文档库 最新最全的文档下载
当前位置:文档库 › 人教版八年级上册数学 全等三角形单元测试卷附答案

人教版八年级上册数学 全等三角形单元测试卷附答案

人教版八年级上册数学 全等三角形单元测试卷附答案
人教版八年级上册数学 全等三角形单元测试卷附答案

一、八年级数学全等三角形解答题压轴题(难)

1.取一副三角板按图()1拼接,固定三角板60,()30ADC D ACD ∠=∠=,将三角板45()ABC BAC BCA ∠=∠=绕点A 依顺时针方向旋转一个大小为a 的角00)45(a ≤≤得到ABM ,图()2所示.试问:

()1当a 为多少时,能使得图()2中//AB CD ?说出理由,

()2连接BD ,假设AM 与CD 交于,E BM 与CD 交于F ,当00)45(a ≤≤时,探索DBM CAM BDC ∠+∠+∠值的大小变化情况,并给出你的证明.

【答案】(1)15°;(2)DBM CAM BDC ∠+∠+∠的大小不变,是105,证明见解析.

【解析】

【分析】

(1)由//AB CD 得到30BAC C ∠=∠=,即可求出a ;

(2)DBM CAM BDC ∠+∠+∠的大小不变,是105?,由FEM CAM C ∠=∠+∠,30C ∠=?, EFM BDC DBM ∠=∠+∠, 45M ∠=?,即可利用三角形内角和求出答案.

【详解】 ()1当a 为15时,//AB CD ,

理由:由图()2,若//AB CD ,则30

BAC C ∠=∠=, 453015a CAM BAM BAC ∴=∠=∠-∠=-?=?,

所以,当a 为15时,//AB CD .

注意:学生可能会出现两种解法:

第一种:把//AB CD 当做条件求出a 为15,

第二种:把a 为15当做条件证出//AB CD ,

这两种解法都是正确的.

()2DBM CAM BDC ∠+∠+∠的大小不变,是105?

证明: ,30FEM CAM C C ∠=∠+∠∠=?,

30FEM CAM ∴∠=∠+?,

EFM BDC DBM ∠=∠+∠,

DBM CAM BDC EFM CAM ∴∠+∠+∠=∠+∠,

180,45EFM FEM M M ∠+∠+∠=∠=?,

3045180BDC DBM CAM ∴∠+∠+∠+?+?=?,

1803045105DBM CAM BDC ∴∠+∠+∠=?--=?,

所以,DBM CAM BDC ∠+∠+∠的大小不变,是105.

【点睛】

此题考查旋转的性质,平行线的性质,三角形的外角定理,三角形的内角和,(2)中将角度和表示为三角形的外角是解题的关键.

2.在ABC ?中,90,BAC AB AC ∠=?=,点D 为直线BC 上一动点(点D 不与点,B C 重合),以AD 为腰作等腰直角DAF ?,使90DAF ∠=?,连接CF .

(1)观察猜想

如图1,当点D 在线段BC 上时,

①BC 与CF 的位置关系为__________;

②CF DC BC 、、之间的数量关系为___________(提示:可证DAB FAC ???)

(2)数学思考

如图2,当点D 在线段CB 的延长线上时,(1)中的①、②结论是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明;

(3)拓展延伸

如图3,当点D 在线段BC 的延长线时,将DAF ?沿线段DF 翻折,使点A 与点E 重合,连接CE CF 、

,若4,CD BC AC ==CE 的长.(提示:做AH BC ⊥于H ,做EM BD ⊥于M )

【答案】(1)①BC ⊥CF ;②BC =CF +DC ;(2)C ⊥CF 成立;BC =CF +DC 不成立,正确结论:DC =CF +BC ,证明详见解析;(3

)【解析】

【分析】

(1)①根据正方形的性质得,∠BAC =∠DAF =90°,推出△DAB ≌△FAC (SAS );②由正方形ADEF 的性质可推出△DAB ≌△FAC ,根据全等三角形的性质可得到=CF BD ,ACF ABD ∠=∠ ,根据余角的性质即可得到结论;

(2)根据正方形的性质得到∠BAC =∠DAF =90°,推出△DAB ≌△FAC ,根据全等三角形的性质以及等腰三角形的角的性质可得到结论;

(3)过A 作AH BC ⊥ 于H ,过E 作EM BD ⊥ 于M ,证明ADH DEM △≌△ ,推出3EM DH == ,2DM AH == ,推出3CM EM == ,即可解决问题.

【详解】

(1)①正方形ADEF 中,AD AF =

∵90BAC DAF ==?∠∠

∴BAD CAF ∠=∠

在△DAB 与△FAC 中

AD AF BAD CAF AB AC =??∠=∠??=?

∴()DAB FAC SAS △≌△

∴B ACF ∠=∠

∴90ACB ACF +=?∠∠ ,即BC CF ⊥ ;

②∵DAB FAC △≌△

∴=CF BD

∵BC BD CD =+

∴BC CF CD =+

(2)BC ⊥CF 成立;BC =CF +DC 不成立,正确结论:DC =CF +BC

证明:∵△ABC 和△ADF 都是等腰直角三角形

∴AB =AC ,AD =AF ,∠BAC =∠DAF =90°,

∴∠BAD =∠CAF

在△DAB 和△FAC 中AD AF BAD CAF AB AC =??∠=∠??=?

∴△DAB ≌△FAC (SAS )

∴∠ABD =∠ACF ,DB =CF

∵∠BAC =90°,AB =AC ,

∴∠ACB =∠ABC =45°

∴∠ABD =180°-45°=135°

∴∠ACF =∠ABD =135°

∴∠BCF =∠ACF -∠ACB =135°-45°=90°,

∴CF ⊥BC

∵CD =DB +BC ,DB =CF

∴DC =CF +BC

(3)过A 作AH BC ⊥ 于H ,过E 作EM BD ⊥ 于M ,

∵90BAC ∠=?

,AB AV ==

∴1422

BC AH BH CH BC =

=====, ∴114CD BC == ∴3DH CH CD =+=

∵四边形ADEF 是正方形

∴90AD DE ADE ==?,∠

∵BC CF EM BD EN CF ⊥⊥⊥,,

∴四边形CMEN 是矩形

∴NE CM EM CN ==,

∵90AHD ADC EMD ===?∠∠∠

∴90ADH EDM EDM DEM +=+=?∠∠∠∠

∴ADH DEM =∠∠

在△ADH 和△DEM 中

ADH DEM AHD DME AD DE ∠=∠??∠=∠??=?

∴ADH DEM △≌△

∴32EM DH DM AH ====,

∴3CM EM ==

∴CE ==

【点睛】

本题考查了三角形的综合问题,掌握正方形的性质、全等三角形的性质以及判定、余角的性质、等腰三角形的角的性质是解题的关键.

3.如图,△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点,DE⊥DF,交AB于点E,连结EG、EF.

(1)求证:BG=CF;

(2)请你判断BE+CF与

EF的大小关系,并说明理由.

【答案】(1)详见解析;(2)BE+CF>EF,证明详见解析

【解析】

【分析】

(1)先利用ASA判定△BGD?CFD,从而得出BG=CF;

(2)利用全等的性质可得GD=FD,再有DE⊥GF,从而得到EG=EF,两边之和大于第三边从而得出BE+CF>EF.

【详解】

解:(1)∵BG∥AC,

∴∠DBG=∠DCF.

∵D为BC的中点,

∴BD=CD

又∵∠BDG=∠CDF,

在△BGD与△CFD中,

DBG DCF BD CD

BDG CDF ∠=∠

?

?

=

?

?∠=∠

?

∴△BGD≌△CFD(ASA).∴BG=CF.

(2)BE+CF>EF.

∵△BGD≌△CFD,

∴GD=FD,BG=CF.

又∵DE⊥FG,

∴EG=EF(垂直平分线到线段端点的距离相等).

∴在△EBG中,BE+BG>EG,

即BE+CF>EF.

【点睛】

本题考查了三角形全等的判定和性质,要注意判定三角形全等的一般方法有:SSS、SAS、AAS、ASA、HL.

4.如图,在△ABC中,∠ABC为锐角,点D为直线BC上一动点,以AD为直角边且在AD 的右侧作等腰直角三角形ADE,∠DAE=90°,AD=AE.

(1)如果AB=AC,∠BAC=90°.①当点D在线段BC上时,如图1,线段CE、BD的位置关系为___________,数量关系为___________

②当点D在线段BC的延长线上时,如图2,①中的结论是否仍然成立,请说明理由.(2)如图3,如果AB≠AC,∠BAC≠90°,点D在线段BC上运动.探究:当∠ACB多少度时,CE⊥BC?请说明理由.

【答案】(1)①垂直,相等.②都成立,理由见解析;(2)45°,理由见解析

【解析】

【分析】

(1)①根据∠BAD=∠CAE,BA=CA,AD=AE,运用“SAS”证明△ABD≌△ACE,根据全等三角形性质得出对应边相等,对应角相等,即可得到线段CE、BD之间的关系;

②先根据“SAS”证明△ABD≌△ACE,再根据全等三角形性质得出对应边相等,对应角相等,即可得到①中的结论仍然成立;

(2)先过点A作AG⊥AC交BC于点G,画出符合要求的图形,再结合图形判定

△GAD≌△CAE,得出对应角相等,即可得出结论.

【详解】

(1):(1)CE与BD位置关系是CE⊥BD,数量关系是CE=BD.

理由:如图1,∵∠BAD=90°-∠DAC,∠CAE=90°-∠DAC,

∴∠BAD=∠CAE.

又 BA=CA,AD=AE,

∴△ABD≌△ACE (SAS)

∴∠ACE=∠B=45°且 CE=BD.

∵∠ACB=∠B=45°,

∴∠ECB=45°+45°=90°,即 CE⊥BD.

故答案为垂直,相等;

②都成立,理由如下:

∵∠BAC=∠DAE=90°,

∴∠BAC+∠DAC=∠DAE+∠DAC,

∴∠BAD=∠CAE,

在△DAB与△EAC中,

AD AE

BAD CAE

AB AC

?

?

∠∠

?

?

?

∴△DAB≌△EAC,

∴CE=BD,∠B=∠ACE,

∴∠ACB+∠ACE=90°,即CE⊥BD;

(2)当∠ACB=45°时,CE⊥BD(如图).

理由:过点A作AG⊥AC交CB的延长线于点G,则∠GAC=90°,

∵∠ACB=45°,∠AGC=90°﹣∠ACB,

∴∠AGC=90°﹣45°=45°,

∴∠ACB=∠AGC=45°,

∴AC=AG,

在△GAD与△CAE中,

AC AG

DAG EAC

AD AE

?

?

∠∠

?

?

?

∴△GAD≌△CAE,

∴∠ACE=∠AGC=45°,

∠BCE=∠ACB+∠ACE=45°+45°=90°,即CE⊥B C.

5.如图,在ABC

?中,903,7

C AC BC

∠=?==

,,点D是BC边上的动点,连接

AD ,以AD 为斜边在AD 的下方作等腰直角三角形ADE .

(1)填空:ABC ?的面积等于 ;

(2)连接CE ,求证:CE 是ACB ∠的平分线;

(3)点O 在BC 边上,且1CO =, 当D 从点O 出发运动至点B 停止时,求点E 相应的运动路程.

【答案】(1)

212

;(2)证明见解析;(3)32【解析】

【分析】 (1)根据直角三角形的面积计算公式直接计算可得;

(2)如图所示作出辅助线,证明△AEM ≌△DEN (AAS ),得到ME=NE ,即可利用角平分线的判定证明;

(3)由(2)可知点E 在∠ACB 的平分线上,当点D 向点B 运动时,点E 的路径为一条直线,再根据全等三角形的性质得出CN=1()2AC CD +,根据CD 的长度计算出CE 的长度即可.

【详解】

解:(1)903, 7C AC BC ∠=?==, ∴112137222

ABC S AC BC =

?=??=, 故答案为:212 (2)连接CE ,过点E 作EM ⊥AC 于点M ,作EN ⊥BC 于点N ,

∴∠EMA=∠END=90°,

又∵∠ACB=90°,

∴∠MEN=90°,

∴∠MED+∠DEN=90°,

∵△ADE 是等腰直角三角形

∴∠AED=90°,AE=DE

∴∠AEM+∠MED=90°,

∴∠AEM=∠DEN

∴在△AEM 与△DEN 中,

∠EMA=∠END=90°,∠AEM=∠DEN ,AE=DE

∴△AEM≌△DEN(AAS)

∴ME=NE

∴点E在∠ACB的平分线上,

即CE是ACB

∠的平分线

(3)由(2)可知,点E在∠ACB的平分线上,

∴当点D向点B运动时,点E的路径为一条直线,∵△AEM≌△DEN

∴AM=DN,

即AC-CM=CN-CD

在Rt△CME与Rt△CNE中,CE=CE,ME=NE,

∴Rt△CME≌Rt△CNE(HL)

∴CM=CN

∴CN=1

() 2

AC CD

+,

又∵∠MCE=∠NCE=45°,∠CME=90°,

∴CE=

2

2()

2

CN AC CD

=+,

当AC=3,CD=CO=1时,

CE=2

(31)22

+=

当AC=3,CD=CB=7时,

CE=2

(37)52

+=

∴点E的运动路程为:522232

-=,

【点睛】

本题考查了全等三角形的综合证明题,涉及角平分线的判定,几何中动点问题,全等三角形的性质与判定,解题的关键是综合运用上述知识点.

6.(1)如图(a )所示点D 是等边ABC 边BA 上一动点(点D 与点B 不重合),连接DC ,以DC 为边在BC 上方作等边DCF ,连接AF .你能发现线段AF 与BD 之间的数量关系吗?并证明.

(2)如图(b )所示当动点D 运动至等边ABC 边BA 的延长线上时,其他作法与(1)相同,猜想AF 与BD 在(1)中的结论是否仍然成立?(直接写出结论)

(3)①如图(c )所示,当动点D 在等边ABC 边BA 上运动时(点D 与点B 不重合),连接DC ,以DC 为边在BC 上方、下方分别作等边DCF 和等边DCF ',连接AF 、BF ',探究AF 、BF '与AB 有何数量关系?并证明.

②如图(d )所示,当动点D 在等边ABC 边BA 的延长线上运动时,其他作法与(3)①相同,①中的结论是否成立?若不成立,是否有新的结论?并证明.

【答案】(1)AF=BD ,理由见解析;(2)AF=BD ,成立;(3)①AF BF AB '+=,证明见解析;②①中的结论不成立新的结论是AF AB BF '=+,理由见解析 【解析】

【分析】

(1)根据等边三角形的三条边、三个内角都相等的性质,利用全等三角形的判定定理SAS 可证得BCD ACF △≌△,然后由全等三角形的对应边相等知AF BD = .

(2)通过证明BCD ACF △≌△,即可证明AF BD =.

(3)①'AF BF AB += ,利用全等三角形BCD ACF △≌△的对应边BD AF = ,同理'BCF ACD △≌△ ,则'BF AD = ,所以'AF BF AB +=;

②①中的结论不成立,新的结论是'AF AB BF =+ ,通过证明BCF ACD △≌△,则'BF AD =(全等三角形的对应边相等),再结合(2)中的结论即可证得

'AF AB BF =+ .

【详解】

(1)AF BD =

证明如下:ABC 是等边三角形,

BC AC ∴=,60BCA ?∠=.

同理可得:DC CF =,60DCF ?∠=.

BCA DCA DCF DCA ∴∠-∠=∠-∠.

即BCD ACF ∠=∠.

BCD ACF ∴△≌△.

AF BD ∴=.

(2)证明过程同(1),证得BCD ACF △≌△,则AF BD =(全等三角形的对应边相等),所以当动点D 运动至等边△ABC 边BA 的延长线上时,其他作法与(1)相同,AF BD =依然成立.

(3)①AF BF AB '+=

证明:由(1)知,BCD ACF △≌△.

BD AF ∴=.

同理BCF ACD '△≌△.

BF AD '∴=.

AF BF BD AD AB '∴+=+=.

②①中的结论不成立新的结论是AF AB BF '=+;

BC AC =,BCF ACD '∠=∠,F C DC '=,

BCF ACD '∴△≌△.

BF AD '∴=.

又由(2)知,AF BD =.

AF BD AB AD AB BF '∴==+=+.

即AF AB BF '=+.

【点睛】

本题考查了三角形的综合问题,掌握等边三角形的三条边、三个内角都相等的性质、全等三角形的判定定理、全等三角形的对应边相等是解题的关键.

7.(1)如图(1),已知:在△ABC 中,∠BAC=90°,AB=AC ,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E .求证:DE=BD+CE .

(2)如图(2),将(1)中的条件改为:在△ABC 中,AB=AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE 是否成立?如成立,请你给出证明;若不成立,请说明理由.

(3)如图(3),D 、E 是D 、A 、E 三点所在直线m 上的两动点(D 、A 、E 三点互不重合),点F 为∠BAC 平分线上的一点,且△ABF 和△ACF 均为等边三角形,连接BD 、CE ,若∠BDA=∠AEC=∠BAC ,求证:△DEF 是等边三角形.

【答案】(1)见解析;(2)成立,理由见解析;(3)见解析

【解析】

【分析】

(1)因为DE=DA+AE ,故通过证BDA AEC ?△△,得出DA=EC ,AE=BD ,从而证得DE=BD+CE.

(2)成立,仍然通过证明BDA AEC ?△△,得出BD=AE ,AD=CE ,所以

DE=DA+AE=EC+BD.

(3)由BDA AEC ?△△得BD=AE ,=BDA AEC ∠∠,ABF 与ACF 均等边三角形,得==60BA AC ?∠F ∠F ,FB=FA ,所以=BA BA AC AC ∠F +∠D ∠F +∠E ,即FBD FAB ?∠∠,所以BDF AEF ?△△,所以FD=FE ,BFD AFE ?∠∠,再根据=60BFD FA BFA =?∠+∠D ∠,得=60AF FA =?∠E +∠D ,即=60FE =?∠D ,故DFE △是等边三角形.

【详解】

证明:(1)∵BD ⊥直线m ,CE ⊥直线m

∴∠BDA =∠CEA=90°,∵∠BAC =90°

∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°

∴∠CAE=∠ABD ,又AB=AC ,∴△ADB ≌△CEA

∴AE=BD ,AD=CE ,∴DE=AE+AD= BD+CE

(2)∵∠BDA =∠BAC=α,∴∠DBA+∠BAD=∠BAD +∠CAE=180°—α

∴∠DBA=∠CAE ,∵∠BDA=∠A EC=α,AB=AC

∴△ADB≌△CEA,∴AE=BD,AD=CE

∴DE=AE+AD=BD+CE

(3)由(2)知,△ADB≌△CEA, BD=AE,∠DBA =∠CAE

∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=60°

∴∠DBA+∠ABF=∠CAE+∠CAF,∴∠DBF=∠FAE

∵BF=AF,∴△DBF≌△EAF

∴DF=EF,∠BFD=∠AFE

∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°

∴△DEF为等边三角形.

【点睛】

利用全等三角形的性质证线段相等是证两条线段相等的重要方法.

8.如图1,已知CF是△ABC的外角∠ACE的角平分线,D为CF上一点,且DA=DB.

(1)求证:∠ACB=∠ADB;

(2)求证:AC+BC<2BD;

(3)如图2,若∠ECF=60°,证明:AC=BC+CD.

【答案】(1)详见解析;(2)详见解析;(3)详见解析.

【解析】

【分析】

(1)过点D分别作AC,CE的垂线,垂足分别为M,N,证明Rt△DAM≌Rt△DBN,得出

∠DAM=∠DBN ,则结论得证;

(2)证明Rt △DMC ≌Rt △DNC ,可得CM=CN ,得出AC+BC=2BN ,又BN <BD ,则结论得证;

(3)在AC 上取一点P ,使CP=CD ,连接DP ,可证明△ADP ≌△BDC ,得出AP=BC ,则结论可得出.

【详解】

(1)证明:过点D 分别作AC ,CE 的垂线,垂足分别为M ,N ,

∵CF 是△ABC 的外角∠ACE 的角平分线,

∴DM =DN ,

在Rt △DAM 和Rt △DBN 中,

DA DB DM DN =??=?

, ∴Rt △DAM ≌Rt △DBN (HL ),

∴∠DAM =∠DBN ,

∴∠ACB =∠ADB ;

(2)证明:由(1)知DM =DN ,

在Rt △DMC 和Rt △DNC 中,

DC DC DM DN =??=?

, ∴Rt △DMC ≌Rt △DNC (HL ),

∴CM =CN ,

∴AC +BC =AM +CM +BC =AM +CN +BC =AM +BN ,

又∵AM =BN ,

∴AC +BC =2BN ,

∵BN <BD ,

∴AC +BC <2BD .

(3)由(1)知∠CAD =∠CBD ,在AC 上取一点P ,使CP =CD ,

连接DP ,

∵∠ECF =60°,∠ACF =60°,

∴△CDP 为等边三角形,

∴DP =DC ,∠DPC =60°,

∴∠APD =120°,

∵∠ECF =60°,

∴∠BCD =120°,

在△ADP 和△BDC 中,

APD BCD PAD CBD DA DB ∠=∠??∠=∠??=?

, ∴△ADP ≌△BDC (AAS ),

∴AP =BC ,

∵AC =AP +CP ,

∴AC =BC +CP ,

∴AC =BC +CD .

【点睛】

本题是三角形综合题,考查了等边三角形的判定与性质,全等三角形的判定与性质,角平分线的性质等知识,解题的关键是灵活运用所学知识解决问题.

9.综合与实践:

我们知道“两边及其中一边的对角分别对应相等的两个三角形不一定全等”.但是,乐乐发现:当这两个三角形都是锐角三角形时,它们会全等.

(1)请你用所学知识判断乐乐说法的正确性.

如图,已知ABC ?、111A B C ?均为锐角三角形,且11AB A B =,11BC B C =,1C C ∠=∠. 求证:111ABC A B C ??≌

.

(2)除乐乐的发现之外,当这两个三角形都是______时,它们也会全等.

【答案】(1)见解析;(2)钝角三角形或直角三角形.

【解析】

【分析】

(1)过B 作BD ⊥AC 于D ,过B 1作B 1D 1⊥B 1C 1于D 1,得出

∠BDA=∠B 1D 1A 1=∠BDC=∠B 1D 1C 1=90°,根据SAS 证△BDC ≌△B 1D 1C 1,推出

BD=B 1D 1,根据HL 证Rt △BDA ≌Rt △B 1D 1A 1,推出∠A=∠A 1,根据AAS 推出

△ABC ≌△A 1B 1C 1即可.

(2)当这两个三角形都是直角三角形时,直接利用HL 即可证明;当这两个三角形都是钝角三角形时,与(1)同理可证.

【详解】

(1)证明:过点B 作BD AC ⊥于D ,过1B 作1111B D A C ⊥于1D ,

则11111190BDA B D A BDC B D C ∠=∠=∠=∠=?.

在BDC ?和111B D C ?中,

1C C ∠=∠,111BDC B D C ∠=∠,11BC B C =,

∴111BDC B D C ??≌,

∴11BD B D =.

在Rt BDA ?和111Rt B D A ?中,

11AB A B =,11BD B D =,

∴111Rt Rt (HL)BDA B D A ??≌,

∴1A A ∠=∠.

在ABC ?和111A B C ?中,

1C C ∠=∠,1A A ∠=∠,11AB A B =,

∴111(AAS)ABC A B C ??≌.

(2)如图,当这两个三角形都是直角三角形时,

∵11AB A B =,11BC B C =,190C C ∠==∠?.

∴Rt ABC ?≌111Rt A B C ?(HL );

∴当这两个三角形都是直角三角形时,它们也会全等;

如图,当这两个三角形都是钝角三角形时,作BD ⊥AC ,1111B D A C ⊥,

与(1)同理,利用AAS 先证明111BDC B D C ??≌,得到11BD B D =,

再利用HL 证明111Rt Rt BDA B D A ??≌,得到1A A ∠=∠,

再利用AAS 证明111ABC A B C ??≌;

∴当这两个三角形都是钝角三角形时,它们也会全等;

故答案为:钝角三角形或直角三角形.

【点睛】

本题考查了全等三角形的性质和判定的应用,主要考查学生的推理能力.解题的关键是熟练掌握证明三角形全等的方法.

10.如图,A (0,4)是直角坐标系y 轴上一点,动点P 从原点O 出发,沿x 轴正半轴运动,速度为每秒1个单位长度,以P 为直角顶点在第一象限内作等腰Rt △APB .设P 点的运动时间为t 秒.

(1)若AB ∥x 轴,如图1,求t 的值;

(2)设点A 关于x 轴的对称点为A ′,连接A ′B ,在点P 运动的过程中,∠OA ′B 的度数是否会发生变化,若不变,请求出∠OA ′B 的度数,若改变,请说明理由.

(3)如图2,当t =3时,坐标平面内有一点M (不与A 重合)使得以M 、P 、B 为顶点的三角形和△ABP 全等,请直接写出点M 的坐标.

【答案】(1)4;(2)∠OA ′B 的度数不变,∠OA ′B =45?,理由见解析;(3)点M 的坐标为(6,﹣4),(4,7),(10,﹣1)

【解析】

【分析】

(1)利用等腰直角三角形的性质以及平行线的性质,可证明△AOP 为等腰直角三角形,从而求得答案;

(2)根据对称的性质得:PA =PA '=PB ,由∠PAB +∠PBA =90°,结合三角形内角和定理即可求得∠OA 'B =45°;

(3)分类讨论:分别讨论当△ABP ≌△MBP 、△ABP ≌△MPB 、△ABP ≌△MPB 时,点M 的坐标的情况;过点M 作x 轴的垂线、过点B 作y 轴的垂线,利用等腰直角三角形的性质及全等三角形的判定和性质求得点M 的坐标即可.

【详解】

(1)∵AB ∥x 轴,△APB 为等腰直角三角形,

∴∠PAB =∠PBA =∠APO =45°,

∴△AOP 为等腰直角三角形,

∴OA =OP =4.

∴t =4÷1=4(秒),

故t 的值为4.

(2)如图2,∠OA ′B 的度数不变,∠OA ′B =45°,

∵点A 关于x 轴的对称点为A ′,

∴PA =PA ',

又AP =PB ,

∴PA =PA '=PB ,

∴∠PAA '=∠PA 'A ,∠PBA '=∠PA 'B ,

又∵∠PAB +∠PBA =90°,

∴∠PAA '+∠PA 'A +∠PA 'B +∠PBA '

=180()PAB PBA ∠∠?-+

180=?-90°

=90°,

∴∠AA 'B =45°,

即∠OA 'B =45°;

(3)当t =3时,M 、P 、B 为顶点的三角形和△ABP 全等,

①如图3,若△ABP ≌△MBP ,

则AP =PM ,过点M 作MD ⊥OP 于点D ,

∵∠AOP =∠PDM ,∠APO =∠DPM ,

∴△AOP ≌△MDP (AAS ),

∴OA =DM =4,OP =PD =3,

∴M 的坐标为:(6,-4).

②如图4,若△ABP ≌△MPB ,则AB PM =,

过点M 作M E ⊥x 轴于点E ,过点B 作BG ⊥x 轴于点G ,过点B 作BF ⊥y 轴于点F ,

∵△APB 为等腰直角三角形,则△MPB 也为等腰直角三角形,

∴∠BAP =∠MPB=45?,PA PB =

∵139023∠+∠=?=∠+∠,

∴12∠=∠

∴Rt AOP Rt PGB ?

∴34BG OP PG AO ====,

∵BG ⊥x 轴BF ,⊥y 轴

∴四边形BGOF 为矩形,

∴3OP BG ==,则431AF OA OF =-=-=

347BF OG OP PG ==+=+=

在Rt ABF 和Rt PME 中

∠BAF =45?+1∠,∠MPE =45?+2∠,

∴∠BAF =∠MPE

∵AB PM =

∴Rt ABF Rt PME ?

∴71ME BF PE AF ====,

∴M 的坐标为:(4,7),

③如图5,若△ABP ≌△MPB ,则AB PM =,

过点M 作M E ⊥x 轴于点D ,过点B 作BG ⊥x 轴于点E ,过点B 作BF ⊥y 轴于点F ,

∵△APB 为等腰直角三角形,则△MPB 也为等腰直角三角形,

∴∠BAP =∠MPB=45?,PA PB =

∵139023∠+∠=?=∠+∠,

∴12∠=∠

∴Rt AOP Rt PEB ?

∴34BE OP PE AO ====,

∵BE ⊥x 轴BF ,⊥y 轴

∴四边形BEOF 为矩形,

∴3OP BG ==,则431AF OA OF =-=-=

347BF OE OP PE ==+=+=

在Rt ABF 和Rt PMD 中

∵BF ⊥y 轴

∴42∠=∠

∵42ABF PMD ∠∠∠+=∠+

∴ABF PMD ∠∠=

∵AB PM =

∴Rt ABF Rt PMD ?

∴17MD AF PD BF ====,

∴M 的坐标为:(10,﹣1).

综合以上可得点M 的坐标为:(6,﹣4),(4,7),(10,﹣1).

人教版八年级上册数学知识点汇总

人教版八年级上册数学知识点汇总第十一章全等三角形 1.全等三角形的性质:全等三角形对应边相等、对应角相等。 2.全等三角形的判定:三边相等(SSS)、两边和它们的夹角相等(SAS)、两角和它们的夹边(ASA)、两角和其中一角的对边对应相等(AAS)、斜边和直角边相等的两直角三角形(HL)。 3.角平分线的性质:角平分线平分这个角,角平分线上的点到角两边的距离相等 4.角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上。 5.证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系),②、回顾三角形判定,搞清我们还需要什么,③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题). 6.第十二章轴对称 1.如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。 2.轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。 3.角平分线上的点到角两边距离相等。 4.线段垂直平分线上的任意一点到线段两个端点的距离相等。

5.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。 6.轴对称图形上对应线段相等、对应角相等。 7.画一图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。 8.点(x,y)关于x轴对称的点的坐标为(x,-y) 点(x,y)关于y轴对称的点的坐标为(-x,y) 点(x,y)关于原点轴对称的点的坐标为(-x,-y) 9.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角) 等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。 10.等腰三角形的判定:等角对等边。 11.等边三角形的三个内角相等,等于60°, 12.等边三角形的判定:三个角都相等的三角形是等腰三角形。 有一个角是60°的等腰三角形是等边三角形 有两个角是60°的三角形是等边三角形。 13.直角三角形中,30°角所对的直角边等于斜边的一半。 14.直角三角形斜边上的中线等于斜边的一半 第十三章实数 ※算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么正数x叫做a的算术平方根,记作。0的算术平方根为0;从定

八年级数学上册全等三角形单元测试卷(含答案解析)

八年级数学上册全等三角形单元测试卷(含答案解析) 一、八年级数学轴对称三角形填空题(难) 1.如图,在四边形ABCD 中,BC CD = ,对角线BD 平分ADC ∠,连接AC ,2ACB DBC ∠=∠,若4AB =,10BD =,则ABC S =_________________. 【答案】10 【解析】 【分析】 由等腰三角形的性质和角平分线的性质可推出AD ∥BC ,然后根据平行线的性质和已知条件可推出CA=CD ,可得CB=CA=CD ,过点C 作CE ⊥BD 于点E ,CF ⊥AB 于点F ,如图,根据等腰三角形的性质和已知条件可得DE 的长和BCF CDE ∠=∠,然后即可根据AAS 证明△BCF ≌△CDE ,可得CF=DE ,再根据三角形的面积公式计算即得结果. 【详解】 解:∵BC CD =,∴∠CBD =∠CDB , ∵BD 平分ADC ∠,∴∠ADB =∠CDB , ∴∠CBD =∠ADB ,∴AD ∥BC ,∴∠CAD =∠ACB , ∵2ACB DBC ∠=∠,2ADC BDC ∠=∠,∠CBD =∠CDB , ∴ACB ADC ∠=∠,∴CAD ADC ∠=∠, ∴CA=CD ,∴CB=CA=CD , 过点C 作CE ⊥BD 于点E ,CF ⊥AB 于点F ,如图,则152 DE BD ==,12 BCF ACB ∠=∠, ∵12BDC ADC ∠= ∠,ACB ADC ∠=∠,∴BCF CDE ∠=∠, 在△BCF 和△CDE 中,∵BCF CDE ∠=∠,∠BFC =∠CED =90°,CB=CD , ∴△BCF ≌△CDE (AAS ),∴CF=DE =5, ∴11451022 ABC S AB CF =?=??=. 故答案为:10.

八年级上册数学教案人教版(全册)

八年级上册数学教案人教版(全册) 第十一章全等三角形 11.1 全等三角形 教学容 本节课主要介绍全等三角形的概念和性质. 教学目标 1.知识与技能 领会全等三角形对应边和对应角相等的有关概念. 2.过程与方法 经历探索全等三角形性质的过程,能在全等三角形中正确找出对应边、对应角. 3.情感、态度与价值观 培养观察、操作、分析能力,体会全等三角形的应用价值. 重、难点与关键 1.重点:会确定全等三角形的对应元素. 2.难点:掌握找对应边、对应角的方法. 3.关键:找对应边、对应角有下面两种方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(2)对应边所对的角是对应角,?两条对应边所夹的角是对应角.教具准备 四大小一样的纸片、直尺、剪刀. 教学方法 采用“直观──感悟”的教学方法,让学生自己举出形状、大小相同的实例,加深认识.教学过程 一、动手操作,导入课题

1.先在其中一纸上画出任意一个多边形,再用剪刀剪下,?思考得到的图形有何特点? 2.重新在一纸板上画出任意一个三角形,再用剪刀剪下,?思考得到的图形有何特点? 【学生活动】动手操作、用脑思考、与同伴讨论,得出结论. 【教师活动】指导学生用剪刀剪出重叠的两个多边形和三角形. 学生在操作过程中,教师要让学生事先在纸上画出三角形,然后固定重叠的两纸,注意整个过程要细心. 【互动交流】剪出的多边形和三角形,可以看出:形状、大小相同,能够完全重合.这样的两个图形叫做全等形,用“≌”表示. 概念:能够完全重合的两个三角形叫做全等三角形. 【教师活动】在纸版上任意剪下一个三角形,要求学生手拿一个三角形,做如下运动:平移、翻折、旋转,观察其运动前后的三角形会全等吗? 【学生活动】动手操作,实践感知,得出结论:两个三角形全等. 【教师活动】要求学生用字母表示出每个剪下的三角形,同时互相指出每个三角形的顶点、三个角、三条边、每条边的边角、每个角的对边. 【学生活动】把两个三角形按上述要求标上字母,并任意放置,与同桌交流:(1)何时能完全重在一起?(2)此时它们的顶点、边、角有何特点? 【交流讨论】通过同桌交流,实验得出下面结论: 1.任意放置时,并不一定完全重合,?只有当把相同的角旋转到一起时才能完全重合.2.这时它们的三个顶点、三条边和三个角分别重合了. 3.完全重合说明三条边对应相等,三个角对应相等,?对应顶点在相对应的位置. 【教师活动】根据学生交流的情况,给予补充和语言上的规. 1.概念:把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,?重合的边叫做对应边,重合的角叫做对应角. 2.证两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上,?如果本图11.1

八年级数学上册全等三角形单元测试卷 (word版,含解析)

八年级数学上册全等三角形单元测试卷 (word 版,含解析) 一、八年级数学轴对称三角形填空题(难) 1.如图,在菱形ABCD 中,∠ABC=120°,AB=10cm ,点P 是这个菱形内部或边上的一点.若以P ,B ,C 为顶点的三角形是等腰三角形,则P ,A (P ,A 两点不重合)两点间的最短距离为______cm . 【答案】10310- 【解析】 解:连接BD ,在菱形ABCD 中, ∵∠ABC =120°,AB =BC =AD =CD =10,∴∠A =∠C =60°,∴△ABD ,△BCD 都是等边三角形,分三种情况讨论: ①若以边BC 为底,则BC 垂直平分线上(在菱形的边及其内部)的点满足题意,此时就转化为了“直线外一点与直线上所有点连线的线段中垂线段最短”,即当点P 与点D 重合时,PA 最小,最小值PA =10; ②若以边PB 为底,∠PCB 为顶角时,以点C 为圆心,BC 长为半径作圆,与AC 相交于一点,则弧BD (除点B 外)上的所有点都满足△PBC 是等腰三角形,当点P 在AC 上时,AP 最小,最小值为10310-; ③若以边PC 为底,∠PBC 为顶角,以点B 为圆心,BC 为半径作圆,则弧AC 上的点A 与点D 均满足△PBC 为等腰三角形,当点P 与点A 重合时,PA 最小,显然不满足题意,故此种情况不存在; 综上所述,PA 的最小值为10310-(cm ). 故答案为:10310-. 点睛:本题考查菱形的性质、等边三角形的性质,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型. 2.在ABC ?中,边AB 、AC 的垂直平分线分别交边BC 于点D 、点E ,20DAE ∠=?,

人教版八年级上册数学各单元知识点归纳总结

第十一章三角形 一、知识框架: 二、知识概念: 1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形. 2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边. 3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形 的高. 4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线. 5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间 的线段叫做三角形的角平分线. 6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性. 7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形. 8.多边形的内角:多边形相邻两边组成的角叫做它的内角. 9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角. 10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对 角线. 11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形. 12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用 多边形覆盖平面, 13.公式与性质: ⑴三角形的内角和:三角形的内角和为180° ⑵三角形外角的性质: 性质1:三角形的一个外角等于和它不相邻的两个内角的和. 性质2:三角形的一个外角大于任何一个和它不相邻的内角. n-·180° ⑶多边形内角和公式:n边形的内角和等于(2) ⑷多边形的外角和:多边形的外角和为360°. n-条对角 ⑸多边形对角线的条数:①从n边形的一个顶点出发可以引(3)

线,把多边形分成(2)n -个三角形.②n 边形共有(3)2 n n -条对角线. 第十二章 全等三角形 一、知识框架: 二、知识概念: 1.基本定义: ⑴全等形:能够完全重合的两个图形叫做全等形. ⑵全等三角形:能够完全重合的两个三角形叫做全等三角形. ⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点. ⑷对应边:全等三角形中互相重合的边叫做对应边. ⑸对应角:全等三角形中互相重合的角叫做对应角. 2.基本性质: ⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性. ⑵全等三角形的性质:全等三角形的对应边相等,对应角相等. 3.全等三角形的判定定理: ⑴边边边(SSS ):三边对应相等的两个三角形全等. ⑵边角边(SAS ):两边和它们的夹角对应相等的两个三角形全等. ⑶角边角(ASA ):两角和它们的夹边对应相等的两个三角形全等. ⑷角角边(AAS ):两角和其中一个角的对边对应相等的两个三角形全等. ⑸斜边、直角边(HL ):斜边和一条直角边对应相等的两个直角三角形 全等. 4.角平分线: ⑴画法: ⑵性质定理:角平分线上的点到角的两边的距离相等. ⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上. 5.证明的基本方法: ⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶 角、角平分线、中线、高、等腰三角形等所隐含的边角关系)

八年级全等三角形单元测试卷(解析版)

八年级全等三角形单元测试卷(解析版)一、八年级数学轴对称三角形填空题(难) 1.在等腰△ABC中,AD⊥BC交直线BC于点D,若AD=1 2 BC,则△ABC的顶角的度数为 _____. 【答案】30°或150°或90° 【解析】 试题分析:分两种情况;①BC为腰,②BC为底,根据直角三角形30°角所对的直角边等于斜边的一半判断出∠ACD=30°,然后分AD在△ABC内部和外部两种情况求解即可. 解:①BC为腰, ∵AD⊥BC于点D,AD=1 2 BC, ∴∠ACD=30°, 如图1,AD在△ABC内部时,顶角∠C=30°, 如图2,AD在△ABC外部时,顶角∠ACB=180°﹣30°=150°, ②BC为底,如图3, ∵AD⊥BC于点D,AD=1 2 BC,

∴AD=BD=CD, ∴∠B=∠BAD,∠C=∠CAD, ∴∠BAD+∠CAD=1 2 ×180°=90°, ∴顶角∠BAC=90°, 综上所述,等腰三角形ABC的顶角度数为30°或150°或90°. 故答案为30°或150°或90°. 点睛:本题考查了含30°交点直角三角形的性质,等腰三角形的性质,分类讨论是解题的关键. 2.在直角坐标系中,O 为坐标原点,已知点 A(1,2),点 P 是 y 轴正半轴上的一点,且△AOP 为等腰三角形,则点P 的坐标为_____________. 【答案】 5 4),0, 4 ?? ? ?? 【解析】 【分析】 有三种情况:①以O为圆心,以OA为半径画弧交y轴于D,求出OA即可;②以A为圆心,以OA为半径画弧交y轴于P,求出OP即可;③作OA的垂直平分线交y轴于C,则AC=OC,根据勾股定理求出OC即可. 【详解】 有三种情况:①以O为圆心,以OA为半径画弧交y轴于D,则OA=OD= = ∴D(0); ②以A为圆心,以OA为半径画弧交y轴于P,OP=2×y A=4, ∴P(0,4); ③作OA的垂直平分线交y轴于C,则AC=OC, 由勾股定理得:OC=AC, ∴OC=5 4 , ∴C(0,5 4 ); 故答案为: 5 4),0, 4 ?? ? ?? .

新人教版八年级数学上册知识点汇总好的

设计者:方礼花 使用班级:初二一班 姓名: 寄语: 同学们一定要努力,争取期末取得优异的成绩 ! 第十一章 三角形 (共5页,每页61份) 一、知识框架: 二、知识概念: 1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形. 2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.(可以判断三边是否能够成三角形) 3.三角形的分类:按角可以分为三类:锐角三角形,直角三角形,钝角三角形。按边可以分为两类:不等边三角形和等腰三角形。 3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高. (锐角三角形的高交于三角形内部一点,直角三角形交于直角顶点处,钝角三角形交于外部一点) 4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.(三角形的中线将三角形的面积平均分成相等的两份) 其交点称为重心。 5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线. 6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.(在生活中运用于未安装好的窗户加一条木条) 7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形. 8.多边形的内角:多边形相邻两边组成的角叫做它的内角. 9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角. 10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线. 11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形. 12.公式与性质: ⑴三角形的内角和:三角形的内角和为180° ⑵三角形外角的性质: 性质1:三角形的一个外角等于和它不相邻的两个内角的和.(经常用于角度计算中) 性质2:三角形的一个外角大于任何一个和它不相邻的内角.(经常用于证明两个角度比较大小) ⑶多边形内角和公式:n 边形的内角和等于(2)n -·180° ⑷多边形的外角和:多边形的外角和为360°. ⑸多边形对角线的条数:①从n 边形的一个顶点出发可以引(3)n -条对角线,把多边形分成(2)n -个三角形.②n 边形共有(3)2 n n -条对角线. (6)正多边形每个内角度数:用(2)n -·180°除以n,每个外角度数:360°除以n 。

全等三角形单元测试题

全等三角形单元测试 一、选择题 1.下列三角形不一定全等的是( ) A .有两个角和一条边对应相等的三角形 B .有两条边和一个角对应相等的三角形 C .斜边和一个锐角对应相等的两个直角三角形 D .三条边对应相等的两个三角形 2.下列说法: ①所有的等边三角形都全等 ②斜边相等的直角三角形全等 ③顶角和腰长对应相等的等腰三角形全等 ④有两个锐角相等的直角三角形全等 其中正确的个数是( ) A .1个 B .2个 C .3个 D .4个 3.如图,AB 平分∠CAD ,E 为AB 上一点,若AC=AD ,则下列结论错误的是( ) A.BC=BD B.CE=DE C.BA 平分∠CBD D.图中有两对全等三角形 4.AD 是△ABC 的角平分线,自D 向AB 、AC 两边作垂线,垂足为E 、F ,那么下 列结论中错误的是 ( ) A.DE=DF B.AE=AF C.BD=CD D.∠ADE=∠ADF 5.在△ABC 中,∠B=∠C ,与△ABC 全等的三角形有一个角是130°,那么△ABC 中与这个 角对应的角是( ). A .∠A B .∠B C .∠C D .∠B 或∠C 6.如图所示,BE ⊥AC 于点D ,且AD=CD ,BD=ED ,若∠ABC=54°,则∠E=( ). A .25° B .27° C .30° D .45° 7.如下左图,△ABC 中,∠C =90°,AC =BC ,AD 平分∠CAB 交BC 于点D ,DE ⊥AB ,且AB =10 cm , D A C E B

F E D C B A 则△BED 的周长为 ( ) A .5 cm B .10 cm; C .15 cm D .20 cm 8.如上右图,AB=AC ,BE ⊥AC 于E ,CF ⊥AB 于F ,则①△ABE ≌△ACF ;②△BOF ≌△COE ;③ 点O 在∠BAC 的角平分线上,其中正确的结论有( ) A .3个 B .2个 C .1个 D .0个 9.如图,在△ABC 中,AD 平分∠BAC ,过B 作BE ⊥AD 于E ,过E 作EF ∥AC 交AB 于F ,则( ) A 、AF=2BF; B 、AF=BF; C 、AF>BF; D 、AF

八年级上册数学目录人教版

八年级上册数学目录人教版 第十一章三角形 11.1与三角形有关的线段 信息技术应用画图找规律 11.2与三角形有关的角 阅读与思考为什么要证明 11.3多边形及其内角和 数学活动 小结 复习题11 第十二章全等三角形 12.1全等三角形 12.2三角形全等的判定 信息技术应用探究三角形全等的条件 12.3角的平分线的性质 数学活动 小结 复习题12 第十三章轴对称 13.1轴对称 13.2画轴对称图形

信息技术应用用轴对称进行图案设计 13.3等腰三角形 实验与探究三角形中边与角之间的不等关系13.4课题学习最短路径问题 数学活动 小结 复习题13 第十四章整式的乘法与因式分解 14.1整式的乘法 14.2乘法公式 阅读与思考杨辉三角 14.3因式分解 数学活动 小结 复习题14 第十五章分式 15.1分式 15.2分式的运算 阅读与思考容器中的水能倒完吧 15.3分式方程 数学活动 小结 复习题15

部分中英文词汇索引 如果A、B表示两个整式,并且B中含有字母,那么式子A/B叫 做分式(fraction)。 分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。 分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。 分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。 分式乘方要把分子、分母分别乘方。 a^-n=1/a^n(a≠0)这就是说,a^-n(a≠0)是a^n的倒数。 分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个 解不是原分式方程的解。

全等三角形单元练习(Word版 含答案)

全等三角形单元练习(Word版含答案) 一、八年级数学轴对称三角形填空题(难) 1.△ABC与△DEF是两个全等的等腰直角三角形,∠BAC=∠D=90°,AB=AC=6.现将 △DEF与△ABC按如图所示的方式叠放在一起,使△ABC保持不动,△DEF运动,且满足点E在边BC上运动(不与B,C重合),边DE始终经过点A,EF与AC交于点M.在△DEF 运动过程中,若△AEM能构成等腰三角形,则BE的长为______. 【答案】363 【解析】 【分析】 分若AE=AM 则∠AME=∠AEM=45°;若AE=EM;若MA=ME 则∠MAE=∠AEM=45°三种情况讨论解答即可; 【详解】 解:①若AE=AM 则∠AME=∠AEM=45° ∵∠C=45° ∴∠AME=∠C 又∵∠AME>∠C ∴这种情况不成立; ②若AE=EM ∵∠B=∠AEM=45° ∴∠BAE+∠AEB=135°,∠MEC+∠AEB=135° ∴∠BAE=∠MEC 在△ABE和△ECM中, B BAE CEN AE EII C ∠=∠ ? ? ∠=∠ ? ?= ? , ∴△ABE≌△ECM(AAS), ∴CE=AB6, ∵AC=BC2AB=3

∴BE = 23﹣6; ③若MA =ME 则∠MAE =∠AEM =45° ∵∠BAC =90°, ∴∠BAE =45° ∴AE 平分∠BAC ∵AB =AC , ∴BE = 1 2 BC =3. 故答案为23﹣6或3. 【点睛】 本题考查了等腰三角形的判定,掌握分类讨论的数学思想是解答本题的关键. 2.我们知道,经过三角形一顶点和此顶点所对边上的任意一点的直线,均能把三角形分割成两个三角形 (1)如图,在ABC ?中,25,105A ABC ∠=?∠=?,过B 作一直线交AC 于D ,若BD 把ABC ?分割成两个等腰三角形,则BDA ∠的度数是______. (2)已知在ABC ?中,AB AC =,过顶点和顶点对边上一点的直线,把ABC ?分割成两个等腰三角形,则A ∠的最小度数为________. 【答案】130? 1807? ?? ??? 【解析】 【分析】 (1)由题意得:DA=DB ,结合25A ∠=?,即可得到答案; (2)根据题意,分4种情况讨论,①当BD=AD ,CD=AD ,②当AD=BD ,AC=CD ,③AB=AC ,当AD=BD=BC ,④当AD=BD ,CD=BC ,分别求出A ∠的度数,即可得到答

人教版八年级上册数学教案

第十一章全等三角形 11.1 全等三角形 教学内容 本节课主要介绍全等三角形的概念和性质. 教学目标 1.知识与技能 领会全等三角形对应边和对应角相等的有关概念. 2.过程与方法 经历探索全等三角形性质的过程,能在全等三角形中正确找出对应边、对应角. 3.情感、态度与价值观 培养观察、操作、分析能力,体会全等三角形的应用价值. 重、难点与关键 1.重点:会确定全等三角形的对应元素. 2.难点:掌握找对应边、对应角的方法. 3.关键:找对应边、对应角有下面两种方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(2)对应边所对的角是对应角,?两条对应边所夹的角是对应角.教具准备 四张大小一样的纸片、直尺、剪刀. 教学方法 采用“直观──感悟”的教学方法,让学生自己举出形状、大小相同的实例,加深认识.教学过程 一、动手操作,导入课题 1.先在其中一张纸上画出任意一个多边形,再用剪刀剪下,?思考得到的图形有何特点? 2.重新在一张纸板上画出任意一个三角形,再用剪刀剪下,?思考得到的图形有何特点? 【学生活动】动手操作、用脑思考、与同伴讨论,得出结论. 【教师活动】指导学生用剪刀剪出重叠的两个多边形和三角形. 学生在操作过程中,教师要让学生事先在纸上画出三角形,然后固定重叠的两张纸,注意整个过程要细心. 【互动交流】剪出的多边形和三角形,可以看出:形状、大小相同,能够完全重合.这样的两个图形叫做全等形,用“≌”表示. 概念:能够完全重合的两个三角形叫做全等三角形. 【教师活动】在纸版上任意剪下一个三角形,要求学生手拿一个三角形,做如下运动:平移、翻折、旋转,观察其运动前后的三角形会全等吗? 【学生活动】动手操作,实践感知,得出结论:两个三角形全等. 【教师活动】要求学生用字母表示出每个剪下的三角形,同时互相指出每个三角形的顶点、三个角、三条边、每条边的边角、每个角的对边. 【学生活动】把两个三角形按上述要求标上字母,并任意放置,与同桌交流:(1)何时能完全重在一起?(2)此时它们的顶点、边、角有何特点? 【交流讨论】通过同桌交流,实验得出下面结论: 1.任意放置时,并不一定完全重合,?只有当把相同的角旋转到一起时才能完全重合. 2.这时它们的三个顶点、三条边和三个内角分别重合了. 3.完全重合说明三条边对应相等,三个内角对应相等,?对应顶点在相对应的位置. 【教师活动】根据学生交流的情况,给予补充和语言上的规范. 1.概念:把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,?重合的边叫做对应边,重合的角叫做对应角. 2.证两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上,?如果本图11.1─2△ABC和△DBC全等,点A和点D,点B和点B,点C和点C是对应顶点,?记作△ABC≌△DBC. 【问题提出】课本图11.1─1中,△ABC≌△DEF,对应边有什么关系?对应角呢? 【学生活动】经过观察得到下面性质: 1.全等三角形对应边相等; 2.全等三角形对应角相等. 二、随堂练习,巩固深化 课本P4练习. 【探研时空】 1.如图1所示,△ACF≌△DBE,∠E=∠F,若AD=20cm,BC=8cm,你能求出线段AB的长吗?与同伴交流.(AB=6) 2.如图2所示,△ABC≌△AEC,∠B=30°,∠ACB=85°,求出△AEC各内角的度数.?(∠AEC=30°,∠EAC=65°,∠ECA=85°) 三、课堂总结,发展潜能 1.什么叫做全等三角形? 2.全等三角形具有哪些性质? 四、布置作业,专题突破 1.课本P4习题11.1第1,2,3,4题. 2.选用课时作业设计. 板书设计 把黑板分成左、中、右三部分,左边板书本节课概念,中间部分板书“思考”中的问题,右边部分板书学生的练习. 疑难解析 由于两个三角形的位置关系不同,在找对应边、对应角时,可以针对两个三角形不同的位置关系,寻找对应边、角的规律:(1)有公共边的,?公共边一定是对应边;(2)有公共角的,公共角一定是对应角;(3)有对顶角的,对顶角一定是对应角;两个全等三角形中一对最长的边(或最大的角)是对应边(或角),一对最短的边(或最小的角)是对应边(或角).

八年级上册数学 全等三角形单元测试卷 (word版,含解析)

八年级上册数学全等三角形单元测试卷(word版,含解析) 一、八年级数学轴对称三角形填空题(难) 1.如图,在长方形ABCD的边AD上找一点P,使得点P到B、C两点的距离之和最短,则点P的位置应该在_____. 【答案】AD的中点 【解析】 【分析】 【详解】 分析:过AD作C点的对称点C′,根据轴对称的性质或线段垂直平分线的性质得出 AC=PC′,从而根据两点之间线段最短,得出这时的P点使BP+PC的之最短. 详解:如图,过AD作C点的对称点C′, 根据轴对称的性质可得:PC=PC′,CD=C′D ∵四边形ABCD是矩形 ∴AB=CD ∴△ABP≌△DC′P ∴AP=PD 即P为AD的中点. 故答案为P为AB的中点. 点睛:本题考查了轴对称-最短路线问题,矩形的性质,两点之间线段最短的性质.得出动点P所在的位置是解题的关键. 2.在直角坐标系中,O 为坐标原点,已知点 A(1,2),点 P 是 y 轴正半轴上的一点,且△AOP 为等腰三角形,则点P 的坐标为_____________.

【答案】5(0,5),(0,4),0, 4?? ??? 【解析】 【分析】 有三种情况:①以O 为圆心,以OA 为半径画弧交y 轴于D ,求出OA 即可;②以A 为圆心,以OA 为半径画弧交y 轴于P ,求出OP 即可;③作OA 的垂直平分线交y 轴于C ,则AC =OC ,根据勾股定理求出OC 即可. 【详解】 有三种情况:①以O 为圆心,以OA 为半径画弧交y 轴于D ,则OA =OD = 22125+=; ∴D (0,5); ②以A 为圆心,以OA 为半径画弧交y 轴于P ,OP =2×y A =4, ∴P (0,4); ③作OA 的垂直平分线交y 轴于C ,则AC =OC , 由勾股定理得:OC =AC =()2212OC +-, ∴OC =54 , ∴C (0,54 ); 故答案为:5(0,5),(0,4),0, 4? ? ???. 【点睛】 本题主要考查对线段的垂直平分线,等腰三角形的性质和判定,勾股定理,坐标与图形性质等知识点的理解和掌握,能求出符合条件的所有情况是解此题的关键. 3.如图所示,ABC 为等边三角形,P 是ABC 内任一点,PD AB ,PE BC ∥,

人教版八年级数学上册讲义(全册)

八年级数学讲义 第11章 三角形 一、 三角形的概念 1. 三角形的定义 由不在同一直线上的三条线段首尾顺次连结所组成的图形叫做三角形 要点:①三条线段;②不在同一直线上;③首尾顺次相接. 2.三角形的表示 △ABC 中,边:AB ,BC ,AC 或 c ,a ,b . 顶点:A ,B ,C . 内角:∠A ,∠B ,∠C .. 二、 三角形的边 1. 三角形的三边关系:(证明所有几何不等式的唯一方法) (1) 三角形任意两边之和大于第三边:b+c>a (2) 三角形任意两边之差小于第三边:b-ca 时,就可构成三角形. 1.2 确定三角形第三边的取值范围: 两边之差<第三边<两边之和. 2. 三角形的主要线段 2.1三角形的高线 从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线. ①锐角三角形三条高线交于三角形内部一点; ②直角三角形三条高线交于直角顶点; ③钝角三角形三条高线所在直线交于三角形外部一点 2.2三角形的角平分线 三角形一个角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。 三条角平分线交于三角形内部一点. 2.3三角形的中线 连结三角形一个顶点与它对边中点 的线段叫做三角形的中线。 A C B A D

三角形的三条中线交于三角形内部一点. 三、三角形的角 1 三角形内角和定理 结论1:△ABC中:∠A+∠B+∠C=180°※三角形中至少有2个锐角 结论2:在直角三角形中,两个锐角互余.※三角形中至多有1个钝角 注意:①在三角形中,已知两个内角可以求出第三个内角 如:在△ABC中,∠C=180°-(∠A+∠B) ②在三角形中,已知三个内角和的比或它们之间的关系,求各内角. 如:△ABC中,已知∠A:∠B:∠C=2:3:4,求∠A、∠B、∠C的度数 2三角形外角和定理 2.1外角:三角形一边与另一边的延长线组成的角叫做三角形的角. 2.2性质: ①三角形的一个外角等于与它不相邻的两个内角的和. ②三角形的一个外角大于与它不相邻的任何一个内角. ③三角形的一个外角与与之相邻的内角互补 2.3外角个数: 过三角形的一个顶点有两个外角,这两个角为对顶角(相等), 可见一个三角形共有6个外角 四、三角形的分类 (1) 按角分:①锐角三角形②直角三角形③钝角三角形 (2) 按边分:①不等边三角形②底与腰不等的等腰三角形③等边三角形 五多边形及其内角 1、多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形. 2、正多边形:各个角都相等、各个边都相等的多边形叫做正多边形。 3、多边形的对角线 (1)从n边形一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形。 (2)n边形共有条对角线。 4、n边形的内角和等于(n-2)·180°(n≥3,n是正整数)。任意凸形多边形的外角和等于360° ※多边形外角和恒等于360°,与边数的多少无关. ※多边形最多有3个内角为锐角,最少没有锐角(如矩形); ※多边形的外角中最多有3个钝角,最少没有钝角. 5、实现镶嵌的条件:拼接在同一点的各个角的和恰好等于360°;相邻的多边形有公共边。【考点三】判断三角形的形状 8、若△ABC的三边a、b、c满足(a-b)(b-c)(c-a)=0,试判断△ABC的形状。 9、已知a,b,c是△ABC的三边,且满足a2+b2+c2=ab+bc+ca,试判断△ABC的形状。

全等三角形单元测试及详解

姓名: 得分: 一、选择(本题共8小题,每小题3分,共24分) 1.(3分)(2009?海南)已知图中的两个三角形全等,则∠α的度数是() 72°60°58°50° D C..A.B. )CE=3.5EFD且AB=EF,,CD=3,则AC=(2.(3分)如图,△ABC≌△ 3 3.5 6.5 5 A.B.C.D. 3.(3分)如图,△ABC≌△CDA,并且AB=CD,那么下列结论错误的是() AC=CA AC=BC ∠1=∠2 ∠D=∠B A.B.C.D. 4.(3分)对于下列各组条件,不能判定△ABC≌△A′B′C′的一组是() A.∠A=∠A′,∠B=∠B′,AB=A′B′B.∠A=∠A′,AB=A′B′,AC=A′C′C.∠A=∠A′,AB=A′B′,BC=B′C′D.AB=A′B′,AC=A′C′,BC=B′C′ 5.(3分)(2007?锦州一模)如图,将两根钢条AA′、BB′的中点O连在一起,使AA′、BB′可以绕点O自由转动,就做成了一个测量工件,则A′B′的长等于内槽宽AB,则判定△OAB ≌△OA′B′的理由是()

A.边边边B.角边角C.边角边D.角角边 6.(3分)(2005?广元)如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配 一块完全一样的玻璃,那么最省事的办法是() A.带①去B.带②去C.带③去D.带①和②去 )上,则图中全等三角形有(AE在C,点BAD平分∠AE,AB=AD分)如图, 3.(7. 对.5.4对D3A.2对B.对C )CD=2,则△ABD的面积是(,△ABC中,∠C=90°,AD平分∠BAC,AB=58.(3分) 如图, 0 210 2 5 D...C A.B 24分)8小题,每小题3分,共二、填空题.(本题共度._________,∠O=70°C=25°,则∠AEB=OAD9.(3分)(2008?南通)已知:如图,△≌△OBC,且∠ ,可补充的一个条件ABDABC≌△∠DAB,要使△上,∠200610.(3分)(?浙江)如图,点B 在AECAB= .(答案不唯一,写一个即可)是:_________ ,那么的周长为ACD24BC于D,△AD32宁夏)如图,311.(分)(2009?△ABC的周长为,且

新人教版初二上册数学第一单元归纳与练习

第一单元 三角形 【知识归纳】 1. 三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角 形. 2. 三角形的分类 三角形(按角分) ?? ? ??钝角三角形直角三角形锐角三角形 三角形(按边分) ?????? ?) (等边三角形等腰三角形不等边三角形 3. 三角形的三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边. 4. 三角形的重要线段 ①三角形的中线:顶点与对边中点的连线,三条中线交点叫重心 ②三角形的角平分线:内角平分线与对边相交,顶点和交点间的线段,三个角的角平分线的交点叫内心 ③三角形的高:顶点向对边作垂线,顶点和垂足间的线段.三条高的交点叫垂心(分锐角三角形,钝角三角形和直角三角形的交点的位置不同) 5. 三角形具有稳定性 6. 三角形的内角和定理及性质 定理:三角形的内角和等于180°. 推论1:直角三角形的两个锐角互补。 推论2:三角形的一个外角等于不相邻的两个内角的和。 推论3:三角形的一个外角大于与它不相邻的任何一个内角。 7. 多边形定义:在平面内,由不共线的一些线段首尾顺次相接组成的图形叫做多边形,组 成多边形的线段,叫做多边形的边,多边形中相邻两边组成的角叫做它的内角,多边形的边与它的邻边的延长线组成的角叫做外角. 8. 多边形按其组成图形的线段的条数分类,一个多边形由n 条线段构成,那么这个多边形 就叫做n 边形. 9. n 边形的内角和等于(n -2)·180°(n≥3的正整数) 10. 多边形的外角和恒为360°。 11. 正多边形:如果多边形的各内角都相等,各边也都相等,那就称它为正多边形. 12. 正多边形与镶嵌 可以进行镶嵌的条件是:一个顶点各个内角和是360°。 【同步练习】 一、选择题 1. 能把一个任意三角形分成面积相等的两个三角形的线段是三角形的( ) A 、角平分线 B 、中线 C 、高 D 、两边中点连线 2. 如图,在ABC ?中,点D 、E 、F 分别是BC 、AD 、CE 的中点,且2 4cm S ABC =△,则B E F S △的值为 。

【精选】八年级上册全等三角形单元测试卷 (word版,含解析)

一、八年级数学全等三角形解答题压轴题(难) 1.如图,在ABC 中,45ABC ∠=,AD ,BE 分别为BC ,AC 边上的高,连接DE ,过点 D 作DF D E ⊥与点 F , G 为BE 中点,连接AF ,DG . (1)如图1,若点F 与点G 重合,求证:AF DF ⊥; (2)如图2,请写出AF 与DG 之间的关系并证明. 【答案】(1)详见解析;(2)AF=2DG,且AF ⊥DG,证明详见解析. 【解析】 【分析】 (1) 利用条件先△DAE ≌△DBF,从而得出△FDE 是等腰直角三角形,再证明△AEF 是等腰直角三角形,即可. (2) 延长DG 至点M,使GM=DG,交AF 于点H,连接BM, 先证明△BGM ≌△EGD,再证明△BDM ≌△DAF 即可推出. 【详解】 解:(1)证明:设BE 与AD 交于点H..如图, ∵AD,BE 分别为BC,AC 边上的高, ∴∠BEA=∠ADB=90°. ∵∠ABC=45°, ∴△ABD 是等腰直角三角形. ∴AD=BD. ∵∠AHE=∠BHD, ∴∠DAC=∠DBH. ∵∠ADB=∠FDE=90°, ∴∠ADE=∠BDF. ∴△DAE ≌△DBF.

∴BF=AE,DF=DE. ∴△FDE 是等腰直角三角形. ∴∠DFE=45°. ∵G 为BE 中点, ∴BF=EF. ∴AE=EF. ∴△AEF 是等腰直角三角形. ∴∠AFE=45°. ∴∠AFD=90°,即AF ⊥DF. (2)AF=2DG,且AF ⊥DG.理由:延长DG 至点M,使GM=DG,交AF 于点H,连接BM, ∵点G 为BE 的中点,BG=GE. ∵∠BGM ∠EGD, ∴△BGM ≌△EGD. ∴∠MBE=∠FED=45°,BM=DE. ∴∠MBE=∠EFD,BM=DF. ∵∠DAC=∠DBE, ∴∠MBD=∠MBE+∠DBE=45°+∠DBE. ∵∠EFD=45°=∠DBE+∠BDF, ∴∠BDF=45°-∠DBE. ∵∠ADE=∠BDF, ∴∠ADF=90°-∠BDF=45°+∠DBE=∠MBD. ∵BD=AD, ∴△BDM ≌△DAF. ∴DM=AF=2DG,∠FAD=∠BDM. ∵∠BDM+∠MDA=90°, ∴∠MDA+∠FAD=90°. ∴∠AHD=90°. ∴AF ⊥DG. ∴AF=2DG,且AF ⊥DG 【点睛】 本题考查三角形全等的判定和性质,关键在于灵活运用性质. 2.取一副三角板按图()1拼接,固定三角板60,()30ADC D ACD ∠=∠=,将三角板

八年级上册数学 全等三角形单元测试卷附答案

八年级上册数学 全等三角形单元测试卷附答案 一、八年级数学轴对称三角形填空题(难) 1.在Rt △ABC 中,∠ABC=90°,AB=3,BC=4,点E ,F 分别在边AB ,AC 上,将△AEF 沿直线EF 翻折,点A 落在点P 处,且点P 在直线BC 上.则线段CP 长的取值范围是____. 【答案】15CP ≤≤ 【解析】 【分析】 根据点E 、F 在边AB 、AC 上,可知当点E 与点B 重合时,CP 有最小值,当点F 与点C 重合时CP 有最大值,根据分析画出符合条件的图形即可得. 【详解】 如图,当点E 与点B 重合时,CP 的值最小, 此时BP=AB=3,所以PC=BC-BP=4-3=1, 如图,当点F 与点C 重合时,CP 的值最大, 此时CP=AC , Rt △ABC 中,∠ABC=90°,AB=3,BC=4,根据勾股定理可得AC=5,所以CP 的最大值为5, 所以线段CP 长的取值范围是1≤CP≤5, 故答案为1≤CP≤5.

【点睛】 本题考查了折叠问题,能根据点E、F分别在线段AB、AC上,点P在直线BC上确定出点E、F位于什么位置时PC有最大(小)值是解题的关键. 2.△ABC与△DEF是两个全等的等腰直角三角形,∠BAC=∠D=90°,AB=AC=6.现将 △DEF与△ABC按如图所示的方式叠放在一起,使△ABC保持不动,△DEF运动,且满足点E在边BC上运动(不与B,C重合),边DE始终经过点A,EF与AC交于点M.在△DEF 运动过程中,若△AEM能构成等腰三角形,则BE的长为______. 【答案】363 【解析】 【分析】 分若AE=AM 则∠AME=∠AEM=45°;若AE=EM;若MA=ME 则∠MAE=∠AEM=45°三种情况讨论解答即可; 【详解】 解:①若AE=AM 则∠AME=∠AEM=45° ∵∠C=45° ∴∠AME=∠C 又∵∠AME>∠C ∴这种情况不成立; ②若AE=EM ∵∠B=∠AEM=45° ∴∠BAE+∠AEB=135°,∠MEC+∠AEB=135° ∴∠BAE=∠MEC 在△ABE和△ECM中, B BAE CEN AE EII C ∠=∠ ? ? ∠=∠ ? ?= ? , ∴△ABE≌△ECM(AAS), ∴CE=AB6,

相关文档
相关文档 最新文档