Z/sqrt(X*X+Y*Y);

不同空间直角坐标系的转换

不同空间直角坐标系的转换 欧勒角 不同空间直角坐标系的转换,包括三个坐标轴的平移和坐标轴的旋转,以及两个坐标系的尺度比参数,坐标轴之间的三个旋转角叫欧勒角。 三参数法 三参数坐标转换公式是在假设两坐标系间各坐标轴相互平行,轴系间不存在欧勒角的条件下得出的。实际应用中,因为欧勒角不大,可以用三参数公式近似地进行空间直角坐标系统的转换。公共点只有一个时,采用三参数公式进行转换。

七参数法 用七参数进行空间直角坐标转换有布尔莎公式,莫洛琴斯基公式和范氏公式等。下面给出布尔莎七参数公式: 坐标转换多项式回归模型 坐标转换七参数公式属于相似变换模型。大地控制网中的系统误差一般呈区域性,当区域较小时,区域性的系统误差被相似变换参数拟合,故局部区域的坐标转换采用七参数公式模型是比较适宜的。但对全国或一个省区范围内的坐标转换,可以采用多项式回归模型,将各区域的系统偏差拟合到回归参数中,从而提高坐标转换精度。 两种不同空间直角坐标系转换时,坐标转换的精度取决于坐标转换的数学模型和求解转换系数的公共点坐标精度,此外,还与公共点的分布有关。鉴于地面控制网系统误差在???? ??????+??????????=??????????000111222Z Y X Z Y X Z Y X ???? ??????+????????????????????---+??????????+=??????????000111111222000)1(Z Y X Z Y X Z Y X m Z Y X X Y X Z Y Z εεεεεε

不同区域并非是一个常数,所以采用分区进行坐标转换能更好地反映实际情况,提高坐标转换的精度。

(完整版)《平面直角坐标系》典型例题解析

《平面直角坐标系》章节复习 知识点1:点的坐标与象限的关系 知识解析:各个象限的点的坐标符号特征如下: (特别值得注意的是,坐标轴上的点不属于任何象限.) 1、在平面直角坐标中,点M(-2,3)在() A.第一象限 B.第二象限 C.第三象限 D.第四象限2、在平面直角坐标系中,点P(-2,2x+1)所在的象限是() A.第一象限 B.第二象限 C.第三象限 D.第四象限 3、若点P(a,a-2)在第四象限,则a的取值范围是(). A.-2<a<0 B.0<a<2 C.a>2 D.a <0 4、点P(m,1)在第二象限内,则点Q(-m,0)在() A.x轴正半轴上 B.x轴负半轴上 C.y轴正半轴上 D.y轴负半轴上 5、若点P(a,b)在第四象限,则点M(b-a,a-b)在() A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 6、在平面直角坐标系中,点(12) -- ,在第四象限,则实数x的取值范 A x x 围是. 7、对任意实数x,点2 ,一定不在 - (2) P x x x ..()

A .第一象限 B .第二象限 C .第三象限 D .第四象限 8、如果a -b <0,且ab <0,那么点(a ,b)在( ) A 、第一象限 B 、第二象限 C 、第三象限, D 、第四 象限. 9、已知点A (1,b)在第一象限,则点B (1 – b ,1)在( ) A 、第一象限 B 、第二象限 C 、第三象限 D .第四象限 10、点M (x ,y )在第二象限,且| x | – 2 = 0,y 2 – 4 = 0,则点M 的坐标是( ) A (– 2 ,2) B .( 2 ,– 2 ) C .(—2, 2 ) D 、(2,– 2 ) 11、若0<a <1,则点M (a – 1,a )在( ) A 、第一象限 B 、第二象限 C 、第三象限 D .第四象限 12、已知点P (3k – 2,2k – 3 )在第四象限.那么k 的取值范围是( ) A 、23 <k < 32 B 、k <23 C 、k >32 D 、都不对 13. 下列各点中,在第二象限的点是( ) A. (2,3) B. (2,-3) C. (-2,-3) D. (-2,3) 14. 点P 的横坐标是-3,且到x 轴的距离为5,则P 点的坐标是( )

坐标转换之计算公式

坐标转换之计算公式 一、参心大地坐标与参心空间直角坐标转换 1名词解释: A :参心空间直角坐标系: a) 以参心0为坐标原点; b) Z 轴与参考椭球的短轴(旋转轴)相重合; c) X 轴与起始子午面和赤道的交线重合; d) Y 轴在赤道面上与X 轴垂直,构成右手直角坐标系0-XYZ ; e) 地面点P 的点位用(X ,Y ,Z )表示; B :参心大地坐标系: a) 以参考椭球的中心为坐标原点,椭球的短轴与参考椭球旋转轴重合; b) 大地纬度B :以过地面点的椭球法线与椭球赤道面的夹角为大地纬度B ; c) 大地经度L :以过地面点的椭球子午面与起始子午面之间的夹角为大地经度L ; d) 大地高H :地面点沿椭球法线至椭球面的距离为大地高H ; e) 地面点的点位用(B ,L ,H )表示。 2 参心大地坐标转换为参心空间直角坐标: ?? ???+-=+=+=B H e N Z L B H N Y L B H N X sin *])1(*[sin *cos *)(cos *cos *)(2 公式中,N 为椭球面卯酉圈的曲率半径,e 为椭球的第一偏心率,a 、b 椭球的长短半 径,f 椭球扁率,W 为第一辅助系数 a b a e 2 2-= 或 f f e 1*2-= W a N B W e =-=22sin *1( 3 参心空间直角坐标转换参心大地坐标

[]N B Y X H H e N Y X H N Z B X Y L -+=+-++==cos ))1(**)()(*arctan( )arctan(2 2222 二 高斯投影及高斯直角坐标系 1、高斯投影概述 高斯-克吕格投影的条件:1. 是正形投影;2. 中央子午线不变形 高斯投影的性质:1. 投影后角度不变;2. 长度比与点位有关,与方向无关; 3. 离中央子午线越远变形越大 为控制投影后的长度变形,采用分带投影的方法。常用3度带或6度带分带,城市或工 程控制网坐标可采用不按3度带中央子午线的任意带。 2、高斯投影正算公式: 5 2224253 2236 4254 42232)5814185(cos 120 )1(cos 6 cos )5861(cos sin 720 495(cos sin 24 cos sin 2l t t t B N l t B N Bl N y l t t B B N l t B B N Bl B N X x ηηηηη-++-++-+=+-+++-++=) 3、高斯投影反算公式:

空间直角坐标系坐标转换方法

坐标转换方法 空间直角坐标系如果其原点不动,绕着某一个轴旋转而构成的新的坐标系,这个过程就叫做坐标旋转。在旧坐标系中的坐标与在旋转后新坐标系中的坐标有一定的转换关系,这种转换关系可以用转换矩阵来表示。 如图5.7,直角坐标系XYZ,P点的坐标为(x, y, z),其相应的在XY 平面,XZ平面,YZ平面分别为M(x, y,0),Q(x,0, z)和N(0, y, z)。 图5.7直角坐标系XYZ 设?表示第j 轴的旋转角度,R j (?) 表示绕第j 轴的旋转,其正方向是沿坐标轴向原点看去的逆时针方向。很明显当j 轴为旋转轴时,它对应的坐标中的j 分量是不变的。由于直角坐标系是对称的,下面我们以绕Z轴旋转为例推导其旋转变换矩阵,其它两个轴推导和它是一样的。 设图5.7的坐标绕Z轴逆时针旋转θ角度,新坐标为X 'Y'Z',如图5.8所示: 图5.8 坐标绕Z 轴逆时针旋转θ角度 由于坐标中的z 分量不变,我们可以简化地在XY 平面进行分分析,如图

5.9所示: 图5.9坐标绕Z 轴逆时针旋转θ 角度的XY 平面示意图 点 M X 和点M X ' 分别是M 点在X 轴和X '轴的投影。如图5.9 cos cos() sin sin() X X X X x OM OM MOM OM y MM OM MOM OM ?θ?θ==∠=-??==∠=-? (5-1) cos cos sin sin X X X X x OM OM MOM OM y MM OM MOM OM ? ?'''''==∠=??'==∠=? (5-2) 把(5-1)式按照三角函数展开得: cos cos sin sin sin cos cos sin x OM OM y OM OM ?θ?θ ?θ?θ=+??=+? (5-3) 把(5-2)式代入(5-3)式得: cos sin sin cos x x y y x y θθ θθ''=+??''=-+? (5-4) 坐标中的z 分量不变,即z = z'这样整个三维坐标变换就可以写成(用新坐标表 示旧坐标) cos sin sin cos x x y y x y z z θθ θθ''=+? ?''=-+??' =? (5-5) 把式(5-5)用一个坐标旋转变换矩阵R Z (θ) 表示可以写成:

平面直角坐标系典型例题含答案

平面直角坐标系 一、知识点复习 1.有序数对:有顺序的两个数a 与b 组成的数对,记作),(b a 。注意a 与b 的先后顺序对位置的影响。 2.平面直角坐标系 (1)定义:在同一平面内画两条相互垂直并且原点重合的数轴,组成平面直角坐标系。这个平面叫做坐标平面。 (2)平面直角坐标系中点的坐标:通常若平面直角坐标系中有一点A ,过点A 作横轴的垂线,垂足在横轴上的坐标为a ,过点A 作纵轴的垂线,垂足在纵轴上的坐标为b ,有序实数对),(b a 叫做点A 的坐标,其中a 叫横坐标,b 叫做纵坐标。 3.各象限内的点与坐标轴上的点的坐标特征: 4. 特殊位置点的特殊坐标 5.对称点的坐标特征:

6.点到坐标轴的距离: 点),(y x P 到X 轴距离为y ,到y 轴的距离为x 。 7.点的平移坐标变化规律:简单记为“左减右加,上加下减” 二、典型例题讲解 考点1:点的坐标与象限的关系 1.在平面直角坐标系中,点P (-2,3)在第( )象限. A .一 B .二 C .三 D .四 2.若点)2,(-a a P 在第四象限,则a 的取值范围是( ) A. 02<<-a B.20<a D.0

大地坐标转换成施工坐标公式

大地(高斯平面)坐标系工程坐标系转换大地坐标系--->工程坐标系 ======================== 待转换点为P,大地坐标为:Xp、Yp 工程坐标系原点o: 大地坐标:Xo、Yo 工程坐标:xo、yo 工程坐标系x轴之大地方位角:a dX=Xp-Xo dY=Yp-Yo P点转换后之工程坐标为xp、yp: xp=dX*COS(a)+dY*SIN(a)+xo yp=-dX*SIN(a)+dY*COS(a)+yo 工程坐标系--->大地坐标系 ======================== 待转换点为P,工程坐标为:xp、yp 工程坐标系原点o: 大地坐标:Xo、Yo 工程坐标:xo、yo 工程坐标系x轴之大地方位角:a dx=xp-xo dy=yp-yo P点转换后之工程坐标为xp、yp: xp=Xo+dx*COS(a)-dy*SIN(a)

yp=Yo+dx*SIN(a)+dy*COS(a) 坐标方位角计算程序 置镜点坐标:ZX ZY 后视点坐标:HX HY 方位角:W 两点间距离: S Lb1 0← {A, B, C, D}← A〝ZX=〞:B〝ZY=〞:C〝HX=〞:D 〝HY=〞:W=tg1((D-B)÷(C-A)):(D-B)>0=>(C-A)>0=>W=W:∟∟(D-B)>0=>(C-A)<0=>W=W+180:∟∟(D-B)<0=>(C-A)<0=>W=W+180:∟∟(D-B)<0=>(C-A)>0=>W=360+W∟∟W=W◢ S=√((D-B)2+(C-A)2) ◢ Goto 0← CASIO fx-4500p坐标计算程序 根据坐标计算方位角 W=W+360△W:“ALF(1~2)=”L1 A“X1=”:B“Y1=”:Pol(C“X2”-A,D“Y2”-B:“S=”▲W<0 直线段坐标计算 L1 X“X(0)”:Y“Y(0)”:S“S(0)”:A“ALF” L2 Lb1 2 L3 {L}:L“LX”

直角坐标系下的画图及其转换公式

直角坐标系下的画图及其转换公式 在直角坐标系下我们的圆方程是: 222()()x a y b R -+-= 其中,a 和b 是圆心,R 是半径。但在画圆的时候,你就会发现如果按该公式画圆,多半是不成功的,或者画了一半,所以在matlab 中画圆,一半采用极坐标形式 圆对应的极坐标转换公式为: cos sin x R y R θ θ =?? =?(公式1) 这个很容易理解,你画个单位圆来看看就知道了。 那么上面那个黑色的点的x 坐标和y 坐标用半径和连线与坐标轴x 的夹角来表示,就得到了公式1。 观察这个公式,我们发现,在极坐标系下,圆的半径没变,夹角是在不断变化的,所以,在matlab 中极坐标系下画单位圆的问题可以这样来考虑: 首先将夹角360等分,也就是每一个步长为360度/360; 但需要指出的是,matlab 中正弦预先函数的变量其实是弧度,并不是度。这个你在matlab 命令窗里就可以试: 比如你要得到30度的正弦值,一般是sin (pi/6),而不是sin(30)。这里的pi 是3.1415926的在matlab 中的表示。 所以我们的步长应该是弧度制的,我们知道,1度对应的弧度为360/(2*pi)。也即180/pi; 所以我们的夹角应该是: Theta=0:180/pi:2*pi-180/pi; 注意,由于是从零开始画图的,所以最后一个应该是2*pi-180/pi;而不是2*pi ; 这个时候我们可以开始画图了 X=R*cos(Theta); Y=R*sin(Theta); Plot(x,y,’r.’) axis square %保证画出来的圆是圆的。

大地坐标与直角空间坐标转换计算公式

大地坐标与直角空间坐标转换计算公式 一、参心大地坐标与参心空间直角坐标转换 1名词解释: A :参心空间直角坐标系: a) 以参心0为坐标原点; b) Z 轴与参考椭球的短轴(旋转轴)相重合; c) X 轴与起始子午面和赤道的交线重合; d) Y 轴在赤道面上与X 轴垂直,构成右手直角坐标系0-XYZ ; e) 地面点P 的点位用(X ,Y ,Z )表示; B :参心大地坐标系: a) 以参考椭球的中心为坐标原点,椭球的短轴与参考椭球旋转轴重合; b) 大地纬度B :以过地面点的椭球法线与椭球赤道面的夹角为大地纬度B ; c) 大地经度L :以过地面点的椭球子午面与起始子午面之间的夹角为大地经度L ; d) 大地高H :地面点沿椭球法线至椭球面的距离为大地高H ; e) 地面点的点位用(B ,L ,H )表示。 2 参心大地坐标转换为参心空间直角坐标: ?? ? ?? +-=+=+=B H e N Z L B H N Y L B H N X sin *])1(*[sin *cos *)(cos *cos *)(2 公式中,N 为椭球面卯酉圈的曲率半径,e 为椭球的第一偏心率,a 、b 椭球的长短半径,f 椭球扁率,W 为第一辅助系数 a b a e 2 2-= 或 f f e 1 *2-= W a N B W e = -=22 sin *1( 西安80椭球参数: 长半轴a=6378140±5(m )

短半轴b=6356755.2882m 扁 率α=1/298.257 3 参心空间直角坐标转换参心大地坐标 [ ] N B Y X H H e N Y X H N Z B X Y L -+= +-++==cos ))1(**)() (*arctan() arctan(2 22 2 2 二 高斯投影及高斯直角坐标系 1、高斯投影概述 高斯-克吕格投影的条件:1. 是正形投影;2. 中央子午线不变形 高斯投影的性质:1. 投影后角度不变;2. 长度比与点位有关,与方向无关; 3. 离中央子午线越远变形越大 为控制投影后的长度变形,采用分带投影的方法。常用3度带或6度带分带,城市或工程控制网坐标可采用不按3度带中央子午线的任意带。 2、高斯投影正算公式: 52224253 2236 425442232)5814185(cos 120 )1(cos 6 cos )5861(cos sin 720 495(cos sin 24cos sin 2l t t t B N l t B N Bl N y l t t B B N l t B B N Bl B N X x ηηηηη-++-++-+=+-+++-++ =) 3、高斯投影反算公式:

平面直角坐标变换

§5.7 平面直角坐标变换 为了考虑同一图形在不同的坐标系下的方程之间的关系,我们首先需要建立同一个点在不同的坐标系下的坐标之间的关系,这就是坐标变换的问题,因为我们研究的图形是点的轨迹. 我们仅考虑平面直角坐标变换. 设在平面上给出了由两个标架 {O ;i , j } 和 {O';i', j' } 所决定的右手直角坐标系,这里i 和j 以及i' 和j' 是两组坐标基向量,它们是平面上的两个标准正交基,我们依次称这两个坐标系为旧坐标系和新坐标系. 由于坐标系的位置完全由原点和坐标基向量所决定,所以新坐标系与旧坐标系之间的关系,就由O' 在 {O ;i , j } 中的坐标以及i' 和j' 在 {O ;i , j } 中的分量所决定. 任一直角坐标变换总可以分解成移轴(也叫坐标平移)和转轴(也叫坐标旋转)两个步骤. 1.移轴 如果两个标架 {O ;i , j } 和 {O';i , j' } 的原点O 与O' 不同,O' 在{O ;i , j }中的坐标为 (x 0,y 0),但两标架的坐标基向量相同,即有 i' = i , j' = j 那么标架 {O';i', j'} 可以看成是由标架 {O ;i , j } 将原点平移到O'点而得来的(图5.7.1).这种坐标变换叫做移轴(坐标平移). 设P 是平面内任意一点,它对标架 {O ;i , j } 和 {O';i', j'} 的坐标分别为 (x ,y ) 与 (y x '',),则有 P O O O OP '+= 但 j i y x +=, j i y x O '+'=', j i 00y x O +=' 于是有 j i j i )()(00y y x x y x +'++'=+ 故 {x ,y } = {x 0,y 0} + {x',y' } 根据向量相等的定义得移轴公式为 图5.7.1 ? ? ?+'=+'=00 y y y x x x (5.7-1) 从中解出x' 和y',就得逆变换公式为 ? ? ?-='-='00 y y y x x x (5.7-2) 2.转轴 若两个标架 {O ;i , j } 和 {O';i', j'} 的原点相同,即O = O',但坐标基向量不同,且有∠(i ,i' ) = α,则标架 {O';i',j'} 可以看成是由标架 {O ;i ,j } 绕O 点旋转α 角而得

《平面直角坐标系》典型例题

《平面直角坐标系》章节复习 考点1:考点的坐标与象限的关系 知识解析:各个象限的点的坐标符号特征如下: (特别值得注意的是,坐标轴上的点不属于任何象限.) 1、在平面直角坐标中,点M (-2,3)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 2、在平面直角坐标系中,点P (-2,2x +1)所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3、若点P (a ,a -2)在第四象限,则a 的取值范围是( ). A .-2<a <0 B .0<a <2 C .a >2 D .a <0 4、点P (m ,1)在第二象限内,则点Q (-m ,0)在( ) A .x 轴正半轴上 B .x 轴负半轴上 C .y 轴正半轴上 D .y 轴负半轴上 5、若点P (a ,b )在第四象限,则点M (b -a ,a -b )在( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 6、在平面直角坐标系中,点(12)A x x --,在第四象限,则实数x 的取值范围是 . 7、对任意实数x ,点2(2)P x x x -,一定不在.. ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 8、如果a -b <0,且ab <0,那么点(a ,b)在( ) A 、第一象限 B 、第二象限 C 、第三象限, D 、第四象限. 考点2:点在坐标轴上的特点 x 轴上的点纵坐标为0, y 轴上的点横坐标为0.坐标原点(0,0) 1、点P (m+3,m+1)在x 轴上,则P 点坐标为( ) A .(0,-2) B .(2,0) C .(4,0) D .(0,-4) 2、已知点P (m ,2m -1)在y 轴上,则P 点的坐标是 。

坐标转换模型

坐标转换模型 1.空间直角坐标系间的转换模型(七参数模型) ①公式(布尔莎模型): ②分析: (1)将O-XYZ中的长度单位缩放l+m倍,使其与O'-X'Y'Z'的长度单位一致; (2)从X反向看向原点O,以O为旋转点,让O-XYZ绕X轴顺时针旋转Wx角,使经过旋转后的Y轴与O'-X'Y'Z’平面平行; (3)从Y反向看向原点O,以O为旋转点,让O-XYZ绕Y轴顺时针旋转Wy角,使经过旋转后的X轴与O'-X'Y'Z'平面平行。显然,此时Z轴也与Z'轴平行; (4)从Z反向看向原点O,以O点为旋转点,O-XYZ绕Z轴顺时针旋转Wz角,使经过旋转后的X轴与X’轴平行。显然,此时O-XYZ的三个坐标轴己与O'-X'Y'Z’中相应的坐标轴平行; 原坐标为O-XYZ,转换到新坐标O-X’Y’Z’.(两坐标系都为空间直角坐标系)其中(dX dY dZ)为坐标原点的平移参数,即将坐标O-XYZ的原点分别沿三个坐标轴平移-dX,-dY,-dZ,使原坐标轴与O-X’Y’Z’的点重合。m为尺度参数,(w1 w2 w3)分别为坐标轴的旋转参量(角度),构成的旋转矩阵分别为: 分别将R1 R2 R3代入上式,可得:

当旋转角度w1 w2 w3很小时(<=10),cos(w)=1,sin(w)=0;在误差允许范围内可以将模型简化为:(同样七参数模型) 四参数模型是在七参数模型的特例,没有考虑坐标轴的旋转量,只考虑坐标轴的平移。 总结: 类似布尔莎模型(以坐标原点为参考点),还有莫洛金斯基坐标模型(以目标点为变换中心)、武测转换模型和范士转换模型(以控制网参考点的站心地平坐标系的三个坐标轴为旋转轴),这些坐标转换模型很容易实现相关坐标在不同坐标系的转换,但是参考位置的偏移向量的相关参数,在实际运用中这些参量是很难测定的,并且受地球重力等物理因素的影响,两个坐标系统即使经过相似变换,仍可能存在较大的残差,所以这些模型适用于简单且规则模型中。 ④程序: clc clear all dX=input('please input value of dX=');

(完整版):平面直角坐标系经典例题解析

【平面直角坐标系重点考点例析】 考点一:平面直角坐标系中点的特征 例1 在平面直角坐标系中,点P(m,m-2)在第一象限内,则m的取值范围是.思路分析:根据第一象限的点的坐标,横坐标为正,纵坐标为正,可得出m的范围. 解:由第一象限点的坐标的特点可得: 20 m m > ? ? -> ? , 解得:m>2. 故答案为:m>2. 点评:此题考查了点的坐标的知识,属于基础题,解答本题的关键是掌握第一象限的点的坐标,横坐标为正,纵坐标为正. 例1 如果m是任意实数,则点P(m-4,m+1)一定不在() A.第一象限B.第二象限C.第三象限D.第四象限 思路分析:求出点P的纵坐标一定大于横坐标,然后根据各象限的点的坐标特征解答.解:∵(m+1)-(m-4)=m+1-m+4=5, ∴点P的纵坐标一定大于横坐标, ∵第四象限的点的横坐标是正数,纵坐标是负数, ∴第四象限的点的横坐标一定大于纵坐标, ∴点P一定不在第四象限. 故选D. 点评:本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).例2 如图,矩形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2012次相遇地点的坐标是() A.(2,0)B.(﹣1,1)C.(﹣2,1)D.(﹣1,﹣1) 分析:利用行程问题中的相遇问题,由于矩形的边长为4和2,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答. 解答:解:矩形的边长为4和2,因为物体乙是物体甲的速度的2倍,时间相同,物体甲与物体乙的路程比为1:2,由题意知: ①第一次相遇物体甲与物体乙行的路程和为12×1,物体甲行的路程为12×=4,物体乙行的路程为12×=8,在BC边相遇;

坐标转换之计算公式

创作编号: GB8878185555334563BT9125XW 创作者: 凤呜大王* 坐标转换之计算公式 一、参心大地坐标与参心空间直角坐标转换 1名词解释: A :参心空间直角坐标系: a) 以参心0为坐标原点; b) Z 轴与参考椭球的短轴(旋转轴)相重合; c) X 轴与起始子午面和赤道的交线重合; d) Y 轴在赤道面上与X 轴垂直,构成右手直角坐标系0-XYZ ; e) 地面点P 的点位用(X ,Y ,Z )表示; B :参心大地坐标系: a) 以参考椭球的中心为坐标原点,椭球的短轴与参考椭球旋转轴重合; b) 大地纬度B :以过地面点的椭球法线与椭球赤道面的夹角为大地纬度B ; c) 大地经度L :以过地面点的椭球子午面与起始子午面之间的夹角为大地经度 L ; d) 大地高H :地面点沿椭球法线至椭球面的距离为大地高H ; e) 地面点的点位用(B ,L ,H )表示。 2 参心大地坐标转换为参心空间直角坐标: ?? ? ?? +-=+=+=B H e N Z L B H N Y L B H N X sin *])1(*[sin *cos *)(cos *cos *)(2 公式中,N 为椭球面卯酉圈的曲率半径,e 为椭球的第一偏心率,a 、b 椭球的长短半径,f 椭球扁率,W 为第一辅助系数

a b a e 2 2-= 或 f f e 1 *2-= W a N B W e = -=22 sin *1( 3 参心空间直角坐标转换参心大地坐标 [ ] N B Y X H H e N Y X H N Z B X Y L -+= +-++==cos ))1(**)() (*arctan() arctan(2 22 2 2 二 高斯投影及高斯直角坐标系 1、高斯投影概述 高斯-克吕格投影的条件:1. 是正形投影;2. 中央子午线不变形 高斯投影的性质:1. 投影后角度不变;2. 长度比与点位有关,与方向无关; 3. 离中央子午线越远变形越大 为控制投影后的长度变形,采用分带投影的方法。常用3度带或6度带分带,城市或工程控制网坐标可采用不按3度带中央子午线的任意带。 2、高斯投影正算公式:

平面直角坐标变换

平面直角坐标变换 【摘要】对利用EXCEL电子表格进行高斯投影换算的方法进行了较详细的介绍,对如何进行GPS坐标系转换进行了分析,提出了一种简单实用的坐标改正转换方法,介绍了用EXCEL完成转换的思路。 [关键字] 电子表格;GPS;坐标转换 作为尖端技术GPS,能方便快捷性地测定出点位坐标,无论是操作上还是精度上,比全站仪等其他常规测量设备有明显的优越性。随着我国各地GPS差分台站的不断建立以及美国SA政策的取消,使得单机定位的精度大大提高,有的已经达到了亚米级精度,能够满足国土资源调查、土地利用更新、遥感监测、海域使用权清查等工作的应用。在一般情况下,我们使用的是1954年北京坐标系或1980年西安坐标系(以下分别简称54系和80系),而GPS测定的坐标是WGS-84坐标系坐标,需要进行坐标系转换。对于非测量专业的工作人员来说,虽然GPS定位操作非常容易,但坐标转换则难以掌握,EXCEL是比较普及的电子表格软件,能够处理较复杂的数学运算,用它来进行GPS坐标转换、面积计算会非常轻松自如。要进行坐标系转换,离不开高斯投影换算,下面分别介绍用EXCEL进行换算的方法和GPS 坐标转换方法。 一、用EXCEL进行高斯投影换算 从经纬度BL换算到高斯平面直角坐标XY(高斯投影正算),或从XY换算成BL(高斯投影反算),一般需要专用计算机软件完成,在目前流行的换算软件中,存在一个共同的不足之处,就是灵活性较差,大都需要一个点一个点地进行,不能成批量地完成,给实际工作带来许多不便。笔者发现,用EXCEL可以很直观、方便地完成坐标换算工作,不需要编制任何软件,只需要在EX CEL的相应单元格中输入相应的公式即可。下面以54系为例,介绍具体的计算方法。 完成经纬度BL到平面直角坐标XY的换算,在EXCEL中大约需要占用21列,当然读者可以通过简化计算公式或考虑直观性,适当增加或减少所占列数。在EXCEL中,输入公式的起始单元格不同,则反映出来的公式不同,以公式从第2行第1列(A2格)为起始单元格为例,各单元格的公式如下: 单元格 单元格内容 说明A2 输入中央子午线,以度.分秒形式输入,如115度30分则输入1 15.30 起算数据L0 B2 =INT(A2)+(INT(A2*100)-INT(A2)*100)/60+(A2*10000-INT(A2* 100)*100)/3600 把L0化成度 C2 以度小数形式输入纬度值,如38°14′20″则输入38.1420 起算数据B D2 以度小数形式输入经度值 起算数据L E2 =INT(C2)+(INT(C2*100)-INT(C2)*100)/60+(C2*10000-INT(C2* 100)*100)/3600 把B化成度 F2 =INT(D2)+(INT(D2*100)-INT(D2)*100)/60+(D2*10000-INT(D2* 100)*100)/3600 把L化成度 G2 =F2-B2 L-L0 H2 =G2/57.2957795130823 化作弧度 I2 =TAN(RADIANS(E2)) Tan(B) J2 =COS(RADIANS(E2)) COS(B)

直角坐标与极坐标的区别与转换

直角坐标 直角坐标系在数学中应用广泛,是数学大厦最重要的根基之一。 在平面内画两条 直角坐标 直角坐标 互相垂直,并且有公共原点的数轴。其中横轴为X轴,纵轴为Y轴。这样我们就说在平面上建立了平面直角坐标系,简称直角坐标系。 直角坐标中的点 直角坐标中的点 坐标:对于平面内任意一点C,过点分C别向X轴、Y轴作垂线,垂足在X 轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序数对(a,b)叫做点C的坐标。坐标平面:坐标系所在平面。 坐标原点:两坐标轴的公共原点。 象限:X轴和Y轴把坐标平面分成四个象限,右上面的叫做第一象限,其他三个部分按逆时针方向依次叫做第二象限、第三象限和第四象限。象限以数轴为界,横轴、纵轴上的点不属于任何象限。

极坐标 极坐标系 polar coordinates 在平面内由极点、极轴和极径组成的坐标系。在平面上取定一点O,称为极点。从O出发引一条射线Ox,称为极轴。再取定一个长度单位,通常规定角度取逆时针方向为正。这样,平面上任一点P的位置就可以用线段OP的长度ρ以及从Ox到OP 的角度θ来确定,有序数对(ρ,θ)就称为P点的极坐标,记为P(ρ,θ);ρ称为P 点的极径,θ称为P点的极角。当限制ρ≥0,0≤θ<2π时,平面上除极点Ο以外,其他每一点都有唯一的一个极坐标。极点的极径为零,极角任意。若除去上述限制,平面上每一点都有无数多组极坐标,一般地,如果(ρ,θ)是一个点的极坐标,那么(ρ,θ+2nπ),(-ρ,θ+(2n+1)π),都可作为它的极坐标,这里n 是任意整数。平面上有些曲线,采用极坐标时,方程比较简单。例如以原点为中心,r为半径的圆的极坐标方程为ρ=r 等速螺线的极坐标方程为ρ=aθ 。此外,椭圆、双曲线和抛物线这3种不同的圆锥曲线,可以用一个统一的极坐标方程表示。 极坐标系到直角坐标系的转化: 在极坐标系与平面直角坐标系(笛卡尔坐标系)间转换极坐标系中的两个坐标ρ和θ可以由下面的公式转换为直角坐标系下的坐标值 x=ρcosθ y=ρsinθ 由上述二公式,可得到从直角坐标系中x和y两坐标如何计算出极坐标下的坐标θ=arctany/x ( x不等于0) 在x= 0的情况下:若y为正数θ= 90° (π/2 radians);若y为负,则θ= 270° (3π/2 radians). 极坐标的方程 用极坐标系描述的曲线方程称作极坐标方程,通常表示为r为自变量θ的函数。 极坐标方程经常会表现出不同的对称形式,如果r(?θ) = r(θ),则曲线关于极点

七年级下册平面直角坐标系典型例题 2

七年级下册平面直角坐标系典型例题 例1. 如图,点A表示3街与5大道的十字路口,点B表示5街与3大道的十字路口,如果用(3,5)(4,5)→(5,5)→(5,4)→(5,3)表示由A到B的一条路径,那么 1大道1街2街3街4街5街6街 分析:图中确定点用前一个数表示大街,后一个数表示大道. 解:其他的路径可以是: (3,5)→(4,5)→(4,4)→(5,4)→(5,3); (3,5)→(4,5)→(4,4)→(4,3)→(5,3); (3,5)→(3,4)→(4,4)→(5,4)→(5,3); (3,5)→(3,4)→(4,4)→(4,3)→(5,3); (3,5)→(3,4)→(3,3)→(4,3)→(5,3); 规律:明确数对的表示含义和格式,寻找规律确定路线.以某一点为原点(0,0)将平面分成若干个小正方形的方格,利用点所在的行和列的位置来确定点的位置.例2 .如图是某次海战中敌我双方舰艇对峙示意图,对我方舰艇来说: (1)北偏东方向上有哪些目标?要想确定敌舰B的位置,还需要什么数据? (2)距我方潜艇图上距离为1cm处的敌舰有哪几艘? (3)要确定每艘敌舰的位置,各需要几个数据?

北 敌方战舰A 分析:以某一点为观察点,用方位角、目标到这个点的距离这两个数来确定目标所在的位置. 例3. 写出如图1中A,B,C,D各点的坐标. 分析:平面直角坐标系中点的的坐标是由横坐标和纵坐标组成的一个有序数对,横坐标要写在前面.横坐标的确定方法是过点作横轴的垂线,垂足在横轴上所对应的数就是该点的横坐标;再过点作纵轴的垂线,垂足在纵轴上所对应的数就是该点的纵坐标. 因为A在横轴上对应的数是2,在纵轴上对应的数3,所以点A的坐标是(2,3),其它三点的坐标类似可以确定,分别是B(3,2),C(-2,1),D(-1,-2). 例4.一群小孩子在操场上手拉手地围成一圈,组成了一个优美的图案.小明站在旁边发现他们当中八个人恰好站在拐角处的A、B……、H点,而且建立某个坐标系后可测得这八个点的坐标分别是A(0,4),B(-1,1),C(-4,0),D(-1,-1),E(0,-4),F(1,-1),G(4,0),H(1,1).你知道这群孩子围成的图案是什么吗?请把它画出来. 分析:要知道由A、B……、H点围成的图案,只须在坐标系中描出这些点的位置,然后用折线把它们连结出来就可以知道其图形是如图2的图案.

相关文档