文档库 最新最全的文档下载
当前位置:文档库 › 激光表面淬火的应用领域

激光表面淬火的应用领域

激光表面淬火的应用领域
激光表面淬火的应用领域

激光表面淬火的应用领域

激光表面淬火技术原理

激光淬火,也称激光热处理、激光硬化,即利用聚焦后的激光束快速加热金属材料表面,使其发生相变,形成马氏体淬硬层的一种高新技术,分为激光相变硬化、激光熔凝硬化和激光冲击硬化三种工艺方法。

技术特点

1.激光淬火马氏体晶粒更细、位错密度更高,硬度更高,耐磨性更好。

2.变形极小,甚至无变形,适合于高精度零件处理,部分场合可作为材科和零件的最后处理工序。

3.无需回火,淬火表面得到压应力,不易产生裂纹。

4.如工柔牲好,适用面广,可方便地处理大尺寸工件和沟、槽、深孔、内孔、盲孔等局部区域。

5可根据需要调整硬化层深浅。

6.硬度梯度非常小,硬度基本不随激光硬化层深变化而变化。

7.适合的材料广泛,包括各种中高碳钢、工具钢、模具钢以及铸铁材料等。

8.加工过程自动化控制,工期短,质量稳定。

9.低碳环保,无需冷却介质,无废气废水排放。

技术参数

适合材质:各类中高碳钢、铸铁

淬火硬度:一般可比感应淬火高1-5HRC

淬火深度:0.1-1.2mm

应用领域

激光淬火技术解决了许多常规热处理工艺无法解决的难题,已大量应用于冶金、汽车、模具、五金、轻工、机械制造等行业。适合各类型零件的热处理:

1.难以进入热处理炉的大型工件。

2.仅需对沟、槽、孔、边、刃口等局部表面进行热处理的工件。

3.常规热处理工艺难以处理到的部位。

4.对热处理变形量要求高的精密零件。

5.铸铁工件表面的热处理。

6.常规热处理工艺易产生裂纹的零件。

7.常规热处理工艺达不到硬度要求的零件。

模具钢激光淬火技术及应用

模具钢激光淬火技术,是利用聚焦后的激光束快速加热钢铁材料表面,使其发生相变,形成马氏体淬硬层的过程。模具钢激光淬火的功率密度高,冷却速度快,不需要水或油等冷却介质,是清洁、快速的淬火工艺。与感应淬火、火焰淬火、渗碳淬火工艺相比,激光淬火淬硬层均匀,硬度高(一般比感应淬火高1-3HRC),工件变形小,加热层深度和加热轨迹

容易控制,易于实现自动化,不需要象感应淬火那样根据不同的零件尺寸设计相应的感应线圈,对大型零件的加工也无须受到渗碳淬火等化学热处理时炉膛尺寸的限制,因此在很多工业领域中正逐步取代感应淬火和化学热处理等传统工艺。尤其重要的是激光淬火前后工件的变形几乎可以忽略,因此特别适合高精度要求的零件表面处理。激光淬硬层的深度依照零件成分、尺寸与形状以及激光工艺参数的不同,一般在0.3~2.0mm范围之间。对大型齿轮的齿面、大型轴类零件的轴颈进行淬火,表面粗糙度基本不变,不需要后续机械加工就可以满足实际工况的需求。激光熔凝淬火技术是利用激光束将基材表面加热到熔化温度以上,由于基材内部导热冷却而使熔化层表面快速冷却并凝固结晶的工艺过程。获得的熔凝淬火组织非常致密,沿深度方向的组织依次为熔化- 凝固层、相变硬化层、热影响区和基材。激光熔凝层比激光淬火层的硬化深度更深、硬度要高,耐磨性也更好。该技术的不足之处在于工件表面的粗糙度受到一定程度的破坏,一般需要后续机械加工才能恢复。为了降低激光熔凝处理后零件表面的粗糙度,减少后续加工量,华中科技大学配制了专门的激光熔凝淬火涂料,可以大幅度降低熔凝层的表面粗糙度。现在进行激光熔凝处理的冶金行业各种材料的轧辊、导卫等工件,其表面粗糙度已经接近激光淬火的水平。激光淬火现已成功地应用到冶金行业、机械行业、石油化工行业中易损件的表面强化,特别是在提高轧辊、导卫、齿轮、剪刃等易损件的使用寿命方面,效果显著,取得了很大的经济效益与社会效益。近年来在模具、齿轮等零部件表面强化方面也得到越来越广泛的应用。

1.1 模具钢激光淬火的特点质量优势技术特质适用材料实际应用1.淬火零件不变形激光淬火的热循环过程快中碳钢大型轴类2.几乎不破坏表面粗糙度采用防氧化保护薄涂层模具钢各种模具3.激光淬火不开裂精确定量的数控淬火冷作模具钢模具、刃具4.对局部、沟、槽淬火定位精确的数控淬火中碳合金钢减振器5.激光淬火清洁、高效不需要水或油等冷却介质铸铁材料发动机汽缸

API油管螺纹激光淬火技术应用

应用激光表面热处理技术对API油管螺纹表面进行淬火,在保证原机体钢级屈服强度、抗拉强度、伸长率和冲击功等力学性能的条件下,既不改变螺纹的几何尺寸精度,又能增强螺纹的表面硬度和耐磨、耐蚀性能,提高油管的使用寿命,可有效解决采油作业中的油管粘扣问题。

王娅纯

光信0801

20081182013

激光器激励原理

激光器激励原理 —固体激光器 1311310黄汉青 1311343张旭日辅导老师:

摘要:固体激光器目前是用最广泛的激光器之一,它有着一些非常突出的优点。介绍固体激光器的工作原理及应用,更能够加深对其的了解。本论文先从基本原理和结构介绍固体激光器,接着介绍一些典型的固体激光器,最后介绍其在军事国防、工业技术、医疗美容等三个方面的应用及未来的发展方向。 关键词:固体激光器基本原理基本结构应用 1引用 世界上第一台激光器—红宝石激光器(固体激光器)于1960年7月诞生了,距今已有整整五十年了。在这五十年时间里固体激光的发展与应用研究有了极大的飞跃,并且对人类社会产生了巨大的影响。 固体激光器从其诞生开始至今,一直是备受关注。其输出能量大,峰值功率高,结构紧凑牢固耐用,因此在各方面都得到了广泛的用途,其价值不言而喻。正是由于这些突出的特点,其在工业、国防、医疗、科研等方面得到了广泛的应用,给我们的现实生活带了许多便利。 未来的固体激光器将朝着以下几个方向发展: a)高功率及高能量 b)超短脉冲激光 c)高便携性 d)低成本高质量 现在,激光应用已经遍及光学、医学、原子能、天文、地理、海洋等领域,它标志着新技术革命的发展。诚然,如果将激光发展的历史与电子学及航空发展的历史相比,你不得不意识到现在还是激光发展的早期阶段,更令人激动的美好前景将要来到。 2激光与激光器

2.1激光 2.1.1激光(LASER) 激光的英文名——LASER,是英语词组Light Amplification by Stimulated Emission of Radiation(受激辐射的光放大)的缩写[1]。2.1.2产生激光的条件 产生激光有三个必要的条件[2]: 1)有提供放大作用的增益介质作为激光工作物质,其激活粒子(原子、分子或离子)有适合于产生受激辐射的能级结构; 2)有外界激励源,将下能级的粒子抽运到上能级,使激光上下能级之间产生粒子数反转; 3)有光学谐振腔,增长激活介质的工作长度,控制光束的传播方向,选择被放大的受激辐射光频率以提高单色性。 3固体激光器 3.1工作原理和基本结构 在固体激光器中,由泵浦系统辐射的光能,经过聚焦腔,使在固体工作物质中的激活粒子能够有效的吸收光能,让工作物质中形成粒子数反转,通过谐振腔,从而输出激光。 如图1所示,固体激光器的基本结构(有部分结构没有画出)。固体激光器主要由工作物质、泵浦系统、聚光系统、光学谐振腔及冷却与滤光系统等五个部分组成[4]。

激光加热表面淬火简介

激光加热表面淬火简介: (1)定义:利用聚集后的激光束快速加热钢铁材料表面,使其发生相变形成马氏体淬硬层的热处理工改错为激光加热表 面淬火。 (2)特点:与普通热处理相比,它具有如下特点: ①加热速度极快,工件热变形极小。由于激光功率密度高,加 热速度可达1010℃/s,因而热影响区小,工件热变形小,劳动条件好。 ②其冷却速度很高,在工件有足够质量前提下,冷速可达1023℃ /s;不需冷却介质,靠热量由表向里的传导自动淬火。 ③由于激光束扫描(加热)面积很小,可十分精确地对形状复 杂的工件(如有盲孔、小孔、小槽、薄壁零件等)进行处理或局部处理,也可根据需要在同一零件的不同部位进行不同的处理。 ④能精确控制其加工条件,操作简单,可实现在线加工,也易 于与计算机连接,便于实现自动化生产。 ⑤不需要加热介质,有利于环境保护;工件经激光淬火后表面 硬度高(比普通淬火硬度值高15%~~20%)、疲劳强度高(表面具有4000Mpa以上的残余压应力)。 ⑥节省能源,并且工件表面清洁,处理后不需修磨,可作为工 件精机械加工的最后一道工序。 其不足之处在于:只能改变工件表面性能,但不能改善心部

性能;不能用于重负荷工件,也不适用于大型工件。 (3)原理:用于热处理的激光淬火装置主要是CO2气体激光器,它所发生的激光波长为10.6μm,此波长具有很好的大气透过率,很多物质对此波长的辐射线具有一定吸收率;它具有输出功率大(20~~100kW)、效率高(可达20%~~40%)、持续工件时间长等优点。 激光加热金属主要是通过光子同金属材料表面的电子和声子的能量交换,使处理层材料温度升高,在10-7~~10-9s之内就能使作用深度内达到局部热平衡,在金属材料表面形成的这层高温“热层”继而又作为内部金属的加热热源,并以热传导方式进行传热。 激光加热表面淬火就是以高能量激光作为能源以极快速度加热工件并自冷淬火的工艺。其实质就是利用激光产生的热量对工件表面进行处理的过程,它是一种新型的热处理工艺技术。 应当注意事项的是激光加热表面淬火效果与材料表面的反射率、密度和热导率等密切相关,由于所有金属都是10.6μm波长和CO2激光的良好反射体,反射率可高达70%~80%,对于反射率高的材料,激光能量不能被充分,所以激光淬火前要对金属表面施加吸光涂层(黑化处理)以增加吸收率。常用的黑化方法,主要有磷化、氧化等,或在金属表面涂覆一层可大师吸收激光的涂料(如碳素墨汁、胶体石墨、粉状金属氧化物、黑色丙烯酸、氨基屏光漆等)。 (3)工艺参数及应用:钢铁材料进行激光淬火的主要工艺参数

中频表面淬火工艺技术报告

关于中频表面淬火工艺的技术报告 热处理是机械制造中热加工工艺的一种。它对保证机械产品的质量,延长使用寿命,有着重大的作用。钢的热处理就是利用钢在加热、保温和冷却作用下,其内部发生组织状态(晶体结构、组织形态)、物理状态(比容、残余内应力等)和化学成分分布的变化,而使工件具有预期的工艺性能、机械性能、物理性能和化学性能,以达到便于冷热加工,提高使用寿命,充分发挥材料潜力的目的。钢的热处理基本工艺包括退火、正火、淬火、回火和化学热处理等。根据在车间实习和工作情况,我将主要负责车间中频表面淬火工序的工艺编制。所以将重点放在中频表面淬火工序上。 一、感应加热原理及分类 中频加热是感应表面加热的一种。感应表面加热是利用导体(零件)在高频磁场作用下产生的感应电流(涡流损耗)以及导体内磁场的作用(磁滞损耗)引起导体自身发热而进行加热的。根据设备的频率不同分为:①高频加热,频率为100~500千赫。淬硬层深度为0.3~3㎜,加工工件最小直径为Φ28㎜;②中频加热,一般采用8000赫兹和2500赫兹二种,淬硬层深度:8000赫兹 1.3-5.5㎜,加工工件最小直径为Φ16㎜;2500赫兹 2.4-10㎜,加工工件最小直径为Φ28㎜;③工频加热,频率为50赫兹,淬硬层深度为17-70㎜,加工工件最小直径为Φ200㎜。目前,我车间使用的设备是中频立式淬火机床,频率为8000赫兹。而多年不用的高频淬火机床在车间搬、拆迁过程中已经拆除了。 二、感应加热表面淬火工艺及选择 感应加热工艺参数包括着热处理参数和电参数。热处理参数包括加热温度、加热时间、加热速度以及淬火层深度。电参数包括设备的频率、零件单位面积功率等。 感应加热淬火工艺中几个主要问题: 1、确定零件的技术要求 表面淬火零件的技术要求包括:表面硬度、淬火层深度及淬硬区分布、淬火层组织等。 ⑴.表面硬度:感应淬火后零件的表面硬度要求与材料的化学成分和使用的条件有关。 ⑵.淬火层深度:淬火层深度主要是根据零件的机械性能确定的。 ⑶.淬硬区分布:按零件的几何形状与工作条件的不同,各种表面淬火零件的硬化区部分和尺寸有不同的要求。 ⑷.金相组织:按零件的材料及工作条件,规定各格的等级范围。按评级标准进行金相评级。 2、加热温度的选择 感应加热速度快,与一般加热相比,必须选用较高的加热速度,适宜的加热温度是与钢材的化学成分、原始组织状态及加热速度等因素有关。我车间由于设备的限制,只能采取目测加热温度的方法。 3、设备频率的选择 频率的选择主要是根据淬火层深度和零件的尺寸大小来确定。当设备给定或选定以后,设备的频率就是一个不可调的参数。我车间的设备只有立式淬火机床一台,故工艺选择中不再考虑设备频率。 4、感应加热方法及工艺操作 感应加热方法基本分为两种: ⑴.同时加热法,这种加热法是被加热的表面同时共热升温,零件需要加热的整个部分都被感应器包围着。在大批量生产时,为充分发挥设备潜力,提高生产效率,只要设备输出功率足够的条件下,尽可能采用同时加热。 ⑵.连续加热法,零件表面的加热和冷却时连续不断进行的。连续加热生产率较低,但加

表面淬火工艺

淬火.退火.正火工艺 ◆表面淬火 ? 钢的表面淬火 有些零件在工件时在受扭转和弯曲等交变负荷、冲击负荷的作用下,它的表面层承受着比心部更高的应力。在受摩擦的场合,表面层还不断地被磨损,因此对一些零件表面层提出高强度、高硬度、高耐磨性和高疲劳极限等要求,只有表面强化才能满足上述要求。由于表面淬火具有变形小、生产率高等优点,因此在生产中应用极为广泛。 根据供热方式不同,表面淬火主要有感应加热表面淬火、火焰加热表面淬火、电接触加热表面淬火等。 ? 感应加热表面淬火 感应加热就是利用电磁感应在工件内产生涡流而将工件进行加热。感应加热表面淬火与普通淬火比具有如下优点: 1.热源在工件表层,加热速度快,热效率高 2.工件因不是整体加热,变形小 3.工件加热时间短,表面氧化脱碳量少 4.工件表面硬度高,缺口敏感性小,冲击韧性、疲劳强度以及耐磨性等均有很大提高。有利于发挥材料地潜力,节约材料消耗,提高零件使用寿命 5.设备紧凑,使用方便,劳动条件好 6.便于机械化和自动化 7.不仅用在表面淬火还可用在穿透加热与化学热处理等。 ? 感应加热的基本原理 将工件放在感应器中,当感应器中通过交变电流时,在感应器周围产生与电流频率相同的交变磁场,在工件中相应地产生了感应电动势,在工件表面形成感应电流,即涡流。这种涡流在工件的电阻的作用下,电能转化为热能,使工件表面温度达到淬火加热温度,可实现表面淬火。 ? 感应表面淬火后的性能 1.表面硬度:经高、中频感应加热表面淬火的工件,其表面硬度往往比普通淬火高2~3 个单位(HRC)。 2.耐磨性:高频淬火后的工件耐磨性比普通淬火要高。这主要是由于淬硬层马氏体晶粒细小,碳化物弥散度高,以及硬度比较高,表面的高的压应力等综合的结果。 3.疲劳强度:高、中频表面淬火使疲劳强度大为提高,缺口敏感性下降。对同样材料的工件,硬化层深度在一定范围内,随硬化层深度增加而疲劳强度增加,但硬化层深度过深时表层是压应力,因而硬化层深度增打疲劳强度反而下降,并使工件脆性增加。一般硬化层深δ=(10~20)%D。较为合适,其中D。为工件的有效直径。 ◆退火工艺 退火是将金属和合金加热到适当温度,保持一定时间,然后缓慢冷却的热处理工艺。退火后组织亚共析钢是铁素体加片状珠光体;共析钢或过共析钢则是粒状珠光体。总之退火组织是接近平衡状态的组织。 ? 退火的目的 ①降低钢的硬度,提高塑性,以利于切削加工及冷变形加工。 ②细化晶粒,消除因铸、锻、焊引起的组织缺陷,均匀钢的组织和成分,改善钢的性能或为以后的热处理作组织准备。 ③消除钢中的内应力,以防止变形和开裂。 1

激光淬火技术工艺介绍及应用

激光淬火技术是利用聚焦后的激光束快速加热钢铁材料表面,使其发生相变,形成马氏体淬硬层的过程。 激光淬火前后工件的变形几乎可以忽略,因此特别适合高精度要求的零件表面处理。激光淬硬层的深度依照零件成分、尺寸与形状以及激光工艺参数的不同,一般在0.3~2.0mm 范围之间。对大型齿轮的齿面、大型轴类零件的轴颈进行淬火,表面粗糙度基本不变,不需要后续机械加工就可以满足实际工况的需求。 激光淬火现已成功地应用到冶金行业、机械行业、石油化工行业中易损件的表面强化,特别是在提高轧辊、导卫、齿轮、剪刃等易损件的使用寿命方面,效果显著,取得了很大的经济效益与社会效益,近年来在模具、齿轮等零部件表面强化方面也得到越来越广泛的应用。 一:激光淬火的特点 1.淬火零件不变形、激光淬火的热循环过程快、中碳钢、大型轴类; 2.几乎不破坏表面粗糙度、采用防氧化保护薄涂层、模具钢、各种模具; 3.激光淬火不开裂、精确定量的数控淬火、冷作模具钢、模具、刃具; 4.对局部、沟、槽淬火、定位精确的数控淬火、中碳合金钢、减振器;

5.激光、淬火清洁、高效、不需要水或油等冷却介质、铸铁材料、发动机汽缸; 6.淬火硬度比常规方法高、淬火层组织细密、强韧性好、高碳合金钢、大型轧辊。 二:激光淬火工业应用实例 激光淬火技术可对各种导轨、大型齿轮、轴颈、汽缸内壁、模具、减振器、摩擦轮、轧辊、滚轮零件进行表面强化。适用材料为中、高碳钢,铸铁。 南京中科煜宸激光技术有限公司专业从事激光增材制造装备(3D打印、激光修复)、智能激光焊接装备、自动化生产线、核心器件(工艺软件、送粉器、加工头)和金属粉末材料的研发与制造,感兴趣的用户可以咨询了解一下。

激光热处理的应用

本设备是集光、机、电以及制冷和材料加工技术一体的大型集成设备,能对轴类、平面类、缸齿轮类、以及空间工模具类等产品进行激光淬火、激光熔覆、激光表面合金化加工,从而达到改善表面性能、提高工件的使用寿命、恢复工件的外型尺寸以重复使用等目的。 主要特点: 模块化设计,高度集成,具有良好的系统性能及很高的使用寿命;功能齐全,使用方便;激光加工精度高,效率稳定可靠;抗干扰能力强,动态响应速度快;造型美观,操作及维护简便。 激光热处理是一种表面热处理技术。即利用激光加热金属材料表面实现表面热处理。 激光加热具有极高的功率密度,即激光的照射区域的单位面积上集中极高的功率。由 于功率密度极高,工件传导散热无法及时将热量传走,结果使得工件被激光照射区迅 速升温到奥氏体化温度实现快速加热。当激光加热结束,因为快速加热时工件基体大 体积中仍保持较低的温度,被加热区域可以通过工件本身的热传导迅速冷却,从而实 现淬火等热处理效果。激光淬火效果:激光淬火层的硬度分布曲线激光淬火层的硬度 分布激光淬火技术可对各种导轨、大型齿轮、轴颈、汽缸内壁、模具、减振器、摩 擦轮、轧辊、滚轮零件进行表面强化。适用材料为中、高碳钢,铸铁。激光淬火的应 用实例:激光淬火强化的铸铁发动机汽缸,其硬度提高HB230提高到HB680,使用寿 命提高2~3倍。 ] 概念定义:利用激光进行加热的热处理工艺称作激光热处理,它是一种高能量密度表面热处理,具有超高 加热速度,其淬火硬化层的性质和状态与普通淬火有着显著的区别。 研究范围:激光热处理的研究分为不熔化表面热处理和熔化表面热处理两大类。不熔化表面热处理主 要包括激光表面相变硬化、激光冲击热处理和激光表面退火等;熔化表面热处理主要包括激光表面熔凝、激 光表面合金化和激光非晶态等。 (一) 发展过程 70年代初~80年代初 需求动力:70年代大功率CO2激光器的出现,推动了激光热处理的发展。 主要特点:该阶段的主要特点是:1.广泛开展激光表面相变硬化(即激光淬火)的研究和应用;2.开展激 光表面合金化的探索研究;3.受激光器功率的影响,激光热处理工艺的应用受到一定局限,未能迅速发展。 典型成果和产品:典型成果:激光热处理设备、激光表面相变硬化工艺的应用 80年代初~至今 需求动力:随着激光技术的发展,激光器功率的提高,激光热处理的优点日趋明显,从而推动激光热处 理的迅速发展。激光热处理作为一种很好的节能型热处理工艺也是其迅速发展的动力之一。 主要特点:该阶段的主要特点:1.激光热处理设备已商业化,正朝小型化、自动化和柔性化方向发展; 2.激光表面相变硬化处理工艺日趋成熟,广泛用于汽车、航空航天、武器等工业部门; 3.激光表面合金化工 艺因具有极大的经济效益,倍受各国的重视,研究工作进展较大,但仍处于基础工艺试验、组织分析和性能试 验的实验室研究阶段,尚未进入工业应用;4.开展了激光涂覆处理、激光表面熔凝、激光脉冲冲击强化处理 和激光渗氮处理等工艺的研究。 典型成果和产品:典型成果:激光表面相变硬化处理广泛用于军用部门和民用部门。 (二) 现有水平及发展趋势 激光热处理是70年代初首先在美国发展起来的金属表面强化新工艺。激光热处理具有加热和冷却速 度快、工件变形小、可进行局部热处理、工艺灵活性大、污染小和易实现自动化等优点。目前,国外应用较

激光光散射技术及其应用.

激光光散射技术及其应用 Laser Light Scattering System Technology and Application BROOKHA VEN INSTRUMENTS CORPORATION (BEIJING OFFICE) 地址:北京市海淀区牡丹园北里甲1号中鑫嘉园东座A105室美国布鲁克海文公司公司北京技术服务中心 邮编:100083 电话:8610-62081909 传真:8610-6208189

激光光散射技术和应用 近年来,光电子和计算机技术的飞速发展使得激光光散射已经成为高分子体系和胶体科学研究中的一种常规的测试手段。现代的激光光散射包括静态和动态两个部分。在静态光散射中,通过测定平均散射光强的角度和浓度的依赖性,可以得到高聚物的重均分子量M w,均方根回旋半径R g和第二维利系数A2;在动态光散射中,利用快速数字相关器记录散射光强随时间的涨落,即时间相关函数,可得到散射光的特性弛豫时间τ,进而求得平动扩散系数D和与之对应的流体力学半径R h。在使用过程中,静态和动态光散射有机地结合可被用来研究高分子以及胶体粒子在溶液中的许多涉及到质量和流体力学体积变化的 过程,如聚集和分散、结晶和溶解、吸附和解吸、高分子链的伸展和卷缩以及蛋白质长链的折叠,并可得到许多独特的分子量参数。 一、光散射发展简史: Tynadall effect(1820-1893) 1869年,Tyndall研究了自然光通过溶胶颗粒时的散射,注意到散射光呈淡淡的蓝 色,并且发现如果入射光是偏振的,这散射光也是偏振的。Tyndall由此提出了19 世纪气象学的两大谜题:为什么天空是蓝色的?为什么来自天空的散射光是相当偏 振的? James Clerk Maxwell (1833-1879) 解释了光是一种电磁波,并正确地计算出光的速度。 Lord Rayleigh(1842-1919) 1881年,Rayleigh应用Maxwell的电磁场理论推导出,在无吸收、无相互作用条件下,光学各向同性的小粒子的散射光强与波长的四次方成反比。并解释了蓝天是太阳光穿透大气层所产生的散射现象。 Abert Einstein(1879-1955) 研究了液体的光散射现象。 Chandrasekhara V.Raman (1888-1970) 1928年,印度籍科学家Raman提出了Raman 效应(也称拉曼散射),即光波在被散射后频率发生变化的现象。 Peter Debye(1884-1966) 延续了 Einstein的理论,描述了分子溶解于溶剂中所产生的光散射现象,提出用Debye plot 。1944 年,Debye利用散射光强测得稀溶液中高分子的重均分子量。 Peter Debye Lord Rayleigh Tyndall effect

CO2激光器原理及应用

目录 摘要 (1) 关键词 (1) Abstract (1) Keywords (1) 1引言 (2) 2激光 (2) 2.1激光产生的三个条件 (3) 2.2激光的特点 (3) 2.3激光器 (3) 3 CO2激光器的原理 (5) 3.1 CO2激光器的基本结构 (5) 3.2 CO2激光器基本工作原理 (7) 3.3 CO2激光器的优缺点 (8) 4 CO2激光器的应用 (9) 4.1军事上的应用 (9) 4.2医疗上的应用 (10) 4.3工业上的应用 (12) 5 CO2激光器的研究现状与发展前景 (14) 5.1 CO2激光器的研究现状 (14) 5.2 CO2激光器的发展前景 (15) 6 结束语 (17) 参考文献 (19) 致谢 (20)

摘要:本文从引言出发介绍了CO2激光技术的基本情况,简单介绍了激光和激光器的一些特点,重点介绍了气体激光器中的CO2激光器的相关应用,目前CO2激光器是用最广泛的激光器之一,它有着一些非常突出的高功率、高质量等优点。论文首先介绍了应用型CO2激光器的基本结构和工作原理,着重介绍了应用型CO2激光器在军事、医疗和工业三个主要领域的应用,最后介绍应用型CO2激光器的研究前景和现状。通过这些介绍使得人们能够加深对CO2激光器的了解和认识。 关键词: CO2激光器;基本原理;基本结构;应用; Abstract: This departure from the introduction of CO2 laser technology, introduced the basic situation, briefly introduced some of the characteristics of laser and laser to highlight the CO 2gas laser in laser-related applications, the current CO 2 laser was one of the most extensive laser, it had some very prominent high-power, high quality and so on. Paper introduced the application of CO 2 laser-type basic structure and working principle, focusing on the application type CO 2 laser in the military, medical and industrial application of the three main areas, Finally, applied research prospects for CO 2 laser and status. Through these presentations allowed people to deepen their knowledge and understanding of CO s lasers. Keywords:CO2Laser Basic Principle Basic Structure Application

激光淬火

某传动设备有限公司齿轮齿根激光淬火 技术方案 齿轮齿根激光淬火技术方案 一、待处理工件情况 某传动设备有限公司是一家研发、生产及维修机械及传动装置的公司,其公司现有两个内齿轮经过感应加热淬火处理,但齿根部分淬火程度不够,强度不够,需进行二次激光淬火进行性能强化,齿轮如下图所示:

二、淬火要求 1、对齿轮的齿根进行淬火,淬火不影响齿根以外的其它部位; 2、淬火深度在1mm左右; 三、激光淬火可行性分析 1、采用激光熔覆手段修复工艺可行性分析: 1)激光淬火能量密度集中,淬火深度大,总热输入量小,淬火后基本不会造成待修复件基体变形; 2)激光淬火相比传统方式,同样可以获得性能优良的淬火结果,下图是我司激光淬火处理后45钢轴类件的金相图片和硬度。未淬火的基材组织主要是有珠光体+铁素体,硬度较低,而淬火后的组织主要有马氏体和参与奥氏体组成,硬度有了很大提高。 从表1可以看出未淬火的45钢硬度为HV250左右,而经过激光淬火后,硬度提高到HV760左右。足以说明激光淬火的有效性。 图3-未淬火基材的金相组织图4-淬火后的金相组织 表1 45钢试样测试的硬度值

3 ) 我司拥有随行打磨机器人进行自动打磨,并与多家大型机加企业有长期合作关系, 可以满足该件的表面机加处理。 2、 我公司技术条件 1) 我公司团队在铁基、钴基、镍基等材料的激光熔覆中大量技术积累,并拥有多种成 熟的激光熔覆工艺,以及进行金属材料激光淬火的技术条件; 2) 我公司从低功率1KW 到高功率10KW 激光器熔覆系统共四套可以满足不同零件尺寸 的修复需求;成套的现场修复系统包括:激光器、高精度6轴工业机器人、送粉器、水冷机、控制软件系统、其它配件备件。经初步研究评估采用4KW 熔覆设备可以满足修复。

激光表面表面处理技术及进展

激光表面表面处理技术及进展 摘要:激光具有巨大的技术潜力,在冶金和材料加工中发展迅速,应用广泛。激光表面处理由于其对工业和生产作出了巨大贡献,已成为飞速成长的重要加工技术领域。本文较系统地介绍了国内外激光表面处理技术的研究与应用近况,指出了这项技术今后需解决的问题。 关键字:激光;表面处理;进展 0 前言 激光的出现时近代物理学的一个重大进展。第一台激光器于60年代初问世,对激光表面热处理工艺的研究早在激光器诞生后不久就已经开始,但直到60年代末、70年代初才在热处理生产中获得应用。 激光在金属热处理方面取得成功,标志此技术的应用进人了新灼阶段。随着大功率激光器的研制成功与不断完善,这一新工艺用于汽车转向器表面处理的生产线[1]。国内经过“六五”计划的联合攻关,已在汽缸套等零部件的表面热处理上获得成功,取得了一批科研成果。随之而发展的表面涂覆(cladding),表面上釉(Glazing)及表面合金化(SurfaeeAlloing)等工艺[2]也取得了相当大的进展。与上述工艺相比较,激光表面热处理是当前比较成熟、应用比较广泛的工艺。 1 激光表面处理技术的特点[3] 1)通过选择激光波长调节激光功率等手段,能灵活地对复杂 形状工件或工件局部部位实施非接触性急热、急冷。该技术易控制处理范围,热影响区小,工件产生的残余应力及变形很小。 2)可在大气、真空及各种气氛中处理,制约条件少,且不造成 化学污染。 3)通常,激光表面处理的改性效果比普通处理方法更显著 4)激光束能量集中,密度大,速度快,效率高,成本低。 5)可缩短工艺流程,处理过程中工件可以运动,故特别适合组织自动化处理线。 6)激光束便于通过导光系统准确地输人与定位,亦能导向多个工作台,可大大提高激光的使用率和处理的效率。 7)激光表面处理尤其适用于大批量处理生产线,其成本比传统的表面热处理低。 2 激光表面相变应化(LTH) 不论激光束是如户J产生的,激光束仅是一加热金属的热源,金属经激光热处理后,一般不出现异常的治全变化。相变硬化是一种儿乎无尺寸变化而能达到冶金相变的加工技术。利用激光束可以选择小面积加热和对需要部位硬化。实现激光相变硬化有三个基本条件仁:第一,金属硬化

激光技术及其在现代通讯技术中的应用.

激光技术及其在现代通讯技术中的应用 姓名:杨春有学号:20141060138 学院:信息学院专业:通信工程(国防) 摘要20世纪以来,激光是继原子能、计算机、半导体之后的又一重大科技发明。在有充分的理论准备和生产实践需要的背景下,激光技术应运而生。它一问世就获得了异乎寻常的快速发展。激光在现代通信领域有着广泛的应用。它在扩大通信容量,缓和通信频段拥挤,提高安全等方面都发挥着极为重要的作用。 关键词:激光通信技术现代通讯激光通信光子晶体能量衰减 引言 事实上,1916 年激光的原理被著名的物理学家爱因斯坦发现之后一直没有研制成功,原因在于科学实验所需要的器材没有现在发达,一直到1958 年激光才被首次成功制造。激光是计入20世纪,继原子能、计算机、半导体之后,人类的又一重大发明,它的亮度非常之高,大约为太阳光的100亿倍。因此激光一问世,就获得了异乎寻常的飞快发展,也正是因为这个原因,历史悠久的光学科学和光学技术体会了新生的快乐,更重要的是导致整个一门新兴产业——激光产业——的诞生。 一激光通信的发展阶段 激光通信经历了大气通信和光波导(光纤)通信两个重要的发展阶段。CO2气体激光器是比较符合要求的早期通信用光源,其输出激光波长为10.6μm,在大气通行当中,信道传输的低损耗窗口要求的标准波长是10.6μm。早期的激光大气通信所用光源还包括YAG固体激光器、He-Ne气体激光器等等。其中的早期激光大气通信曾经掀起了全球性的研究浪潮,大量的人力、财力和物力在这个阶段投入了进去,对激光大气通信进行了广泛的研究开发。但是这项研究只有少数的经济和技术力量雄厚的发达国家才能够承担得起。光纤波导通信技术大约与激光大气通信技术的研究工作同步展开,从而在技术上形成了激光无线通信和激光有线通信两种通信方式,这两种通信技术与传统通信技术大不相同。 腔面发射激光器(VCSEL)列阵光接受发射模块的处理能力不仅速度高而且容量特别大。微电子电路的多功能的逻辑控制、具有高强度并行操作功能的电子集成器件的优越性、光本身的高速传输能力、超高规模集成技术的优越性在垂直腔面发射激光器(VCSEL)列阵光接受发射模块当中得到了完美的体现。现代通信技术研究中,在激光通信领域,最引人瞩目的就要属垂直腔面发射激光器(VCSEL)了。包括制造成本很低、易

常用激光器简介

几种常用激光器的概述 一、CO2激光器 1、背景 气体激光技术自61年问世以来,发展极为迅速,受到许多国家的极大重视。特别是近两年,以二氧化碳为主体工作物质的分子气体激光器的进展更为神速,已成为气体激光器中最有发展前途的器件。 二氧化碳分子气体激光器不仅工作波长(10.6微米)在大气“窗口”,而且它正向连续波大功率和高效率器件迈进。1961年,Pola-nyi指出了分子的受激振动能级之间获得粒子反转的可能性。在1964年1月美国贝尔电话实验室的C.K.N.Pate 研制出第一支二氧化碳分子气体激光器,输出功率仅为1毫瓦,其效率为0.01%。不到两年,现在该类器件的连续波输出功率高达1200瓦,其效率为17 %,电源激励脉冲输出功率为825瓦,采用Q开关技术已获得50千瓦的脉冲功率输出。最近,有人认为,进一步提高现有的工艺水平,近期可以达到几千瓦的连续波功率输出和30~40% 的效率。 2、工作原理 CO2激光器中,主要的工作物质由CO?,氮气,氦气三种气体组成。其中CO?是产生激光辐射的气体、氮气及氦气为辅助性气体。加入其中的氦,可以加速010能级热弛预过程,因此有利于激光能级100及020的抽空。氮气加入主要在CO?激光器中起能量传递作用,为CO?激光上能级粒子数的积累与大功率高效率的激光输出起到强有力的作用。CO?分子激光跃迁能级图CO?激光器的激发条件:放电管中,通常输入几十mA或几百mA的直流电流。放电时,放电管中的混合气体内的氮分子由于受到电子的撞击而被激发起来。这时受到激发的氮分子便和CO?分子发生碰撞,N2分子把自己的能量传递给CO2分子,CO?分子从低能级跃迁到高能级上形成粒子数反转发出激光。 3、特点 二氧化碳分子气体激光器不但具有一般气体激光器的高度相干性和频率稳定性的特点,而且还具有另外三个独有的特点: (1)工作波长处于大气“窗口”,可用于多路远距离通讯和红外雷达。 (2)大功率和高效率( 目前,氩离子激光器最高连续波输出功率为100瓦,其效率为0.17 %,原子激光器的连续波输出功率一般为毫瓦极,其效率约为0.1%,而二氧化碳分子激光器连续波输出功率高达1200瓦,其效率为17%)。 (3)结构简单,使用一般工业气体,操作简单,价格低廉。由此可见,随着研究工作的进展、新技术的使用,输出功率和效率会不断提高,寿命也会不断增长,将会出现一系列新颖的应用。例如大气和宇宙通讯、相干探测和导航、超外

激光表面淬火的应用领域

激光表面淬火的应用领域 激光表面淬火技术原理 激光淬火,也称激光热处理、激光硬化,即利用聚焦后的激光束快速加热金属材料表面,使其发生相变,形成马氏体淬硬层的一种高新技术,分为激光相变硬化、激光熔凝硬化和激光冲击硬化三种工艺方法。 技术特点 1.激光淬火马氏体晶粒更细、位错密度更高,硬度更高,耐磨性更好。 2.变形极小,甚至无变形,适合于高精度零件处理,部分场合可作为材科和零件的最后处理工序。 3.无需回火,淬火表面得到压应力,不易产生裂纹。 4.如工柔牲好,适用面广,可方便地处理大尺寸工件和沟、槽、深孔、内孔、盲孔等局部区域。 5可根据需要调整硬化层深浅。 6.硬度梯度非常小,硬度基本不随激光硬化层深变化而变化。 7.适合的材料广泛,包括各种中高碳钢、工具钢、模具钢以及铸铁材料等。 8.加工过程自动化控制,工期短,质量稳定。 9.低碳环保,无需冷却介质,无废气废水排放。 技术参数 适合材质:各类中高碳钢、铸铁 淬火硬度:一般可比感应淬火高1-5HRC 淬火深度:0.1-1.2mm 应用领域 激光淬火技术解决了许多常规热处理工艺无法解决的难题,已大量应用于冶金、汽车、模具、五金、轻工、机械制造等行业。适合各类型零件的热处理: 1.难以进入热处理炉的大型工件。 2.仅需对沟、槽、孔、边、刃口等局部表面进行热处理的工件。 3.常规热处理工艺难以处理到的部位。 4.对热处理变形量要求高的精密零件。 5.铸铁工件表面的热处理。 6.常规热处理工艺易产生裂纹的零件。 7.常规热处理工艺达不到硬度要求的零件。 模具钢激光淬火技术及应用 模具钢激光淬火技术,是利用聚焦后的激光束快速加热钢铁材料表面,使其发生相变,形成马氏体淬硬层的过程。模具钢激光淬火的功率密度高,冷却速度快,不需要水或油等冷却介质,是清洁、快速的淬火工艺。与感应淬火、火焰淬火、渗碳淬火工艺相比,激光淬火淬硬层均匀,硬度高(一般比感应淬火高1-3HRC),工件变形小,加热层深度和加热轨迹

激光对射技术原理及应用分析.

激光对射技术原理及应用分析 近年来周界防范系统已经成为安防系统基本且不可或缺的安防子系统。 不仅在军工厂、军营、机场、港口、政府机关等高端领域可见其“踪影”。 同时还被广泛应用到住宅小区,并在这些领域保持着相当高的应用增长速度。 众所周知,安全防范技术现在的发展方向是将视频监控、周界报警、入侵探测、门禁控制等独立的安防子系统集成整合,形成一个多功能、全天候、动态的综合安全管理系统。 而周界报警作为安防系统的第一道防线,作用十分重要,已从过去被动的报警探测,发展为今天的威慑阻挡加报警。 且随着安防技术的发展和安防市场的成熟,以及政策法规的进一步完善,数字化、集成化、网络化将是它发展的必然趋势。 周界报警系统是在防护的边界利用如泄漏、激光、电子围栏等技术形成一道或可见或不可见的“防护墙”。 当有越墙行为发生时,相应防区的探测器即会发出报警信号,并送至控制中心的报警控制主机,发出声光警示的同时显示报警位置。 还可联动周界模拟电子屏,甚至联动摄像监控系统、门禁系统、强电照明系统等。 近年来周界防范系统已经成为安防系统基本且不可或缺的安防子系统,不仅在军工厂、军营、机场、港口、政府机关等高端领域可见其 “踪影”,同时还被广泛应用到住宅小区,并在这些领域保持着相当高的应用增长速度。

本文将对激光对射、张力式电子围栏、泄漏电缆、振动电缆四种最常用的周界防范技术进行分析,借此一窥周界防范报警系统技术的发展踪迹。 激光对射工作原理 三安古德激光对射探测器由收、发两部分组成。 激光发射器向安装在几米甚至于几百米远的接收器发射激光线,其射束有单束、双束,甚至多束。 当相应的三安古德激光射束被遮断时,接收器即发出报警信号。 接收器由光学透镜、激光光电管、放大整形电路、功率驱动器及执行机构等组成。 其工作原理是接收器能收到激光射束为正常状态,而当发生入侵时,发射器发射的激光射束被遮挡,即光电管接收不到激光光。 从而输出相应的报警电信号,并经整形放大后输出开关量报警信号。该报警信号可被报警控制器接收,并去联动执行机构启动其它的报警设备,如声光报警器、模拟电子地图、电视监控系统、照明系统等。系统组成 激光周界防越报警系统通常由前端探测系统、现场报警系统、传输系统、中心控制系统、联动系统以及电源系统六部分组成。 1、前端探测系统由激光探测器及其相关附件组成,其对周界围墙或护栏进行防护,检测周界入侵行为,并输出报警信号。 2、现场报警系统由现场报警器及联动装置组成,在探测器检测到入侵行为时,即启动现场报警设备,对非法入侵行为进行威慑。

2020年常用激光器简介

作者:非成败 作品编号:92032155GZ5702241547853215475102 时间:2020.12.13 几种常用激光器的概述 一、CO2激光器 1、背景 气体激光技术自61年问世以来,发展极为迅速,受到许多国家的极大重视。特别是近两年,以二氧化碳为主体工作物质的分子气体激光器的进展更为神速,已成为气体激光器中最有发展前途的器件。 二氧化碳分子气体激光器不仅工作波长(10.6微米)在大气“窗口”,而且它正向连续波大功率和高效率器件迈进。1961年,Pola-nyi指出了分子的受激振动能级之间获得粒子反转的可能性。在1964年1月美国贝尔电话实验室的C.K.N.Pate 研制出第一支二氧化碳分子气体激光器,输出功率仅为1毫瓦,其效率为0.01%。不到两年,现在该类器件的连续波输出功率高达1200瓦,其效率为17 %,电源激励脉冲输出功率为825瓦,采用Q开关技术已获得50千瓦的脉冲功率输出。最近,有人认为,进一步提高现有的工艺水平,近期可以达到几千瓦的连续波功率输出和30~40% 的效率。 2、工作原理 CO2激光器中,主要的工作物质由CO?,氮气,氦气三种气体组成。其中CO?是产生激光辐射的气体、氮气及氦气为辅助性气体。加入其中的氦,可以加速010能级热弛预过程,因此有利于激光能级100及020的抽空。氮气加入主要在CO?激光器中起能量传递作用,为CO?激光上能级粒子数的积累与大功率高效率的激光输出起到强有力的作用。CO?分子激光跃迁能级图CO?激光器的激发条件:放电管中,通常输入几十mA或几百mA的直流电流。放电时,放电管中的混合气体内的氮分子由于受到电子的撞击而被激发起来。这时受到激发的氮分子便和CO?分子发生碰撞,N2分子把自己的能量传递给CO2分子,CO?分子从低能级跃迁到高能级上形成粒子数反转发出激光。 3、特点 二氧化碳分子气体激光器不但具有一般气体激光器的高度相干性和频率稳定性的特点,而且还具有另外三个独有的特点: (1)工作波长处于大气“窗口”,可用于多路远距离通讯和红外雷达。 (2)大功率和高效率( 目前,氩离子激光器最高连续波输出功率为100瓦,

激光淬火

一、概述 激光淬火技术及应用激光淬火技术,是利用聚焦后的激光束快速加热钢铁材料表面,使其发生相变,形成马氏体淬硬层的过程。激光淬火的功率密度高,冷却速度快,不需要水或油等冷却介质,是清洁、快速的淬火工艺。与感应淬火、火焰淬火、渗碳淬火工艺相比,激光淬火淬硬层均匀,硬度高(一般比感应淬火高1-3HRC),工件变形小,加热层深度和加热轨迹容易控制,易于实现自动化,不需要象感应淬火那样根据不同的零件尺寸设计相应的感应线圈,对大型零件的加工也无须受到渗碳淬火等化学热处理时炉膛尺寸的限制,因此在很多工业领域中正逐步取代感应淬火和化学热处理等传统工艺。尤其重要的是激光淬火前后工件的变形几乎可以忽略,因此特别适合高精度要求的零件表面处理。激光淬硬层的深度依照零件成分、尺寸与形状以及激光工艺参数的不同,一般在0.3~2.0mm范围之间。对大型齿轮的齿面、大型轴类零件的轴颈进行淬火,表面粗糙度基本不变,不需要后续机械加工就可以满足实际工况的需求。激光熔凝淬火技术是利用激光束将基材表面加热到熔化温度以上,由于基材内部导热冷却而使熔化层表面快速冷却并凝固结晶的工艺过程。获得的熔凝淬火组织非常致密,沿深度方向的组织依次为熔化-凝固层、相变硬化层、热影响区和基材。激光熔凝层比激光淬火层的硬化深度更深、硬度要高,耐磨性也更好。该技术的不足之处在于工件表面的粗糙度受到一定程度的破坏,一般需要后续机械加工才能恢复。为了降低激光熔凝处理后零件表面的粗糙度,减少后续加工量,华中科技大学配制了专门的激光熔凝淬火涂料,可以大幅度降低熔凝层的表面粗糙度。现在进行激光熔凝处理的冶金行业各种材料的轧辊、导卫等工件,其表面粗糙度已经接近激光淬火的水平。激光淬火现已成功地应用到冶金行业、机械行业、石油化工行业中易损件的表面强化,特别是在提高轧辊、导卫、齿轮、剪刃等易损件的使用寿命方面,效果显著,取得了很大的经济效益与社会效益。近年来在模具、齿轮等零部件表面强化方面也得到越来越广泛的应用 二、激光淬火的特点 质量优势技术特质适用材料实际应用 1.淬火零件不变形激光淬火的热循环过程快中碳钢大型轴类 2.几乎不破坏表面粗糙度采用防氧化保护薄涂层模具钢各种模具3.激光淬火不开裂精确定量的数控淬火冷作模具钢模具、刃具 4.对局部、沟、槽淬火定位精确的数控淬火中碳合金钢减振器 5.激光淬火清洁、高效不需冷却介质铸铁材料发动机汽缸6.淬火硬度比常规方法高淬火层组织细密、强韧性好高碳合金钢大型轧辊 三、组成部分 ● 激光器

关于激光淬火

嘉兴市科技计划项目 激光表面淬火关键技术与装备研发 项目可行性报告 嘉兴学院机电工程学院 嘉兴市浙江数控焊机有限公司 2009年3月

一、立项的背景和意义 自20世纪60 年代激光问世以来,激光技术作为一门举世瞩目的高新技术,几乎在各行业都获得了重要的应用。近年来,激光表面处理技术不仅在研究和开发方面迅速发展,而且在工业应用方面也取得了长足的进步,成为表面工程一个十分活跃的新兴领域。激光表面处理既可以通过激光淬火、表面熔凝改变基体表层材料的微观结构,也可以通过激光熔覆、气相沉淀和合金化等处理方法同时改变基体表层的化学成份和微观结构。激光表面淬火比其它激光加工所需的功率密度小的多, 因此在利用激光技术进行材料加工中,激光表面淬火应用最多,它能显著提高金属表面的硬度及耐腐性。然而目前激光表面淬火技术的应用还不如传统热处理技术那样广泛和成熟,但由于其具有的独特优越性,正日益受到人们的重视。已经在机械制造、交通运输、石油、矿山、纺织、冶金、航空航天等许多领域得到应用和发展。 激光表面淬火是利用激光在要热处理的部分扫描,使被扫描区域快速升温,而未被扫描区域保持常温。激光表面淬火的原理和普通热处理是相同的,只不过激光作为热源加热金属的时间很短,处理区域也很小。激光对金属进行热处理时,金属表面温度和热穿透深度都和激光照射时间的平方成比例。所以适当地调节激光光斑尺寸、扫描速度和激光功率,就可以对金属表面温度和热穿透深度进行控制。采用激光表面淬火的工件的变形量极小(变形量为高频淬火的1/3~1/10),表面光洁度好,无氧化皮产生。因此,可以减少后道工序(矫正或磨制)的工作量,降低工件的制造成本。激光表面淬火后可获得极细的马氏体晶粒,硬度要比常规淬火后的硬度提高15%-20%,硬化层深度可达2mm,而工件心部仍保持原始组织。所以经激光表面淬火处理的工件表面层硬度高,耐磨性好,心部硬度低,韧性好,疲劳强度一般可提高30%~50%。由于金属散热快,激光束扫描后,扫描区域可自行迅速冷却淬火,无需淬火液,是一种清洁卫生的热处理方法而且便于用同一激光加工系统实现同时加工。因此可直接将激光表面淬火工序安排在生产线上,以实现自动化生产。又由于激光表面淬火处理是不接触加热, 所以工件表面不会发生表面沾污。此外, 因为采用特制的透镜聚焦, 激光的焦深很长, 所以工件在激光焦点上下各50~75mm范围内所吸 收的光能是基本相同的, 这对于处理表面凸凹不平的工件是非常有利的。 虽然,目前激光热处理在热处理行业的总产值中所占份额还不大,但是应用前景光明。许多研究成果和应用实例[1-3],都说明采用激光表面热处理技术可以解决某些其它热处理方法难以实现的技术目标。例如细长钢管内壁表面硬化,成型精密刃具刃部超高硬化,模具合缝线强化,缸体和缸套内壁表而硬化等等。采用激光表面热处理的经济效益显著优于传统热处理,例如汽车转向器壳体的激光相变硬化和锯齿激光相变硬化等。因此,激光表面热处理的研究、开发和应用都处于上升阶段。 激光加工技术一直是国家重点支持和推动应用的一项高新技术,特别是政府强调要振兴制造业,这就给激光加工技术应用带来发展机遇。在国家制定中长远期发展规划时,又

相关文档