文档库 最新最全的文档下载
当前位置:文档库 › 福伊特液力变矩器的结构及工作原理的使用0

福伊特液力变矩器的结构及工作原理的使用0

福伊特液力变矩器的结构及工作原理的使用0
福伊特液力变矩器的结构及工作原理的使用0

第一章福伊特液力传动箱简介

T211re.4液力传动箱是德国福伊特公司是专门为铁路车辆设计的涡轮传动装置。它是350kW性能级别的轨道车专用传动箱。

第一节 T211re.4液力传动箱的技术指标

一、T211re.4液力传动箱的主要技术参数

:

二、T211re.4液力传动箱的特性参数

第二节 T 211re.4液力传动箱的特点

一、命名规则:

T211re.4液力传动箱是铁路工程车辆专用设备,其命名

规则如下:

二、T211re.4液力传动箱的特点

T211re.4液力传动箱其输入功率科大350kW,采用全新的福伊特驱动控制器(VTDC)可以直接安装在传动箱上并录入运行数据。另外还具有监控诊断功能,液力制动可以通过联合制动的方式整合进入车辆制动系统以及性能的高可靠性。

第二章 T211re.4液力传动箱的结构

第一节 T211re.4液力传动箱的组成

一、液力传动箱组成

T211re.4液力传动箱由液力制动、液力液力变扭器、液力耦合器、换向机构、电气控制模块VTIC及部分组成,其外形如图2-1所示。其输入、输出侧分别如图2-2、2-3所示。

图2-1 T211re.4液力传动箱外形图

其液力传动箱包括机械部分和液力部分组件,其结构如图2-4所示。

二、机械组件

机械组件包括增速齿轮、扭转减振器、换向装置、齿轮变速器。

图2-2 T211re.4液力传动箱输入侧

1-输入装置

图2-3 T211re.4液力传动箱输出侧

2-输出装置

图2-4 转动装置组件

1-输出装置;2-增速齿轮;3-输入装置;4-液力偶合器;5-液力变扭器

6-机械部件;7-换向装置的幵关轴

传动箱输入轴(3)直接与柴油机相连,通过一对增速齿轮(2)将转速提升至液力元件的工作转速,变扭器(5)和偶合器(4)的泵轮都装在泵轮轴上,两者的涡轮都装在与传动箱输出相连的涡轮轴上,涡轮轴再通过一系列的机械齿轮最终驱动传动箱输出(1),通过换向离合器(7)的作用,使传动链里机械齿轮(6)的数量增减,实现换向。

三、液力组件

液力组件包括液力变扭器、液力耦合器。变扭器在低速段运转,耦合器在高速段运转。

增速齿轮用于将传动转速调整到所需泵轮轴的转速;扭转减振器在涡轮传动装置的输入侧,连接着柴油发动机,作用就是转移临界共振并减少动力系统的振动;换向装置用于更改涡轮传动装置中的旋转方向;齿轮变速器用于调整传动装置的从动转速。

传动装置控制器根据行驶速度和发动机负荷水平自动从一个液力循环切换到另一个。低速时注入液力变扭器,高速时注入液力偶合器,切换期间不得中断牵引力。

四、液力传动箱剖面图

T211re.4液力传动箱配面图及结构示意如图2-5所示。

图2-5 液力变矩器配面示意图

1-输入轴;2-弹性连轴节;3-液力制动器;4-液力耦合器;5-取力口

6-液力变扭器;7-连接轴;8-滑动轴/换向轴;9-换向机构;10-输出轴11- 二级润滑泵;12-增速齿轮;13-油泵;14-控制栗

涡轮传动装置中的能量传导是通过循环圆中工作液体(传动油)的惯性力实现的。当传动达到运行温度后,才能达到规定的牵引力。

当传动装置控制器收到牵引命令后,需要一秒钟的时间注满涡轮传动装置的液力循环系统。

涡轮传动装置中使用的传动油除了传输能量外,还用于涡轮传动装置的润滑、冷却和控制。由于涡轮传动装置中的传动油必须满足极高的要求,因此只允许使用福伊特批准的传动油。

在牵引模式下存在热量损耗。耗损的热量经由柴油发动机的冷却剂循环导出。

T211re.4液力传动箱的泵由液压输油泵、控制油泵、润滑泵。其中输油泵、控制油泵与初级侧相连,液压循环系统的输油泵为所有的液压循环系统供应变速箱油,控制油泵以液压油为控制线路和润滑位置供应变速箱油;润滑油泵与次级侧相连,以传动油供给润滑点。

五、液力传动箱电气组件

T211 re.4传动箱是一个电控的传动装置,传动箱液力元件的充油、传动箱转动方向的切换都由来自车辆控制系统的电信号,通过电液伺服阀完成。控制传动箱的主要部件是安装在传动箱上的集成化控制板VTDC,以及有关的传感器、伺服阀和电缆连接。

T211re.4液力传动箱使用了以下组件:传动装置控制器VTDC (Voith Turbo Drive Control)、诊断端口D-IF、传感器、执行器、接线、插头连接。如图2-6所示。

图2-6 液力变扭器外观示意图

VTDC的硬件是控制器VTIC.1 (Voith Turbo Integrated Control)。传感器、执行器和插头连接满足防护等级IP 67,其他电子组件的防护等级满足相关要求。VTDC 处理车辆控制器发出的命令以及传感器发出的信号,并根据

运行状态接通涡轮传动装置的执行机构。VTDC与车辆控制器间通过CAN总线进行沟通。VTDC配有可永久保存诊断与运行数据的数据存储器。可通过电脑或者诊断与运行数据采集系统VTBSwin可以从诊断端口读取VTDC中的存储数据。

第二节液力传动箱组件的构造

一、液力变扭器的构造

液力变扭器也叫变矩器,液力变扭器的结构如图2-7、2-8所示,液力变扭器(Fluid Torque Converter)它有3个工作轮即、涡轮、组成的液力元件。导轮则位于泵轮和涡轮之间,并与泵轮和涡轮保持一定的轴向间隙,通过导轮固定套固定于液力变扭器壳体上,位于液力传动箱的输出侧。以液压油(ATF)为工作介质,起传递转矩、变矩、变速及离合的作用。

图2-7 液力变扭器结构图

液力变扭器以液体为工作介质的一种非刚性变换器,是的形式之一。

二、液力耦合器的构造

液力耦合器由泵轮和涡轮组成,泵轮装在输入轴上,涡

图2-8 液力变扭器构造示意图

1—飞轮;2—涡轮;3—泵轮;4—导轮;5—变矩器输出轴

6—曲轴;7—导轮固定套

轮装在输出轴上,如图2-9、2-10所示。

液力耦合器以液体为工作介质的一种非刚性联轴器,又称液力联轴器。

图2-9 液力耦合器构造示意图

三、传感器

液力传动箱传感器较多,传感器就是实现对设备检测、诊断的元

图2-10 液力耦合器构造示意图

1—输入轴;2—泵轮叶轮;3—涡轮叶轮;4—输出轴

5—内环;6—导轮轴栓槽

件,包括速度传感器、温度传感器、位置传感器等,为机车提供液力传动箱各种技术参数,通过这些参数,可以掌握设备的运行状态,确保设备的正常运行。

速度传感器就是为机车提供液力传动箱转速参数,转速传感器安装于液力传动箱壳体外部,如图2-11所示。

图2-11 速度传感器

温度传感器监视液力传动箱的液力传动油工作温度,对油温实时监测,为司机正确操控设备提供技术保障。如图2-12所示。

图2-12 温度传感器

换向位置传感器监视液力传动箱的输出轴的转动方向,以此确定机车运动方向,如图2-13。

图2-13 换向位置传感器

四、电磁阀

电磁阀是控制电路中的执行元件,通过电磁阀的动作可实现对设备工作状态的转换。包括换向电磁阀、变扭器电磁阀、耦合器电磁阀。如图2-14、2-15所示。

图2-14 耦合器控制电磁阀

图2-15 换向制阀电磁控

五、电气控制模块

电气控制模块包括控制单元、诊断模块、诊断连接RS232、上载VTIC操作软件、CAN诊断连接。

控制单元VTIC.1安装在液力传动箱上,其工作温度为-40℃——105℃、电压范围是0V——32V、工作电压范围

是16.8V——32V。控制单元接口面板接口如图2-16所示。

诊断模块安装在车辆的电气柜中,工作环境温度为-40

图2-15 控制单元接口面板示意图

1-X1传感器接口;2-X3车控接口(车控系统电缆);3-X4控制阀接口

4- X2 CAN-Bus总线接口;5-接地螺钉

℃——70℃。RS232诊断连接用于读取液力传动箱工作参数并从VTIC控制单元中获得诊断信息。CAN诊断连接用于监控CAN-Bus数据。诊断模块如图2-17所示。

图2-17 诊断模块示意图

诊断模块故障信息报文对照

项目状态信号功能状态

1 快闪(0.2s)并长停顿(2s) 功能正常

2 长闪(2s)并快停顿(0.2s) 功能错误

3 闪停交替等时长(1s) 控制单元软件需要下载或更新,否者不适用

4 连续闪控制模块功能失效

诊断模块接口面板如图2-18所示。

图2-18 诊断模块接口面板示意图

1-保险管;2、3-X163/X164VTIC终端接口;4- X162诊断接口CAN

5-X161诊断接口RS232

第三节液力传动箱的工作原理

一、变扭器的作用

变扭器是液力传动箱的主要的动力传动设备之一,其作用就是:

1.离合器的作用。当发动机怠速运行时,变扭器在发动机和变速箱之间充当一个断开连接(未接合)的离合器。

2.增扭矩作用。当需要时,按高泵轮转速/低涡轮转速来倍增扭矩以提供一个更大的起动或驱动扭矩。

3.液力耦合作用。在非怠速或非起动的其它工作过程中充当一个将发动机扭矩传递给变速箱的液力耦合器。

4.锁止作用。工作时在发动机和变速箱之间提供1:1的动力传递。

另外变扭器还具有缓冲发动机及传动系的扭转振动的作用;还起到飞轮的作用,使发动机转动平稳;驱动液压控制的油泵;将发动机输出功率100%传递给变速器从而提高发动机燃油经济性并降低变速器温度等作用。

二、变扭器的工作过程

发动机飞轮带动泵轮(输入)开始转动,泵轮带动了液力变扭器内的传动油转动;传动油转动带动涡轮(输出),

最后经过固定的导轮叶片,再次回到泵轮完成循环。变扭器传动油从涡轮流入导轮后方向会发生改变,当传动油经过涡轮再流回到泵轮时,其流动方向变得与泵轮运动方向相同(就像长江后浪推前浪),这就加强了泵轮的转动力矩,进而也就增大了输出扭矩。如图2-19所示。

图2-19 变扭器工作过程

1-泵轮;2-涡轮;3-导轮

柴油发动机以增速齿轮驱动泵轮,柴油发动机的机械能转换成传动油的流动能量;涡轮通过减缓传动油速度和改变传动油方向吸收流动能量并再转换成机械能;导轮的作用是,无论涡轮流出方向如何,始终保持理想的泵轮流入方向。导轮吸收泵轮与涡轮间的扭矩差,并以这种方式实现扭矩转换。

涡轮上产生的扭矩取决于体积流量、传动油偏转角度和

速度。涡轮力矩在涡轮停止时最大并随着涡轮转速的增加

o 而降低。泵轮的输入功率受各自涡轮转速影响则很小。

三、变扭器的动力传递过程

1.变扭器的工作状态

变扭器有三种工作状态,即增矩状态、耦合状态、自由

旋转状态。

⑴增矩状态。当泵轮的转速较高,而涡轮的转速较低

时,传动油在涡轮的环流速度小(因传动油随涡轮绕轴线旋

转而产生环流,涡轮转速低所以环流速度低),而涡流速度

大(泵轮转速较大于涡轮转速,因泵轮外缘处压力较大于涡

轮外缘处压力,所以涡流速度大),传动油由涡轮叶片内缘

流出后,合成液流的方向冲击导轮叶片的正面(凹面),力

图使导轮逆时针旋转,因为单向离合器对导轮的逆时针旋转

有锁止作为,即导轮不能相对于固定套管作逆时针的旋转,

导轮给传动油的反作用力矩再次作用于涡轮上,使涡轮的输

出转矩增大,同时传动油经导轮叶片导向后,朝着有利于泵

轮叶片旋转方向进入泵轮。所以,涡轮的输出转矩(简称涡

轮转矩)等于泵轮通过涡流对涡轮的转矩(简称泵轮转矩)

加上导轮对油液的反作用力再次对涡轮的转矩(简称导轮转

矩)。随着涡轮转速的提高,涡轮内传动油的环流速度的升

高,合成液流的方向进一步向环流方向倾斜,导轮对油液的

反作用力矩减小,涡轮的输出转矩降低,但输出转矩仍大于

液力耦合器的工作原理

液力耦合器的工作原理 (一)液力耦器的结构: 液力耦合器是一种液力传动装置,又称液力联轴器。液力耦合器其结构主要由壳体、泵轮、涡轮三个部分。 泵轮和涡轮相对安装,统称为工作轮。在泵轮和涡轮上有径向排列的平直叶片,泵轮和涡轮互不接触。两者之间有一定的间隙(约 3mm 一 4mm ) ;泵轮与涡轮装合成一个整体后,其轴线断面一般为圆形,在其内腔中充满液压油。 (二)液力耦合器的安装方式: 液力耦合器的输入轴与电动机联在一起,随电动机的转动而转动,是液力耦合器的主动部分。涡轮和输出轴连接在一起,是液力耦合器的从动部分,与负载连在一起。 在安装时,液力耦合器安装在电动机与负载之间,通常由于负载较大,且与其它设备有联锁,采用将电机后移方案,在改造方案中需重新做电机的基础。 (三)液力耦合器的工作原理: 电动机运行时带动液力耦合器的壳体和泵轮一同转动,泵轮叶片内的液压油在泵轮的带动下随之一同旋转,在离心力的作用下,液压油被甩向泵轮叶片外缘处,并在外缘处冲向涡轮叶片,使涡轮在受到液压油冲击力而旋转;冲向涡轮叶片的液压油沿涡轮叶片向内缘流动,返回到泵轮内缘,然后又被泵轮再次甩向外缘。液压油就这样从泵轮流向涡轮,又从涡轮返回到泵轮而形成循环的液流。液力耦合器中的循环液压油,在从泵轮叶片内缘流向外缘的过程中,泵轮对其作功,其速度和动能逐渐增大;而在从涡轮叶片外缘流向内缘的过程中,液压油对涡轮作功,其速度和动能逐渐减小。液压油循环流动的产生,是泵轮和涡轮之间存在着转速差,使两轮叶片外缘处产生压力差。液力耦合器工作时,电动机的动能通过泵轮传给液压油,液压油在循环流动的过程中又将动能传给涡轮输出。液压油在循环流动的过程中,除受泵轮和涡轮之间的作用力之外,没有受到其他任何附加的外力。根据作用力与反作用力相等的原理,液压油作用在涡轮上的扭矩应等于泵轮作用在液压油上的扭矩,这就是液力耦合器的工作原理。 (四)、液力耦合器的调速方法: 液力耦合器在实际工作中的情形是:电动机驱动泵轮旋转,泵轮带动液压油进行旋转,涡轮即受到力矩的作用,在液压油量较小时,当其力矩不足于克服载的起步阻力矩,所以涡轮还不会随泵轮的转动而转动,增加液压油,作用在涡轮上的力矩随之增大,作用在涡轮上的力矩足以克服负载起步阻力而起步,其液压油传递的力矩与负载力矩相等时,转速随之稳定。负载的的力矩和转速成平方比,当随着液压油量的增加,输出力矩加大,涡轮的转速随之加大,达到调节转速的目的。 油液螺旋循环流动的流速 VT 保持恒定, VL 为泵轮和涡轮的相对线速度, VE 为泵轮出口速度, VR 为油液的合成速度。涡轮高速转动,即输出和输入的转速接近相同时小,而合成速度 VR 与泵轮出口速度之的夹角很大,这使液流对涡轮很小,这将使输出元件滑动,速度降低。当将油液量加大,相对速度 VL 和合成速度 VR 都很这就使液流对涡轮叶片的推力变得直到有足够的循环油液对涡轮产生足够的冲击力,输出转速变高。 (五)液力耦合器的转换效率: 液力耦合器调速原理表明,传动速度的改变,实质是机械功率调节的结果。因此液力耦合器输出转速的降低,实际是输出功率减小。在调速过程中,液力耦合器的原传动转速没有发生变化,假设负载转矩不变,原传动的机械功率也不变,那么输入与输出功率的差值功率那里去了呢,显然是被液力耦合器以热能形式损耗掉了。

光耦的作用及 工作原理

光耦的作用及工作原理 光耦合器(optical coupler,英文缩写为OC)亦称光电隔离器,简称光耦。光耦合器以光为媒介传输电信号。它对输入、输出电信号有良好的隔离作用,所以,它在各种电路中得到广泛的应用。目前它已成为种类最多、用途最广的光电器件之一。光耦合器一般由三部分组成:光的发射、光的接收及信号放大。输入的电信号驱动发光二极管(LED),使之发出一定波长的光,被光探测器接收而产生光电流,再经过进一步放大后输出。这就完成了电—光—电的转换,从而起到输入、输出、隔离的作用。由于光耦合器输入输出间互相隔离,电信号传输具有单向性等特点,因而具有良好的电绝缘能力和抗干扰能力。又由于光耦合器的输入端属于电流型工作的低阻元件,因而具有很强的共模抑制能力。所以,它在长线传输信息中作为终端隔离元件可以大大提高信噪比。在计算机数字通信及实时控制中作为信号隔离的接口器件,可以大大增加计算机工作的可靠性。 光耦合器的主要优点是:信号单向传输,输入端与输出端完全实现了电气隔离隔离,输出信号对输入端无影响,抗干扰能力强,工作稳定,无触点,使用寿命长,传输效率高。光耦合器是70年代发展起来的新型器件,现已广泛用于电气绝缘、电平转换、级间耦合、驱动电路、开关电路、斩波器、多谐振荡器、信号隔离、级间隔离、脉冲放大电路、数字仪表、远距离信号传输、脉冲放大、固态继电器(SSR)、仪器仪表、通信设备及微机接口中。在单片开关电源中,利用线性光耦合器可构成光耦反馈电路,通过调节控制端电流来改变占空比,达到精密稳压目的。 学习笔记:光耦的主要作用就是隔离作用,如信号隔离或光电的隔离。隔离能起到保护的作用,如一边是微处理器控制电路,另一边是高电压执行端,如市电启动的电机,电灯等等,就可以用光耦隔离开。当两个不同型号的光耦只有负载电流不同时,可以用大负载电流的光耦代替小负载电流的光耦。 以六脚光耦TLP641J为例,说明其原理。 一个光控晶闸管(photo-thyristor)耦合(couple to)一个砷化镓(gallium arsenide)红外发光二极管(diode)组成。左边1和2脚是发光二极管,当外加电压后,驱动发光二极管(LED),使之发出一定波长的光,以此来触发光控晶闸管。光控晶闸管的特点是门极区集成了一个光电二极管,触发信号源与主回路绝缘,它的关键是触发灵敏度要高。光控晶闸管控制极的触发电流由器件中光生载流子提。光控晶闸管阳极和阴极间加正压,门极区若用一定波长的光照射,

液力耦合器常见故障及维护

液力耦合器原理、常见故障及处理 一、常见故障及处理 油泵不上油或油压太低或油压不稳定原因1.油泵损坏2.油泵调压阀失灵或调整不好3.油泵吸油管路不严,有空气进入4.吸油器堵塞5.油位太低,吸6.油压表损坏7.油管路堵塞处理1.修复或更换油泵2.重新调整或更换油泵调压阀使压力正常3.拧紧各螺栓使其密封4.清洗吸油口过滤5.加油至规定油位6.更换压力表7.清洗油管路2.油温过高原因1.冷却器堵塞或冷却水量不足2.风机负荷发生变动使偶合器过负荷处理1.清洗冷却器,加大冷却水量2.检查负荷情况,防止过负荷3.勺管虽能移动但不能正常调速原因无工作油进入处理1.修复或更换油泵2.重新调整或更换油泵调压阀使压力正常3.拧紧各螺栓使其密封4.清洗吸油口过滤器5.加油至规定油位6.更换压力表7.清洗油管路4.箱体振动原因1.安装精度过低2.基础刚性不足3.联轴节胶件损坏4.地脚螺栓松动处理1.重新安装校正2.加固或重新做基础3.更换橡胶件4.拧紧地脚螺丝 二、原理及故障排除: 1、原理: 液力偶合器工作原理液力偶合器相当于离心泵和涡轮机的组合,当电机通过液力偶合器输入轴驱动泵轮时,泵轮如一台离心泵,使工作腔中的工作油沿泵轮叶片流道向外缘流动,液流流出后,穿过泵轮和涡轮间的间隙,冲击涡轮叶片以驱动涡轮,使其象涡轮机一样把液

体动能转变为输出的机械能;然后,液体又经涡轮内缘流道回泵轮,开始下一次的循环,从而把电机的能量柔性地传递给工作机。二、液力偶合器的调速原理液力偶合器在转动时,工作油由供油泵从液力偶合器油箱吸油排出,经冷却器冷却后送至勺管壳体中的进油室,并经泵轮入油口进入工作腔。同时,工作腔中的油液从泵轮泄油孔泻入外壳,形成一个旋转油环,这样,就可通过液力偶合器的调速装置操纵勺管径向伸缩,任意改变外壳里油环的厚度,即改变工作腔中的油量,实现对输出转速的无级调节,勺管排出的油则通过排油器回到油箱。 2、故障现象及处理: (1)过热 1)、冷却器冷却水量不足,加大水量; 2)、箱体存油过多或少调节油量规定值; 3)、油泵滤芯堵塞清洗滤芯; 4)、转子泵损坏打不出油,换内外转子; 5)、安全阀溢流过多; 6)、弹簧太松上紧弹簧; 7)、密封损坏泄油换密封件; 8)、油路堵塞,清除。 (2)输出轴不转 1)、安全阀压力值太低,上紧弹簧; 2)、油路堵塞,清除;

液力偶合器和液力变矩器的结构与工作原理

液力偶合器和液力变矩器的结构与工作原 理 发布时间:2009-7-10 9:23:12 来源:点击数:5063 一、液力偶合器和液力变矩器的结构与工作原理 现代汽车上所用自动变速器,在结构上虽有差异,但其基本结构组成和工作原理却较为相似,前面已介绍了自动变速器主要由液力变矩器、变速齿轮机构、供油系统、自动换挡控制系统、自动换挡操纵装置等部分组成。本章将分别介绍自动变速器中各组成部分的常见结构和工作原理,为自动变速器的拆装和故障检修提供必要的基本知识。 汽车上所采用的液力传动装置通常有液力偶合器和液力变矩器两种,二者均属于液力传动,即通过液体的循环液动,利用液体动能的变化来传递动力。 (一)液力偶合器的结构与工作原理 1、液力偶合器的结构组成 液力偶合器是一种液力传动装置,又称液力联轴器。在不考虑机械损失的情况下,输出力矩与输入力矩相等。它的主要功能有两个方面,一是防止发动机过载,二是调节工作机构的转速。其结构主要由壳体、泵轮、涡轮三个部分组成,如图1所示。

图1 液力偶合器的基本构造 1-输入轴 2-泵轮叶轮 3-涡轮叶轮 4-轮出轴液力偶合器的壳体安装在发动机飞轮上,泵轮与壳体焊接在一起,随发动机曲轴的转动而转动,是液力偶合器的主动部分:涡轮和输出轴连接在一起,是液力偶合器的从动部分。泵轮和涡轮相对安装,统称为工作轮。在泵轮和涡轮上有径向排列的平直叶片,泵轮和涡轮互不接触。两者之间有一定的间隙(约3mm~4mm);泵轮与涡轮装合成一个整体后,其轴线断面一般为圆形,在其内腔中充满液压油。 2、液力偶合器的工作原理 当发动机运转时,曲轴带动液力偶合器的壳体和泵轮一同转动,泵轮叶片内的液压油在泵轮的带动下随之一同旋转,在离心力的作用下,液压油被甩向泵轮叶片外缘处,并在外缘处冲向涡轮叶片,使涡轮在液压冲击力的作用下旋转;冲向涡轮叶片的液压油沿涡轮叶片向内缘流动,返回到泵轮内缘的液压油,又被泵轮再次甩向外缘。液压油就这样从泵轮流向涡轮,又从涡轮返回到泵轮

液力变矩器的组成和功用教学文稿

液力变矩器的组成和 功用

液力变矩器的导轮有什么作用简单的说就是变矩 液力变矩器和液力耦合器都有泵轮和涡轮,他们的差别就在有无导轮。如果没有导轮,液力变矩器就是一个耦合器。 耦合器泵轮和涡轮的转速不同而转矩相等。由于导论的存在,变矩器能在泵轮转矩不变的情况下,随着涡轮转速不同而改变涡轮转矩的输出值。 在汽车变矩器中当变矩系数达到1之后由于单向离合器的作用,泵轮停止转动,变矩作用消失,变矩器实际上就成为耦合器 导轮在低速时起到增扭的作用,一般安装在单向离合器上不能反转。泵轮由发动机带动旋转带动油液流动形成涡流冲击涡轮旋转将力传给涡轮。在泵轮和涡轮上有导流板,油液形成了环流在泵轮涡轮导轮之间循环流动。泵轮油液冲击涡轮的力FB经涡轮冲击导轮导轮不能反转或固定不动形成反作用力FD作用在涡轮上。蜗轮得到的力FT=FB+FD就是导轮 的增扭作用 1 ?功用 液力变矩器位于发动机和机械变速器之间,以自动变速器油(ATF )为工作介质,主要完成以下功用:(1)传递转矩。发动机的转矩通过液力变矩器的主动元件,再通过ATF传给液力变矩器的从动元件,最后传给变速器。 (2)无级变速。根据工况的不同,液力变矩器可以在一定范围内实现转速和转矩的无级变化。(3)自动离合。液力变矩器由于采用ATF传递动力,当踩下制动踏板

时,发动机也不会熄火,此时相当于离合器分离;当抬起制动踏板时,汽车可以起步,此时相当于离合器接合。 (4)驱动油泵。ATF在工作的时候需要油泵提供一定的压力,而油泵一般是由液力变矩器壳体驱动的。 同时由于采用ATF传递动力,液力变矩器的动力传递柔和,且能防止传动系过载。 2.组成 如图4-6所示,液力变矩器通常由泵轮、涡轮和导轮三个元件组成,称为三元件液力变矩器。也有的采用两个导轮,则称为四元件液力变矩器。液力变矩器总成封在一个钢制壳体(变矩器壳体)中,内部充满ATF。液力变矩器壳体通过螺栓与发动机曲轴后端的飞轮连接,与发动机曲轴一起旋转。泵轮位于液力变矩器的后部,与变矩器壳体连在一起。涡轮位于泵轮前,通过带花键的从动轴向后面的机械变速器输出动力。导轮位于泵轮与涡轮之间,通过单向离合器支承在固定套管上,使得导轮只能单向旋转(顺时针旋转)。泵轮、涡轮和导轮上都带有叶片,液力变矩器装配好后形成环形内腔,其间充满ATF。 液力变矩器的工作原理 1.动力的传递 液力变矩器工作时,壳体内充满ATF,发动机带动壳体旋转,壳体带动泵轮旋转,泵轮的叶片将ATF带动起来,并冲击到涡轮的叶片;如果作用在涡轮叶片上冲击力大于作用在涡轮上阻力,涡轮将开始转动,并使机械变速器的输入轴一起转动。由涡轮叶片流出的ATF经过导轮后再流回到泵轮,形成如图4—7 所示的循环流动。具体来说,上述ATF的循环流动是两种运动的合运动。当液力变矩器工作,泵轮旋转时,泵轮叶片带动ATF旋转起来,ATF绕着泵轮轴线作圆周运动;同样随着涡轮

光电耦合器工作原理

光电耦合器工作原理 光电耦合器件简介 光电偶合器件(简称光耦)是把发光器件(如发光二极体)和光敏器件(如光敏三极管)组装在一起,通过光线实现耦合构成电—光和光—电的转换器件。光电耦合器分为很多种类,图1所示为常用的三极管型光电耦合器原理图。 图一最常用的光电耦合器之内部结构图三极管接收型 4脚封装 图二光电耦合器之内部结构图三极管接收型 6脚封装

图三光电耦合器之内部结构图双发光二极管输入三极管接收型 4脚封装

图四光电耦合器之内部结构图可控硅接收型 6脚封装

图五光电耦合器之内部结构图双二极管接收型 6脚封装 光电耦合器之所以在传输信号的同时能有效地抑制尖脉冲和各种杂讯干扰,使通道上的信号杂讯比大为提高,主要有以下几方面的原因: (1)光电耦合器的输入阻抗很小,只有几百欧姆,而干扰源的阻抗较大,通常为105~106Ω。据分压原理可知,即使干扰电压的幅度较大,但馈送到光电耦合器输入端的杂讯电压会很小,只能形成很微弱的电流,由于没有足够的能量而不能使二极体发光,从而被抑制掉了。 (2)光电耦合器的输入回路与输出回路之间没有电气联系,也没有共地;之间的分布电容极小,而绝缘电阻又很大,因此回路一边的各种干扰杂讯都很难通过光电耦合器馈送到另一边去,避免了共阻抗耦合的干扰信号的产生。 (3)光电耦合器可起到很好的安全保障作用,即使当外部设备出现故障,甚至输入信号线短接时,也不会损坏仪表。因为光耦合器件的输入回路和输出回路之间可以承受几千伏的高压。 (4)光电耦合器的回应速度极快,其回应延迟时间只有10μs左右,适于对回应速度要求很高的场合。 光电隔离技术的应用 微机介面电路中的光电隔离 微机有多个输入埠,接收来自远处现场设备传来的状态信号,微机对这些信号处理后,输出各种控制信号去执行相应的操作。在现场环境较恶劣时,会存在较大的杂讯干扰,若这些干扰随输入信号一起进入微机系统,会使控制准确性降低,产生误动作。因而,可在微机的输入和输出端,用光耦作介面,对信号及杂讯进行隔离。典型的光电耦合电路如图6所示。该电路主要应用在

液力变矩器故障和工作原理

4.1 液力变矩器构造和工作原理 4.1.1液力变矩器构造 1、三元一级双相型液力变矩器 三元是指液力变矩器是由泵轮、涡轮和导轮三个主要元件组成的。一级是指只有一个涡轮(部分液力偶合器里装有两个涡轮,工作时油液容易发生紊乱)。双相是指液力变矩器的工作状态分为变矩区和偶合区。 * 图4-1为液力变矩器三个主要元件的零件图。 2、液力变矩器的结构和作用 泵轮的叶片装在靠近变速器一侧的变矩器壳上,和变矩器壳是一体的。变矩器壳是和曲轴或曲轴上的挠性板用螺栓连接的,所以泵轮叶片随曲轴同步运转。发动机工作时,它引导液体冲击涡轮叶片,产生液体流动功能,是液力变矩器的 主动元件。 *

1-变速器壳体2-泵轮3-导轮4-变速器输出轴5-变矩器壳体 6-曲轮7-驱动端盖8-单向离合器9-涡轮 涡轮装在泵轮对面,二者的距离只有3~4mm,在增矩工况时悬空布置,被泵轮的液流驱动,并以它特有的速度转动。在锁止工况时它被自动变速器油挤到离合器盘上,随变矩器壳同步旋转。它是液力变矩器的输出元件。涡轮的花键毂负责驱动变速器的输入轴(涡轮轴)。它将液体的动能转变为机械能。 导轮的直径大约是泵轮或涡轮直径的一半。并位于两者之间。导轮是变矩器中的反作用力元件,用来改变液体流动的方向。 导轮叶片的外缘一般形成三段式油液导流环内缘。分段导流环可以引导油液平稳的自由流动,避免出现紊流。 导轮支承在与花键和导轮轴连接的单向离合器上。单向离合器使导轮只能与泵轮同向转动。涡轮的油液流经导轮时改变了方向,使液流返回泵轮时,液流的流向和导轮旋转方向一致,可以使泵轮转动更有效。 *

图4-3为液力变矩器油液流动示意图。 观看液力变矩器油液流动 图上通过箭头示意液体流动方向。油液由泵轮的外端传入涡轮的外端,经涡轮内端传到导轮时改变了油液的流动方向,经导轮传给泵轮的油液的流动方向恰 好和泵轮的旋转方向一致。 * 3、液力变矩器的锁止和减振 液力变矩器用油液作为传力介质时,即使在传递效果最佳时,也只能传递90%的动力。其余的动力都被转化为热量,散发到油液里。为提高偶合工况的传动效率,变矩器设置了锁止离合器。液力变矩器进入偶合工况后,变矩器内的闭锁离合器就有可能进入锁止工况。而变矩器一旦进入锁止工况,发动机的动力就可以100%的传给传动系。可以避免液力传动过程中不可避免的动力损失,提高液力变 矩器的工作效率。 液力变矩器根据锁止形式的不同,负责锁止的闭锁离合器分为液力锁止、离

光耦的工作原理

光耦的工作原理 耦合器以光为媒介传输电信号。它对输入、输出电信号有良好的隔离作用,所以,它在各种电路中得到广泛的应用。目前它已成为种类最多、用途最广的光电器件之一。光耦合器一般由三部分组成:光的发射、光的接收及信号放大。输入的电信号驱动发光二极管(LED),使之发出一定波长的光,被光探测器接收而产生光电流,再经过进一步放大后输出。这就完成了电—光—电的转换,从而起到输入、输出、隔离的作用。由于光耦合器输入输出间互相隔离,电信号传输具有单向性等特点,因而具有良好的电绝缘能力和抗干扰能力。又由于光耦合器的输入端属于电流型工作的低阻元件,因而具有很强的共模抑制能力。所以,它在长线传输信息中作为终端隔离元件可以大大提高信噪比。在计算机数字通信及实时控制中作为信号隔离的接口器件,可以大大增加计算机工作的可靠性。 光耦的优点 光耦合器的主要优点是:信号单向传输,输入端与输出端完全实现了电气隔离,输出信号对输入端无影响,抗干扰能力强,工作稳定,无触点,使用寿命长,传输效率高。光耦合器是70年代发展起来产新型器件,现已广泛用于电气绝缘、电平转换、级间耦合、驱动电路、开关电路、斩波器、多谐振荡器、信号隔离、级间隔离、脉冲放大电路、数字仪表、远距离信号传输、脉冲放大、固态继电器(SSR)、仪器仪表、通信设备及微机接口中。在单片开关电源中,利用线性光耦合器可构成光耦反馈电路,通过调节控制端电流来改变占空比,达到精密稳压目的。 光耦的种类 光电耦合器分为两种:一种为非线性光耦,另一种为线性光耦。 非线性光耦的电流传输特性曲线是非线性的,这类光耦适合于开关信号的传输,不适合于传输模拟量。常用的4N系列光耦属于非线性光耦。 线性光耦的电流传输特性曲线接近直线,并且小信号时性能较好,能以线性特性进行隔离控制。常用的线性光耦是PC817A—C系列。 开关电源中常用的光耦是线性光耦。如果使用非线性光耦,有可能使振荡波形变坏,严重时出现寄生振荡,使数千赫的振荡频率被数十到数百赫的低频振荡依次为号调制。由此产生的后果是对彩电,彩显,VCD,DCD等等,将在图像画面上产生干扰。同时电源带负载能力下降。在彩电,显示器等开关电源维修中如果光耦损坏,一定要用线性光耦代换。常用的4脚线性光耦有PC817A----C。PC111 TLP521等常用的六脚线性光耦有:LP632 TLP532 PC614 PC714 PS2031等。常用的4N2 5 4N26 4N35 4N36是不适合用于开关电源中的,因为这4种光耦均属于非线性光耦。 光耦的作用

自动变速箱与液力变矩器工作原理

自动变速箱 自动变速箱简称AT,全称Auto Transmission,它是由液力变扭器、行星齿轮和液压操纵系统组成,通过液力传递和齿轮组合的方式来达到变速变矩。 和手动挡相比,自动变速箱在结构和使用上有很大不同。手动挡主要通过调节不同齿轮组合来更换挡位,而自动变速箱是通过液力传递和齿轮组合的方式来达到变速的目的。其中液力变扭器是自动变速箱最具特点的部件,它由泵轮、涡轮和导轮等构件组成,泵轮和涡轮是一对工作组合,泵轮通过液体带动涡轮旋转,而泵轮和涡轮之间的导轮通过反作用力使泵轮和涡轮之间实现转速差并实现变速变矩功能,对驾驶者来说,您只需要以不同力度踩住踏板,变速箱就可以自动进行挡位升降。由于液力变矩器自动变速变矩范围不够大,因此在涡轮后面再串联几排行星齿轮提高效率,液压操纵系统会随发动机工作变化自行操纵行星齿轮,从而实现自动变速变矩。为了满足行驶过程中的多种需要(如泊车、倒车)等,自动变速箱还设有一些手动拨杆位置,像P挡(停泊)、R挡(后挡)、N挡(空档)、D挡(前进)等。 从性能上说自动变速箱的挡位越多,车在行驶过程中也就越平顺,加速性也越好,而且更加省油。除了提供轻松惬意的驾驶感受,自动变速箱也有无法克服的缺陷。自动变速箱的动力响应不够直接,这使它在“驾驶乐趣”方面稍显不足。此外,由于采用液力传动,这使自动挡变速箱传递的动力有所损失。 手自一体自动变速箱 手自一体变速箱的出现其实就是为了提高自动变速箱的经济性和操控性而增加的设置,让原来电脑自动决定的换挡时机重新回到驾驶员手中。同时,如果在城市内堵车情况下,还是可以随时切换回自动挡。

液力变矩器的工作原理就像两个风扇相对,一个风扇工作,然后将另一个不工作的风扇吹动。这个比喻可以很形象的解释液力变矩器中泵轮和涡轮之间的工作关系。不过详细解释其工作原理,则有些复杂。 动力输出之后,带动与变矩器壳体相连的泵轮,泵轮搅动变矩器中的自动变速箱油(以下简称ATF),带动涡轮转动,ATF在壳体中是一个循环的动作,由于泵轮旋转时的离心力,ATF会在泵轮的作用下,甩向外侧,冲向前方的涡轮,再流向轴心位置,回到泵轮一侧,如此周而复始的循环,将动力传向与齿轮箱连接的涡轮。 不过只有该零部件和传动方式,只能称为液力耦合器,若想成为液力变矩器,必然要改变涡轮叶片的形状,这样一来,ATF在经过涡轮再循环回泵轮时,会与泵轮旋转方向相反,因而造成冲击,所以为了成为液力变矩器还需另一个部件:导轮。导轮是存在于泵轮和涡轮之间的一个部件,用于调节壳体中ATF液流方向,通过单向离合器与箱体固定。 有了导轮,才有了“变矩”的灵魂所在,在泵轮与涡轮转速差较大时,动力输出的扭矩也变大了,此时的变矩器想当一个无级变速器,通过转速差来提升扭矩,此时导轮处于固定状态,用以调节ATF回流;而当转速差降低,涡轮泵轮耦合或锁止时,扭矩接近对等,无需增矩,导轮随泵轮和涡轮同向转动,避免自身搅动ATF,造成动力的损耗。 至此我们了解到了液力变矩器的最大特点——软连接,而这种动力的传输方式起到了两大功能:1、从静止到低速时的平稳起步;2、在加速过程中,较大动力输出时,起到增大扭矩的作用。如果与MT上的离合器相比较,则需注意的是,第一条起到了并优化了MT 上离合器的功能,但第二条则是离合器无法实现的。

光耦反馈常见几种连接方式及其工作原理

光耦反馈常见几种连接方式及其工作原理 来源:互联网?作者:佚名? 2017-11-07 14:12 ? 23793次阅读 在一般的隔离电源中,光耦隔离反馈是一种简单、低成本的方式。但对于光 耦反馈的各种连接方式及其区别,目前尚未见到比较深入的研究。而且在很 多场合下,由于对光耦的工作原理理解不够深入,光耦接法混乱,往往导致 电路不能正常工作。本研究将详细分析光耦工作原理,并针对光耦反馈的几 种典型接法加以对比研究。 1、常见的几种连接方式及其工作原理常用于反馈的光耦型号有TLP521、PC817等。这里以TLP521为例,介绍这类光耦的特性。TLP521的原边相当于一个发光二极管,原边电流If越大,光强越强,副边三极管的电流Ic 越大。副边三极管电流Ic与原边二极管电流If的比值称为光耦的电流放大 系数,该系数随温度变化而变化,且受温度影响较大。作反馈用的光耦正是 利用“原边电流变化将导致副边电流变化”来实现反馈,因此在环境温度变 化剧烈的场合,由于放大系数的温漂比较大,应尽量不通过光耦实现反馈。 此外,使用这类光耦必须注意设计外围参数,使其工作在比较宽的线性带内,否则电路对运行参数的敏感度太强,不利于电路的稳定工作。 通常选择TL431结合TLP521进行反馈。这时,TL431的工作原理相当于 一个内部基准为2.5V的电压误差放大器,所以在其1脚与3脚之间,要接 补偿网络。常见的光耦反馈第1种接法,如图1所示。图中,Vo为输出电压,Vd为芯片的供电电压。com信号接芯片的误差放大器输出脚,或者把PWM芯片(如UC3525)的内部电压误差放大器接成同相放大器形式,com 信号则接到其对应的同相端引脚。注意左边的地为输出电压地,右边的地为 芯片供电电压地,两者之间用光耦隔离。图1所示接法的工作原理如下:当输出电压升高时,TL431的1脚(相当于电压误差放大器的反向输入端)电压 上升,3脚(相当于电压误差放大器的输出脚)电压下降,光耦TLP521的原 边电流If增大,光耦的另一端输出电流Ic增大,电阻R4上的电压降增大,

福伊特液力变矩器的结构及工作原理的使用0

第一章福伊特液力传动箱简介 T211re.4液力传动箱是德国福伊特公司是专门为铁路车辆设计的涡轮传动装置。它是350kW性能级别的轨道车专用传动箱。 第一节 T211re.4液力传动箱的技术指标 一、T211re.4液力传动箱的主要技术参数

: 二、T211re.4液力传动箱的特性参数 第二节 T 211re.4液力传动箱的特点 一、命名规则: T211re.4液力传动箱是铁路工程车辆专用设备,其命名

规则如下: 二、T211re.4液力传动箱的特点 T211re.4液力传动箱其输入功率科大350kW,采用全新的福伊特驱动控制器(VTDC)可以直接安装在传动箱上并录入运行数据。另外还具有监控诊断功能,液力制动可以通过联合制动的方式整合进入车辆制动系统以及性能的高可靠性。

第二章 T211re.4液力传动箱的结构 第一节 T211re.4液力传动箱的组成 一、液力传动箱组成 T211re.4液力传动箱由液力制动、液力液力变扭器、液力耦合器、换向机构、电气控制模块VTIC及部分组成,其外形如图2-1所示。其输入、输出侧分别如图2-2、2-3所示。 图2-1 T211re.4液力传动箱外形图

其液力传动箱包括机械部分和液力部分组件,其结构如图2-4所示。 二、机械组件 机械组件包括增速齿轮、扭转减振器、换向装置、齿轮变速器。 图2-2 T211re.4液力传动箱输入侧 1-输入装置

图2-3 T211re.4液力传动箱输出侧 2-输出装置 图2-4 转动装置组件 1-输出装置;2-增速齿轮;3-输入装置;4-液力偶合器;5-液力变扭器 6-机械部件;7-换向装置的幵关轴 传动箱输入轴(3)直接与柴油机相连,通过一对增速齿轮(2)将转速提升至液力元件的工作转速,变扭器(5)和偶合器(4)的泵轮都装在泵轮轴上,两者的涡轮都装在与传动箱输出相连的涡轮轴上,涡轮轴再通过一系列的机械齿轮最终驱动传动箱输出(1),通过换向离合器(7)的作用,使传动链里机械齿轮(6)的数量增减,实现换向。

光电耦合器moc3083

光电耦合器 本词条由“科普中国”百科科学词条编写与应用工作项目审核。 光电耦合器是以光为媒介传输电信号的一种电一光一电转换器件。它由发光源和受光器两部分组成。把发光源和受光器组装在同一密闭的壳体内,彼此间用透明绝缘体隔离。发光源的引脚为输入端,受光器的引脚为输出端,常见的发光源为发光二极管,受光器为光敏二极管、光敏三极管等等。 中文名 光电耦合器 外文名 optical coupler 英文缩写 OC 目录 .1基本资料 .?简介 .2工作原理 .?基本原理 .?基本工作特性(光敏三极管) .3结构特点 .4仪器测试 .5应用

.?开关电路 .6具体应用 .?组成开关电路 .?组成逻辑电路 .?隔离耦合电路 .?高压稳压电路 .?门厅照明灯自动控制电路 .7分类 .?按光路径分 .?按输出形式分 .?按封装形式分 .?按传输信号分 .?按速度分 .?按通道分 .?按隔离特性分 .?按工作电压分 .8选取原则 .9发展现状注意事项 .10发展现状 .11应用前景 基本资料 编辑 简介 光电耦合器(optical coupler,英文缩写为OC)亦称光电隔离器,简称光耦。光电耦合器以光为媒介传输电信号。它对输入、输出电信号有良好的隔离作用,所以,它在各种电路中得到广泛的应用。目前它已成为种类最多、用途最广的光电器件之一。光耦合器一般由三部分组成:光的发射、光的接收及信号放大。输入的电信号驱动发光二极管(LED),使之发出一定波长的光,被光探测器接收而产生光电流,再经过进一步放大后输出。这就完成了电—光—电的转换,从而起到输入、输出、隔离的作用。由于光耦合器输入输出间互相隔离,电信号传输具有单向性等特点,因而具有良好的电绝缘能力和抗干扰能力。 光电耦合器是一种把发光器件和光敏器件封装在同一壳体内,中间通过电→光→电的转换来传输电信号的半导体光电子器件。其中,发光器件一般都是发光二极管。而光敏器

光电耦合器工作原理详细解说

光电耦合器工作原理详细解说光电耦合器件简介 光电偶合器件(简称光耦)是把发光器件(如发光二极体)和光敏器件(如光敏三极管)组装在一起,通过光线实现耦合构成电—光和光—电的转换器件。光电耦合器分为很多种类,图1所示为常用的三极管型光电耦合器原理图。 当电信号送入光电耦合器的输入端时,发光二极体通过电流而发光,光敏元件受到光照后产生电流,CE导通;当输入端无信号,发光二极体不亮,光敏三极管截止,CE不通。对于数位量,当输入为低电平“0”时,光敏三极管截止,输出为高电平“1”;当输入为高电平“1”时,光敏三极管饱和导通,输出为低电平“ 0”。若基极有引出线则可满足温度补偿、检测调制要求。这种光耦合器性能较好,价格便宜,因而应用广泛。 图一最常用的光电耦合器之内部结构图三极管接收型 4脚封装

图二光电耦合器之内部结构图三极管接收型 6脚封装 图三光电耦合器之内部结构图双发光二极管输入三极管接收型 4脚封装

图四光电耦合器之内部结构图可控硅接收型 6脚封装

图五光电耦合器之内部结构图双二极管接收型 6脚封装 光电耦合器之所以在传输信号的同时能有效地抑制尖脉冲和各种杂讯干扰,使通道上的信号杂讯比大为提高,主要有以下几方面的原因: (1)光电耦合器的输入阻抗很小,只有几百欧姆,而干扰源的阻抗较大,通常为105~106Ω。据分压原理可知,即使干扰电压的幅度较大,但馈送到光电耦合器输入端的杂讯电压会很小,只能形成很微弱的电流,由于没有足够的能量而不能使二极体发光,从而被抑制掉了。 (2)光电耦合器的输入回路与输出回路之间没有电气联系,也没有共地;之间的分布电容极小,而绝缘电阻又很大,因此回路一边的各种干扰杂讯都很难通过光电耦合器馈送到另一边去,避免了共阻抗耦合的干扰信号的产生。 (3)光电耦合器可起到很好的安全保障作用,即使当外部设备出现故障,甚至输入信号线短接时,也不会损坏仪表。因为光耦合器件的输入回路和输出回路之间可以承受几千伏的高压。 (4)光电耦合器的回应速度极快,其回应延迟时间只有10μs左右,适于对回应速度要求很高的场合。 光电隔离技术的应用 微机介面电路中的光电隔离 微机有多个输入埠,接收来自远处现场设备传来的状态信号,微机对这些信号处理后,输出各种控制信号去执行相应的操作。在现场环境较恶劣时,会存在较大的杂讯干扰,若这些干扰随输入信号一起进入微机系统,会使控制准确性降低,产生误动作。因而,可在微机的输入和输出端,用光耦作介面,对信号及杂讯进行隔离。典型的光电耦合电路如图6所示。该电路主要应用在“A/D转换器”的数位信号输出,

液力耦合器的结构组成及工作原理

液力耦合器的结构组成及工作原理 来源:互联网作者:匿名发表日期: 2010-4-5 9:12:15 阅读次数: 141 查看权限:普通文章 液力耦合器主要由:壳体(housing)、泵轮(impeller)、涡轮(turbine)三个元件构成。在发动机曲轴1 的凸缘上,固定着耦合器外壳2。与外壳刚性连接并随曲轴一起旋转的叶轮,组成耦合器的主动元件,称为泵轮了。与从动轴5相连的叶轮,为耦合器的从动元件,称为涡轮4。泵轮与涡轮统称为工作轮。在工作轮的环状壳体中,径向排列着许多叶片。涡轮装在密封的外壳中,其端面与泵轮端面相对,两者之间留有3~4mm 间隙。泵轮与涡轮装合后,通过轴线的纵断面呈环形,称为循环圆。在环状壳体中储存有工作液。 液力耦合器的壳体和泵轮在发动机曲轴的带动下旋转,叶片间的工作液在泵轮带动一起旋转。随着发动机转速的提高,离心力作用将使工作液从叶片内缘向外缘流动。因此,叶片外缘处压力较高,而内缘处压力较低,其压力差取决于工作轮半径和转速。 由于泵轮和涡轮的半径是相等的,故当泵轮的转速大于涡轮时,泵轮叶片外缘的液力大于涡轮叶片外缘。于是,工作液不仅随着工作轮绕其轴线做圆周运动,并且在上述压力差的作用下,沿循环圆依箭头所示方向作循环流动。液体质点的流线形成一个首尾相连的环形螺旋线。 液力耦合器的传动过程是:泵轮接受发动机传动来的机械能,传给工作液,使其提高动能,然后再由工作液将动能传给涡轮。因此,液力耦合器实现传动的必要条件是工作液在泵轮和涡轮之间有循环流动。而循环流动的产生,是由两个工作轮转速不等,使两轮叶片的外缘产生液力差所致。因此,液力耦合器在正常工作时,泵轮转速总是大于涡轮转速。如果二者转速相等,液力耦合器则不起传动作用。 汽车起步前,可将变速器挂上一挡位,启动发动机驱动泵轮旋转,而与整车驱动轮相连的涡轮暂时仍处于静止状态,工作液便立即产生绕工作轮轴线的圆周运动和循环流动。当液流冲到涡轮叶片上时,其圆周速度降低到零而对涡轮叶片造

液力变矩器的结构与工作原理

液力变矩器的结构与工作原理 (一)液力变矩器的结构 液力变矩器以液体作为介质,传递和增大来自发动机的扭矩 液力变矩器由可转动的泵轮和涡轮,以及固定不动的导轮三元件构成。各件用铝合金精密铸造或用钢板冲压焊接而成。泵轮与变矩器壳成一体。用螺栓固定在飞轮上,涡轮通过从动轴与传动系各件相连。所有工作轮在装配后,形成断面为循环圆的环状体。 (二)液力变矩器的工作原理 导涡泵 液力变矩器工作原理可以用两台电风扇作形象描述,两风扇对置,一台通电转动,产生的气流可吹动不通电的风扇,如果给其添加一个管道这就成了液力偶合器,它能传轴,并不增扭。 变矩器工作时,发动机带动泵轮转动,叶轮带动液流冲向涡轮,从而驱动涡轮转动,刚起动时扭矩最大,此时冲击力为F1,冲到涡轮的液流驱动涡轮后,由于叶片形状,冲向导轮,而导轮不动,冲击导轮的液流受到阻碍,可使涡轮受到反作用力F2,由于F1、F2都作用于涡轮,所以使涡轮所受扭矩得到增大。 涡轮转速升高后,液流变向会冲击导轮叶背,而失去增扭,并有一定阻力。所以现在所用导轮都使用单向离合器,使去冲击叶背时,导轮转过一个角度,使其继续增扭。 导轮下端装有单向离合器,可增大其变扭范围。 (三)锁止式 变矩器是用液力来传递汽车动力的,而液压油的内部摩擦会造成一定的能量损失,因此传动效率较低。为提高汽车的传动效率,减少燃油消耗,现代很多轿车的自动变速器采用一种带锁止离合器的综合式液力变矩器。这种变矩器内有一个由液压油操纵的锁止离合器。锁止离合器的主动盘即为变矩器壳体,从动盘是一个可作

轴向移动的压盘,它通过花键套与涡轮连接(如图2.3).压盘背面(如图2.3右侧)的液压油与变矩器泵轮、涡轮中的液压油相通,保持一定的油压(该压力称为变矩器压力);压盘左侧(压盘与变矩器壳体之间)的液压油通过变矩器输出轴中间的控制油道与阀板总成上的锁止控制阀相通。锁止控制阀由自动变速器电脑通过锁止电磁阀来控制。 自动变速器电脑根据车速、节气门开度、发动机转速、变速器液压油温度、操纵手柄位置、控制模式等因素,按照设定的锁止控制程序向锁止电磁阀发出控制信号,操纵锁止控制阀,以改变锁止离合器压盘两侧的油压,从而控制锁止离合器的工作。当车速较低时,锁止控制阀让液压油从油道B进入变矩器,使锁止离合器压盘两侧保持相同的油压,锁止离合器处于分离状态,这时输入变矩器的动力完全通过液压油传至涡轮,如图2.4所示。 当汽车在良好道路上高速行驶,且车速、节气门开度、变速器液压油温度等因素符合一定要求时,电脑即操纵锁止控制阀,让液压油从油道C进入变矩器,而让油道B与泄油口相通,使锁止离合器压盘左侧的油压下降。由于压盘背面(图中右侧)的液压油压力仍为变矩器压力,从而使压盘在前后两面压力差的作用下压紧在主动盘(变矩器壳体)上,如图2.5所示,这时输入变矩器的动力通过锁止离合器的机械连接,由压盘直接传至涡轮输出,传动效率为100%. 另外,锁止离合器在结合时还能减少变矩器中的液压油因液体摩擦而产生的热量,有利用降低液压油的温度。有些车型的液力变矩器的锁止离合器盘上还装有减振弹簧,以减小锁止离合器在结合时瞬间产生的冲击力。 第二节行星齿轮变速器的工作原理 液力变矩器虽能在一定范围内自动、无级地改变转矩比和转速比,但存在传动

光电耦合器原理及使用

光电耦合器,又称光耦,万联芯城销售原装现货光耦元件,品牌囊括TOSHIBA,LITEON,EVERLIGHT,VISHAY等。型号种类繁多,万联芯城为终端生产企业提供电子元器件一站式配套服务,节省了客户的采购成本。点击进入万联芯城 点击进入万联芯城

光耦使用技巧 光电耦合器(简称光耦),是一种把发光元件和光敏元件封装在同一壳体内,中间通过电→光→电的转换来传输电信号的半导体光电子器件。光电耦合器可根据不同要求,由不同种类的发光元件和光敏元件组合成许多系列的光电耦合器。目前应用最广的是发光二极管和光敏三极管组合成的光电耦合器,其内部结构如图1a所示。 光耦以光信号为媒介来实现电信号的耦合与传递,输入与输出在 电气上完全隔离,具有抗干扰性能强的特点。对于既包括弱电控制部分,又包括强电控制部分的工业应用测控系统,采用光耦隔离可以很好地实现弱电和强电的隔离,达到抗干扰目的。但是,使用光耦隔离需要考虑以下几个问题: ①光耦直接用于隔离传输模拟量时,要考虑光耦的非线性问题; ②光耦隔离传输数字量时,要考虑光耦的响应速度问题; ③如果输出有功率要求的话,还得考虑光耦的功率接口设计问题。 1 光电耦合器非线性的克服 光电耦合器的输入端是发光二极管,因此,它的输入特性可用发 光二极管的伏安特性来表示,如图1b所示;输出端是光敏三极管, 因此光敏三极管的伏安特性就是它的输出特性,如图1c所示。由图 可见,光电耦合器存在着非线性工作区域,直接用来传输模拟量时精

度较差。 图1 光电耦合器结构及输入、输出特性 解决方法之一,利用2个具有相同非线性传输特性的光电耦合器,T1和T2,以及2个射极跟随器A1和A2组成,如图2所示。如果T 1和T2是同型号同批次的光电耦合器,可以认为他们的非线性传输 特性是完全一致的,即K1(I1)=K2(I1),则放大器的电压增益G=Uo/ U1=I3R3/I2R2=(R3/R2)[K1(I1)/K2(I1)]=R3/R2。由此可见,利用T1 和T2电流传输特性的对称性,利用反馈原理,可以很好的补偿他们原来的非线性。 图2 光电耦合线性电路 另一种模拟量传输的解决方法,就是采用VFC(电压频率转换)方式,如图3所示。现场变送器输出模拟量信号(假设电压信号),电压频率转换器将变送器送来的电压信号转换成脉冲序列,通过光耦隔离后送

光电耦合器工作原理详细解说

光电耦合器工作原理详细解说 光电耦合器件简介 光电偶合器件(简称光耦)是把发光器件(如发光二极体)和光敏器件(如光敏三极管)组装在一起,通过光线实现耦合构成电—光和光—电的转换器件。光电耦合器分为很多种类,图1所示为常用的三极管型光电耦合器原理图。 当电信号送入光电耦合器的输入端时,发光二极体通过电流而发光,光敏元件受到光照后产生电流,CE导通;当输入端无信号,发光二极体不亮,光敏三极管截止,CE不通。对于数位量,当输入为低电平“0”时,光敏三极管截止,输出为高电平“1”;当输入为高电平“1”时,光敏三极管饱和导通,输出为低电平“ 0”。若基极有引出线则可满足温度补偿、检测调制要求。这种光耦合器性能较好,价格便宜,因而应用广泛。 图一最常用的光电耦合器之内部结构图三极管接收型 4脚封装

图二光电耦合器之内部结构图三极管接收型 6脚封装 图三光电耦合器之内部结构图双发光二极管输入三极管接收型 4脚封装

图四光电耦合器之内部结构图可控硅接收型 6脚封装

图五光电耦合器之内部结构图双二极管接收型 6脚封装 光电耦合器之所以在传输信号的同时能有效地抑制尖脉冲和各种杂讯干扰,使通道上的信号杂讯比大为提高,主要有以下几方面的原因: (1)光电耦合器的输入阻抗很小,只有几百欧姆,而干扰源的阻抗较大,通常为105~106Ω。据分压原理可知,即使干扰电压的幅度较大,但馈送到光电耦合器输入端的杂讯电压会很小,只能形成很微弱的电流,由于没有足够的能量而不能使二极体发光,从而被抑制掉了。 (2)光电耦合器的输入回路与输出回路之间没有电气联系,也没有共地;之间的分布电容极小,而绝缘电阻又很大,因此回路一边的各种干扰杂讯都很难通过光电耦合器馈送到另一边去,避免了共阻抗耦合的干扰信号的产生。 (3)光电耦合器可起到很好的安全保障作用,即使当外部设备出现故障,甚至输入信号线短接时,也不会损坏仪表。因为光耦合器件的输入回路和输出回路之间可以承受几千伏的高压。 (4)光电耦合器的回应速度极快,其回应延迟时间只有10μs左右,适于对回应速度要求很高的场合。 光电隔离技术的应用 微机介面电路中的光电隔离 微机有多个输入埠,接收来自远处现场设备传来的状态信号,微机对这些信号处理后,输出各种控制信号去执行相应的操作。在现场环境较恶劣时,会存在较大的杂讯干扰,若这些干扰随输入信号一起进入微机系统,会使控制准确性降低,产生误动作。因而,可在微机的输入和输出端,用光耦作介面,对信号及杂讯进行隔离。典型的光电耦合电路如图6所示。该电路主要应用在“A/D转换器”的数位信号输出,及由

液力耦合器工作原理介绍

用途 液力偶合器作为节能设备,可以无级变速运转,工作可靠,操作简便,调节灵活,维修方便。 采用液力偶合器便于实现工作机全程自动调节,以适应载荷的变化,可节约大量电能,广泛适用于电力、冶金、石化、工程机械、矿山、市政供水供气和纺织、轻工等行业,适用于各种需要变负荷运转的给水泵、风机、粉碎机等旋转式工作机。 工作原理 液力偶合器是以液体为介质传递功率的一种动力传递装置,主要由两个带有径向叶片的碗状工作轮组成。由主动轴传动的轮称为泵轮,带动从动轴转动的轮称为涡轮,泵轮和涡轮中间有间隙,形成一个循环圆状腔室结构。 工作时,原动机带动液力偶合器主动轴——泵轮转动,泵轮内的液体介质在离心力作用下由机械能转换为动能,形成高压、高速液流冲向涡轮叶片;在涡轮内,液流沿外缘被压向内侧,经减压减速后动能转换为机械能,带动涡轮——从动轴旋转,实现能量的柔性传递。作功后的液体介质返回泵轮,形成液流循环。 液力偶合器工作原理示意图 液力偶合器内液体的循环是由于泵轮——涡轮流道间不同的离心力产生压差而形成,因此泵

轮、涡轮必须有转速差,这是液力偶合器的工作特性所决定的。泵轮、涡轮的转速差称为滑差,在额定工况下,滑差为输入转速的2%~3%。 调速型液力偶合器可以在主动轴转速恒定的情况下,通过调节液力偶合器内液体的充满程度实现从动轴的无级调速(调速范围为0到输入轴转速的97%~98%),调节机构称为勺管调速机构,它通过调节勺管的工作位置来改变偶合器流道中循环液体的充满程度,实现对被驱动机械的无级调速,使工作机按负载工作范围曲线运行。 特点 ?节省能源。输入转速不变的情况可获得无级变化的输出转速,对离心机械(如泵)在部分负荷的工作情况下,与节流式相比节省了相当大的功率损失。 ?空载启动。电动机启动后工作油系统开始工作,按需要加载控制、无级变速,电动机启动电流小,延长了使用寿命,并可选用较小电动机,节省投资。 ?离合方便。充油即行接合,传递扭矩、平稳升速;排油即行脱离。 ?振动阻尼与冲击吸收。工作轮之间无机械联系,通过液体传递扭矩,柔性连接,具有良好的隔振效果;并能大大减缓两端设备的冲击负荷。 ?过载保护。当从动轴阻力矩突然增加时,滑差增大直至制动,而原动机仍能继续运转而不致损坏,同时保护了从动机不致进一步损坏。 ?无磨损,坚固耐用,安全可靠。 ?润滑油系统可供工作机和电动机所用润滑油。 ?结构紧凑。增速齿轮和工作轮安装在同一箱体中,只需很小空间。 ?可根据用户需要安装不同的执行器。 调速范围: 被驱动的机械具有抛物线负载力矩时,如离心泵和通风机,调速范围为4:1,特殊情况下可以达到5:1。 被驱动的机械具有近乎恒定负载力矩时,调速范围为3:1以下。 工作时排空液力偶合器内的工作液,可以使被驱动的机械停止运转。

相关文档
相关文档 最新文档