文档库 最新最全的文档下载
当前位置:文档库 › MTBF,即平均故障间隔时间

MTBF,即平均故障间隔时间

MTBF,即平均故障间隔时间
MTBF,即平均故障间隔时间

mtbf

MTBF,即平均故障间隔时间,英文全称是"Mean Time Between Failure"。是衡量一个产品(尤其是电器产品)的可靠性指标。单位为"小时"。它反映了产品的时间质量,是体现产品在规定时间内保持功能的一种能力。具体来说,是指相邻两次故障之间的平均工作时间,也称为平均故障间隔。概括地说,产品故障少的就是可靠性高,产品的故障总数与寿命单位总数之比叫"故障率"(Failure rate)。它仅适用于可维修产品。同时也规定产品在总的使用阶段累计工作时间与故障次数的比值为MTBF。磁盘阵列产品一般MTBF不能低于50000小时。

计算方法

失效时间是指上一次设备恢复正常状态(图中的up time)起,到设备此次失效那一刻(图中的down time)之间间隔的时间。

MTBF值是产品设计时要考虑的重要参数,可靠度工程师或设计师经常使用各种不同的方法与标准来估计产品的MTBF值。相关标准包括MIL-HDBK-217F、Telcordia SR332、Siemens Norm、Fides或UTE C 80-810(RDF2000)等。不过这些方法估计到的值和实际的平均故障间隔仍有相当的差距。计算平均故障间隔的目的是为了找出设计中的薄弱环节。

MTBF的数学式表达

另外,在工程学上,常用希腊字母θ来表示MTBF,既有:

在概率论中,可用?(t)形式的概率密度方程表示MTBF,既有:

此处?指的是直到下次失效经过时长的概率密度方程--满足标准概率密度方程--

故障时间

随着服务器的广泛应用,对服务器的可靠性提出了更高的要求。所谓"可靠性",就是产品在规定条件下和规定时间内完成规定功能的能力;反之,产品或其一部分不能或将不能完成规定的功能是出故障。概括地说,产品故障少的就是可靠性高,产品的故障总数与寿命单位总数之比叫"故障率"(Failure rate),常用λ表示。例如正在运行中的100只硬盘,一年之内出了2次故障,则每个硬盘的故障率为0.02次/年。当产品的寿命服从指数分布时,其故障率的倒数就叫做平均故障间隔时间(Mean Time Between Failures),简称MTBF。即:

MTBF=1/λ

笔者看到一款可用于服务器的WD Caviar RE2 7200 RPM 硬盘,MTBF 高达120万小时,保修5年。120万小时约为137年,并不是说该种硬盘每只均能工作137年不出故障。由MTBF=1/λ可知λ=1/MTBF=1/137年,即该硬盘的平均年故障率约为0.7%,一年内,平均1000只硬盘有7只会出故障。

下图所示为著名的浴盆曲线,左边斜线部分为早期故障率,其故障率一般较高且随着时间推移很快下降。曲线中部为使用寿命期,其故障率一般很低且基本固定。最右部为耗损期,失效率急速升高。电子产品制造商一般通过测试、老炼、筛选等手段将早期故障尽量剔除,然后提供给客户使用。当使用寿命期将尽,产品也即将进入故障高发期,需要报废或更新换代了。

由来

右图为浴盆曲线,那么浴盆曲线与产品寿命有什么关系呢?

电子产品的寿命一般都符合浴盆曲线,可分为三个阶段:

浴盆曲线

元器件瞬时失效浴盆曲线图

寿命

明白了MTBF和"浴盆"曲线的基本概念,我们对评估产品的使用寿命有了一定的掌握。在合适工作条件下器件使用寿命期内的故障率很低。广大电子爱好者都知道电子元器件的寿命,与工作温度是有密切关系的。以电脑主板上常用的也常出故障的电解电容器为例,其寿命会受到温度的影响。因此,应尽可能使电容器在较低的温度之下工作,如果电容器的实际工作温度超过了其规格范围,不仅其寿命会缩短,而且电容器会受到严重的损毁(例如电解液泄漏)。因此,在分析电脑主板上电容器的工作温度时,不仅要考虑机箱内整体环境温度及电容器自身的发热,还要考虑机箱内其他发热元件的热辐射(特别是CPU、稳压器、电源供应器等)。

根据测试,通常2.0G的CPU消耗功率达56.7W,生成温度达70℃;而当频率提高至3.0G时,CPU温度往往超过90℃。在这样的高温烘烤下,主板上的电容器寿命会发生什么变化?

为简化起见,不考虑纹波、频率、ESR等因素,电容器的估计寿命可用下述公式表示:

其中,L0表示最高工作温度下的寿命,Tmax表示最高工作温度,Ta表示实际环境温度。由此可见,如果环境温度每升高10℃,电容器寿命将下降一倍!

由上图右面的曲线可明显看出,随着电容器工作环境温度的上升,其有效寿命急剧缩短。其中有效寿命(Useful life)是指该种电容器达到给定故障率的时间。

电脑的关系

可靠性

电源供应器对电脑来说,重要性不言而喻。影响电源供应器寿命的因素很多,如负载大小、振动和周边的环境温度等。其中,环境温度很重要,所以选择合适的风扇,排放出由电源供应器内部的热量非常关键。电源供应器的MTBF,在很大程度上是由其内部的电解电容器MTBF值所决定的。因随着温度的上升,电容器的寿命急剧缩短,所以电源供应器的工作温度如能得到降低,其寿命就会更长一些。

当评价电源供应器所标称寿命时,电源供应器是否运行在额定的满负载状况是另一重要考虑因素。如果电源供应器装有合适的散热器而散热风扇风量足够大,在低于满负载的情况下连续工作,电源供应器就能有更长的寿命。一般电脑电源供应器寿命按照3-5年计算元件的可能失效周期,MTBF在80,000-100,000小时之间。

不同的电源供应器厂家,其产品设计、用料也往往差别很大,工作寿命自然不同。

除电源供应器外,硬碟的温度也不可小视。硬碟动不动就7200rpm-15000rpm,想想看硬碟内的马达每天转24小时,平均工作温度在四、五十度的高热是免不了。笔者曾测量过一台散热不够好的伺服器硬碟,温度超过40℃。对硬碟来说,如果机壳内部的温度降低了,这将意味着减少主轴马达液态轴承的轴承润滑剂以及磁碟润滑剂的蒸发,这将大大降低其损坏的机率。据Seagate公司公开的某型号硬碟数据,在34℃时的MTBF为150,000小时,但在25℃时,会达到230,000小时。

散热效果

为降低硬碟温度,可增加散热风扇。市面上是有卖硬碟专用的散热模组,有的则是一颗风扇再加上一块硬碟大小的铝制散热片,其实没有必要这么复杂。

如采用小型风鼓(BLOWER),风量增加,散热效果更好。但是,增加风扇或风鼓一定要考虑振动的问题。要知道风扇较高的转速才能达到一定的风量,但如采用较劣质的风扇,转速虽高,但寿命短且振动厉害,对硬碟寿命会带来不利影响,安装硬碟时加吸震软垫、机箱机壳底部的吸震片都有一定效用。

优质的电源供应器当然要搭配高品质的风扇,如HG2-6400P选用的是NMB钢珠轴承风扇,比传统油封轴承风扇寿命高出2倍。这款电源供应器还加入了风扇转速控制线路,可以根据电源内部的温度调节风扇转速,在延长使用寿命的同时,也更好的控制了风扇噪音和震动。

影响

如何保养和维护好伺服器,最大限度的延长其使用寿命,是大家都非常关心的话题。灰尘对伺服器构成的威胁不容忽视。按笔者的电子产品维修经验,在灰尘比较大的环境中工作,由于PCB吸附灰尘,而灰尘的沉积会影响电子元器件的热量散发,这将导致元件温度上升,进而出现热稳定性下降甚至产生漏电,严重时导致烧毁。另外,灰尘也会吸收水分,腐蚀电子线路,造成一些莫名其妙的短路问题。所以灰尘体积虽小,但对伺服器的危害不可低估。

尽管伺服器机房有相对较好的环境,但灰尘仍会不断累积。所以,有必要定期进行清理,可使用上图美国生产CRC牌防尘喷剂、也可用有防静电(ESD)功能的小毛刷小心进行清扫,或使用吹风球清洁灰尘,减少出故障的机率。在清理机箱内部的灰尘时,切记断开电源,小心操作,特别是面板进风口和电源(排风口)的附近,以及板卡的插接部位灰尘最多。清理电源里的灰尘最好将电源供应器拆下,用防尘喷剂、吹气球仔细清扫干净后再装回。

计算

设有一个可修复的产品在使用过程中,共计发生过N0次故障,每次故障后经过修复又和新的一样继续投入使用,其工作时间分别为:T0,T1。那么产品的平均故障间隔时间,也就是平均寿命为Q为:(T0+T1)/N0。

通常,我们在产品的手册或包装上能够看到这个MTBF值,如8000小时,2万小时,那么,MTBF的数值是怎样算出来的呢,假设一台电脑的MTBF 为3万小时,是不是把这台电脑连续运行3万小时检测出来的呢?答案是否定的,如果是那样的话,我们有那么多产品要用几十年都检测不完的。其实,关于MTBF值的计算方法,目前最通用的权威性标准是MIL-HDBK-217、GJB/Z299B和Bellcore,分别用于军工产品和民用产品。其中,

MIL-HDBK-217是由美国国防部可靠性分析中心及Rome实验室提出并成为行业标准,专门用于军工产品MTBF值计算,GJB/Z299B是我国军用标准;而Bellcore是由AT&TBell实验室提出并成为商用电子产品MTBF值计算的行业标准。

MTBF计算中主要考虑的是产品中每个器件的失效率。但由于器件在不同的环境、不同的使用条件下其失效率会有很大的区别,例如,同一产品在不同的环境下,如在实验室和海洋平台上,其可靠性值肯定是不同的;又如一个额定电压为16V的电容在实际电压为25V和5V下的失效率肯定是不同的。所以,在计算可靠性指标时,必须考虑上述多种因素。所有上述这些因素,几乎无法通过人工进行计算,但借助于软件如MTBFcal软件和其庞大的参数库,我们就能够轻松的得出MTBF值。

分析目的

1)针对高频率故障零件的重点对策及零件寿命延长的技术改造依据。

2)进行零件寿命周期的推算及最佳维修计划编制。

3)有关点检对象、项目的选择与点检基准的设定、改善。

4)用于指导内外部维修工作分配。根据公司内设备修复能力的评价,以设备类型、作业种类的不同来决定内部分别承担工作的维修质量与设备效率方面的风险,作为维修外包的重要参考。

5)设定备品备件基准。机械、电气零件的各储备项目及基本库存数量,应根据MTBF 的记录分析来判断,使其库存水平达到最经济的状况。

6)作为选择维修技术方法改善重点的参考依据。为了提高设备开动率,必须缩短与设备停机相关的长时间维修作业及工程调整、切换的时间。因此,有必要对维护作业方法进行检验,而其检验的项目、优先顺序的选择等基本情况,均需要依据MTBF的分析记录表。

7)用于设备对象设定预估运行时间标准,及其维护作业的选定与维护时间标准的研究。维修计划预估时间标准的设定及维护作业的选定,必须考虑设备维护重复周期或标准时间值与实际维护时间的差异及相应维护作业特性等因素,因此,MTBF分析表是非常必要的。

8)图样整理及重新选定重点设备或零件时的参考。MTBF的分析记录表所记录的设备零件改造项目或摩擦劣化等信息,以及设备图样修改或前期制作等情况,通过能经常作分析检验及重要性排序管理,可以使工程图样管理变得更容易。

9)运行操作标准的设定、修订及决定设备维护业务的责任分派。

10)提供设备的可靠性、可维修性设计的技术资料。维护技术最重要的是以MTBF分析表为基础,收集有关设备的可靠性、可维修性设计的技术信息,以便提供给设计部门在设计设备时参考。

设备完好率设备利用率设备故障率设备开动率OEEMTTRMTTFMTBF

1、设备完好率 定义:设备完好率,指的是完好的生产设备在全部生产设备中的比重,它是反映企业设备技术状况和评价设备管理工作水平的一个重要指标。 计算公式:设备完好率=完好设备总台数/生产设备总台数× 100% 标准:所谓完好设备一般标准是: ①设备性能良好,如机械加工设备的精度达到工艺要求; ②设备运转正常,如零部件磨损、腐蚀程度不超过技术规定标准,润滑系统正常、 设备运转无超温、超压现象; ③原料、燃料、油料等消耗正常,没有油、水、汽、电的泄漏现象。对于各种不同类 型的设备,还要规定具体标准。例如传动系统的变速要齐全、滑动部分要灵敏、油路系统要畅通等。 公式中的设备总台数包括在用、停用、封存的设备。在计算设备完好率时,除按全部设备计算外,还应分别计算各类设备的完好率。 2、设备利用率 定义:设备利用率是指每年度设备实际使用时间占计划用时的百分比。是指设备的使用效率。是反映设备工作状态及生产效率的技术经济指标。 在一般的企业当中,设备投资常常在总投资中占较大的比例。因此,设备能否充分利用,直接关系到投资效益,提高设备的利用率,等于相对降低了产品成本。所以,作为企业的管理者,在进行生产决策的时候,一定要充分认识到这一点。 一般包括:设备数量利用指标―实有设备安装率,已安装设备利用率;设备时间利用指标―设备制度台时利用率,设备计划台时利用率;设备能力利用指标―设备负荷率; 设备综合利用指标―设备综合利用率。过去,设备利用率一般仅指设备制度台时利用率。 计算公式: 公式一: 设备利用率=每小时实际产量/ 每小时理论产量×100% 公式二: 设备利用率=每班次(天)实际开机时数/ 每班次(天)应开机时数×100% 公式三: 设备利用率=某抽样时刻的开机台数/ 设备总台数×100% 3、设备故障率

平均无故障时间MTBF测试及计算过程

一、寿命估算模型 常温下的故障及寿命的统计耗时耗力。为方便估算产品寿命,通常会进行批次性产品抽样,作加速寿命实验。 不同种类的产品,MTBF的计算方式也不尽相同,常用的加速模式有以下几种: 阿氏模型(Arrhenius Model):如果温度是产品唯一的加速因素,则可采用阿氏模型, 一般情況下,电子零件完全适用阿氏模型,而电子和通讯类成品也可适用阿氏模型,原因是成品类的失效模式是由大部分电子零件所构成.因此,阿氏模型,广泛用于电子与通讯行业。 爱玲模型(Eyring Model):如果引进温度以外的应力,如湿度,电压,机械应力等,则为爱玲模型。产品包括电灯,液晶显示元件,电容器等应用此模式。 反乘幂法则(Inverse Power Law):适用于金属和非金属材料,轴承和电子装备等。 复合模式(Combination Model):适用于同时考虑温度与电压作为环境应力的电子材料如电容。 二、常温下MTBF的估算方式 MTBF(Mean Time Between Failure),即平均失效间隔,指系统两次故障发生时间之间的时间段的平均值。 MTBF= 例子:从一批产品中抽取5PCS产品,在某一温度下,其实际工作时间、失效数如下图所示,求MTBF值。

解:带入公式计算 MTBF== ==131.8 二、MTBF阿氏模型 只有一项加速因子,如温度,且服从指数分布的加速寿命实验,可采用MTBF 阿氏模型计算公式进行估算。阿氏模型起源于瑞典物理化学家Svandte Arrhenius 1887年提出的阿氏反应方程式. R:反应速度speed of reaction A:溫度常数 a unknown non-thermal constant EA:活化能activation energy (eV) K:Boltzmann常数,等地8.623*10-5 eV/0K. T:为绝对溫度(Kelvin) Ea=(ln L2-ln L1)*k/(1/T2-1/T1) MTBF=L1*K Ea为活化能(eV); T1、T2为加速寿命测试的实验温度(需换算为绝对温度参与计算); T3为常温温度25℃,换算为绝对温度为298K; L1、L2分别为加速寿命测试温度T1、T2下测得的寿命; 寿命L= K为Boltzmann常数,值为8.62X (eV/K); 以同类型产品做参照,其计算过程如下:

平均维修时间(MTBR)

平均维修间隔时间(MTBR) 目录 一、MTBR的定义 二、指标计算 一、MTBR的定义 MTBR的英文原文是Mean Time Between Repairs。中文翻译也没有统一,网上有很多不同的翻译方法,比如说平均修复时间,平均无故障 率,平均维修间隔时间,平均故障维修时间,平均修理间隔等等。个人 认为叫平均维修间隔时间,最能体现它的含义。这个我们先说概念吧, 有不同意见欢迎拍砖。 这个KPI指标应该是比较小众的,我翻看了常用的维修KPI的一些国际标准,包括EN15341, EN13306,IEC71703, Norsok Z-016和SMRP 的标准以及维基百科,里面都没有谈到这个指标。但是我们上两期说的 MTTR,MTBF,MTTF在以上这些标准里是都有的,而且维基百科也都收录 了。最后在两个标准里找到了MTBR的一些介绍,当然网上也有几篇文章 涉及到了MTBR,但是和这两个标准却有很多不同。我们还是先说说标准 里是怎么界定的吧。谈到这个KPI的一个标准是ISO14224(这个是那位兄 弟提醒我的),一个是PIP REEE002。 和MTBR最相似的KPI其实是MTBF(平均故障间隔时间),那个KPI关注的是设备故障,而MTBR有点不一样。设备有故障了,我们肯定 要进行维修。但不是所有的维修都由设备故障来引起的,比如我们定期 维修,大修,以及其他各种预防性维护等。在这里需要强调一点,在这 两个标准里的Repair 不仅仅指的是修理,而是含了各种维护和修理,中 文翻译成维修更适合。 所以这个指标考量的是你所有维修活动,这个间隔的时间越长,证明你设备的可靠性越高。而且这个指标也容易考量和操作,因为有的 维修与可靠性KPI系列 1

故障的统计分析与典型的故障率分布曲线

题目:故障的统计分析与典型的故障率分布曲线 学号:5 姓名:王逢雨 [摘要] 机械故障诊断是一门起源于 20 世纪 60 年代的新兴学科,其突出特点是理论研究与工程实际应用紧密结合。该学科经过半个世纪的发展逐渐成熟,在信号获取与传感技术、故障机理与征兆联系、信号处理与诊断方法、智能决策与诊断系统等方面形成较完善的理论体系,涌现了如全息谱诊断、小波有限元裂纹动态定量诊断等原创性理论成果,在机械、冶金、石化、能源和航空等行业取得了大量卓有成效的工程应用。统计分析工作是机械故障诊断中的核心环节,统计分析工作的质量和水平将会对机械设备的检修工作产生重要影响,关系到机械设备的安全与可靠运行。本文在对机械故障的特性等问题进行阐述的基础上,重点就机械故障统计分析工作中数据的收集和统计分析的方法进行重点探讨,希望对提高机械故障的管理水平能够有所帮助。 [关键词] 机械故障;统计分析;数据收集;方法 一、统计分析工作中机械故障的特性 二、机械设备在使用过程中,由于会受荷载应力等环境因素的影响,随着机械设备部件之间磨损的不断增加,结构参数与随之变化,进而会对机械功能的输出参数产生影响,甚至使其偏离正常值,直至产生机械故障。概括说来,主要有以下几方面的特性。 (一)耗损性 (二)在机械设备运行过程中,不断发生着质量与能量的变化,导致设备的磨损、疲劳、腐蚀与老化等,这是不可避免的,随着机械设备使用时间延长,故障发生的概率也在不断增加,即使可以采取一定的维修措施,但是由于机械故障的耗损性,不可能恢复到原先的状态,在经过统计分析工作后,必要时需要对设备进行报废。 (三)(二)渐损性 (四)机械故障的发生大多是长期运行的老化或疲劳引起的,所以具有渐损性,而且与设备的运行时间有一定的关系,所以做好机械设备的统计分析工作是很有必要的,当掌握了设备故障的渐损规律后,可以通过事前监控或测试等手段,有效预防机械故障的发生。 (五)(三)随机性 (六)虽然有的机械故障具有一定的规律性,但这并不是绝对的,因为机械故障的发生还会受到使用环境、制造技术、设备材料、操作方式等多种因素的影响,因此故障的发生会具有一定的分散性和随机性,这在一定程度上增肌了机械设备预防维修与统计分析工作的难度。 (七)(四)多样性 (八)随着科学技术的发展与应用,机械设备的工作原理日趋复杂,零部件的数量在不多增多,这就使得机械故障机理发生的形式日趋多样化。机械故障的发生不仅存在多种形式,而且分布模型及在各级的影响程度也不同,在统计分析工作中需要引起足够的重视。 (九)二、机械故障管理中统计数据的收集 (十)在对机械故障的统计分析工作中,数据的收集是最基础的环节,因此必须保障数据收集的及时性、准确性和规范性,这样才能为接下来的数据分析工作奠定良好的基础。

平均无故障时间的概述与应用

可靠性基本概念 平均无故障时间 何谓“平均无故障时间(MTBF)” ? “平均无故障时间(MTBF)”有什么用? “平均无故障时间(MTBF)” 和“平均故障前时间(MTTF)” “平均无故障时间(MTBF)”解读 平均无故障时间(MTBF)的应用 如何开始 如何计算 如何使用 基本流程、角色及职责 可靠性基本概念 可靠性Reliability ? 是指产品使用之后发生的故障,可靠性故障率是与时间相关的函数。 ? 可靠性表达方式有许多,主要有: ? 一段时间后的累积故障率(Cumulative fail %)。 ? 每10亿小时故障率“菲特” -FIT (Failures in Time) ? 平均无故障时间-MTBF (Mean Time between Failures) ? 可靠性是后质量部分的浴盆曲线即我们所认为的可靠性故障。 ? 可靠性的目标根据不同的因素而变化,如产品类型,产品寿命,使用的条件等。 平均无故障时间(MTBF)-何谓“平均无故障时间” What is MTBF MTBF (Mean Time Between Failure): 平均无故障时间,是衡量一个产品(尤其是电子产品)的可靠性指标. 单位为“小时”。 它反映了产品的时间质量,是体现产品在规定时间内保持功能的一种能力. 具体来说,是指相邻两次故障之间的平均工作时间,也称为平均故障间隔。 它仅适用于可维修产品,同时也规定产品在总的使用阶段累计工作时间和故障次数的比值为MTBF。 备注: 这个数据的取得通常必须要产品被使用过一定的数量以及一定的时间后,才能较为正确地被「统计」出来,所以一个新产品上市后的MTBF值也只能当 「参考数值」,跟产品的实际「寿命数值」不一定能相符。 不过目前有许多厂商用模拟的方式,来评估一个产品的平均故障时间。他们利用更恶劣的环境来测试产品,增加产品的老化速度,以計算出产品的平均故障时间。 平均无故障时间有什么用? 最流行的可靠性指标 最小化投入的可靠性初步分析 了解设计的薄弱环节 (KAIZEN)设计 质保能力分析(Warranty Analysis)

MTBF,即平均故障间隔时间

mtbf MTBF,即平均故障间隔时间,英文全称是"Mean Time Between Failure"。是衡量一个产品(尤其是电器产品)的可靠性指标。单位为"小时"。它反映了产品的时间质量,是体现产品在规定时间内保持功能的一种能力。具体来说,是指相邻两次故障之间的平均工作时间,也称为平均故障间隔。概括地说,产品故障少的就是可靠性高,产品的故障总数与寿命单位总数之比叫"故障率"(Failure rate)。它仅适用于可维修产品。同时也规定产品在总的使用阶段累计工作时间与故障次数的比值为MTBF。磁盘阵列产品一般MTBF不能低于50000小时。 计算方法 失效时间是指上一次设备恢复正常状态(图中的up time)起,到设备此次失效那一刻(图中的down time)之间间隔的时间。 MTBF值是产品设计时要考虑的重要参数,可靠度工程师或设计师经常使用各种不同的方法与标准来估计产品的MTBF值。相关标准包括MIL-HDBK-217F、Telcordia SR332、Siemens Norm、Fides或UTE C 80-810(RDF2000)等。不过这些方法估计到的值和实际的平均故障间隔仍有相当的差距。计算平均故障间隔的目的是为了找出设计中的薄弱环节。 MTBF的数学式表达 另外,在工程学上,常用希腊字母θ来表示MTBF,既有: 在概率论中,可用?(t)形式的概率密度方程表示MTBF,既有: 此处?指的是直到下次失效经过时长的概率密度方程--满足标准概率密度方程--

故障时间 随着服务器的广泛应用,对服务器的可靠性提出了更高的要求。所谓"可靠性",就是产品在规定条件下和规定时间内完成规定功能的能力;反之,产品或其一部分不能或将不能完成规定的功能是出故障。概括地说,产品故障少的就是可靠性高,产品的故障总数与寿命单位总数之比叫"故障率"(Failure rate),常用λ表示。例如正在运行中的100只硬盘,一年之内出了2次故障,则每个硬盘的故障率为0.02次/年。当产品的寿命服从指数分布时,其故障率的倒数就叫做平均故障间隔时间(Mean Time Between Failures),简称MTBF。即: MTBF=1/λ 笔者看到一款可用于服务器的WD Caviar RE2 7200 RPM 硬盘,MTBF 高达120万小时,保修5年。120万小时约为137年,并不是说该种硬盘每只均能工作137年不出故障。由MTBF=1/λ可知λ=1/MTBF=1/137年,即该硬盘的平均年故障率约为0.7%,一年内,平均1000只硬盘有7只会出故障。 下图所示为著名的浴盆曲线,左边斜线部分为早期故障率,其故障率一般较高且随着时间推移很快下降。曲线中部为使用寿命期,其故障率一般很低且基本固定。最右部为耗损期,失效率急速升高。电子产品制造商一般通过测试、老炼、筛选等手段将早期故障尽量剔除,然后提供给客户使用。当使用寿命期将尽,产品也即将进入故障高发期,需要报废或更新换代了。 由来 右图为浴盆曲线,那么浴盆曲线与产品寿命有什么关系呢? 电子产品的寿命一般都符合浴盆曲线,可分为三个阶段:

数控机床的平均无故障时间

MTBF即平均无故障时间,英文是“Mean Time Between Failure”,具体是指产品从一次故障到下一次故障的平均时间,是衡量一个产品的可靠性指标(仅用于发生故障经修理或更换零件能继续工作的设备或系统),单位为“小时”。数控机床常用它作为可靠性的定量指标。 MTBF的数值是怎样算出来的呢,假设一台电脑的MTBF为3万小时,是不是把这台电脑连续运行3万小时检测出来的呢?当然不是,否则有那么多产品要用几十年都检测不完。MTBF值的计算方法,目前最通用的权威性标准是MIL-HDBK-217(美国国防部可靠性分析中心及Rome实验室提出并成为行业标准,专门用于军工产品)、GJB/Z299B(中国军用标准)和Bellcore(AT&T Bell 实验室提出并成为民用产品MTBF的行业标准)。 MTBF计算中主要考虑的是产品中每个元器件的失效率。但由于器件在不同的环境、不同的使用条件下其失效率会有很大的区别,所以在计算可靠性指标时,必须考虑这些因素。而这些因素几乎无法通过人工进行计算,但借助于软件如MTBFcal和其庞大的参数库,就能够轻松地得出MTBF值。 每天工作三班的工厂如果要求24小时连续运转、无故障率P(t)=99%以上,则机床的MTBF 必须大于4500小时。MTBF5000小时对由不同数量的数控机床构成的生产线要求就更高、更复杂了,我们这里只讨论单台机床: 如果主机与数控系统的失效率之比为10:1(数控系统的可靠性要比主机高一个数量级),数控系统的MTBF就要大于5万小时,而其中的数控装置、主轴及驱动部分等主要部分的MTBF就必须大于10万小时。 其实,我们不必关注MTBF值如何计算,只要知道选择MTBF值高的产品,将给我们带来更高的竞争力。 当然了,也不是MTBF值越高越好,可靠性越高机床成本也越高,根据实际需要选择适度可靠就行了

故障率及计算方法

故障率的计算方法 系统发生故障的频率和时间的关系可以用浴盆曲线来表达,如图1-1所示。。 1浴盆曲线原理 图 1-1浴盆曲线 从该曲线可以看出,系统故障率在系统早期投用和晚期老化后的故障率较高,而在使用中间段时随机故障率相对恒定。 2故障率计算公式 C=在考虑的时间范围Δt 内,发生故障的部件数 N=整个使用的部件数 Δt=考虑的时间范围 3平均无故障时间MTBF MTBF=1/λ 4可靠性计算公式 A S =MTBF/(MTBF+MDT) MDT=平均故障时间(或 MTTR=平均修复时间) 举例: ● MTBF=100h ,MDT=0.5h-A=99.5%! ● MTBF=1year ,MDT=24h-A=99.7% λ ≈ c N . ? t 早期故障 磨损故障 随机故障 λ 常数 t 故障频率 λ

因此,考虑系统的可靠性需同时考虑MTBF和MDT。

5如何增加系统的可靠性 从可靠性公式中可以看出,增加系统的可靠性可以从提高MTBF和MDT降低两个方面进行。 5.1增加系统的稳定性 增加稳定性,可从如下环节考虑: ●设备生产商 ●使用高质量部件 ●使用具有更高标准的部件 ●预烧 ●抗过载保护 ●质量控制 ●冗余 ●工厂设计人员 ●网络结构 ●冗余安装 ●符合安装条件需要 ●在合适的环境条件下使用 ●工厂操作人员 ●维护 ●快速故障诊断 ●自动故障诊断和定位(自测试) ●具有诊断功能 ●诊断工具的稳定性 ●训练有素的维护人员 ●快速修复 ●系统不停机情况下修复(在线修复) ●修复工程容易 ●快速备件发送 ●训练有素的专业人员 5.2整个系统的MTBF 对于串行系统而言,系统故障发生率是各部件故障发生率之和,如图1-2所示。举例: MTBF1 MTBF2 MTBF3

平均无故障时间(MTBF)

MTBF,即平均无故障时间,英文全称是“Mean Time Between Failure”。是衡量一个产品(尤其是电器产品)的可靠性指标。单位为“小时”。它反映了产品的时间质量,是体现产品在规定时间内保持功能的一种能力。具体来说,是指相邻两次故障之间的平均工作时间,也称为平均故障间隔。它仅适用于可维修产品。同时也规定产品在总的使用阶段累计工作时间与故障次数的比值为MTBF。磁带机产品的MTBF值不应低于200000小时。 通常,我们在产品的手册或包装上能够看到这个MTBF值,如8000小时,2万小时,那么,MTBF的数值是怎样算出来的呢,假设一台电脑的MTBF为3万小时,是不是把这台电脑连续运行3万小时检测出来的呢?答案是否定的,如果是那样的话,我们有那么多产品要用几十年都检测不完的。其实,关于MTBF值的计算方法,目前最通用的权威性标准是MIL-HDBK-217、GJB/Z299B和Bellcore,分别用于军工产品和民用产品。其中,MIL-HDBK-217是由美国国防部可靠性分析中心及Rome实验室提出并成为行业标准,专门用于军工产品MTBF值计算,GJB/Z 299B是我国军用标准;而Bellcore是由AT&T Bell 实验室提出并成为商用电子产品MTBF值计算的行业标准。 MTBF计算中主要考虑的是产品中每个器件的失效率。但由于器件在不同的环境、不同的使用条件下其失效率会有很大的区别,例如,同一产品在不同的环境下,如在实验室和海洋平台上,其可靠性值肯定是不同的;又如一个额定电压为16V的电容在实际电压为25V 和5V下的失效率肯定是不同的。所以,在计算可靠性指标时,必须考虑上述多种因素。所有上述这些因素,几乎无法通过人工进行计算,但借助于软件如MTBFcal软件和其庞大的参数库,我们就能够轻松的得出MTBF值。 其实,MTBF值如何算出并不是我们所关心的问题,我们应该把重点放在一个产品的MTBF 的值到底有多少上,对于用户来讲,应该选用MTBF值高的产品。

设备完好率、设备利用率、设备故障率、设备开动率、OEE、MTTR,MTTF,MTBF

定义:设备完好率,指的是完好的生产设备在全部生产设备中的比重,它是反映企业设备技术状况和评价设备管理工作水平的一个重要指标。 计算公式:设备完好率=完好设备总台数/生产设备总台数× 100% 标准:所谓完好设备一般标准是: ①设备性能良好,如机械加工设备的精度达到工艺要求; ②设备运转正常,如零部件磨损、腐蚀程度不超过技术规定标准,润滑 系统正常、设备运转无超温、超压现象; ③原料、燃料、油料等消耗正常,没有油、水、汽、电的泄漏现象。对于各 种不同类型的设备,还要规定具体标准。例如传动系统的变速要齐全、滑动部分要灵敏、油路系统要畅通等。 公式中的设备总台数包括在用、停用、封存的设备。在计算设备完好率时,除按全部设备计算外,还应分别计算各类设备的完好率。 2、设备利用率 定义:设备利用率是指每年度设备实际使用时间占计划用时的百分比。是指设备的使用效率。是反映设备工作状态及生产效率的技术经济指标。 在一般的企业当中,设备投资常常在总投资中占较大的比例。因此,设备能否充分利用,直接关系到投资效益,提高设备的利用率,等于相对降低了产品成本。所以,作为企业的管理者,在进行生产决策的时候,一定要充分认识到这一点。 一般包括:设备数量利用指标―实有设备安装率,已安装设备利用率;设备时间利用指标―设备制度台时利用率,设备计划台时利用率;设备能力利用指标―设备负荷率;设备综合利用指标―设备综合利用率。过去,设备利用率一般仅指设备制度台时利用率。 计算公式: 公式一: 设备利用率=每小时实际产量/ 每小时理论产量×100% 公式二: 设备利用率=每班次(天)实际开机时数/ 每班次(天)应开机时数×100% 公式三: 设备利用率=某抽样时刻的开机台数/ 设备总台数×100%

MTBF,即平均故障间隔时间

mtbf MTBF,即平均故障间隔时间,英文全称就是"Mean Time Between Failure"。就是衡量一个产品(尤其就是电器产品)的可靠性指标。单位为"小时"。它反映了产品的时间质量,就是体现产品在规定时间内保持功能的一种能力。具体来说,就是指相邻两次故障之间的平均工作时间,也称为平均故障间隔。概括地说,产品故障少的就就是可靠性高,产品的故障总数与寿命单位总数之比叫"故障率"(Failure rate)。它仅适用于可维修产品。同时也规定产品在总的使用阶段累计工作时间与故障次数的比值为MTBF。磁盘阵列产品一般MTBF不能低于50000小时。 计算方法 失效时间就是指上一次设备恢复正常状态(图中的up time)起,到设备此次失效那一刻(图中的down time)之间间隔的时间。 MTBF值就是产品设计时要考虑的重要参数,可靠度工程师或设计师经常使用各种不同的方法与标准来估计产品的MTBF值。相关标准包括MIL-HDBK-217F、Telcordia SR332、Siemens Norm、Fides或UTE C 80-810(RDF2000)等。不过这些方法估计到的值与实际的平均故障间隔仍有相当的差距。计算平均故障间隔的目的就是为了找出设计中的薄弱环节。 MTBF的数学式表达 另外,在工程学上,常用希腊字母θ来表示MTBF,既有: 在概率论中,可用?(t)形式的概率密度方程表示MTBF,既有: 此处?指的就是直到下次失效经过时长的概率密度方程--满足标准概率密度方程--

故障时间 随着服务器的广泛应用,对服务器的可靠性提出了更高的要求。所谓"可靠性",就就是产品在规定条件下与规定时间内完成规定功能的能力;反之,产品或其一部分不能或将不能完 成规定的功能就是出故障。概括地说,产品故障少的就就是可靠性高,产品的故障总数与寿命单位总数之比叫"故障率"(Failure rate),常用λ表示。例如正在运行中的100只硬盘,一年之内出了2次故障,则每个硬盘的故障率为0、02次/年。当产品的寿命服从指数分布时,其故障率的倒数就叫做平均故障间隔时间(Mean Time Between Failures),简称MTBF。即: MTBF=1/λ 笔者瞧到一款可用于服务器的WD Caviar RE2 7200 RPM 硬盘,MTBF 高达120万小时,保修5年。120万小时约为137年,并不就是说该种硬盘每只均能工作137年不出故障。由MTBF=1/λ可知λ=1/MTBF=1/137年,即该硬盘的平均年故障率约为0、7%,一年内,平均1000只硬盘有7只会出故障。 下图所示为著名的浴盆曲线,左边斜线部分为早期故障率,其故障率一般较高且随着时 间推移很快下降。曲线中部为使用寿命期,其故障率一般很低且基本固定。最右部为耗损期,失效率急速升高。电子产品制造商一般通过测试、老炼、筛选等手段将早期故障尽量剔除,然后提供给客户使用。当使用寿命期将尽,产品也即将进入故障高发期,需要报废或更新换代了。 由来 右图为浴盆曲线,那么浴盆曲线与产品寿命有什么关系呢? 电子产品的寿命一般都符合浴盆曲线,可分为三个阶段:

MTBF平均无故障时间

MTBF,即平均无故障时间,英文全称是“Mean Time Between Failure”。 是衡量一个产品(尤其是电器产品)的可靠性指标。单位为“小时”。它反映了产品的时间质量,是体现产品在规定时间内保持功能的一种能力。具体来说,是指相邻两次故障之间的平均工作时间,也称为平均故障间隔。它仅适用于可维修产品。同时也规定产品在总的使用阶段累计工作时间与故障次数的比值为MTBF。 指自动分析仪在校验期间的总运行时间(H)与发生故障次数(次)的比值,以“MTBF”表示,单位为:H/次。 随着伺服器的广泛应用,对伺服器的可靠性提出了更高的要求。所谓“可靠性”,就是产品在规定条件下和规定时间内完成规定功能的能力;反之,产品或其一部分不能或将不能完成规定的功能是出故障。概括地说,产品故障少的就是可靠性高,产品的故障总数与寿命单位总数之比叫“故障率”(Failure rate),常用λ表示。例如正在运行中的100只硬碟,一年之内出了2次故障,则每个硬碟的故障率为0.02次/年。当产品的寿命服从指数分布时,其故障率的倒数就叫做平均故障间隔时间(Mean Time Between Failures),简称MTBF。即: MTBF=1/λ 笔者最近看到一款可用于伺服器的WD Caviar RE2 7200 RPM 硬碟,MTBF 高达120万小时,保修 5年。120万小时约为137年,并不是说该种硬碟每只均能工作137年不出故障。由MTBF=1/λ可知λ=1/MTBF=1/137年,即该硬碟的平均年故障率约为0.7%,一年内,平均1000只硬碟有7只会出故障。上图所示为著名的“浴盆”曲线,左边斜线部分为早期故障率,其故障率一般较高且随着时间推移很快下降。曲线中部为使用寿命期,其故障率一般很低且基本固定。最右部为耗损期,失效率急速升高。电子产品制造商一般通过测试、老炼、筛选等手段将早期故障尽量剔除,然后提供给客户使用。当使用寿命期将尽,产品也即将进入故障高发期,需要报废或更新换代了。温度与器件的寿命明白了MTBF 和“浴盆”曲线的基本概念,我们对评估产品的使用寿命有了一定的掌握。在合适工作条件下器件使用寿命期内的故障率很低。广大电子爱好者都知道电子元器件的寿命,与工作温度是有密切关系的。以电脑主板上常用的也常出故障的电解电容器为例,其寿命会受到温度的影响。因此,应尽可能使电容器在较低的温度之下工作,如果电容器的实际工作温度超过了其规格范围,不仅其寿命会缩短,而且电容器会受到严重的损毁(例如电解液泄漏)。因此,在分析电脑主板上电容器的工作温度时,不仅要考虑机箱内整体环境温度及电容器自身的发热,还要考虑机箱内其他发热元件的热辐射(特别是CPU、稳压器、电源供应器等)。根据测试,通常2.0G的CPU消耗功率达56.7W,生成温度达70℃;而当频率提高至3.0G时, CPU温度往往超过90℃。在这样的高温烘烤下,主板上的电容器寿命会发生什么变化?为简化起见,不考虑纹波、频率、ESR等因素,电容器的估计寿命可用下述公式表示:其中,L0表示最高工作温度下的寿命,Tmax 表示最高工作温度,Ta表示实际环境温度。由此可见,如果环境温度每升高10℃,电容器寿命将下降一倍!由上图右面的曲线可明显看出,随着电容器工作环境温度的上升,其有效寿命急剧缩短。其中有效寿命(Useful life)是指该种电容器达到给定故障率的时间。

设备管理中的11个关键指标

设备管理中的11个关键指标 2019年10月3日 设备管理要进步,其水平也需要度量。在企业里,用于度量设备管理好坏的指标很多。例如设备的完好率,设备的可用率,设备综合效率,设备完全有效生产率,设备故障率,平均故障间隔期,平均修理时间,设备备件库存周转率,备件资金率,维修费用率,检修质量一次合格率,返修率等等。不同的指标用于度量不同的管理方向。 在这些指标里,设备的完好率用得最多,但其对管理的促进作用有限。所谓的完好率,是在检查期间,完好设备与设备总台数的比例。 设备完好率=完好设备数/设备总数 很多工厂的指标可以达到95%以上。理由很简单,在检查的那一刻,如果设备是运转的,没出故障,就算是完好的,于是这个指标就很好看。很好看,很高,就意味着没有多少可提升的空间了,就意味着没有什么可改善的了,也就意味着很难进步了。完好率这一指标是否有效反映设备管理状况,这要看如何应用,仁者见仁,智者见智。 另外一个指标是故障率,这个指标容易混淆,如果是故障频率则是故障次数与设备实际开动台时的比值,即: 故障频率=故障停机次数/设备实际开动台时

如果是故障停机率,则是故障停机台时与设备实际开动台时加上故障停机台时的比值,即: 故障停机率=故障停机台时/(设备实际开动台时+故障停机台时) 显然,故障停机率比较能够真实的反映设备状态。 设备的可用率在西方国家采用较多,而在我国有计划时间利用率和日历时间利用率两个不同提法。按照定义,西方定义的可用率实际上是日历时间利用率。 日历时间利用率=实际工作时间/日历时间 计划时间利用率=实际工作时间/计划工作时间 前者反映了设备的完全利用状况,也就是说即使是单班运行的设备,我们也按照24小时计算日历时间。因为无论工厂是否使用这台设备,都以折旧形式消耗着企业的资产。后者反映了设备的计划利用状况,如果是单班运行,其计划时间就是8小时。 设备的平均故障间隔期MTBF的另外一个提法叫做平均无故障工作时间。它与故障停机率互补的反映了故障频次,也就是设备的健康状况。两个指标取一个就可以了,不必利用相关指标度量一个内容。 设备平均故障间隔期=统计基期无故障运行总时间/故障次数 另外一个反映维修效率的指标是平均修理时间MTTR,它度量的是维修工作效率的改善状况。 平均修理时间=统计基期维修消耗的总时间/维修次数

设备完好率设备利用率设备故障率设备开动率OEEMTTR,MTTF,MTBF

设备完好率设备利用率设备故障率设备开动率 O E E M T T R,M T T F,M T B F Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

1、设备完好率 定义:设备完好率,指的是完好的生产设备在全部生产设备中的比重,它是反映企业设备技术状况和评价设备管理工作水平的一个重要指标。 计算公式:设备完好率=完好设备总台数/生产设备总台数× 100% 标准:所谓完好设备一般标准是: ①设备性能良好,如的精度达到工艺要求; ②设备运转正常,如零部件磨损、腐蚀程度不超过技术规定标准,润滑系 统正常、设备运转无超温、超压现象; ③、、油料等消耗正常,没有、、、的泄漏现象。对于各种不同类型的设 备,还要规定具体标准。例如的变速要齐全、滑动部分要灵敏、油路系统要等。 中的设备总台数包括在用、停用、封存的设备。在计算设备完好率时,除按全部设备计算外,还应分别计算各类设备的完好率。 2、设备利用率 定义:设备利用率是指每年度设备实际使用时间占计划用时的百分比。是指设备的使用效率。是反映设备工作状态及的技术经济。 在一般的企业当中,设备投资常常在总投资中占较大的比例。因此,设备能否充分利用,直接关系到投资效益,提高设备的利用率,等于相对降低了产品成本。所以,作为企业的管理者,在进行的时候,一定要充分认识到这一点。 一般包括:设备数量利用指标―实有设备安装率,已安装设备利用率;设备时间利用指标―设备制度台时利用率,设备计划台时利用率;设备能力利用

指标―设备负荷率;设备综合利用指标―设备综合利用率。过去,设备利用率一般仅指设备制度台时利用率。 计算公式: 公式一: 设备利用率=每小时实际/ 每小时×100% 公式二: 设备利用率=每班次(天)实际开机时数/ 每班次(天)应开机时数×100% 公式三: 设备利用率=某抽样时刻的开机台数/ 设备总台数×100% 3、设备故障率 定义:设备故障率是指事故(故障)停机时间与设备应开动时间的百分比,是考核设备技术状态、故障强度、维修质量和效率一个指标。 计算公式:故障造成的停机时间/设备工作运行时间×100% 4、设备开动率 定义:设备开动率是指在某一时间段内(如一班、一天等)开动机器生产所占的时间比率。 计算公式:设备实际开动时间/设备正常工作时间×100% 5、OEE 定义:设备综合效率是Overall Equipment Effectiveness,简称OEE。一般,每一个生产设备都有自己的最大理论产能,要实现这一产能必须保证没有任何干扰和质量损耗。当然,实际生产中是不可能达到这一要求,由于许

MTBF与MTTR计算

设备出现故障,或状态不好,就会直接影响到生产效率,单件工时。我们主要通过定期点检和及时维修来减少设备的影响。但定期点检是周期性的,而及时维修也是在设备出现明显故障才进行的。现实生产中往往是设备并没有出现明显故障时,可以继续生产,但状态就是不佳,这种情况往往不会采取措施,因为很难知道设备不佳的程度。为了有效评价设备状态,我们就要有一些具体的指标。 下面就介绍我们两个最常用的指标: 一、MTBF(Mean Time Between Failures)即平均故障间隔(时间/次) 计算公式为:MTBF(时间/次)=总运行时间/总故障次数 MTBF表示的是某设备故障发生期间的时间平均值 例:某设备的使用情形如下,MTBF是多少? 100小时运行-3小时修理-120小时运行-2小时修理-140小时运行-4小时修理 MTBF=(100+120+140)/3=120(时间/次) 时间应用中我们将此公式稍微变换一下,就可有效地用来评价工装的状态了。 “我们用MTBF=产量/修理次数”,简单理解就是MTBF表示的是修一次工装可做多少个产品,从公式上可以看出MTBF越大则表示工装的状态越好。 有了反映工装状态的指标,就可以为我们的行动提供依据了。我们每周就可以挑出 MTBF小于一定标准的工装进行检修,使总体MTBF保持一个缴高的水平。 二、MTTR(Mean Time To Repair)(小时/次)平均修理时间 计算公式为:MTTR(时间/次)=总修复时间/故障次数 例:某设备的使用经过如下,MTTR是多少? 100小时运行-3小时修理-120小时运行-2小时修理-140小时运行-4小时修理 MTTR=(3+2+4)/3=3(小时/次)

UPS平均无故障时间MTBF计算

UPS平均无故障时间MTBF计算 实现UPS系统的主要目的是改进可靠性,使其达到最佳技术性能,最终目标是完全消除发生故障或间断的可能。50年代,第一台静态UPS系统出现时,它们由一个整流器,电池及逆变器构成。逆变器用于稳定输出电源,并在发生整流器故障的情况下,向负载短时间供电(靠电池单独维持)。这种简单的UPS电路结构的可靠性,主要取决于逆变器的可靠性。逆变器的故障将直接导致负载失效。而且,失效时间(不提供负载电流)一直要延续到逆变器修复为止。在60年代早期,引入了静态旁路切换开关,从而当发生逆变器故障或过载时,能够无间断地将负载切换至备用电网供电电源。尽管备用电网供电电源远不如UPS那么可靠,但发生逆变器故障时,它可作为储备电源,在逆变器修理期间继续向负载供电。这一新的结构,切实提高了总体可靠性,使可靠性不再主要取决于逆变器的可靠性。带静态开关的新型UPS的可靠性,取决于备用电网供电电源的品质(MTBFMAINS)、UPS的修复时间(MTTRUPS)、并取决于静态开关的可靠性。此外,本文(第4页)还阐述了,MTBFMAINS和` MTTRUPS 对于UPS整体可靠性的影响。 近年来,依赖于计算机控制实时信息系统的日常活动呈指数上,对于高可靠UPS配置的需求已成千真万确的事实。特别重要的关键用电设备,不能仅靠单个带静态旁路开关的UPS这样的电源配置;具有(n+1)个并联冗余备用UPS的供电配置,正在成为当今的标准要求。本文阐述各种不同UPS配置的可靠性。整流器/升压电路,电池,逆变器,静态旁路及其它部件的可靠性指标,源于资料MIL-HDBK-217 F (Not.2 1995) 中列举的可靠性数据。以下计算,在NEWAVE CONCEPTPOWER(概念电源)UPS-系列产品得以实施,并得到现场统计的证实。可惜,因NEWAVE公司的规定,不能公布这些统计资料。 1.无静态旁路切换开关(SBS)的UPS单机 1

无故障时间计算公式

MTBF是什么和MTBF计算的方法(2009-06-02 21:28:38) MTBF指标和计算方法 1)一般常用单位计算 在单位时间内(一般以年为单位),产品的故障总数与运行的产品总量之比叫“故障率”(Failure rate),常用λ表示。例如网上运行了100 台某设备,一年之内出了2次故障,则该设备的故障率为0.02次/年。当产品的寿命服从指数分布时,其故障率的倒数就叫做平均故障间隔时间(Mean Time Between Failures),简称MTBF。即: MTBF=1/λ 例如某型号YY产品的MTBF时间高达16万小时。16万小时约为18年,并不是说YY产品每台均能工作18年不出故障。由MTBF=1/λ可知λ=1/MTBF=1/18年(假如YY产品的寿命服从指数分布),即YY 产品平均年故障率约为5.5%,一年内,平均1000台设备有55台会出故障。 整机可靠性指标用平均故障间隔时间表示: MTBF=(T1+T2+…Tn)/ rn

式中:MTBF——整机的平均故障间隔时间,h; Ti——第i台被试整机的累计工作时间,h; rn——被试整机在试验期间内出现的故障总数。 2)通信上通过单个模块计算总值 MTBF-平均无故障时间,是指两次故障之间所经历的时间,是一种统计平均值,MTBF值的确定,通常采用两种方式: 1) 理论统计法:根据器件、组件及约束条件的实际情况,累计平均得到的。 2) 经验统计法:根据工厂或实验室破坏性记录,累计平均得到的数据。

1+0单机系统MTBF统计值 根据1+0单机系统的组成框图,总的MTBF统计值由以下公式给出: 1/MTBF总=1/MTBF发高频 +1/MTBF收高频 +1/MTBF调制 +1/MTBF基带 +1/MTBF电源 3)通信网络中串并联部件所导致的MTBF不同λ=1/MTBF (h) 如果两个部件串联工作,其中一个发生失效,整个功能就失效了,串联结构的: λ总=λ1+λ2 或MTBF总=1/(λ1+λ2) 对于并联或冗余的结构,虽然一个部件失效,但仍然维持功能的完整性(100%);

MTBF指标和计算方法

MTBF指标和计算方法 1)一般常用单位计算 在单位时间内(一般以年为单位),产品的故障总数与运行的产品总量之比叫―故障率‖(Failure rate),常用λ表示。例如网上运行了100 台某设备,一年之内出了2次故障,则该设备的故障率为0.02次/年。当产品的寿命服从指数分布时,其故障率的倒数就叫做平均故障间隔时间(Mean Time Between Failures),简称MTBF。即: MTBF=1/λ 例如某型号YY产品的MTBF时间高达16万小时。16万小时约为18年,并不是说YY产品每台均能工作18年不出故障。由MTBF=1/λ可知λ=1/MTBF=1/18年(假如YY产品的寿命服从指数分布),即YY产品平均年故障率约为5.5%,一年内,平均1000台设备有55台会出故障。 整机可靠性指标用平均故障间隔时间表示: MTBF=(T1+T2+…Tn)/ rn 式中:MTBF——整机的平均故障间隔时间,h; Ti——第i台被试整机的累计工作时间,h; rn——被试整机在试验期间内出现的故障总数。字串8 2)通信上通过单个模块计算总值 MTBF-平均无故障时间,是指两次故障之间所经历的时间,是一种统计平均值,MTBF值的确定,通常采用两种方式: 1) 理论统计法:根据器件、组件及约束条件的实际情况,累计平均得到的。 2) 经验统计法:根据工厂或实验室破坏性记录,累计平均得到的数据。

1+0单机系统MTBF统计值 根据1+0单机系统的组成框图,总的MTBF统计值由以下公式给出: 1/MTBF总=1/MTBF发高频+1/MTBF收高频+1/MTBF调制+1/MTBF基带+1/MTBF 电源 3)通信网络中串并联部件所导致的MTBF不同λ=1/MTBF (h) 如果两个部件串联工作,其中一个发生失效,整个功能就失效了,串联结构的: λ总=λ1+λ2 或MTBF总=1/(λ1+λ2) 对于并联或冗余的结构,虽然一个部件失效,但仍然维持功能的完整性(100%); 1/λ总=(1/λ1)+(1/λ2)+(1/(λ1+λ2)) 或MTBF总=(λ21 + λ1λ2 +λ22)/(λ21λ2 +λ1λ22)字串4 4)一般产品的MTBF计算 平均失效(故障)前时间(MTTF) 设N0个不可修复的产品在同样条件下进行试验,测得其全部失效时间为T1,T2,……TN0。其平均失效前时间(MTTF)为: MTTF = (T1+T2+…Tn)/N0 由于对不可修复的产品,失效时间即是产品的寿命,故MTTF也即为平均寿命。

MTBF (平均故障间隔) 测试规范

1. 目的Purpose 本项测试之目的在正常使用环境下验证产品MTBF值是否达到预期之目标,并观察可靠度成长曲线,作为设计修改之参考。 2. 适用范围Scope 本项测试规范之适用范围,凡本公司生产之LCD MODULE及Monitor厂所设计生产之液晶显示器于验証阶段及量产后之测试验証均适用之。 3. 权责Authority and Responsibility 3.1 QRE: 执行测试,并对问题点提报及对策改善追踪; 3.2工程部: 工程问题分析及对策; 3.3研发部: 设计问题分析及对策. 2. 名词定义Terms Definition 4.1 MTBF:Mean Time Between Failure(平均故障时间)。 4.2 N:测试样本数。 4.3 Time:测试时间。 4.4 Acceleration Factor:加速因子。 4.5 Confidence Factor:信赖水平因子。 5. 作业流程Operation Flow 无。 6. 作业内容Operation Description 6.1 (LCM) 使用仪器 6.1.1CI-300 Pattern generator 。 6.1.2 Chamber。 6.2 设定: 温度55℃。 6.3 规格 6.3.1 MTBF= (ΣN*TIME)*Acceleration Factor / Confidence Factor =20000Hrs (Exclude panel back light) 6.3.2 Acceleration Factor

∵Life Test room: 40°C ∴Acceleration Factor=2102540 =2.828 6.3.3 Confidence Factor 其信赖水平与相对之不良数之因子如下表 GEM Table 6.4 测试画面﹕Support Timing/1dot on/WRGB 6.5 步骤 6.5.1依测试样本数计算测试时间 TIME=20,000/N/2.828*2.3026 6.5.2 将待测机台放入CHAMBER中。 6.5.3 每天测试画面有无异常。 6.5.4 每周测试功能有无异常。 6.5.5 若有异常记录该台测试时间并结束测试,若须继续测试须以Number of Failure 为1的因子重新计算延长测试时间,不良机台不可继续测试,但样 本数仍要含该机台。 6.5.6 不良数增加依8.5类推 假设N=10 测试时间=20,000/10/2.828*2.3026=1,629Hrs(不允许有失效数), 若于第1,000小时失效2台,则MTBF验证未通过, 若须要继续测试则测试时间须延长为 测试时间=20,000/10/2.828*5.3223=3765hrs(允许有2个失效数)。 6.6 (Monitor)测试地点: QRE实验室 6.7 测试设备: - 信号产生器: Chroma 2326 - 信号分配器: VB-110 - 高温高湿机 6.8试验条件与规格

相关文档
相关文档 最新文档