文档库 最新最全的文档下载
当前位置:文档库 › 超声波无损检测概述

超声波无损检测概述

超声波无损检测概述
超声波无损检测概述

超声波无损检测概述

J I A N G S U U N I V E R S

I T Y

超声波无损检测概述

2.2 国内研究情况

20 世纪50 年代,我国开始从国外引进模拟超声检测设备并应用于工业生产中。上世纪80 年代初,我国研制生产的超声波探伤设备在测量精度、放大器线性、动态范围等主要技术指标方面已有很大程度的提高[3]。80 年代末期,随大规模集成电路的发展,我国开始了数字化超声检测装置的研制。近年来,我国的数字化超声检测装置发展迅速,已有多家专业从事超声检测仪器研究、生产的机构和企业(如中科院武汉物理研究所、汕头超声研究所、南通精密仪器有限公司、鞍山美斯检测技术有限公司等)[1]。目前,国内的超声超声检测装置正在向数字化、智能化的方向发展并且取得了一定的成绩。另外,国内许多领域(如航空航天、石油化工、核电站、铁道部等)的大型企业通过引进国外先进的成套设备和检测技术(如相控阵超声检测设备与技术和TOFD 检测设备与技术),既完善了国内的超声检测设备,又促进了超声无损检测技术的发展[5]。

2.3 超声波无损检测技术发展趋势

超声检测技术的应用依赖于具体检测工件的检测工艺和方法,同时,超声检测还存在检测的可靠性,缺陷的定量、定性、定位以及缺陷检出概率、漏检率、检测结果重复率等问题,这些对超声检测仪器的研制提出了更高要求。

为克服传统接触式超声检测的不足,人们开始探索非接触式超声检测技术,提出了激光超声、电磁超声、空气耦合超声等。为提高检测效率,发展了相控阵超声检测。随着机械扫描超声成像技术的成熟,超声成像检测也得到飞速发展。目前,超声检测仪器已明显向检测自动化、超声信号处理数字化、诊断智能化、多种成像技术的方向发展[5-7]。

3.超声波检测的基本原理

3.1超声波无损检测基本介绍

超声检测(UT)是超声波在均匀连续弹性介质中传播时,将产生极少能量损失;但当材料中存在着晶界、缺陷等不连续阻隔时,将产生反射、折射、散射、绕射和衰减等现象,从而损失比较多的能量,使我们由接收换能器上接收的超声波信号的声时、振幅、波形或频率发生了相应的变化,测定这些变化就

可以判定建筑材料的某些方面的性质和结构内部构造的情况达到测试的目的

[10]。当超声遇到缺陷面时,反射回波幅度会异常增大,根据反射幅度、延迟和相位等就可以判断缺陷的位置、面积和形状[13-15]。如图1所示 按其工作原理不同分为:共振法、穿透法、脉冲反射法超声检测;

按显示缺陷方式不同分为: A 型、B 型、C 型、3D 型超声检测;

按选用超声波波型不同分为:纵波法、横波法、表面波法超声检测;

3.2超声波的产生(发射)与接收

(1)超声波的物理本质:它是频率大于2万赫兹的机械振动在弹性介质中的转播行为。 即超声频率的机械波。一般地说,超声波频率越高,其能量越大,探伤灵敏度也越高。超声检测常用频率在 0.5~10 MHZ 。

(2)超声波的产生机理——利用了压电材料的压电效应。

压电效应:某些电介质在沿一定方向上受到外力的作用而变形时,其内部产生极化现象,同时在它的两个相对表面上出现正负相反的电荷。当外力去掉后,它又会恢复到不带电的状态,这种现象称为正压电效应。当作用力的方向改变时,电荷的极性也随之改变。相反,当在电介质的极化方向上施加电场,这些电介质也会发生变形,电场去掉后,电介质的变形随之消失,这种现象称为逆压电效应,或称为电致伸缩现象。

(3) 超声波的发射与接收

①发射——在压电晶片制成的探头中,对压电晶片施以超声频率的交变电压,由于逆压电效应,晶片中就会产生超声频率的机械振动——产生超声波;产生用于

检测的超

声信号 与介质(包括介质中缺

陷)相互作

用 超声信号的接收、处理和显示 检出介质特性和缺陷

发射 传播 接受 判别 图 1 超声检测过程的基本原理

若此机械振动与被检测的工件较好地耦合,超声波就会传入工件——这就是超声波的发射。

②接收——若发射出去的超声波遇到界面被反射回来,又会对探头的压电晶片产生机械振动,由于正压电效应,在晶片的上下电极之间就会产生交变的电信号。将此电信号采集、检波、放大并显示出来,就完成了对超声波信号的接收。可见,探头是一种声电换能元件,是一种特殊的传感器,在探伤过程中发挥重要的作用。

下面简单介绍三种较常用的检测方法。

脉冲反射法

工作原理:脉冲反射法是利用超声脉冲波入射到两种不同介质交界面上发生反射的原理进行检测。采用同一换能器兼作发射和接收,接收信号显示在荧光屏上。基本原理和波形如图2所示。

当工件中无缺陷时,接收波形如图2-a)所示,荧光屏上只有始波T和底波B;当有小于声束截面的缺陷时,有缺陷波F出现,F波在时基轴上的位置取决,可由此确定缺陷在试件中的位置。缺陷回波的高度,取决于缺于缺陷声程L

f

陷的反射面积和方向角的大小,借此可评价缺陷的当量大小。由于缺陷使部分声能反射,从而使底波高度下降,如图2-b)所示;当有大于声束截面的大缺陷时,全部声能将被缺陷反射,届时将仅有始波和大的缺陷波出现在荧光屏上。

图 2 无缺陷试样和由缺陷试样中的超声回波

a) 完好试样b) 缺陷试样

脉冲反射法的特点:与透射法相比,脉冲反射法有以下优点:

1)灵敏度高,当反射声压达到晶片起始声压的1%时即能检侧,因此,可发现

较小的缺陷;

2)缺陷定位精度高。它是利用缺陷波的传播时间,通过调节扫描速度,即调节

时基轴与声程的比例来对缺陷定位的。因此只要仪器水平线性好,缺陷定位就准确;

3)适应范围广,改变耦合、探头和波型可实现不同方法的检测;

4)操作方便,脉冲反射波一般不需要专门的扫查装置,这就为各种场合下的检

测作业带来了极大的方便和灵活性。

但脉冲反射法也有一定的不足之处:

1)存在一定盲区,对近表面缺陷和薄壁工件不太适用;

2)对于声束轴线不垂直的缺陷反射面,由于折射的结果,使探头往往收不到缺

陷回波信号,容易造成漏检;

3)因声波往返传播,对于高衰减材料的检测不适用。

脉冲透射法

工作原理:脉冲透射法是将发射、接收探头分别置于被检试件的两侧,并使两个探头的声轴处在同一条直线上,同时保证探头与试件之间有良好的声耦合,这样就可以根据超声波穿透试件后的能量变化情况来判断试件内部质量。当试件中无缺陷时,荧光屏上显示始波T和具有一定幅度的回波脉冲B;当有小缺陷时,声波被缺陷遮挡,接收到的回波信号幅度减小;而当试件中缺陷面积造成的声影大于声束截面时,荧光屏上只显示起始脉冲T,无回波信号,如图3所示。

图3超声穿透法示意图

a) 无缺陷试样b) 有缺陷试样

脉冲透射法的主要优点:

1)工件中不存在盲区,适宜探测薄壁工件;

2)与缺陷取向无关,不管缺陷取向如何,只要它遮挡声束传播路径,接收探头

就能发现;

3)在透射法中,声波是单声程传播,故适合检测高衰减的材料。

脉冲透射法的缺点:

1)探测灵敏度低,仅当入射声压变化大于 20%以上时,才能被接收探头检出;

2)不能确定缺陷的深度位置,仅能判断缺陷的有无和大小;

3)对发射和接收探头的相对位置要求严格,需专门的探头支撑装置,因而操作

不方便。

共振法

工作原理:依据试样的共振特性,来判断缺陷情况和工件厚度变化的方法称为共振法。若声波(频率可调的连续波)在被检工件内传播,当试样的厚度为超声波的半波长的整数倍时,由于入射波和反射波的相位相同,将引起共振,一起显示出共振频率,用相邻的两个共振频率之差,由以下公式算出试件厚度:

(1)

式中 f

——工件的固有频率

C ——被检试样的声速

λ——波长

δ——试件厚度

n ——共振次数

当试样内存在缺陷或工件厚度发生变化时,将改变试件的共振频率。当测得共振频率f和共振次数n后,即可求出厚度。由于共振法设备简单,测量精确,常用于壁厚测量。此外,若工件中存在较大缺陷或当工件厚度改变时,将导致共振现象消失或共振点偏移,可利用此现象检测复合材料的胶合质量、板材点焊质量、均匀腐蚀量和板材内部夹层等缺陷。

4.超声波检测的优点和缺点(主要与射线检测比较)[16]

(1)传统能力比较:从工件厚度来说,超声波可检测厚度范围比射线大。例如在钢中的有效探测深度达一米以上。X射线穿透能力和管电压有关,管电压越高,穿透能力越大,以300kV管电压为例,X射线只能检测厚度在50mm以下的钢工件。超声波的穿透能力则相对强的多,检测200mm的钢板,不需要太多的要求。

(2)从检测缺陷的类型来说对平面缺陷如裂纹、夹层等,探伤灵敏度高,并可测定缺陷的深度和大小。但是不易检查形状复杂的工件,要求被检查表面有一定的光洁度,并需要有耦合剂充填满探头和被检查表面之间的间隙,以保证充分的声耦合。

(3)从设备要求来说超声波检测的设备轻便,操作安全,易于实现自动化检验。X射线涉及到防护问题,所以设备比较复杂,需要暗室、自动洗片机、胶片等。(4)成本和检测速度:超声波检测成本很低,检测速度快。

5.超声检测技术在无损检测中的应用

超声无损检测技术(UT)是五大常规检测技术之一,与其它常规无损检测技术相比,它具有被测对象范围广。检测深度大;缺陷定位准确,检测灵敏度高;成本低,使用方便;速度快,对人体无害以及便于现场使用等特点。

(1)目前大量应用于金属材料和构件质量在线监控和产品的在投检查[12]。如钢板、管道、焊鞋、堆焊层、复合层、压力容器及高压管道、路轨和机车车辆零部件、棱元件及集成电路引线的检测等。

(2)各种新材料的检测。如有机基复合材料、金属基复合材料、结构陶瓷材料、陶瓷基复合材料等,超声检测技术已成为复合材料的支柱。

(3)非金属的检测。如混凝土、岩石、桩基和路面等质量检验,包括对其内部缺陷、内应力、强度的检测应用也逐渐增多。

(4)大型结构、压力容器和复杂设备的检测。由于超声成像直观易懂,检测精度较高。因此,近几年我国集超声成像技术及超声信号处理技术等多学科前沿成果于一体的超声机器人检测系统已研制成功,为复杂形状构件的自动扫描超声成像检测提供了有效手段。

(5)核电工业的超声检测。

(6)其它方面的超声检测。如医学诊断广泛应用超声检测技术;目前人们正试图将超声检测技术用于开辟其它新领域和行业,如人们正努力将超声检测技术用于血压控制系统进行系统作非接触检测、辨识。性能分析和故障诊断等。

6.超声波检测在航空航天复合材料结构的发展趋势

新型高性能复合材料的研发在国内外已经成为一个热点,多种新型复合材料的优异性能已得到了验证与普遍认可,并在航空航天领域发挥越来越重要的作用。随着材料工艺的成熟及产品质量的提高,高性能复合材料在航空航天领域的使用比例大幅度提升(波音787“梦想”飞机的复合材料用量已达结构质量的50%[8],有些甚至已代替金属成为某些核心部件的主要结构材料,从而使航空

航天技术的发展有了质的飞跃。图4a)和图4b)分别为波音787复合材料机身及机翼后缘。蜂窝夹芯复合材料以高弹性模量、隔音、隔热和防潮等特性用于雷达天线罩、发动机隔音板、客机机身、直升机旋翼叶片和机舱地板等。

图 4 波音787飞机的典型复合材料构件

工艺材料特性和服役条件等都是影响复合材料构件中产生缺陷的重要因素,当缺陷尺寸达到某一量值时,会导致构件性能显著下降,采用无损检测技术对新型复合材料构件进行检测及质量评价以确保其完整性是制造及服务环节的重要内容。由于航空航天新型复合材料制造成本高、结构特殊和使用环境特殊等特点,对无损检测技术提出了更苛刻,更有针对性的检测条件和检测要求,包括不能使用耦合剂、检测空间狭小、构件尺寸大、结构复杂、检测高效和检测结果实时直观等。研究与新型复合材料技术发展水平相适应的无损检测技术,针对不同检测条件及检测要求提出合理的检测与评价方法已成为国内外研究人员需要思考的新课题。

非接触无损检测技术的应用可以大大提高检测效率,节约维护成本、缩短型号研制周期,此类技术主要可分为基于机械振动的空气耦合超声检测技术,基于光学的红外热像技术、散斑干涉技术、全息成像、太赫兹技术、超导量子干涉技术(Superconducting Quantum Interference Device, SQUID)等,以及激光超声、电磁超声等混合技术[9]。

7.超声波无损检测的展望[11]

在超声波无损检测技术应用的过程中,需要很多理论知识的支持,检测时也对检测的方法和工艺流程有严格的要求,这些规范的检测方式使超声波无损检测的结果可以更准确。发现检测缺陷时,技术人员应用非接触方式的检测技术,运用激光超声来提高检测的效果,所以未来超声波无损检测技术一定会向着自动化操作的水平去发展。自动化的检测方法可以简化检测工作,实现专业检测的目标,扩大超声波无损检测技术应用的范围,同时随着超声技术的应用,在检测的过程中,也会实现数字化检测的目标,利用超声信号来处理技术的应用,使检测技术可以实现统一使用的要求,同时数字化操作的检测过程也会提高检测的准确性,有利于检测技术的发展。所以超声波无损检测技术将会实现全面的现代化操作要求,利用现代化科学技术的发展,来规范超声波无损检测的检测行为,也具备了处理缺陷的功能,提高了检测的效率。

8.参考文献

[1] 邹毅.数字式超声波探伤系统的研发.国防科技大学硕士论文,2007

[2] 尹玲.棒材超声波自动探伤系统的研制. 重庆大学硕士论文,2006

[3] 孙建东.全数字超声探伤仪的设计与实现. 南京邮电大学硕士论文,2010

[4] 沈毅.超声无损检测装置的研究与设计.南京邮电大学硕士论文,2011

[5] 黎连修.超声检测技术在中国[J].无损检测. 2008 年第30 卷第4 期

[6] 耿荣生.新千年的无损检测技术—从罗马会议看无损检测技术的发展方向[J].无损检测,2001.

[7] 罗雄彪,陈铁群.超声无损检测的发展趋势[J].无损检测,2010.

[8] 张立同,成来飞,徐永东. 新型碳化硅陶瓷基复合材料的研究进展[J]. 航空制造技术2003.

[9] 周正干,魏东.空气耦合式超声波无损检测技术的发展[J]. 机械工程学报,2008.

[10] 云庆华. 无损探伤. 北京:劳动出版社,2000

[11] 李新明,段家宝,李常胜.关于超声波无损检测技术的应用研究,大连理工大学,2014.

[12] 张俊哲.无损检测技术及其应用(第二版).北京:科学出版社,2010.

[13]陈翠梅,刘汇,霍臻. 无损检测专用软件NDTS. 无损检测,2000.

[14] 王淑莲. 超声检测技术的发展与应用. 机电一体化,2001.

[15] 刘镇清. 超声检测研究的若干进展. 实用测试技术,2000.

[16] 罗雄彪,陈铁群.超声无损检测的发展趋势,无损探伤,2004.

超声波无损检测的发展

超声无损检测仪器的发展 超声检测仪器性能直接影响超声检测的可靠性,其发展与电子技术等相关学科的发展是息息相关的。计算机的介入,一方面提高了设备的抗干扰能力,另一方面利用计算机的运算功能,实现了对缺陷信号的定量、自动读数、自动识别、自动补偿和报警。20世纪80年代,新一代的超声检测仪器——数字化、智能化超声仪问世,标志着超声检测仪器进入一个新时代。 超声无损检测仪器将向数字化、智能化、图像化、小型化和多功能化发展。在第十三、十四世界无损检测会议仪器展览会、1996年中国国际质量控制技术与测试仪器展览会、1997年日本无损检测展览会等大型国际会议会展中,数字化、智能化、图像化超声仪最引人注目,显示了当今世界无损检测仪器的发展趋势。其中以德国Krauthammer公司、美国Panametrics公司、丹麦Force Institutes公司与美国PAC公司的产品最具代表性。真正的智能化超声仪应该是全面、客观地反映实际情况,而且可以运用频谱分析,自适应专家网络对数据进行分析,提高可靠性。提高超声检测中对缺陷的定位、定量和定性的可靠性也是超声检测仪器实现数字化、智能化急待解决的关键技术问题。 现代的扫查装置也在向智能化方向发展。扫查装置是自动检测系统的基础部分,检测结果准确性、可靠性都依赖于扫查装置。例如采用声藕合监视或藕合不良反馈控制方式提高探头与工件表面的耦合稳定度以及检测的可靠性。从20世纪90年代以来,出现的各种智能检测机器人,已经形成了机器人检测的新时代及工程检测机器人的系列与商业市场。例如日本东京煤气公司的蜘蛛型机器人,移动速度约60m/h ,重约140kg,采用16个超声探头可以对运行状态下的球罐上任意点坐标位置进行扫描。日本NKK公司研制的机器人借助管道内液体推力前进,可以测量输油管道腐蚀状况,其检测精度小于1mm。 丹麦Force研究所的爬壁机器人,重约10吨,采用磁吸附与预置磁条跟踪方式可检测各类大型储罐与船体的缺陷。 超声无损检测技术的发展 超声无损检测技术是国内外应用最广泛、使用频率最高且发展较快的一种无损检测技术, 体现在改进产品质量、产品设计、加工制造、成品检测以及设备服役的各个阶段和保证机器零件的可靠性和安全性上。世界各国出版的无损检测书

简述全自动超声波无损检测方法

简述全自动超声波无损检测方法 摘要:全自动超声波检测技术(AUT)对于提高无损检测效率、保证无损检测质量,节约工程成本有着重要的意义,通过对AUT检测的特点,与传统检测手段进行了对比分析,阐述工程无损检测中AUT检测的通用做法。 关键词:全自动超声环焊缝检测 引言:AUT检测技术是一种新型的无损检测技术,在近几年的推广使用过程中得到了工程质检方的认可,在使用过程中各公司做法不一,本文通过多年AUT 检测工程应用经验总结归纳了AUT检测通用做法。 1、AUT检测方法适用范围 本文论述了环向焊缝全自动超声检测的要求。在AUT检测所得到结论的基础上分析评定环焊缝。根据工程临界判别法(ECA)来最终确定检测验收标准。 2 AUT检测方法步骤 2.1 外观检查 工程现场所有待检环焊缝在焊接完成后都要进行三方(监理、施工、检测)外观检查并且按照AUT检测相应标准的要求进行评定。 所有坡口应在机加工后进行焊接,并且确保焊接符合焊接工艺的要求,随后AUT全自动超声波检测应结合画参考线一起进行。 2.2 超声波检测 工程现场的所有环焊缝的全自动超声检测都要在整个焊缝圆周方向上进行,并按相应的验收标准进行评定。 3 超声波检测系统 AUT检测系统应该提供足够的检测通道的数量,保证仅扫查环焊缝一周,就可对该焊缝整个厚度上的所有区域进行全面检测。所有被选通道都应能显示一个线性A型扫查显示。检测的通道应该能按照通常如图1所示的检测区域评估被检焊缝。仪器的线性应按照相应标准来确定,每6个月测定一次。仪器的误差应该不大于实际满幅高的5%。这一条件应该适用于对数放大器及线性放大器。每一个检测的通道都应可以选择脉冲反射法或者直射法。每一个检测通道的闸门位置及两个闸门之间的最小跨度和增益都是可选择的。记录电位也是可以选择的,以显示记录的波幅和传播时间位于满幅高0~100%之间的信号。对于B扫查或者图像显示的资料记录也应该为0~100%。对于每个门都有两个可记录的输出信号。无论是模拟信号还是数字信号都包括信号的高度和渡越时间。它们都适于多通道记录仪或计算机数据采集软件的显示。 4 AUT的系统设置 4.1 AUT探头及探头灵敏度的确定 在工程现场的检测中用AUT对比试块选定该检测系统的合适当量。每个AUT 检测探头固定在扫查架相应位置上,保证中心距满足要求。分别调整扫查架上探头的位置、角度和激活晶片数,使所有探头在标准试块上的主反射体的信号都达到最大值。把所有检测探头的峰值信号都设置到仪器满屏的80%,此时显示的灵敏度数值就是该探头检测时的基准灵敏度。 4.2 闸门的设置 4.2.1 熔合区闸门的设置参照AUT对比试块上的标准反射体:闸门起点位置在坡口前大于等于3mm,闸门终点位置应大于焊缝上中心线位置1mm。闸门的起点和长度应记录在工艺文件中。

无损检测 超声波检测

超声波检测 华北科技学院机电工程学院 摘要:超声无损检测是在现代工业生产中应用的非常广泛的一种无损检测 方法,它对于提高产品的质量和可靠性有着重要的意义。尽管随着电子技 术的发展,国内出现了一些数字化的超声检测仪器,但其数据处理及扩展 能力有限,缺乏足够的灵活性。而虚拟仪器是近年来刚刚发展起来的一种 新的仪器构成方式,它是一种、通讯技术和测量技术相结合的产物,具有 很大的灵活性和扩展性,具有旺盛的生命力。 关键词:无损检测;超声波探伤;计算机技术;通讯技术 Abstract:As a kind of NDT(Non-Destructive Testing),UT (Ultrasonic Testing) is widely used in modern industry, which plays a very important role in improving the quality and the reliability of product. Although along with technical development in electronics, some digital UT instruments have been developed at home, its expand- ability and the ability of processing data limited. VI (Virtual Instru- ment) is a new Instrument structure developed recent years and is an outcome which combines the computer technique, the communication technique together with the measure technique, which has huge expandability, flexibility and the prosperous vitality. Keywords:NDT(Non-Destructive Testing) UT (Ultrasonic Testing) computer technique communication technique

超声波无损检测基础原理

第1章绪论 1.1超声检测的定义和作用 指使超声波与试件相互作用,就反射、透射和散射的波进行研究,对试件进行宏观缺陷检测、几何特性测量、组织结构和力学性能变化的检测和表征,并进而对其特定应用性进行评价的技术。 作用:质量控制、节约原材料、改进工艺、提高劳动生产率 1.2超声检测的发展简史和现状 利用声响来检测物体的好坏 利用超声波来探查水中物体1910‘ 利用超声波来对固体内部进行无损检测 1929年,前苏联Sokolov 穿透法 1940年,美国的Firestone 脉冲反射法 20世纪60年代电子技术大发展 20世纪70年代,TOFD 20世纪80年代以来,数字、自动超声、超声成像 我国始于20世纪50年代初范围 专业队伍理论及基础研究标准超声仪器 差距 1.3超声检测的基础知识 次声波、声波和超声波 声波:频率在20~20000Hz之间次声波、超声波 对钢等金属材料的检测,常用的频率为0.5~10MHz 超声波特点: 方向性好 能量高 能在界面上产生反射、折射、衍射和波型转换 穿透能力强 超声检测工作原理 主要是基于超声波在试件中的传播特性 声源产生超声波,采用一定的方式使超声波进入试件; 超声波在试件中传播并与试件材料以及其中的缺陷相互作用,使其传播方向或特征被改变; 改变后的超声波通过检测设备被接收,并可对其进行处理和分析; 根据接收的超声波的特征,评估试件本身及其内部是否存在缺陷及缺陷的特性。 超声检测工作原理 脉冲反射法: 声源产生的脉冲波进入到试件中——超声波在试件中以一定方向和速度向前传播——遇到两侧声阻抗有差异的界面时部分声波被反射——检测设备接收和显示——分析声波幅度和位置等信息,评估缺陷是否存在或存在缺陷的大小、位置等。 通常用来发现和对缺陷进行评估的基本信息为: 1、是否存在来自缺陷的超声波信号及其幅度; 2、入射声波与接收声波之间的传播时间; 3、超声波通过材料以后能量的衰减。 超声检测的分类 原理:脉冲反射、衍射时差法、穿透、共振法 显示方式:A 、超声成像(B C D P) 波型:纵波、横波、表面波、板波

数字超声波探伤仪焊缝探伤实例DAC曲线绘制探伤步骤

数字超声波探伤仪焊缝探伤实例/DAC曲线绘制 探伤步骤: 一、探伤前的准备工作 1. 数字式超声探伤仪 目前市面上的探伤仪大都是数字机,数字机显示的是数字化的波形,具有检测速度快、精度高、可靠性高和稳定性好等特点。1983年德国KK公司推出了世界第一台数字超 声探伤仪,采用Z80作中央处理器,但其重达10公斤,体积很大,应用时需要车载、用户爬到很高的地方来操作,不太适用于野外作业。1986年后,工业化国家的超声探伤仪得到了迅猛发展,现代数字式超声探伤仪趋向小型化和图像化方向,如国内也已 推出的掌上型探伤仪,还有具有强大图像处理功能的TOFD探伤仪。这里选用的是市 场上的一般的数字探伤仪。 2.横波斜探头: 5M13×13K2 3.标准试块:CSK-IB 、CSK-3A 4.30mm厚钢板的对接焊缝 5.DAC参数:(1)DAC点数:d=5、10、15、20(mm)的4点(2)判废线偏移量:+5dB (3)定量线偏移量:-3dB (4)评定线偏移量:-9dB 6.耦合剂(如:机油、水、凡士林等) 二.探测面的选择焊缝一侧 三.开机 1.将探头和超声探伤仪连接 2.开启面板开关,开机自检,约5秒钟进入探伤界面。 (1)按键,使屏幕下方显示“基本”、“收发”、“闸门”、“通道”、“探头”五个功能主菜单。 (2)按“F1”键,进入“基本”功能组,将“基本”功能内的“探测范围”调为“150”,将“材料声速”调为“3230”,将“脉冲移位”调为“0.0,将“探头零点”调为“0.00”。 (3)按下F2键,进入“收发”功能组,将“收发”功能内的“探头方式”调为“单晶”,将“回波抑制”调为“0%”。(4)按下F3键,进入“闸门”功能组,将“闸门报警”调为“关”,将“闸门宽度”调为“20.0”,将“闸门高度”调为“50%”。(此条内容的调整可根据使用者的习惯而定)。(5)按下F4键,进入“通道”功能组,将“探伤通道”调为所需的未存储曲线的通道,如“No.1”,此时

无损检测的发展趋势

无损检测的发展趋势 1.超声相控阵技术 超声检测是应用最广泛的无损检测技术,具有许多优点,但需要耦合剂和换能器接近被检材料,因此,超声换能、电磁超声、超声相控阵技术得到快速发展。其中,超声相控阵技术是近年来超声检测中的一个新的技术热点。 超声相控阵技术使用不同形状的多阵元换能器来产生和接收超声波波束,通过控制换能器阵列中各阵元发射(或接收)脉冲的时间延迟,改变声波到达(或来自)物体内某点时的相位关系,实现聚焦点和声束方向的变化,然后采用机械扫描和电子扫描相结合的方法来实现图像成像。与传统超声检测相比,由于声束角度可控和可动态聚焦,超声相控阵技术具有可检测复杂结构件和盲区位置缺陷和较高的检测频率等特点,可实现高速、全方位和多角度检测。对于一些规则的被检测对象,如管形焊缝、板材和管材等,超声相控阵技术可提高检测效率、简化设计、降低技术成本。特别是在焊缝检测中,采用合理的相控阵检测技术,只需将换能器沿焊缝方向扫描即可实现对焊缝的覆盖扫查检测。 2.微波无损检测 微波无损检测技术将在330~3300 MHz中某段频率的电磁波照射到被测物体上,通过分折反射波和透射波的振幅和相位变化以及波的模

式变化,了解被测样品中的裂纹、裂缝、气孔等缺陷,确定分层媒质的脱粘、夹杂等的位置和尺寸,检测复合材料内部密度的不均匀程度。微波的波长短、频带宽、方向性好、贯穿介电材料的能力强,类似于超声波。微波也可以同时在透射或反射模式中使用,但是微波不需要耦合剂,避免了耦合剂对材料的污染。由于微波能穿透对声波衰减很大的非金属材料,因此该技术最显著的特点在于可以进行最有效的无损扫描。微波的极比特性使材料纤维束方向的确定和生产过程中非直线性的监控成为可能。它还可提供精确的数据,使缺陷区域的大小和范围得以准确测定。此外,无需做特别的分析处理,采用该技术就可随时获得缺陷区域的三维实时图像。微波无损检测设备简单、费用低廉、易于操作、便于携带.但是由于微波不能穿透金属和导电性能较好的复合材料,因而不能检测此类复合结构内部的缺陷,只能检测金属表面裂纹缺陷及粗糙度。 近年来,随着军事工业和航空航天工业中各种高性能的复合材料、陶瓷材料的应用,微波无损检测的理论、技术和硬件系统都有了长足的进步,从而大大推动了微波无损检测技术的发展。

超声波无损检测技术的理论研究

毕业设计(论文) 题目超声波无损检测技术 的理论研究 系(院)物理与电子科学系 专业电子信息科学与技术 班级2006级4班 学生姓名李荣 学号2006080927 指导教师吴新华 职称讲师 二〇一〇年六月十八日

独创声明 本人郑重声明:所呈交的毕业设计(论文),是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议。尽我所知,除文中已经注明引用的内容外,本设计(论文)不含任何其他个人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明。 本声明的法律后果由本人承担。 作者签名: 二〇一〇年六月一十八日 毕业设计(论文)使用授权声明 本人完全了解滨州学院关于收集、保存、使用毕业设计(论文)的规定。 本人愿意按照学校要求提交学位论文的印刷本和电子版,同意学校保存学位论文的印刷本和电子版,或采用影印、数字化或其它复制手段保存设计(论文);同意学校在不以营利为目的的前提下,建立目录检索与阅览服务系统,公布设计(论文)的部分或全部内容,允许他人依法合理使用。 (保密论文在解密后遵守此规定) 作者签名: 二〇一〇年六月一十八日

超声波无损检测技术的理论研究 摘要 本文首先针对波无损检测技术进行理论研究,简明扼要的介绍了超声波无损检测技术的研究意义和发展现状,超声波无损检测技术是当前一种较为先进的检测技术,应用领域更广,适用范围更宽。然后细致的分析了超声波无损检测技术的工作原理特性,基于超声波的优良特性,和传播机理,进行器件或工程的无损检测,并分析了超声波无损检测系统的噪声干扰来源,提出了降低噪声的方法。尝试用计算机模拟系统通过仿真软件来处理超声波无损检测过程中的庞大的数据信息。直观准确地定位缺陷的位置和类型。最后介绍了超声波在无损检测领域的两种典型应用,建筑方面,可以通过超声探头,利用声波的反射的折射来检测混凝土路基的厚度,电力系统方面,利用超声波无损检测技术确定次绝缘子的寿命定位绝缘子中缺陷的类型的具体位置,快速有效的解除安全隐患。 关键词:超声波;无损检测;计算机仿真;瓷绝缘子

无损检测超声检测公式汇总

无损检测超声检测公式 汇总 -CAL-FENGHAI.-(YICAI)-Company One1

超声检测公式 1.周期和频率的关系,二者互为倒数: T=1/f 2.波速、波长和频率的关系:C=f λ 或λ=f c ∶Cs ∶C R ≈∶1∶ 4.声压: P =P 1-P 0 帕斯卡(Pa )微帕斯卡(μPa )1Pa =1N/m 2 1Pa =106μP 6.声阻抗:Z =p/u =ρcu/u =ρc 单位为克/厘米2·秒(g/cm 2·s )或千克/米2·秒(kg/m 2·s ) 7.声强;I =21Zu2=Z P 22 单位; 瓦/厘米2(W/cm 2)或 焦耳/厘米2·秒(J/cm 2·s ) 8.声强级贝尔(BeL )。△=lgI 2/I 1 (BeL ) 9.声强级即分贝(dB ) △=10lgI 2/I 1 =20lgP 2/P 1 (dB ) 10.仪器示波屏上的波高与回波声压成正比:△20lgP 2/P 1=20lgH 2/H 1 (dB ) 11.声压反射率、透射率: r=Pr / P0 t =Pt / P0 ?? ?=-=+21//)1(1Z t Z r t r r =12120Z Z Z Z P P r +-= t =122 02Z Z Z P P t += Z 1—第一种介质的声阻抗; Z 2—第二种介质的声阻抗 12.声强反射率: R= 2 12 1220???? ??+-==Z Z Z Z r I I r 声强透射率:T ()2122 14Z Z Z Z += T+R=1 t -r =1 13.声压往复透射率;T 往= 2 122 1)(4Z Z Z Z + 14.纵波斜入射: 1sin L L c α=1sin L L c α'=1n si S S c '=2sin L L c β=2sin S S c β CL1、CS1—第一介质中的纵波、横波波速; C L2、C S2—第二介质中的纵波、横波波速;αL 、α′L —纵波入射角、反射角; βL 、βS —纵波、横波折射角;α′S —横波反射角。 15.纵波入射时:第一临界角α: βL =90°时αⅠ=arcsin 21 L L c c 第二临界角α:βS =90°时αⅡ=arcsin 21S L c c 16.有机玻璃横波探头αL =°~°, 有机玻璃表面波探头αL ≥° 水钢界面 横波 αL =°~° 17.横波入射:第三临界角:当α′L=90°时αⅢ=arcsin 11 L S c c =°当αS ≥°时,钢中横波全反射。 有机玻璃横波入射角αS (等于横波探头的折射角βS )=35°~55°,即K=tg βS=~时,检测灵敏度最高。 18.衰减系数的计算 1. α=(Bn-Bm-20lg n/m)/2x(m-n) α—衰减系数,dB/m (单程); )(m n B B -—两次底波分贝值之差,dB ;δ为反射损失,每次反射损失约为(~1)dB ; X 为薄板的厚度 T :工件检测厚度,mm ;N :单直探头近场区长度,mm ;m 、n —底波反射次数

超声波无损检测概述

超声波无损检测概述

J I A N G S U U N I V E R S I T Y 超声波无损检测概述

2.2 国内研究情况 20 世纪50 年代,我国开始从国外引进模拟超声检测设备并应用于工业生产中。上世纪80 年代初,我国研制生产的超声波探伤设备在测量精度、放大器线性、动态范围等主要技术指标方面已有很大程度的提高[3]。80 年代末期,随大规模集成电路的发展,我国开始了数字化超声检测装置的研制。近年来,我国的数字化超声检测装置发展迅速,已有多家专业从事超声检测仪器研究、生产的机构和企业(如中科院武汉物理研究所、汕头超声研究所、南通精密仪器有限公司、鞍山美斯检测技术有限公司等)[1]。目前,国内的超声超声检测装置正在向数字化、智能化的方向发展并且取得了一定的成绩。另外,国内许多领域(如航空航天、石油化工、核电站、铁道部等)的大型企业通过引进国外先进的成套设备和检测技术(如相控阵超声检测设备与技术和TOFD 检测设备与技术),既完善了国内的超声检测设备,又促进了超声无损检测技术的发展[5]。 2.3 超声波无损检测技术发展趋势 超声检测技术的应用依赖于具体检测工件的检测工艺和方法,同时,超声检测还存在检测的可靠性,缺陷的定量、定性、定位以及缺陷检出概率、漏检率、检测结果重复率等问题,这些对超声检测仪器的研制提出了更高要求。 为克服传统接触式超声检测的不足,人们开始探索非接触式超声检测技术,提出了激光超声、电磁超声、空气耦合超声等。为提高检测效率,发展了相控阵超声检测。随着机械扫描超声成像技术的成熟,超声成像检测也得到飞速发展。目前,超声检测仪器已明显向检测自动化、超声信号处理数字化、诊断智能化、多种成像技术的方向发展[5-7]。 3.超声波检测的基本原理 3.1超声波无损检测基本介绍 超声检测(UT)是超声波在均匀连续弹性介质中传播时,将产生极少能量损失;但当材料中存在着晶界、缺陷等不连续阻隔时,将产生反射、折射、散射、绕射和衰减等现象,从而损失比较多的能量,使我们由接收换能器上接收的超声波信号的声时、振幅、波形或频率发生了相应的变化,测定这些变化就

无损检测案例分析(1)

焊缝无损检测缺陷图片一、气孔与圆缺 图8-1-1 分散的气孔 图8-1-2 密集气孔 图8-1-3 夹钨二、条形夹渣与条形气孔 图8-1-4 条形夹渣

图8-1-5 条形气孔 三、未焊透 图8-1-6 未焊透 四、未熔合 图8-1-7 未熔合 五、裂纹 图8-1-8 裂纹(transverse cracks:横向裂纹;longitudinal root crack:纵向根部裂纹)六、咬边

图8-1-9 内咬边 图8-1-10 外咬边七、内凹 图8-1-11 内凹 八、烧穿 图8-1-12 烧穿

焊缝无损检测案例分析 【案例1】无损检测工艺规程 1、背景 某天然气分输管网工程,要求射线检测100%。 2、问题描述 查无损检测项目部工艺规程《XX公司XX工程无损检测通用射线检测规程》,其中描述“……像质计的使用参照SY/T4109-2005,……射线评级参照SY/T4109-2005……,”等指导性话语;查其曝光曲线为固定时间,电压-厚度曲线,但其现规程中明确说明项目投入三台XXG2505定向射线机,但其曝光曲线只有一个,现场人员解释为三台机器为同一厂家生产,性能差不多。 3、问题分析 (1)工艺规程是相当于公司标准一级的文件,对于项目上的工艺规程,就应当相当于项目上的标准,是所有检测人员赖以编制工艺卡的依据,应当结合公司实际情况与设计指定标准的要求,对每一个方面的技术要求做出明文规定,而不能使用“参照XX标准”等术语。 (2)曝光曲线是反映每一台射线机在一定的透照工艺,胶片系统条件下其曝光时间、选用电压、透照厚度三者之间关系的曲线,虽然射线机厂家给定的曝光曲线是一个型号一个曲线,这不能说明这些射线机就可以共用一个曝光曲线,实际上,就是同一台机器在不同的使用时期,我们还要对其曝光曲线做出修正,这就是为什么,一定要一机一曲线。 4、问题处理 (1)重新编制工艺规程,将标准中的内容,根据工程的实际需要,加入到工艺规程中来,使工艺规程能切实地指导检测人员工作。 (2)要求检测单位对每一台设备做曝光曲线,并制定曝光曲线校验制度。 【案例2】无损检测工艺卡 1、背景 某5万方储油罐无损检测工程,施工规范为GB50128-2005,最底层板厚为24mm,最上层板厚为8mm。 2、问题描述 在检查工艺卡的过程中,发现以下内容:透照厚度填写为8~24,电压填写为150Kv~240kV,曝光时间填定为1~3min,查其现场操作记录,所有的工艺参数确实能包含在这些范围之内,现场人员解释说这样只是为了省事,其工艺卡没有技术上的问题。 3、问题分析 (1)工艺卡的内容必须要覆盖工程中所有检测对象,但绝不是像标准中一样用一个区间去覆盖,是一一对应的覆盖,一就是一,二就是二,如:厚度为8mm,电压填写150kV,曝光时间填写1min等,必须使现场检测人员,能准确无误地根据板厚,读出各项参数,拍出合格底片。 (2)现场操作记录中的数据可以说不是来自于工艺卡,而是来自于现场工作人员的经验,也

无损检测行业发展

无损检测行业发展 班级: 学号: :

无损检测是在不损害或不影响被检测对象使用性能的前提下,采用射线、超声、红外、电磁等原理技术仪器对材料、零件、设备进行缺陷、化学、物理参数的检测技术。常见的有超声波检测焊缝中的裂纹等方法。中国机械工程学会无损检测学会是中国无损检测学术组织,TC56是其标准化机构。 常用的无损检测方法:射线照相检验(RT)、超声检测(UT)、磁粉检测(MT)和液体渗透检测(PT) 四种。其他无损检测方法:涡流检测(ET)、声发射检测(AT)、热像/红外(TIR)、泄漏试验(LT)、交流场测量技术(ACFMT)、漏磁检验(MFL)、远场测试检测方法(RFT)、超声波衍射时差法(TOFD)、目视检测法(VT)等。 无损检测是工业发展必不可少的有效工具,在一定程度上反映了一个国家的工业发展水平,其重要性已得到公认。 无损检测技术经历了三个发展阶段,即无损探伤(Nondestructive inspection,NDI)、无损检测(Nondestructive testing,NDT)和无损评价(Nondestructive evaluation,NDE)。目前一般统称为无损检测(NDT),而不是特指上述的第二阶段。在这三个阶段中,各阶段之间也没有绝对的时间分界点,它们之间存在相互继承和发展,各自的主要特点如下。 1.无损探伤(NDI) 从国际上看,这一技术主要应用于20世纪五六十年代,作为无损检测的初级阶段,其特点是技术和任务都较为简单。在技术手段上可选择的并不丰富,主要采用超声、射线等技术;在任务上主要是检

测试件是否存在缺陷或者异常,其基本任务是在不破坏产品的情况下发现零件或者构件中的缺陷,满足工程需要,其检测结论主要分为有缺陷和无缺陷两类。 2.无损检测(NDT) 随着科学技术的不断发展,特别是生产对无损检测技术的需求不断提升,仅仅检测出是否有缺陷显然不能满足人们的实际需求。在无损检测(NDT)这一发展阶段,不仅仅是探测出试件是否含有缺陷,还包括探测试件的一些其他信息,例如缺陷的结构、性质、位置等,并试图通过检测掌握更多的信息、对于国际上发达的工业国家,这一阶段大致开始于20世纪70年代末或者80年代初。 3.无损检测评价(NDE) 尽管第二阶段的无损检测(NDT)技术已经能够满足大部分工业生产的需求,但是随着对材料、构件等质量要求不断提高,特别是针对在役设备的安全性和经济性的需求越加突出,无损检测技术进入了第三阶段,即无损评价阶段(NDE)。这一阶段的一个标志性事件是1996年在新德里召开的第14界世界无损检测大会(Word conference on NDT,WCNDT),在该次大会上提出了将无损检测(NDT)变为无损评价(NDE)这一重要观点,并很快被各国无损检测界所接受。在这一阶段,人们不仅要对缺陷的有无、属性、位置、大小等信息进行掌握,还要进一步评估分析缺陷的这些特性对被检构件的综合性能指标(例如寿命、强度、稳定性等)的影响程度,最终给出关于综合性指标的某些结论。目前工业发达国家已经处于这一发展阶段。其他国家

无损检测的发展历程

现在无损检测的定义是:物理探伤就是不产生化学变化的情况下进行无损探伤。主要的检测方法有五种: 1.超声波检测UT(Ultrasonic Testing) 2.射线检测RT(Radiographic Testing) 3.磁粉检测MT(Magnetic Particle Testing) 4.渗透检测PT(Penetrant Testing) 5.目视检查VT(Visual Testing) 无损检测技术经历了三个发展阶段,即无损探伤(Nondestructive inspection,NDI)、无损检测(Nondestructive testing,NDT)和无损评(Nondestructive evaluationNDE)。目前一般统称为无损检测(NDT),而不是特指上述的第二阶段。 下面跟大家讲讲这3个阶段,各阶段之间也没有绝对的时间分界点,它们之间存在相互继承和发展,每个阶段主要特点如下。 1.无损探伤(NDI) 从国际上看,这一技术主要应用于20世纪五六十年代,作为无损检测的初级阶段,其

特点是技术和任务都较为简单。在技术手段上可选择的并不丰富,主要采用超声、射线等 技术;在任务上主要是检测试件是否存在缺陷或者异常,其基本任务是在不破坏产品的情 况下发现零件或者构件中的缺陷,满足工程需要,其检测结论主要分为有缺陷和无缺陷两 类。 2.无损检测(NDT) 随着科学技术的不断发展,特别是生产对无损检测技术的需求不断提升,仅仅检测出 是否有缺陷显然不能满足人们的实际需求。在无损检测(NDT)这一发展阶段,不仅仅是 探测出试件是否含有缺陷,还包括探测试件的一些其他信息,例如缺陷的结构、性质、位 置等,并试图通过检测掌握更多的信息、对于国际上发达的工业国家,这一阶段大致开始 于20世纪70年代末或者80年代初。 3.无损检测评价(NDE)

超声波无损检测实例

超声波无损检测主要是基于超声波在试件中的传播特性。声源产生超声波,采用一定的方式使超声波进入试件后;超声波在试件中传播并与试件材料以及其中的缺陷相互作用,使其传播方向或特征被改变;改变后的超声波通过检测设备被接收,并可对其进行处理和分析;根据接收的超声波的特征,评估试件本身及其内部是否存在缺陷及缺陷的特性。超声波无损检测的原理图如下: 在日常的检测工作中,有一些工件由于表面粗糙、形状特殊等原因,不能用常见的直接接触法来进行超声波检测。对于这类的工件,不妨尝试使用液浸法超声波探伤。液浸探伤相对于直接接触法而言,有如下优势:

1. 当改变被检工件的尺寸或者形状时,不需要特殊的探头或楔块来匹配工件; 2. 可以较简单地连续调整声束入射角,这对形状复杂的结构件的异形表面或新的检测工艺的研究而言都是必须的; 3. 耦合液体可以连续使用; 4. 由于不需要紧密的接触,因此检测速度能够非常快; 5. 直接接触法探伤会因工件的表面形状、表面状况或尺寸的变化而产生比较大的耦合损失,液浸法则不会; 6. 水槽中整个浸没有助于排除表面波,因表面波不规则地增加来自外表面的较小不连续性信号; 7. 水槽提供延迟块以允许非常强的界面信号在弱信号返回到仪器之前就通过放大器。这一点当检测小尺寸管子和薄板时特别能显示出优越性。 主要缺点:主要缺点 ①要由有经验的人员谨慎操作,依赖于探伤人员的经验和分析判断,准确性差;②对粗糙、形状不规则、小、薄或非均质材料难以检查;③对所发现缺陷作十分准确的定性、定量表征仍有困难。

在液浸探伤法中,水作为一种易获取的耦合剂得到了很好的应用。因此,水浸探伤法是液浸探伤中最常用的一种检测方法。 下面通过一个铝压缩机旋转轮水浸探伤实例说明不同缺陷的水浸探伤波形显示: A、伪缺陷显示 水浸探伤中,始脉冲(由换能器激发)显示在最左边,接着是工件前表面的反射显示,当换能器沿轴方向移动时,折射声速恰好穿过U形槽的角并且产生伪缺陷波显示。 B、裂纹显示 将换能器沿轴向方向向右移动,在遇到裂纹时产生反射,此时屏幕显示波形如下图;

无损检测超声波参考文献)

[1]郭伟.超声检测.北京:机械工业出版社,2009 [2]邓洪军. 无损检测实训.北京:机械工业出版社,2010 [3]李国华,吴淼.现代无损检测与评价.北京:化学工业出版社,2009 [4]张俊哲. 无损检测技术及其应用( 第二版).北京:科学技术出版社,2010 [5]王仲生.无损检测技术应用. 北京:机械工业出版社,2002 [6]中国机械工程学会无损检测学会. 无损检测Ⅱ级培训教材.北京:机械工业出版社,2005 [7]王永宏, 张玉英. 超声波探伤在钻杆加厚过渡带检测中的应用[J]. 石油矿场机械, 2006,(01) [8]高金生, 万升云. 奥氏体不锈钢与普碳钢对接环焊缝的超声波探伤[J]. 机车车辆工艺, 2000,(03) [9]王永宏, 张玉英. 超声波探伤在钻杆加厚过渡带检测中的应用[J]. 石油矿场机械, 2006,(01) [10]李卓球, 肖敏芳, 宋显辉, 方玺. 基于混凝土超声探伤的CT图像分析[J]. 武汉理工大学 学报, 2006,(03) [11]何岩, 郭重雄, 张龙. 薄壁钢管超声波水浸法探伤[J]. 物理测试, 2003,(04) [12]龚炼红, 张振宇. 钛合金半球体超声波探伤[J]. 航天制造技术, 2002,(05) [13]蒋联民. 连铸坯轧制钢板探伤不合原因分析[J]. 宽厚板, 1998,(06) [14]杨峰, 陈世鸿, 沈宏, 常凤筠. 多通道智能超声波自动探伤仪的微机实现[J]. 鞍山钢铁学 院学报, 1999,(03) [15]陈勇, 韦玉屏. 槽形缺陷对超声波反射当量的研究[J]. 机械设计与制造, 2005,(09) [16]杜秀娟. 小径管对接接头超声波探伤[J]. 青海师范大学学报(自然科学版), 2000,(03) [17]谢春强, 任立, 张春胜. 超声波在石油钻杆损伤检测中的应用[J]. 中国西部科技, 2011,(05) [18]李晓娜. 一种无损检测方法:超声波探伤[J]. 现代焊接, 2008,(11) . [19]曹玉华. 焊接质量的超声波探伤无损检测[J]. 宁夏机械, 2008,(04) . [20]舒晓平. 无损检测准确度保证方法探讨[J]. 现代计量通讯, 2006,(04) . [21]张文震,夏德礼. 无损检测技术在汽车生产中的应用与发展[J]. 吉林交通科技, 2008,(03) . [22]陈宏宇. 铸件超声波探伤方法的分析与应用[J]. 宁夏机械, 2006,(04) . [23]李钧. 无损检测技术在轧辊质量控制方面的应用[J]. 鄂钢科技, 2009,(01) . 盛陈飞. 钢结构焊缝无损检测方法的应用研究[J]. 科技资讯, 2008,(01) . [24]于凤坤,赵晓顺,王希望,刘淑霞,马跃进. 无损检测技术在焊接裂纹检测中的应用[J]. 无损 检测, 2007,(06) . [25]高荣刚. 汽轮机叶片叶身的无损检测[J]. 新疆电力技术, 2009,(01) . [26]闫伟明,曾鹏飞,张国强. 超声波探测单面焊焊接接头根部缺陷的一种方法[J]. 现代焊接, 2008,(05) . [27]张镝. 超声波无损检测在钢结构焊接质量验收中的应用及常见缺陷的预防[J]. 现代焊接, 2006, (11) [28]夏跃广, 常建伟. 9%~12%Cr马氏体钢中厚壁管焊接接头的超声波探伤[J]. 无损检测, 2005,(03) [29]陈华. 钢结构薄板焊缝超声波探伤的研究[J]. 福建建设科技, 2010,(02) 环川建, 张强, 江向华. 小径薄壁管焊接接头超声波探伤方法探讨[J]. 无损探伤, 2005,(06) 熊秀文, 杨定辉, 陈维, 廖常国. 超高层房建钢结构焊缝超声波探伤[J]. 安装, 2011,(02) 王晓锋, 郭长青, 李子龙. 循环载荷下钢结构焊接接头的疲劳失效分析[J]. 山西建筑, 2009,(17)

无损探伤标准

《 无损探伤标准 一、通用基础 1、GB 5616-1985 常规无损探伤应用导则 2、GB/T 9445-1999 无损检测人员技术资格鉴定通则 3、GB/T 14693-1993 焊缝无损检测符号 4、GB 16357-1996 工业X射线探伤放射卫生防护标准 5、JB 4730-1994压力容器无损检测 6、DL/T675-1999 电力工业无损检测人员资格考核规则 二、# 三、射线检测 1、GB 3323-1987 钢熔化焊对接接头射线照相和质量分级 2、GB 5097-1985 黑光源的间接评定方法 3、GB 5677-1985 铸钢件射线照相及底片等级分类方法 4、GB/T 11346-1989 铝合金铸件X射线照相检验针孔(图形)分级 5、GB/T 11851-1996压水堆燃料棒焊缝X射线照相检验方法 6、GB/T 12469-1990 焊接质量保证钢熔化焊接头的要求和缺陷分类 7、GB/T 无损检测术语射线检测 — 8、GB/T 12605-1990 钢管环缝熔化焊对接接头射线透照工艺和质量分级 9、GB/T 16544-1996 球形储罐γ射线全景曝光照相方法 10、GB/T 16673-1996 无损检测用黑光源(UV-A)辐射的测量 11、JB/T 7902-2000 线型象质计 12、JB/T 7903-1995工业射线照相底片观片灯 13、JB/T 泵产品零件无损检测泵受压铸钢件射线检测方法及底片的等级分类 14、JB/T 9215-1999 控制射线照相图像质量的方法 15、JB/T 9217-1999射线照相探伤方法 " 16、DL/T 541-1994 钢熔化焊角焊缝射线照相方法和质量分级 17、DL/T 821-2002 钢制承压管道对接焊接接头射线检验技术规程 18、TB/T6440-92 阀门受压铸钢件射线照相检验

无损检测超声波检测二级试题库(UT)带答案

无损检测 超声波试题(UT) 一、是非题 受迫振动的频率等于策动力的频率。√ 波只能在弹性介质中产生和传播。×(应该是机械波) 由于机械波是由机械振动产生的,所以波动频率等于振动频率。√ 由于机械波是由机械振动产生的,所以波长等于振幅。× 传声介质的弹性模量越大,密度越小,声速就越高。√ 材料组织不均匀会影响声速,所以对铸铁材料超声波探伤和测厚必须注意这一问题。√ 一般固体介质中的声速随温度升高而增大。× 由端角反射率试验结果推断,使用K≥的探头探测单面焊焊缝根部未焊透缺陷,灵敏度较低,可能造成漏检。√ 超声波扩散衰减的大小与介质无关。√ 超声波的频率越高,传播速度越快。× 介质能传播横波和表面波的必要条件是介质具有切变弹性模量。√ 频率相同的纵波,在水中的波长大于在钢中的波长。× 既然水波能在水面传播,那么超声表面波也能沿液体表面传播。× 因为超声波是由机械振动产生的,所以超声波在介质中的传播速度即为质点的振动速度。× 如材质相同,细钢棒(直径<λ=与钢锻件中的声速相同。×(C细钢棒=(E/ρ)?) 在同种固体材料中,纵、横渡声速之比为常数。√ 水的温度升高时,超声波在水中的传播速度亦随着增加。× 几乎所有的液体(水除外),其声速都随温度的升高而减小。√ 波的叠加原理说明,几列波在同一介质中传播并相遇时,都可以合成一个波继续传播。× 介质中形成驻波时,相邻两波节或波腹之间的距离是一个波长。×(应是λ/4;相邻两节点或波腹间 的距离为λ/2) 具有一定能量的声束,在铝中要比在钢中传播的更远。√ 材料中应力会影响超声波传播速度,在拉应力时声速减小,在压应力时声速增大,根据这一特性,可用超声波测量材料的应力。√ 材料的声阻抗越大,超声波传播时衰减越大。×(成反比)

国内外无损检测技术的现状与发展_夏纪真

国内外无损检测技术的现状与发展 夏纪真 (2011年7月) 无损检测资讯网 https://www.wendangku.net/doc/3710455136.html, 一.概述(一)世界无损检测技术的起源与发展 无损检测技术是以物理现象为基础的,回顾一下世界无损检测技术的起源,都是一种物理现象被发现后,随之进行深入研究并投入应用,一般的规律往往首先是在医学领域、军工领域应用,然后推广到工业领域应用。 下面我们来回顾一下部分无损检测技术的起源。 射线检测 1895年11月德国渥茨堡大学教授伦琴发现X射线(伦琴射线),随后在医学领域得到应用; 1896年法国贝克勒尔发现γ射线; 1898年居里夫妇从铀矿中分离出镭 1900年法国海关首次应用X射线检查物品; 1919年英国卢瑟福用α粒子轰击氮原子打出质子,进而建立起第一个核反应装置; 1920年前后X射线开始在工业领域应用; 1939年发现铀裂变现象,此后人工制造的放射性同位素逐渐进入γ射线检验领域; 1946年携带式X射线机诞生 超声检测 1830年已经有利用机械装置人工产生超声波的实验(达到24000Hz) 1914-1918年已经开始利用声波反射的性质探测水下舰艇的研究 1943年出现商品化脉冲回波式超声波探伤仪 涡流检测 1824年加贝(Gambey)用实验发现金属中有涡电流存在,几年后佛科(Foucauit)确认了涡电流的存在; 1831年法拉第(Faradey)发现电磁感应现象; 1865年麦克斯韦完成法拉第概念的完整数学表达式,建立电磁场理论; 1879年休斯(D.E.Hughes)首先将涡流用于实际金属材料分选; 1921~1935年涡流探伤仪和涡流测厚仪先后问世; 1930年实现用涡流法检验钢管焊接质量; 50年代初期德国福斯特(Forster)开创现代涡流检测理论和设备研究新阶段,涡流检测技术开 始正式进入实用阶段 磁粉检测 1868年英国应用漏磁通探测枪管上的不连续性; 1876年应用漏磁通探测钢轨的不连续性; 1918年美国开创磁粉检测首例; 1930年德国福斯特(Forster)将磁粉检测正式引入工业领域; 1933年提出漏磁检测设想; 1947年第一套漏磁检测系统研制成功 渗透检测 1930-1940年代:煤油、“油-白法”、有色染料作为渗透剂的渗透检测方法出现 1941荧光染料的发现与应用,采用紫外线辐照显示,吸收剂-显像剂应用 1950出现以煤油与滑油混合物作为荧光液的荧光渗透检测 1960后出现自动流水线,水基渗透液和水洗法技术,开始关注对氟、氯、硫的控制 微波检测 1948年微波被首次用于工业材料测试 世界无损检测技术的发展历史可以大致上以二次世界大战为重要的转折点:二战前已经起步并开始得到少量的初步应用,在二战期间由于医学和军事的需要得到迅速发展,在二战后随着工业生产技术的迅猛发展,特别是近代和现代机械制造、电子技术、计算机技术的迅猛发展,现代无损检测技术已经发展到了很高的水平。(二)我国的无损检测技术发展历史 我国的无损检测技术实际上从20世纪40年代起就已开始在一些机械工业领域中得到少量应用,但是由于历史的原因,并没有发展起来。新中国成立后,在20世纪50年代初,首先在军工领域(特别是航空工业)以及和军工相关的重工业领域和科研机构开始注重X射线、磁粉、渗透、超声等无损检测技术的应用,其中不少工作是在苏联专家指导下进行,当年一批年轻人加入到了无损检测技术行业,成为今天被我们尊称为我国无损检测

无损检测实验报告

无损检测实验报告 一、实验目的 1.通过实验了解六种无损检测(超声检测、射线检测、涡流检测、磁粉检测、 渗透检测、声发射检测)的基本原理。 2.掌握六种无损检测的方法,仪器及其功能和使用方法。 3.了解六种无损检测的使用范围,使用规范和注意事项。 二、实验原理 (一)超声检测(UT) 1. 基本原理 超声波与被检工件相互作用,根据超声波的反射、透射和散射的行为,对被检工件经行缺陷测量和力学性能变化进行检测和表征,进而进行安全评价的一种无损检测技术。 金属中有气孔、裂纹、分层等缺陷(缺陷中有气体)或夹杂,超声波传播到金属与缺陷的界面处时,就会全部或部分反射。超声波探伤仪的种类繁多,但在实际的探伤过程,脉冲反射式超声波探伤仪应用的最为广泛。一般在均匀的材料中,缺陷的存在将造成材料的不连续,这种不连续往往又造成声阻抗的不一致,由反射定理我们知道,超声波在两种不同声阻抗的介质的交界面上将会发生反射,反射回来的能量的大小与交界面两边介质声阻抗的差异和交界面的取向、大小有关。脉冲反射式超声波探伤仪就是根据这个原理设计的。目前便携式的脉冲反射式超声波探伤仪大部分是A 扫描方式的,所谓A 扫描显示方式即显示器的横坐标是超声波在被检测材料中的传播时间或者传播距离,纵坐标是超声波反射波的幅值。譬如,在一个钢工件中存在一个缺陷,由于这个缺陷的存在,造成了缺陷和钢材料之间形成了一个不同介质之间的交界面,交界面之间的声阻抗不同,当发射的超声波遇到这个界面之后,就会发生反射,反射回来的能量又被探头接受到,在显示屏幕中横坐标的一定的位置就会显示出来一个反射波的波形,横坐标的这个位置就是缺陷在被检测材料中的深度。这个反射波的高度和形状因不同的缺陷而不同,反映了缺陷的性质。 2. 仪器结构 a)仪器主要组成 探头、压电片和耦合剂。 其中,探头分为直探头、斜探头。压电片受到电信号激励便可产生振动发射超声波,当超声波作用在压电片上时,晶片受迫振动引起的形变可转换成相应的电信号,从而接受超声波。耦合剂是为了使超声波更有效的传入工件,在探头与工件表面之间施加的一层透生介质为耦合剂,作用在于排除探头与工件之间的空气。 b)主要旋钮 F1-F6 菜单键,不同状态下有不同功能。 0ABC\4MNO 调节键,调节参数值的大小。 设置及检测键。 快捷键。dB 增益,2GHI 闸门,范围,移位。 电源键。 射线的种类很多,其中易于穿透物质的有X射线、丫射线、中子射线三种。这三 种射线都被用于无损检测,其中X射线和丫射线广泛用于锅炉压力容器焊缝和其他工业

相关文档
相关文档 最新文档