文档库 最新最全的文档下载
当前位置:文档库 › 高中文科数学线性规划部分常见题型整理

高中文科数学线性规划部分常见题型整理

高中文科数学线性规划部分常见题型整理

1.图中的平面区域(阴影部分包括边界)可用不等式组表示为 (

A .20≤≤x

B .??

?≤≤≤≤1

020y x

C .????

?>

≤-+y

x y x 022

D .??

?

??≥≥≤-+00022y x y x 3.已知点P (x 0,y 0)和点A (1,2)在直线0823:=-+y x l 的异侧,则 ( D )

A .02300>+y x

B .<+0023y x 0

C .82300<+y x

D .82300>+y x

一、求线性目标函数的取值范围

4.若x 、y 满足约束条件222x y x y ≤??

≤??+≥?

,则z=x+2y 的取值范围是 ( )

A 、[2,6]

B 、[2,5]

C 、[3,6]

D 、(3,5] 解:如图,作出可行域,作直线l :x+2y =0,将

l 向右上方平移,过点A (2,0)时,有最小值

2,过点B (2,2)时,有最大值6,故选 A

5.已知变量x 、y 满足约束条件??

?

??≤-+≥≤+-0

710

2y x x y x ,则x y 的取值范围是( A )

A.??????6,59

B.[]6,3

C.[)∞+???

?

?∞-,659, D.(][)∞+∞-,63,

二、求可行域的面积

7.不等式组260

302x y x y y +-≥??

+-≤??≤?

表示的平面区域的面积为 ( )A 、4 B 、1 C 、5 D 、无穷大

解:如图作出可行域,△ABC 的面积即为所求,由梯

形OMBC 的面积减去梯形OMAC 的面积即可,选 B

8.已知R y x ∈,,则不等式组??

?

??≥+-≤-≥0

2|||

1|x x y x y 表示的平面区域的面积是__45______.

9.不等式组??

?

??<+>>123400y x y x 表示的平面区域的面积是____,平面区域内的整点坐标 .

三、求可行域中整点个数

10.满足|x|+|y|≤2的点(x ,y )中整点(横纵坐标都是整数)有( ) A 、9个 B 、10个 C 、13个 D 、14个

解:|x|+|y|≤2等价于2(0,0)2(0,0)2(0,0)2

(0,0)

x y x y x y x y x y x y x y x y +≤≥≥??-≤≥?

?

-+≤≥??--≤?

作出可行域如右图,是正方形内部(包括边界),容易得到整点个数为13个,选 D

四、求线性目标函数中参数的取值范围

11.已知x 、y 满足以下约束条件5

503x y x y x +≥??

-+≤??≤?

,使z=x+ay(a>0)

取得最小值的最优解有无数个,则a 的值为( ) A 、-3 B 、3 C 、-1 D 、1

解:如图,作出可行域,作直线l :x+ay =0,要使目标函数

z=x+ay(a>0)取得最小值的最优解有无数个,则将l 向右上方平移后与直线x+y =5重合,故a=1,选 D

五、求非线性目标函数的最值

12.已知x 、y 满足以下约束条件220240330x y x y x y +-≥??

-+≥??--≤?

,则

z=x 2+y 2

的最大值和最小值分别是 ( ) A 、13,1 B 、13,2

C 、13,

45

D

5

解:如图,作出可行域,x 2+y 2是点(x ,y )到原点的距离的平方,故最大值为点A (2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x +y -2=0的距离的平方,即为45

,选C

13.若变量x y 、满足约束条件222x y x y ≤??

≤??+≥?

,则2z x y =+的最小值为 (A )

A.2

B.3

C.5

D.6

14.设,x y 满足约束条件12x y y x y +≤??

≤??≥-?

,则3z x y =+的最大值为( C )

A . 5 B. 3 C. 7 D. -8

六、求约束条件中参数的取值范围

19.已知|2x -y +m|<3表示的平面区域包含点(0,0)和(-1,1),则m 的取值

范围是( )

A 、(-3,6)

B 、(0,6)

C 、(0,3)

D 、(-3,3) 解:|2x -y +m|<3等价于230230

x y m x y m -++>??

-+-

由右图可知3330

m m +>??-

七、线性规划的实际应用

20.某木器厂生产圆桌和衣柜两种产品,现有两种木料,第一种有72m 3

,第二种有56m 3

,假设生产每种产品都需要用两种木料,生产一只圆桌和一个衣柜分别所需木料如下表所示.每生产一只圆桌

可获利6元,生产一个衣柜可获利10元.木器厂在现有木料条件下,圆桌和衣柜各生产多少,才使获得利润最多?

解:设生产圆桌x 只,生产衣柜y 个,利润总额为z 元,那么?????

??≥≥≤+≤+0056

28.008.07209.018.0y x y x y x 而

z =6x +10y .

如上图所示,作出以上不等式组所表示的平面区域,即可行域.

作直线l :6x +10y =0,即l :3x +5y =0,把直线l 向右上方平移至l 1的位置时,直线经过可行域上点M,且与原点距离最大,此时z =6x +10y 取最大值解方程组??

?=+=+56

28.008.07209.018.0y x y x ,得M 点坐标(350,100).答:

应生产圆桌350只,生产衣柜100个,能使利润总额达到最大.

18.某厂生产甲、乙两种产品,产量分别为45个、50个,所用原料为A 、B 两种规格的金属板,每张面积分别为2m 2

、3 m 2

,用A 种金属板可造甲产品3个,乙产品5个,用B 种金属板可造甲、乙产品各6个,则A 、B 两种金属板各取多少张时,能完成计划并能使总用料面积最省?

( A )

A .A 用3张,

B 用6张 B .A 用4张,B 用5张

C .A 用2张,B 用6张

D .A 用3张,B 用5张

高中数学必修四----常见题型归类

高中数学必修四 题型归类 山石 第一章 三角函数 1.1任意角和弧度制 题型一:终边相同角 1.与 2003-终边相同的最小正角是______________,最大负角是_________。 2.终边在y 轴上的角的集合为________。 3.若角α与5α的终边关于y 轴对称,则角α的集合________ __ 。 题型二:区域角 1.第二象限的角的集合为______ __ 2.如图,终边落在阴影部分(含边界)的角的集合是______ __ 3.若α是第二象限的角,确定2α的终边所在位置 .确定2 α 的终边所在位置 . 题型三:弧度制 1.若扇形的面积是1cm 2,它的周长是4cm 2,则扇形圆心角的弧度数为 . 2.若扇形周长为一定值c (c >0),当α= ,该扇形面积最大. 1.2任意角的三角函数 题型一:三角函数定义

1.α是第二象限角,P (x ,5)为其终边上一点,且cos α= 4 2x ,则sin α的值为 . 2.已知角α的终边在直线3x+y=0上,则sin α= ,tan α= 题型二:三角函数值的符号与角所在象限的关系 1.4tan 3cos 2sin 的值。A 小于0 B 大于0 C 等于0 D 无法确定 ( ) 2.已知|cos θ|=cos θ,|tan θ|=-tan θ,则θ 2 的终边在 ( ) A .第二、四象限 B .第一、三象限 C .第一、三象限或x 轴上 D .第二、四象限或x 轴上 题型三:三角函数线 1.设MP 和OM 分别是角 18 19π 的正弦线和余弦线,则MP 、OM 和0的大小关系为______ 2.1sin 、1cos 、1tan 的大小关系为_______________ 题型四:同角公式 1.化简1-2sin200°cos160°=________. 2.222tan1tan 2tan 88tan 89sin 1sin 2sin 89 οοοοοοο ???????++???+的值为________. 3.已知ααcos sin 2 1 =,求下列各式的值: (1) α αααcos 9sin 4cos 3sin 2--; (2) 4sin 2α-3sin αcos α-5cos 2 α. 4.tan110°=k ,则sin70°的值为 ( ) A .-k 1+k 2 B.k 1+k 2 C.1+k 2k D .-1+k 2 k

高中数学简单线性规划复习题及答案(最全面)

简单线性规划复习题及答案(1) 1、设,x y 满足约束条件?? ? ??≤--≥-+≥-0 2020 2y x y x y x ,则22y x ++的最大值为 45 2、设变量,x y 满足?? ? ??≥-+≥-≤-+030201825y x y x y x ,若直线20kx y -+=经过该可行域,则k 的最大值为答案:1 3、若实数x 、y ,满足?? ? ??≤+≥≥12 3400 y x y x ,则13++=x y z 的取值范围是]7,43[. 4、设y x z +=,其中y x ,满足?? ? ??≤≤≤-≥+k y y x y x 0002,若z 的最大值为6,则z 的最小值为 5、已知x 、y 满足以下条件220 240330 x y x y x y +-≥??-+≥??--≤? ,则22 z x y =+的取值范围是 4[,13]5 6、已知实数,x y 满足约束条件10 10310 x y x y x y +-≤??-+≥??--≤? ,则22 (1)(1)x y -+-的最小值为 12 7、已知,x y 满足约束条件10 00 x x y x y m -≥?? -≤??+-≤? ,若1y x +的最大值为2,则m 的值为 5 8、表示如图中阴影部分所示平面区域的不等式组是 ?? ? ??≥-+≤--≤-+0623063201232y x y x y x

9、若曲线y = x 2上存在点(x ,y )满足约束条件20,220,x y x y x m +-≤?? --≤??>? ,则实数m 的取值范围是 (,1)-∞ 10、已知实数y ,x 满足10103x y x y y -+≥?? +-≤??≥-? ,则3z x y =+的最小值为 -3 11、若,x y 满足约束条件10, 0,40,x x y x y -≥??-≤??+-≤? 则x y 的最小值为 13. 12、已知110220x x y x y ≥??-+≤??--≤? ,则22 (2)(1)x y ++-的最小值为___10_ 13、已知,x y 满足不等式0303x y x y x -≥?? +-≥??≤? ,则函数3z x y =+取得最大值是 12 14、已知x ,y 满足约束条件?? ? ??≤≥+≥+-3005x y x y x ,则z =2x +4y 的最小值是-6 15、以原点为圆心的圆全部在区域?? ? ??≥++≤-+≥+-0 9430420 63y x y x y x 内,则圆面积的最大值为 π516

高中数学(人教版A版必修五)配套单元检测:第3章:3.3.2 简单的线性规划问题(二)

3.3.2 简单的线性规划问题(二) 课时目标 1.准确利用线性规划知识求解目标函数的最值. 2.掌握线性规划实际问题中的两种常见类型. 1.用图解法解线性规划问题的步骤: (1)分析并将已知数据列出表格; (2)确定线性约束条件; (3)确定线性目标函数; (4)画出可行域; (5)利用线性目标函数(直线)求出最优解; 根据实际问题的需要,适当调整最优解(如整数解等). 2.在线性规划的实际问题中,主要掌握两种类型:一是给定一定数量的人力、物力资源,问怎样运用这些资源能使完成的任务量最大,收到的效益最大;二是给定一项任务,问怎样统筹安排,能使完成的这项任务耗费的人力、物力资源最小. 一、选择题 1.某厂生产甲产品每千克需用原料A 和原料B 分别为a 1、b 1千克,生产乙产品每千克需用原料A 和原料B 分别为a 2、b 2千克,甲、乙产品每千克可获利润分别为d 1、d 2元.月初一次性购进本月用的原料A 、B 各c 1、c 2千克,要计划本月生产甲产品和乙产品各多少千克才能使月利润总额达到最大.在这个问题中,设全月生产甲、乙两种产品分别为x 千克、y 千克,月利润总额为z 元,那么,用于求使总利润z =d 1x +d 2y 最大的数学模型中,约束条件为( ) A.????? a 1x +a 2y ≥c 1, b 1 x +b 2 y ≥c 2 ,x ≥0,y ≥0 B.????? a 1x +b 1y ≤c 1, a 2 x +b 2 y ≤c 2 , x ≥0, y ≥0 C.????? a 1x +a 2y ≤c 1, b 1 x +b 2 y ≤c 2 ,x ≥0,y ≥0 D.????? a 1x +a 2y =c 1, b 1 x +b 2 y =c 2 , x ≥0, y ≥0 2. 如图所示的坐标平面的可行域内(阴影部分且包括边界),若使目标函数z =ax +y (a >0)取得最大值的最优解有无穷多个,则a 的值为( ) A.14 B.35 C .4 D.53 3.某公司有60万元资金,计划投资甲、乙两个项目,按要求对项目甲的投资不小于对

高中数学三角函数基础知识点及答案

高中数学三角函数基础知识点及答案 1、角的概念的推广:平面内一条射线绕着端点从一个位置旋转到另一个位置所的图形。按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角,一条射线没有作任何旋转时,称它形成一个零角。射线的起始位置称为始边,终止位置称为终边。 2、象限角的概念:在直角坐标系中,使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,角的终边在第几象限,就说这个角是第几象限的角。如果角的终边在坐标轴上,就认为这个角不属于任何象限。 3. 终边相同的角的表示: (1)α终边与θ终边相同(α的终边在θ终边所在射线上)?2()k k αθπ=+∈Z , 注意:相等的角的终边一定相同,终边相同的角不一定相等.如与角 1825-的终边相同,且绝对值最小的角的度数是___,合___弧度。 弧度:一周的弧度数为2πr/r=2π,360°角=2π弧度,因此,1弧度约为57.3°,即57°17'44.806'', 1°为π/180弧度,近似值为0.01745弧度,周角为2π弧度,平角(即180°角)为π弧度, 直角为π/2弧度。(答:25-;5 36 π- ) (2)α终边与θ终边共线(α的终边在θ终边所在直线上) ?()k k αθπ=+∈Z . (3)α终边与θ终边关于x 轴对称?2()k k αθπ=-+∈Z . (4)α终边与θ终边关于y 轴对称?2()k k απθπ=-+∈Z . (5)α终边与θ终边关于原点对称?2()k k απθπ=++∈Z . (6)α终边在x 轴上的角可表示为:,k k Z απ=∈; α终边在y 轴上的角可表示为:,2k k Z παπ=+∈;α终边在坐标轴上的角可表示为:,2 k k Z π α=∈. 如α的终边与 6 π 的终边关于直线x y =对称,则α=____________。 (答:Z k k ∈+ ,3 2π π) 4、α与2α的终边关系:由“两等分各象限、一二三四”确定.如若α是第 二象限角,则2 α 是第_____象限角 (答:一、三) 5.弧长公式:||l R α=,扇形面积公式:211||22 S lR R α==,1弧度 (1rad)57.3≈. 如已知扇形AOB 的周长是6cm ,该扇形的中心角是1弧度,求该扇形的面积。 (答:22cm ) 6、任意角的三角函数的定义:设α是任意一个角,P (,)x y 是α的终边上的任意一点(异于原点),它与原点的距离是220r x y =+>,那么 s i n ,c o s y x r r αα==,()tan ,0y x x α=≠,cot x y α=(0)y ≠,sec r x α=()0x ≠, ()csc 0r y y α=≠。三角函数值只与角的大小有关,而与终边上点P 的位置无关。

高中数学必修一常见题型归类

常见题型归类 第一章集合与函数概念 1.1集合 题型1集合与元素 题型2 集合的表示 题型3 空集与0 题型4 子集、真子集 题型5 集合运算 题型5.1 已知集合,求集合运算 题型5.2 已知集合运算,求集合 题型5.3已知集合运算,求参数 题型6 “二维”集合运算 题型6自定义的集合 1.2函数及其表示 题型1 映射概念 题型2 函数概念 题型3 同一函数 题型4 函数的表示 题型5 已知函数解析式求值 题型6 求解析式 题型7定义域 题型7.1 求函数的定义域 题型7.2 已知函数的定义域问题 题型8 值域 题型8.1 图像法求函数的值域 题型8.2 转化为二次函数,求函数的值域 题型8.3转化为反比例函数,求函数的值域 题型8.4 利用有界性,求函数的值域 题型8.5单调性法求函数的值域 题型8.6 判别式法求函数的值域

题型8.7 几何法求函数值域 题型9 已知函数值域,求系数 1.3函数的基本性质单调性 题型1 判断函数的单调区间 题型2已知函数的单调区间,求参数 题型3 已知函数的单调性,比较大小 题型4 已知函数的单调性,求范围 1.4函数的基本性质奇偶性 题型1 判断函数的奇偶性 题型2 已知函数的奇偶性,求解析式 题型3 已知函数的奇偶性,求参数 题型4 已知函数的奇偶性,求值或解集等 1.5函数的图像 题型1 函数图像 题型2 去绝对值作函数图像 题型3 利用图像变换作函数图像 题型4 已知函数解析式判断图像 题型5 研究函数性质作函数图像 题型6 函数图像的对称性 第二章基本初等函数 2.1指数函数 题型1 指数运算7 题型2指数函数概念 题型3指数函数型的定义域、值域 题型4 指数函数型恒过定点 题型5 单调性 题型6 奇偶性 题型7图像 题型8方程、不等式 2.2对数函数

高考全国卷及各省数学线性规划真题附答案.docx

2017 高考全国卷及自主招生数学高考真题 线性规划专题真题整理(附答案解析) x 3y 3, 1. ( 17 全国卷 I ,文数 )设 x ,y 满足约束条件 x y 1, 则 z=x+y 的最大值为( ) 7 y 0, A . 0 B . 1 C .2 D .3 答案: D 解析:如图,由图易知当目标函数 z x y 经过 直线 x 3 y 3 和 y 0 (即 x 轴)的交点 A(3,0) 时, z 能取到最大值,把 A(3,0) 代入 z=x+y 可得 z max 3 0 3 ,故选 D. x 2 y 1 2.(17 全国卷 I, 理数 14 题)设 x ,y 满足约束条件 2x y 1,则 z 3x 2 y 的最小值 x y 0 为 答案: 5 x 2 y 1 解析:不等式组 2x y 1 表示的平面区域如图所示。 x y 0 由 z 3x 2 y 变形得 y 3 x z 。要求 z 的最小值, 2 2 即求直线 y 3 x z 的纵截距的最大值。由右图,易知 2 2 当直线 y 3 x z 过图中点 A 时,纵截距最大。 2 2 联立方程组 2 x y 1 ,此时 z 3(1) 2 1 5 。 x 2 y 1 ,解得 A 点坐标为 ( 1,1) 故 z 3x 2 y 的最小值是 -5.

2x+3y 30 3. (17 全国卷Ⅱ,文数 7、理数 5)设 x、y 满足约束条件2x 3 y 3 0 .则z2x y的 y 30 最小值是() A.-15 C.1D9 答案: A 2x+3y 30 解析:不等式组2x 3y 30 表示的可行域如图所示, y30 易知当直线z 2x y 过到y 2 x 1与 y 3 交点 3 6 ,3 时,目标函数 z2x y 取到最小值,此时有 z min 26315 ,故所求z 最小值为15. )设,满足约束条件 3x 2 y60 的取值范围是 4. (17 全国卷Ⅲ,文数 5 x0,则 z=x-y x y y0 () A.[-3,0] B.[-3,2] C.[0,2] D.[0,3] 答案: B 解析:绘制不等式组表示的可行域,结合目标函数 的几何意义可得目标函数z x y 在直线3x 2y 60 与= - 直线 x0 (即x 轴)的交点A0,3处取得最小值, 此时 z min0 3 3。在点B2,0处取得最大值,此时 z max 2 0 2 . 故本题选择 B 选项 . 5.(17 全国卷Ⅲ,理数13)若 x,y 满足约束条件x y 0 x y 2 0 则z3x 4 y 的最小值为y 0 ________.

高中数学线性规划问题

高中数学线性规划问题 一.选择题(共28小题) 1.(2015?马鞍山一模)设变量x,y满足约束条件:,则z=x ﹣3y的最小值() A.﹣2 B.﹣4 C.﹣6 D.﹣8 2.(2015?山东)已知x,y满足约束条件,若z=ax+y的最大值为4,则a=() A.3 B.2 C.﹣2 D.﹣3 3.(2015?重庆)若不等式组,表示的平面区域为三角形,且其面积等于,则m的值为() A.﹣3 B.1 C.D.3 4.(2015?福建)变量x,y满足约束条件,若z=2x﹣y的最大值为2,则实数m等于() A.﹣2 B.﹣1 C.1 D.2 5.(2015?安徽)已知x,y满足约束条件,则z=﹣2x+y的最大值是()

A.﹣1 B.﹣2 C.﹣5 D.1 6.(2014?新课标II)设x,y满足约束条件,则z=2x﹣ y的最大值为() A.10 B.8 C.3 D.2 7.(2014?安徽)x、y满足约束条件,若z=y﹣ax取得最 大值的最优解不唯一,则实数a的值为() A.或﹣1 B.2或C.2或1 D.2或﹣1 8.(2015?北京)若x,y满足,则z=x+2y的最大值为()A.0 B.1 C.D.2 9.(2015?四川)设实数x,y满足,则xy的最大值为()A. B. C.12 D.16 10.(2015?广东)若变量x,y满足约束条件,则z=3x+2y 的最小值为() A.4 B. C.6 D. 11.(2014?新课标II)设x,y满足约束条件,则z=x+2y 的最大值为() A.8 B.7 C.2 D.1

12.(2014?北京)若x,y满足且z=y﹣x的最小值为﹣4, 则k的值为() A.2 B.﹣2 C.D.﹣ 13.(2015?开封模拟)设变量x、y满足约束条件,则目标函 数z=x2+y2的取值范围为() A.[2,8] B.[4,13] C.[2,13] D. 14.(2016?荆州一模)已知x,y满足约束条件,则z=2x+y 的最大值为() A.3 B.﹣3 C.1 D. 15.(2015?鄂州三模)设变量x,y满足约束条件,则s= 的取值范围是() A.[1,] B.[,1] C.[1,2] D.[,2] 16.(2015?会宁县校级模拟)已知变量x,y满足,则u= 的值范围是() A.[,] B.[﹣,﹣] C.[﹣,] D.[﹣,]

人教版高中数学基础知识归类

高中数学基础知识归类——献给2012年高三(理科)考生 一.集合与简易逻辑 1.注意区分集合中元素的形式.如:{|lg }x y x =—函数的定义域;{|lg }y y x =—函数的值域; {(,)|lg }x y y x =—函数图象上的点集. 2.集合的性质: ①任何一个集合A 是它本身的子集,记为A A ?. ②空集是任何集合的子集,记为A ??. ③空集是任何非空集合的真子集;注意:条件为A B ?,在讨论的时候不要遗忘了A =?的情况 如:}012|{2=--=x ax x A ,如果A R + =?,求a 的取值.(答:0a ≤) ④()U U U C A B C A C B =,()U U U C A B C A C B =;A B C A B C =()(); A B C A B C =()(). ⑤A B A A B B =?=U U A B C B C A ????U A C B ?=?U C A B R ?=. ⑥A B 元素的个数:()()card A B cardA cardB card A B =+-. ⑦含n 个元素的集合的子集个数为2n ;真子集(非空子集)个数为 21n -;非空真子集个数为22n -. 3.补集思想常运用于解决否定型或正面较复杂的有关问题。 如:已知函数12)2(24)(22+----=p p x p x x f 在区间]1,1[-上至少存在一个实数c ,使 0)(>c f ,求实数p 的取值范围.(答:32 (3,)-) 4.原命题: p q ?;逆命题: q p ?;否命题: p q ???;逆否命题: q p ???;互为逆否的两 个命题是等价的.如:“βαsin sin ≠”是“βα≠”的 条件.(答:充分非必要条件) 5.若p q ?且q p ≠>,则p 是q 的充分非必要条件(或q 是p 的必要非充分条件). 6.注意命题p q ?的否定与它的否命题的区别: 命题p q ?的否定是p q ??;否命题是p q ???. 命题“p 或q ”的否定是“p ?且q ?”;“p 且q ”的否定是“p ?或q ?”. 如:“若a 和b 都是偶数,则b a +是偶数”的否命题是“若a 和b 不都是偶数,则b a +是奇数” 否定是“若a 和b 都是偶数,则b a +是奇数”. 二.函数 1.①映射f :A B →是:⑴ “一对一或多对一”的对应;⑵集合A 中的元素必有象且A 中不 同元素在B 中可以有相同的象;集合B 中的元素不一定有原象(即象集B ?). ②一一映射f :A B →: ⑴“一对一”的对应;⑵A 中不同元素的象必不同,B 中元素都有原象. 2.函数f : A B →是特殊的映射.特殊在定义域A 和值域B 都是非空数集!据此可知函数图像与x 轴

高中数学线性规划经典题型

高考线性规划归类解析 一、平面区域和约束条件对应关系。 例1、已知双曲线224x y -=的两条渐近线与直线3x =围成一个三角形区域,表示该区域的不等式组是() (A)0003x y x y x -≥??+≥??≤≤? (B)0003x y x y x -≥?? +≤??≤≤? (C) 003x y x y x -≤?? +≤??≤≤? (D) 0003x y x y x -≤?? +≥??≤≤? 解析:双曲线224x y -=的两条渐近线方程为y x =±,与直线3x =围 成一个三角形区域(如图4所示)时有0 003x y x y x -≥?? +≥??≤≤? 。 点评:本题考查双曲线的渐近线方程以及线性规划问题。验证法或排除法是最效的方法。 例2:在平面直角坐标系中,不等式组20 200x y x y y +-≤??-+≥??≥? 表示的平面区域的面积是() (A)42 (B)4 (C) 22 (D)2 解析:如图6,作出可行域,易知不等式组20 200x y x y y +-≤??-+≥??≥? 表示的平面区域是一个三角形。容 易求三角形的三个顶点坐标为A(0,2),B(2,0),C(-2,0).于是三角形的面积为: 11 ||||42 4.22 S BC AO =?=??=从而选B。 点评:有关平面区域的面积问题,首先作出可行域,探求平面区域图形的性质;其次利用面积公式整体或部分求解是关键。 二、已知线性约束条件,探求线性截距——加减的形式(非线性距离——平方的形式,斜率——商的形式)目标关系最值问题(重点) 例3、设变量x 、y 满足约束条件?? ? ??≥+-≥-≤-1122y x y x y x ,则 ①y x 32+的最大值为 。(截距) 解析:如图1,画出可行域,得在直线 2x-y=2与直线x-y=-1 的交点A(3,4)处,目标函数z 最大值为18 点评:本题主要考查线性规划问题,由线性约束条件画出可行域,然后求出目标函数的最大值.,是一道较为简单的送分题。数形结合是数学思想的重要手段之一。 ②则2 2 x y +的最小值是 . ③1y x =+的取值范围是 . 图1

人教版高中数学总复习[知识梳理简单的线性规划(基础)

简单的线性规划 【考纲要求】 1.了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景。 2.会从实际情境中抽象出一元二次不等式模型。 3.会从实际情境中抽象出二元一次不等式组;了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组; 4.会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决。 5.熟练应用不等式性质解决目标函数的最优解问题。 【知识网络】 【考点梳理】 【不等式与不等关系394841 知识要点】 考点一:用二元一次不等式(组)表示平面区域 二元一次不等式Ax+By+C >0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线) 要点诠释: 画二元一次不等式0(0)Ax By C ++>≥或0(0)Ax By C ++<≤表示的平面区域的基本步骤: ①画出直线:0l Ax By C ++=(有等号画实线,无等号画虚线); ②当0≠C 时,取原点作为特殊点,判断原点所在的平面区域;当0C =时,另取一特殊点判断; ③确定要画不等式所表示的平面区域。 简称:“直线定界,特殊点定域”方法。 考点二:二元一次不等式表示哪个平面区域的判断方法 因为对在直线Ax+By+c=0同一侧的所有点(x ,y),实数Ax+By+c 的符号相同,所以只需在此直线的某一侧任取一点(x 0, y 0)(若原点不在直线上,则取原点(0,0)最简便).把它的坐标代入Ax+By+c ,由其值的符号即可判断二元一次不等式Ax+By+c>0(或<0)表示直线的哪一侧. 要点诠释: 判断二元一次不等式Ax+By+c>0(或<0)表示直线的哪一侧的方法: 因为对在直线Ax+By+C =0同一侧的所有点(x ,y),数Ax+By+C 的符号相同,所以只需在此直线的某一侧任取一点(x 0, y 0)(若原点不在直线上,则取原点(0,0)最简便),它的坐标代入Ax+By+c ,由其值的符号 简单的线性规划 二元一次不等式(组)表示的区域 简单应用 不等式(组)的应用背景

高中数学基础知识汇总

第一部分 集合 1.理解集合中元素的意义..... 是解决集合问题的关键:元素是函数关系中自变量的取值?还是因变量的 取值?还是曲线上的点?… ; 2.研究集合问题,一定要抓住集合的代表元素,如:{}x y x lg |=与{}x y y lg |=及 {}x y y x lg |),(= 3.数形结合.... 是解集合问题的常用方法:解题时要尽可能地借助数轴、直角坐标系或韦恩图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解决; 4.(1)含n 个元素的集合的子集个数为2n ,真子集(非空子集)个数为2n -1; (2);B B A A B A B A =?=?? 注意:讨论的时候不要遗忘了φ=A 的情况。 5.φ是任何集合的子集,是任何非空集合的真子集。 第二部分 函数与导数 1.映射:注意 ①第一个集合中的元素必须有象;②一对一,或多对一。

2.函数值域的求法:①分析法 ;②配方法 ;③判别式法 ;④利用函数单调性 ; ⑤换元法 ;⑥利用均值不等式 2222b a b a ab +≤+≤; ⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性(x a 、x sin 、x cos 等);⑨导数法 3.复合函数的有关问题 (1)复合函数定义域求法: ① 若f(x)的定义域为[a ,b ],则复合函数f[g(x)] 的定义域由不等式a≤g(x)≤b 解出 ② 若f[g(x)]的定义域为[a,b],求 f(x)的定义域, 相当于x ∈[a,b]时,求g(x)的值域。 (2)复合函数单调性的判定: ①首先将原函数)]([x g f y =分解为基本函数:内函 数)(x g u =与外函数)(u f y =; ②分别研究内、外函数在各自定义域内的单调性; ③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。

2020高考:高中数学线性规划各类习题精选

线性规划 基础知识: 一、知识梳理 1. 目标函数: P =2x+y是一个含有两个变 量 x 和y 的 函数,称为目标函数. 2.可行域:约束条件所表示的平面区域称为可行域. 3. 整点:坐标为整数的点叫做整点. 4.线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值的问题,通常称为线性规划问题.只含有两个变量的简单线性规划问题可用图解法来解决. 5. 整数线性规划:要求量取整数的线性规划称为整数线性规划. 二:积储知识: 一. 1.点P(x 0,y 0)在直线Ax+By+C=0上,则点P 坐标适合方程,即Ax 0+By 0+C=0 2. 点P(x 0,y 0)在直线Ax+By+C=0上方(左上或右上),则当B>0时,Ax 0+By 0+C>0;当B<0时,Ax 0+By 0+C<0 3. 点P(x 0,y 0)在直线Ax+By+C=0下方(左下或右下),当B>0时,Ax 0+By 0+C<0;当B<0时,Ax 0+By 0+C>0 注意:(1)在直线Ax+By+C=0同一侧的所有点,把它的坐标(x,y)代入Ax+By+C,所得实数的符号都相同, (2)在直线Ax+By+C=0的两侧的两点,把它的坐标代入Ax+By+C,所得到实数的符号相反, 即:1.点P(x 1,y 1)和点Q(x 2,y 2)在直线 Ax+By+C=0的同侧,则有(Ax 1+By 1+C )( Ax 2+By 2+C)>0 2.点P(x 1,y 1)和点Q(x 2,y 2)在直线 Ax+By+C=0的两侧,则有(Ax 1+By 1+C )( Ax 2+By 2+C)<0 二.二元一次不等式表示平面区域: ①二元一次不等式Ax+By+C>0(或<0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域. 不. 包括边界; ②二元一次不等式Ax+By+C ≥0(或≤0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域且包括边界; 注意:作图时,不包括边界画成虚线;包括边界画成实线. 三、判断二元一次不等式表示哪一侧平面区域的方法: 取特殊点检验; “直线定界、特殊点定域 原因:由于对在直线Ax+By+C=0的同一侧的所有点(x,y),把它的坐标(x,y)代入 Ax+By+C,所得到的实数的符号都相同,所以只需在此直线的某一侧取一个特殊点(x 0,y 0),从Ax 0+By 0+C 的正负即可判断Ax+By+C>0表示直线哪一侧的平面区域.特殊地, 当C ≠0时,常把原点作为特殊点,当C=0时,可用(0,1)或(1,0)当特殊点,若点坐标代入适合不等式则此点所在的区域为需画的区域,否则是另一侧区域为需画区域。 例题: 1. 如图1所示,已知ABC ?中的三顶点(2,4),(1,2),(1,0)A B C -,点(,)P x y 在ABC ?内部及边界运动,请你探究并讨论以下问题:若目标函数是1y z x -=或z =你知道其几何意义吗?你能否借助其几何意义求得min z 和max z ?

高一数学上册基础知识点总结

数学必修一基础要点归纳 第一章 集合与函数的概念 一、集合的概念与运算: 1、集合的特性与表示法:集合中的元素应具有:确定性、互异性、无序性;集合的表示法 有:列举法、描述法、文氏图等。 2、集合的分类:①有限集、无限集、空集。 ②数集:{ } 2 2y y x =- 点集: (){},1x y x y += 3、子集与真子集:若x A ∈则x B ∈?A B ? 若A B ?但A ≠B ?A B 若{}123,n A a a a a = ,,,则它的子集个数为2n 个 4、集合的运算:①{} A B x x A x B =∈∈ 且,若A B A = 则A B ? ②{}A B x x A x B = ∈∈ 或,若A B A = 则B A ? ③ { } U C A x x U x A =∈?但 5、映射:对于集合A 中的任一元素a,按照某个对应法则f ,集合B 中都有唯一的元素b 与之 对应,则称:f A B →为A 到的映射,其中a 叫做b 的原象,b 叫a 的象。 二、函数的概念及函数的性质: 1、函数的概念:对于非空的数集A 与B ,我们称映射:f A B →为函数,记作()y f x =, 其中,x A y B ∈∈,集合A 即是函数的定义域,值域是B 的子集。定义域、值域、对应法则称为函数的三要素。 2、 函数的性质: ⑴ 定义域:0 1 简单函数的定义域:使函数有意义的x 的取值范围,例: y = 的定义域为:25053302x x x ->??<? 2 复合函数的定义域:若()y f x =的定义域为[),x a b ∈,则复合函数 ()y f g x =????的定义域为不等式()a g x b ≤<的解集。 0 3 实际问题的定义域要根据实际问题的实际意义来确定定义域。

高中数学解析几何常考题型整理归纳

高中数学解析几何常考题型整理归纳 题型一 :圆锥曲线的标准方程与几何性质 圆锥曲线的标准方程是高考的必考题型,圆锥曲线的几何性质是高考考查的重点,求离心率、准线、 双曲线的渐近线是常考题型 . 22 【例 1】(1)已知双曲线 a x 2- y b 2=1(a >0,b >0)的一个焦点为 F (2, 0),且双曲线的渐近线与圆 (x - 2)2 +y 2=3 相切,则双曲线的方程为 ( 22 A.x2-y2=1 A. 9 -13= 2 C.x 3-y 2=1 22 (2)若点 M (2,1),点 C 是椭圆 1x 6+y 7 22 (3)已知椭圆 x 2+y 2=1(a >b >0)与抛物线 y 2=2px (p >0)有相同的焦点 F ,P ,Q 是椭圆与抛物线的交点, ab 22 若直线 PQ 经过焦点 F ,则椭圆 a x 2+ y b 2=1(a >b >0)的离心率为 ___ . 答案 (1)D (2)8- 26 (3) 2- 1 22 解析 (1)双曲线 x a 2-y b 2=1 的一个焦点为 F (2,0), 则 a 2+ b 2= 4,① 双曲线的渐近线方程为 y =±b a x , a 由题意得 22b 2= 3,② a 2+b 2 联立①② 解得 b = 3,a =1, 2 所求双曲线的方程为 x 2-y 3 =1,选 D. (2)设点 B 为椭圆的左焦点,点 M (2,1)在椭圆内,那么 |BM|+|AM|+|AC|≥|AB|+|AC|=2a ,所以 |AM| +|AC|≥2a -|BM|,而 a =4,|BM|= (2+3)2+1= 26,所以 (|AM|+ |AC|)最小=8- 26. ) 22 B.x - y =1 B.13- 9 =1 2 D.x 2 -y 3=1 1 的右焦点,点 A 是椭圆的动点,则 |AM|+ |AC|的最小值为

高中数学专题讲义-线性规划

【例1】 设O 为坐标原点,(1,1)A ,若点B 满足2222101212x y x y x y ?+--+????≥≤≤≤≤, 则OA OB ?u u u v u u u v 的最小值为( ) A .2 B .2 C .3 D .22+ 【例2】 已知变量,x y 满足120x y x y ????-? ≥≤≤,则x y +的最小值为( ) A .2 B .3 C .4 D .5 【例3】 不等式组0,10, 3260x x y x y ??--??--?≥≥≤所表示的平面区域的面积等于 . 典例分析 线性规划

【例4】设变量,x y满足约束条件 3 1 x y x y + ? ? -- ? ≥ ≥ ,则目标函数2 z y x =+的最小值为() A.1B.2C.3D.4 【例5】设变量,x y满足 0, 10 3260 y x y x y ? ? -- ? ?-- ? ≥ ≥ ≤ ,则该不等式组所表示的平面区域的面积等 于,z x y =+的最大值为. 【例6】目标函数2 z x y =+在约束条件 30 20 x y x y y +- ? ? - ? ? ? ≤ ≥ ≥ 下取得的最大值是________. 【例7】下面四个点中,在平面区域 4 y x y x <+ ? ? >- ? 内的点是() A.(0,0)B.(0,2)C.(3,2) -D.(2,0) -

【例8】已知平面区域 1 ||1 (,)0,(,) 1 y x y x x y y M x y y x ?? + ? ?? -+ ? ?? ??? Ω== ?????? ? ?? ????? ? ?? ≤ ≤ ≥ ≥ ≤ ,向区域Ω内 随机投一点P,点P落在区域M内的概率为() A.1 4 B. 1 3 C. 1 2 D. 2 3 【例9】若x,y满足约束条件 30 03 x y x y x + ? ? -+ ? ? ? ≥ ≥ ≤≤ ,则2 z x y =-的最大值为. 【例10】已知不等式组 y x y x x a ? ? - ? ? ? ≤ ≥ ≤ ,表示的平面区域的面积为4,点() , P x y在所给平面区 域内,则2 z x y =+的最大值为______.

高中数学必修5常考题型:简单的线性规划问题

简单的线性规划问题 【知识梳理】 线性规划的有关概念 【常考题型】 题型一、求线性目标函数的最值 (X+2Q2, 【例1】设变重X, *满足约束条件〈2x+ y<4, 则目标函数z= 3x- V的取值范围 〔4*- - 1, 是() 3 A. -6 C. [-L6] D. -6, 3. "+2E, [解析]约束条件〈2X+V<4,y> - 1所表示的平面区域如图阴影部分,直线y= 3x- Z斜率为

3 z 取最小值- 3 .??z=3x-y 的取值范围为6」,故选A. [答案]A 【类题通法】 解线性规划问题的关键是准确地作出可行域,正确理解z 的几何意义,对一个封闭图形而 言,最优解一般在可行域的边界上取得.在解题中也可由此快速找到最大值点或最小值点. 【对点训练】 X- 4y< -3, 3x+5y<25, 求z 的最大值和最小值. Q1, [解]作出不等式组表示的平面区域,即可行域,如图所示.把z=2x+>变形为v=-2x +乙则得到斜率为-2,在)/轴上的截距为乙旦随z 变化的一组平行直线.由图可以看出, 当直线z=2x+*经过可行域上的点/时,截距z 最大,经过点8时,截距z 最小. |x-4y+3 = 0, 解方程组i3H5 =。,得/点坐标为厚), X=l, 解方程组L-4*+3 =。,得8点坐标为("), 大值 = 2x5 + 2=12, z 建小值=2x 1 + 1 = 3. ( 于4尸 3=0 =0

题型二、求非线性目标函数的最值 ( X- y+5>0, X+VA O,x<3. ⑴求"=/+必的最大值与最小值; V ⑵求 >=六的最大值与最小值. X— O [解]画出满足条件的可行域如图所示, (1) /+,=。表示一组同心圆(圆心为原点Q,旦对同一圆上的点】+必的值都相等,由图可知:当(X, M在可行域内取值时,当旦仅当圆。过c点时,〃最大,过(0,0)时,〃最小.又Q3,8),所以u意大也=73、"缺小值=0. y (2) v^=—表示可行域内的点Rx, H到定点Q(5,0)的斜率,由图可知,蜘最大,处。最 A— O 小,又03,8), 8(3, -3), -3 3 8 所以/ 是大渲= 3 — 5 = 1',照小坦=3 _ 5 = 一4? 【类题通法】 非线性目标函数最值问题的求解方法 ⑴非线性目标函数最值问题,要充分理解非线性目标函数的几何意义,诸如两点间的距离(或平方),点到直线的距离,过已知两点的直线斜率等,充分利用数形结合知识解题,能起到事半功倍的效果?

(完整版)高中数学知识点体系框架超全超完美

高中数学基础知识整合 函数与方程区间建立函数模型 抽象函数复合函数分段函数求根法、二分法、图象法;一元二次方程根的分布 单调性:同增异减赋值法,典型的函数 零点函数的应用 A 中元素在 B 中都有唯一的象;可一对一(一一映射),也可多对一,但不可一对多 函数的基本性质 单调性奇偶性周期性 对称性 最值 1.求单调区间:定义法、导数法、用已知函数的单调性。 2.复合函数单调性:同增异减。 1.先看定义域是否关于原点对称,再看f (-x )=f (x )还是-f (x ). 2.奇函数图象关于原点对称,若x =0有意义,则f (0)=0. 3.偶函数图象关于y 轴对称,反之也成立。 f (x +T)=f (x );周期为T 的奇函数有:f (T)=f (T/2)= f (0)=0.二次函数、基本不等式,对勾函数、三角函数有界性、线性规划、导数、利用单调性、数形结合等。 函数的概念 定义 列表法解析法图象法 表示三要素使解析式有意义及实际意义 常用换元法求解析式 观察法、判别式法、分离常数法、单调性法、最值法、重要不等式、三角法、图象法、线性规划等 定义域 对应关系值域 函数常见的几种变换平移变换、对称变换翻折变换、伸缩变换 基本初等函数正(反)比例函数、一次(二次)函数幂函数 指数函数与对数函数三角函数 定义、图象、性质和应用 函数 映 射 第二部分映射、函数、导数、定积分与微积分 退出 上一页 第二部分映射、函数、导数、定积分与微积分 导数 导数概念函数的平均变化率运动的平均速度曲线的割线的斜率 函数的瞬时变化率运动的瞬时速度曲线的切线的斜率 ()()的区别 与0x f x f ' '0 t t t v a S v ==,() 0' x f k =导数概念 基本初等函数求导 导数的四则运算法则简单复合函数的导数()()()()()()()().ln 1ln ln 1 log sin cos cos sin 01x x x x a n n e e a a a x x a x x x x x x nx x c c ==== -====-;;;;;;; 为常数()()()()[]()() ()()[]()()()()()()()()()()()[]2)3()2()1(x g x g x f x g x f x g x f x g x f x g x f x g x f x g x f x g x f x g x f -=? ? ????+=?±=±是可导的,则有:,设()()[]()() x u u f x g f ' ' ' ?=1.极值点的导数为0,但导数为0的点不一定是极值点; 2.闭区间一定有最值,开区间不一定有最值。导数应用函数的单调性研究函数的极值与最值 曲线的切线变速运动的速度生活中最优化问题 ()()()(). 00''在该区间递减在该区间递增,x f x f x f x f ?1.曲线上某点处切线,只有一条;2.过某点的曲线的切线不一定只一条,要设切点坐标。 一般步骤:1.建模,列关系式;2.求导数,解导数方程;3.比较区间端点函数值与极值,找到最大(最小)值。 定 积分与微积分 定积分概念 定理应用 性质定理含意微积分基本 定理 曲边梯形的面积变力所做的功 ()的极限 和式i n i i x f ?∑-=1 1 ξ定义及几何意义 1.用定义求:分割、近似代替、求和、取极限; 2.用公式。 ()()()()[]()()()()()()()() c b a dx x f dx x f dx x f dx x f dx x f dx x g dx x f dx x g x f dx x f k dx x kf c b b a c a a b b a b a b a b a b a b a <<=-=±=±=?????????? .;;;()()()()()() 莱布尼兹公式牛顿则若--==?a F b F dx x f x f x F b a ,'1.求平面图形面积;2.在物理中的应用(1)求变速运动的路程: (2)求变力所作的功; ()?=b a dx x F W ()dt t v s a b ?=

高中数学数列复习题型归纳解题方法整理

数列 一、等差数列与等比数列 1.基本量的思想: 常设首项、(公差)比为基本量,借助于消元思想及解方程组思想等。转化为“基本量”是解决问题的基本方法。 2.等差数列与等比数列的联系 1)若数列{}n a 是等差数列,则数列}{n a a 是等比数列,公比为d a ,其中a 是常数,d 是{}n a 的公差。 (a>0且a ≠1); 2)若数列{}n a 是等比数列,且0n a >,则数列{}log a n a 是等差数列,公差为log a q ,其中a 是常数且 0,1a a >≠,q 是{}n a 的公比。 3)若{}n a 既是等差数列又是等比数列,则{}n a 是非零常数数列。 3.等差与等比数列的比较

4、典型例题分析 【题型1】等差数列与等比数列的联系 例1 (2010陕西文16)已知{}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.(Ⅰ)求数列{}的通项;(Ⅱ)求数列{2}的前n项和. 解:(Ⅰ)由题设知公差d≠0, 由a1=1,a1,a3,a9成等比数列得12 1 d + = 18 12 d d + + , 解得d=1,d=0(舍去),故{}的通项=1+(n-1)×1=n. (Ⅱ)由(Ⅰ)知2m a=2n,由等比数列前n项和公式得 2+22+23+…+22(12) 12 n - - 21-2. 小结与拓展:数列{}n a是等差数列,则数列} {n a a是等比数列,公比为d a,其中a是常数,d是{}n a的公差。(a>0且a≠1). 【题型2】与“前n项和与通项”、常用求通项公式的结合 例2 已知数列{}的前三项与数列{}的前三项对应相同,且a1+2a2+22a3+…+2n-1=8n对任意的n∈N*都成立,数列{+1-}是等差数列.求数列{}与{}的通项公式。 解:a1+2a2+22a3+…+2n-1=8n(n∈N*) ① 当n≥2时,a1+2a2+22a3+…+2n-2-1=8(n-1)(n∈N*) ② ①-②得2n-1=8,求得=24-n, 在①中令n=1,可得a1=8=24-1, ∴=24-n(n∈N*).由题意知b1=8,b2=4,b3=2,∴b2-b1=-4,b3-b2=-2, ∴数列{+1-}的公差为-2-(-4)=2,∴+1-=-4+(n-1)×2=2n-6,

相关文档
相关文档 最新文档