文档库 最新最全的文档下载
当前位置:文档库 › 09_组播协议操作

09_组播协议操作

目录

第1章 IPv4组播协议·································································1-1

1.1 IPv4组播协议概述············································································1-1

1.1.1 组播简介·································································································1-1

1.1.2 组播地址·································································································1-1

1.1.3 IP组播报文转发·······················································································1-2

1.1.4 IP组播应用······························································································1-3

1.2 PIM-DM····························································································1-3

1.2.1 PIM-DM介绍···························································································1-3

1.2.2 PIM-DM配置任务序列·············································································1-4

1.2.3 PIM-DM典型案例····················································································1-6

1.2.4 PIM-DM排错帮助····················································································1-7

1.3 PIM-SM·····························································································1-7

1.3.1 PIM-SM介绍····························································································1-7

1.3.2 PIM-SM配置任务序列·············································································1-9

1.3.3 PIM-SM典型案例··················································································1-11

1.3.4 PIM-SM排错帮助··················································································1-14

1.4 MSDP配置······················································································1-14

1.4.1 MSDP介绍····························································································1-14

1.4.2 MSDP配置任务简介··············································································1-15

1.4.3 配置MSDP基本功能·············································································1-15

1.4.4 配置MSDP对等体·················································································1-16

1.4.5 配置报文收发·······················································································1-17

1.4.6 配置SA-cache参数··············································································1-18

1.4.7 MSDP举例····························································································1-18

1.4.8 MSDP排错帮助·····················································································1-24

1.5 ANYCAST RP配置·········································································1-24

1.5.1 ANYCAST RP介绍···············································································1-24

1.5.2 ANYCAST RP配置任务········································································1-24

1.5.3 ANYCAST RP典型案例········································································1-26

1.5.4 ANYCAST RP排错帮助········································································1-28

1.6 PIM-SSM························································································1-28

1.6.1 PIM-SSM 介绍·····················································································1-28

1.6.2 PIM-SSM 配置任务序列·······································································1-28

1.6.3 PIM-SSM 典型案例··············································································1-29

1.6.4 PIM-SSM 排错帮助··············································································1-31

1.7 DVMRP···························································································1-31

1.7.1 DVMRP介绍··························································································1-31

1.7.2 配置任务序列·······················································································1-32

1.7.3 DVMRP典型案例··················································································1-34

1.7.4 DVMRP排错帮助··················································································1-34

1.8 DCSCM··························································································1-35

1.8.1 DCSCM介绍·························································································1-35

1.8.2 DCSCM配置任务序列···········································································1-35

1.8.3 DCSCM典型案例··················································································1-37

1.8.4 DCSCM排错帮助··················································································1-38

1.9 IGMP······························································································1-39

1.9.1 IGMP介绍·····························································································1-39

1.9.2 配置任务序列·······················································································1-40

1.9.3 IGMP典型案例······················································································1-42

1.9.4 IGMP排错帮助······················································································1-43

1.10 IGMP Snooping配置····································································1-43

1.10.1 IGMP Snooping介绍··········································································1-43

1.10.2 IGMP Snooping配置任务···································································1-44

1.10.3 IGMP Snooping典型案例···································································1-45

1.10.4 IGMP Snooping排错帮助···································································1-48

1.11 IGMP Proxy配置···········································································1-48

1.11.1 IGMP Proxy介绍·················································································1-48

1.11.2 IGMP Proxy配置任务··········································································1-49

1.11.3 IGMP Proxy举例·················································································1-50

1.11.4 IGMP Proxy排错帮助··········································································1-52第2章 IPv6组播协议·································································2-1

2.1 PIM-DM6··························································································2-1

2.1.1 PIM-DM6介绍·························································································2-1

2.1.2 PIM-DM6配置任务序列··········································································2-2

2.1.3 PIM-DM6典型案例·················································································2-4

2.1.4 PIM-DM6排错帮助·················································································2-5

2.2 PIM-SM6···························································································2-5

2.2.1 PIM-SM6介绍·························································································2-5

2.2.2 PIM-SM6配置任务序列··········································································2-7

2.2.3 PIM-SM6典型案例··················································································2-9

2.2.4 PIM-SM6排错帮助················································································2-12

2.3 ANYCAST RP v6配置···································································2-12

2.3.1 ANYCAST RP v6介绍··········································································2-12

2.3.2 ANYCAST RP v6配置任务··································································2-12

2.3.3 ANYCAST RP v6典型案例··································································2-14

2.3.4 ANYCAST RP v6排错帮助··································································2-16

2.4 PIM-SSM6······················································································2-16

2.4.1 PIM-SSM6 介绍···················································································2-16

2.4.2 PIM-SSM6 配置任务序列·····································································2-16

2.4.3 PIM-SSM6 典型案例············································································2-17

2.4.4 PIM-SSM6 排错帮助············································································2-19

2.5 IPv6 DCSCM··················································································2-19

2.5.1 IPv6 DCSCM介绍·················································································2-19

2.5.2 IPv6 DCSCM配置任务序列···································································2-20

2.5.3 IPv6 DCSCM典型案例··········································································2-22

2.5.4 IPv6 DCSCM排错帮助··········································································2-23

2.6 MLD Snooping··············································································2-23

2.6.1 MLD Snooping介绍·············································································2-23

2.6.2 MLD Snooping配置任务······································································2-23

2.6.3 MLD Snooping典型案例······································································2-25

2.6.4 MLD Snooping排错帮助······································································2-27第3章组播VLAN配置·······························································3-1

3.1 组播VLAN介绍·················································································3-1

3.2 组播 VLAN配置任务········································································3-1

3.3 组播VLAN举例·················································································3-2

第1章 IPv4组播协议

1.1 IPv4组播协议概述

本章对IPv4组播协议的配置进行介绍,本章所有的IP都是指IPv4。

注:5950-28T-L和5950-52T-L两款产品不支持本章节组播路由协议。

1.1.1 组播简介

当信息(包括数据、语音和视频)传送的目的地是网络中的少数用户时,可以采用多种传送方式。可以采用单播(Unicast)的方式,即为每个用户单独建立一条数据传送通路;或者采用广播(Broadcast)的方式,把信息传送给网络中的所有用户,不管他们是否需要,都会接收到广播来的信息。例如,在一个网络上有200个用户需要接收相同的信息时,传统的解决方案是用单播方式把这一信息分别发送200次,以便确保需要数据的用户能够得到所需的数据;或者采用广播的方式,在整个网络范围内传送数据,需要这些数据的用户可直接在网络上获取。这两种方式都浪费了大量宝贵的带宽资源,而且广播方式也不利于信息的安全和保密。

IP组播技术的出现及时解决了这个问题。组播源仅发送一次信息,组播路由协议为组播数据包建立树型路由,被传递的信息在尽可能远的分叉路口才开始复制和分发,因此,信息能够被准确高效地传送到每个需要它的用户。

需要注意的是,组播源不一定需要加入组播组,它向某些组播组发送数据,自己不一定是该组的接收者。可以同时有多个源向一个组播组发送报文。网络中可能有不支持组播的路由器,组播路由器可以使用隧道方式将组播包封装在单播IP包中传送给相邻的组播路由器,相邻的组播路由器再将单播IP头剥掉,然后继续进行组播传输。从而避免对网络的结构进行较大的改动。组播的优势主要在于:

1) 提高效率:降低网络流量,减轻服务器和CPU负荷;

2) 优化性能:减少冗余流量;

3) 分布式应用:使多点应用成为可能。

1.1.2 组播地址

组播报文的目的地址使用D类IP地址,范围是从224.0.0.0到239.255.255.255。D类地址不能出现在IP报文的源IP地址字段。单播数据传输过程中,一个数据包传输的路径是从源地址路由到目的地址,利用“逐跳”(hop-by-hop)的原理在IP网络中传输。然而在IP组播环境中,数据包的目的地址不是一个,而是一组,形成组地址。所有的信息接收者都加入到一个组内,并且一旦加入之后,流向组地址的数据立即开始向接收者传输,组中的所有成员都能接收到数据包。组播组中的成员是动态的,主机可以在任何时刻加入和离开组播组。

组播组可以是永久的也可以是临时的。组播组地址中,有一部分由官方分配的,称为永久组播组。永久组播组保持不变的是它的IP地址,组中的成员构成可以发生变化。永久组播组中成员的数量都可以是任意的,甚至可以为零。那些没有保留下来供永久组播组使用的IP 组播地址,可以被临时组播组利用。

224.0.0.0~224.0.0.255为预留的组播地址(永久组地址),地址224.0.0.0保留不做分配,其它地址供路由协议使用; 224.0.1.0~238.255.255.255为用户可用的组播地址(临时组地址),全网范围内有效;239.0.0.0~239.255.255.255为本地管理组播地址,仅在特定的本地范围内有效。常用的预留组播地址列表如下:

224.0.0.0 基准地址(保留)

224.0.0.1 所有主机的地址

224.0.0.2 所有组播路由器的地址

224.0.0.3 不分配

224.0.0.4 DVMRP 路由器

224.0.0.5 OSPF 路由器

224.0.0.6 OSPF DR

224.0.0.7 ST 路由器

224.0.0.8 ST 主机

224.0.0.9 RIP-2 路由器

224.0.0.10 IGRP 路由器

224.0.0.11 活动代理

224.0.0.12 DHCP 服务器/中继代理

224.0.0.13 所有PIM 路由器

224.0.0.14 RSVP 封装

224.0.0.15 所有CBT 路由器

224.0.0.16 指定SBM

224.0.0.17 所有SBMS

224.0.0.18 VRRP

224.0.0.22 IGMP

以太网传输单播IP报文的时候,目的MAC地址使用的是接收者的MAC地址。但是在传输组播报文时,传输目的不再是一个具体的接收者,而是一个成员不确定的组,所以使用的是组播MAC地址。组播MAC地址是和组播IP地址对应的。IANA(Internet Assigned Number Authority)规定,组播MAC地址的高25bit为0x01005e,MAC 地址的低23bit为组播IP地址的低23bit。

由于IP组播地址的后28位中只有23位被映射到MAC地址,这样就会有32个IP组播地址映射到同一MAC地址上。

1.1.3 IP组播报文转发

在组播模型中,源主机向IP数据包目的地址字段内的组播组地址所表示的主机组传送信

息。和单播模型不同的是,组播模型必须将组播数据包转发到多个外部接口上以便能传送到所有接收站点,因此组播转发过程比单播转发过程更加复杂。

为了保证组播信息包都是通过最短路径到达路由器,组播必须依靠单播路由表或者单独提供给组播使用的单播路由表(如DVMRP路由),对组播信息包的接收接口进行一定的检查,这种检查机制就是大部分组播路由协议进行组播转发的基础——RPF(Reverse Path Forwarding,逆向路径转发)检查。组播路由器利用到达的组播数据包的源地址来查询单播路由表或者独立的组播路由表,以确定此数据包到达的入接口处于接收站点至源地址的最短路径上。如果使用的是有源树,这个源地址就是发送组播数据包的源主机的地址;如果使用的是共享树,该源地址就是共享树的根的地址。当组播数据包到达路由器时,如果RPF 检查通过,数据包则按照组播转发项进行转发,否则,数据包被丢弃。

1.1.4 IP组播应用

IP组播技术有效地解决了单点发送多点接收的问题,实现了IP网络中点到多点的高效数据传送,能够大量节约网络带宽、降低网络负载。利用网络的组播特性可以方便地提供一些新的增值业务。在线直播、网络电视、远程教育、远程医疗、网络电台、实时视/音频会议等互联网的信息服务领域可以提供如下应用:

1) 多媒体、流媒体的应用;

2) 数据仓库、金融应用(股票)等;

3) 任何“点到多点”的数据发布应用。

在IP 网络中多媒体业务日渐增多的情况下,组播有着巨大的市场潜力,组播业务也将逐渐得到推广和普及。

1.2 PIM-DM

1.2.1 PIM-DM介绍

PIM-DM(Protocol Independent Multicast,Dense Mode,协议独立组播-密集模式)属于密集模式的组播路由协议,适用于小型网络,在这种网络环境下,组播组的成员相对比较密集。

PIM-DM 的工作过程可以概括为:邻居发现、扩散—剪枝过程、嫁接阶段。

1. 邻居发现

PIM-DM 路由器刚开始启动时,需要使用Hello报文来发现邻居。运行PIM-DM的各网络节点之间使用Hello报文保持联系。PIM-DM Hello报文是周期性发送的。

2. 扩散—剪枝过程(Flooding&Prune)

PIM-DM 假设网络上的所有主机都准备接收组播数据。当某组播源S开始向组播组G发送数据时,在路由器接收到组播报文后,首先根据单播路由表进行RPF检查,如果检查通过,路由器创建一个(S,G)表项,然后将组播报文向网络上所有下游PIM-DM节点转发(Flooding)。如果没有通过RPF检查,即组播报文是从错误的接口输入,则将该报文丢弃。

经过这个过程,在PIM-DM组播域内,每个节点都会创建一个(S,G)表项。如果下游节点没有组播组成员,则向上游节点发剪枝(Prune)消息,通知上游节点不用再转发该组播组数据。上游节点收到剪枝消息后,就将相应的接口从其组播转发表项(S,G)对应的输出接口列表中删除,这就建立了一个以源S为根的SPT(Shortest Path Tree,SPT)树。剪枝过程最先由叶子路由器发起。

3. RPF检查

PIM-DM采用RPF检查,利用现存的单播路由表构建一棵从数据源始发的组播转发树。当一个组播包到达时,路由器首先判断到达路径的正确性。如果到达接口是单播路由指示的通往组播源的接口,就认为这个组播包是从正确路径而来;否则,将组播包作为冗余报文丢弃。作为路径判断依据的单播路由信息可以来源于任何一种单播路由协议,如RIP、OSPF 等发现的路由信息,而不依赖于特定的单播路由协议。

4. Assert机制

如果处于一个LAN网段上的两台组播路由器A和B,各自有到组播源S的接收途径,它们在接收到组播源S发出的组播数据报文以后,都会向LAN上转发该组播报文,这时,下游节点组播路由器C就会收到两份相同的组播报文。路由器检测到这种情况后,需要通过Assert 机制来选定一个唯一的转发者。通过发送Assert报文,选出一条最优的转发路径,如果两条或两条以上路径的优先级和开销相同,则选择IP地址大的节点作为该(S,G)项的上游邻居,由它负责该(S,G)组播报文的转发。

5. 嫁接(Graft)

当被剪枝的下游节点需要恢复到转发状态时,该节点使用嫁接报文通知上游节点恢复组播数据转发。

6.PIM-DM的状态刷新

为了减少PIM-DM周期性的扩散-剪枝,PIM-DM协议最新版本提供了一个选项(option),它将从组播源的第一跳路由器开始,周期性的向下面广播(S,G)状态刷新消息以完成状态刷新。当下游PIM路由器收到(S,G)状态刷新消息,它就将剪枝计时器复位,终止剪枝计时器超时,从而即保证了网络的时效性,避免了周期性的扩散-剪枝过程。

1.2.2 PIM-DM配置任务序列

1、启动PIM-DM(必须)

2、配置静态组播表项(可选)

3、配置PIM-DM辅助参数(可选)

a) 配置PIM-DM hello报文间隔时间

b) 配置state-refresh报文间隔时间

c) 配置边缘接口

d) 配置管理边界

4、关闭PIM-DM协议

1. 启动PIM-DM协议

在DCRS 系列三层交换机上运行PIM-DM 路由协议的基本配置很简单,需全局配置模式下打开PIM 组播开关,然后在相应接口下打开PIM-DM 开关即可。 命令

解释 全局配置模式

ip pim multicast-routing no ip pim multicast-routing 使各个接口上的PIM-DM 协议进入使能状态(但真正在接口上开始PIM-DM 协议,还需下面的命令)。

然后在接口上打开PIM-SM 开关 命令

解释 接口配置模式

ip pim dense-mode 启动本接口PIM-DM 协议。(必须)

2.配置静态组播表项 命令

解释 全局配置模式

ip mroute <.ifname> no ip mroute [ <.ifname>] 配置静态组播表项,其no 命令删除静态组播表项或其出接口。

3. 配置PIM-DM 辅助参数

a )配置PIM-DM hello 报文间隔时间 命令

解释 接口配置模式

ip pim hello-interval < interval > no ip pim hello-interval

配置接口PIM-DM hello 报文间隔时间;本命令的no 操作恢复为缺省值。

b )配置state-refresh 报文间隔时间 命令

解释 全局配置模式

ip pim state-refresh origination-interval no ip pim state-refresh

origination-interval 全局模式下配置PIM-DM state-refresh 报文间隔时间;本命令的no 操作恢复为缺省值。 c )配置边缘接口 命令

解释 接口配置模式

ip pim bsr-border no ip pim bsr-border 配置接口为PIM-DM 边缘接口,边缘接口上,

BSR 相关消息不向该接口发送也不从该接口接收,连接的网络被认为都是该接口的直连网络。本命令的no 操作取消该配置。

d )配置管理边界 命令

解释 接口配置模式

ip pim scope-border <1-99 > |

no ip pim scope-border 配置PIM-DM 管理边界和使用的ACL 。组播数

据不向SCOPE-BORDER 扩散,默认的情形下,认为239.0.0.0/8的范围为管理组范围,若配置了ACL ,则ACL permit 的范围为管理组范围。本命令的no 操作取消该配置。

4. 关闭PIM-DM 协议 命令

解释 接口配置模式

no ip pim dense-mode

在接口上关闭PIM-DM 协议。 全局配置模式

no ip pim multicast-routing

全局关闭PIM-DM 协议。

1.2.3 PIM-DM 典型案例

如下图,将switchA ,switchB 的以太网接口加入到相应的vlan 中,并在各vlan 接口上启动PIM-DM 协议。如果vlan 内同时配置了IGMP SNOOPING ,则组播流量能精确到端口,而不在整个vlan 内泛洪。

SWITCHA

SWITCHB

vlan2

vlan1vlan2

vlan1

图 1-1 PIM-DM 典型环境

switchA 和switchB 配置步骤如下: (1) 配置SwitchA :

Switch (config)#ip pim multicast-routing

Switch (config)#interface vlan 1

Switch(Config-if-Vlan1)# ip address 10.1.1.1 255.255.255.0

Switch(Config-if-Vlan1)# ip pim dense-mode

Switch(Config-if-Vlan1)#exit

Switch (config)#interface vlan2

Switch(Config-if-Vlan2)# ip address 12.1.1.1 255.255.255.0

Switch(Config-if-Vlan2)# ip pim dense-mode

(2) 配置SwitchB:

Switch (config)#ip pim multicast-routing

Switch (config)#interface vlan 1

Switch(Config-if-Vlan1)# ip address 12.1.1.2 255.255.255.0

Switch(Config-if-Vlan1)# ip pim dense-mode

Switch(Config-if-Vlan1)#exit

Switch (config)#interface vlan 2

Switch(Config-if-Vlan2)# ip address 20.1.1.1 255.255.255.0

Switch(Config-if-Vlan2)# ip pim dense-mode

同时要注意配置好单播路由协议,确保网络中各设备之间能够在网络层互通,并且能够借助单播路由协议实现动态路由更新。

1.2.4 PIM-DM排错帮助

在配置、使用PIM-DM协议时,可能会由于物理连接、配置错误等原因导致PIM-DM

协议未能正常运行。因此,用户应注意以下要点:

)应该保证物理连接的正确无误

)保证接口和链路协议是UP(使用show interface命令)

)保证全局配置模式下打开PIM协议(使用ip pim multicast-routing)

)在接口上启动PIM-DM协议(使用ip pim dense-mode命令)

)组播协议需使用单播路由进行RPF检查,因此必须首先确保单播路由的正确性

如果使用检查都尝试仍无法解决PIM-DM的问题,那么请使用debug pim 等调试命令,然后将3分钟内的DEBUG信息拷贝下来,发送给神州数码技术服务中心。

1.3 PIM-SM

1.3.1 PIM-SM介绍

PIM-SM(Protocol Independent Multicast,Sparse Mode)即与协议无关组播-稀疏模式,属于稀疏模式的组播路由协议,主要用于组成员分布相对分散、范围较广、大规模的网络。与密集模式的扩散—剪枝不同,PIM-SM协议假定所有的主机都不需要接收组播数据包,

只有主机明确指定需要时,PIM-SM路由器才向它转发组播数据包。

PIM-SM通过设置汇聚点RP(Rendezvous Point)和自举路由器BSR(Bootstrap Router),向所有PIM-SM路由器通告组播信息,并利用路由器的加入/剪枝信息,建立起基于RP的共享树RPT(RP-rooted shared tree)。从而减少数据报文和控制报文占用的网络带宽,降低路由器的处理开销。组播数据沿着共享树流到该组播组成员所在的网段,当数据流量达到一定程度,组播数据流可以切换到基于源的最短路径树SPT,以减少网络延迟。PIM-SM不依赖于特定的单播路由协议,而是使用现存的单播路由表进行RPF检查。

1. PIM-SM工作原理

PIM-SM的工作过程主要有:邻居发现、RP共享树(RPT)的生成、组播源注册、SPT 切换等。其中,邻居发现机制与PIM-DM相同,这里不再介绍。

(1) RP共享树(RPT)的生成

当主机加入一个组播组G时,与该主机直接相连的叶子路由器通过IGMP报文了解到有组播组G的接收者,就为组播组G计算出对应的汇聚点RP,然后向朝着RP方向的上一级节点发送加入组播组的消息(join 消息)。从叶子路由器到RP之间途经的每个路由器都会在转发表中生成(*,G)表项,表示由任意源发出的,发送至组播组G的,都适用于该表项。当RP收到发往组播组G的报文后,报文就会沿着已经建立好的路径到达叶子路由器,进而到达主机。这样就生成了以RP为根的RPT。

(2) 组播源注册

当组播源S向组播组G发送了一个组播报文时,与其直接相连的PIM-SM组播路由器接收到该报文以后,就负责将该组播报文封装成注册报文,单播给对应的RP。如果一个网段上有多个PIM-SM组播路由器,这时候将由指定路由器DR(Designated Router)负责发送该组播报文。

(3) SPT切换

当组播路由器发现从RP发来的目的地址为G的组播报文的速率超过了阈值时,组播路由器就向朝着源S的上一级节点发送加入消息,导致RPT向SPT的切换。

2. PIM-SM 配置前准备工作

(1) 配置候选RP

在PIM-SM网络中,可以存在多个RP(候选RP),每个候选RP(Candidate-RP,C-RP)负责转发目的地址在一定范围内的组播报文。配置多个候选RP可以实现RP负载分担。候选RP之间没有主次之分,所有的组播路由器收到BSR通告的候选RP消息后,根据相同的算法计算出与某一组播组对应的RP。

注意,一个RP可以为多个组播组服务,也可以为所有组播组服务。每个组播组在任意时刻,只能唯一地对应一个RP,不能同时对应多个RP。

(2) 配置BSR

BSR 是PIM-SM 网络里的管理核心,它负责收集候选RP发来的信息,并把它们广播出去。

一个网络内部只能有一个BSR,但可以配置多个候选BSR(Candidate-BSR, C-BSR)。这样,一旦某个BSR发生故障后,能够切换到另外一个。C-BSR通过自动选举产生BSR。

1.3.2 PIM-SM配置任务序列

1、启动PIM-SM(必须)

2、配置静态组播表项(可选)

3、配置PIM-SM辅助参数(可选)

(1)配置PIM-SM接口参数

1)配置PIM-SM hello报文间隔时间

2)配置PIM-SM hello报文holdtime时间

3)配置PIM-SM 邻居访问列表

4)配置接口为PIM-SM边缘接口

5)配置接口为PIM-SM管理边界

(2)配置PIM-SM全局参数

1) 配置交换机作为候选BSR

2) 配置交换机作为候选RP

3) 配置静态RP

4、关闭PIM-SM协议

1. 启动PIM-SM协议

在DCRS系列三层交换机上运行PIM-SM路由协议的基本配置很简单,需全局配置模式下打开PIM组播开关,然后在相应接口下打开PIM-SM开关即可。

命令解释

全局配置模式

ip pim multicast-routing 使各个接口上的PIM-SM协议进入使能状态(但真正在接口上开始PIM-SM协议,还需下面的命令)。(必须)

然后在接口上打开PIM-SM开关

命令解释

接口配置模式

ip pim sparse-mode 启动本接口PIM-SM协议。(必须)

2.配置静态组播表项

命令解释

全局配置模式

ip mroute

<.ifname>

no ip mroute [ <.ifname>] 配置静态组播表项,其no命令删除静态组播表项或其出接口。

3. 配置PIM-SM辅助参数

(1)配置PIM-SM接口参数

1)配置PIM-SM hello报文间隔时间

命令解释接口配置模式

ip pim hello-interval < interval> no ip pim hello-interval 配置接口PIM-SM hello报文间隔时间;本命令的no操作恢复为缺省值。

2)配置PIM-SM hello报文holdtime时间命令解释接口配置模式

ip pim hello-holdtime no ip pim hello-holdtime 配置接口PIM-SM hello报文中的holdtime域的值;本命令的no操作恢复为缺省值。

3)配置PIM-SM 邻居访问列表

命令解释接口配置模式

ip pim neighbor-filter

{}

no ip pim

neighbor-filter{} 配置邻居访问列表。如果被列表过滤,如果已经同此邻居建立连接,则此连接马上被切断,如果没有建立连接,则这个连接不能建立。

4)配置边缘接口

命令解释接口配置模式

ip pim bsr-border

no ip pim bsr-border 配置接口为PIM-DM边缘接口,边缘接口上,BSR相关消息不向该接口发送也不从该接口接收,连接的网络被认为都是该接口的直连网络。本命令的no操作取消该配置。

5)配置管理边界

命令解释接口配置模式

ip pim scope-border <1-99> |

no ip pim scope-border 配置PIM-DM管理边界和使用的ACL。组播数据不向SCOPE-BORDER扩散,默认的情形下,认为239.0.0.0/8的范围为管理组范围,若配置了ACL,则ACL permit的范围为管理组范围。acl_name应当是IPV4标准ACL名。本命令的no操作取消该配置。

(2)配置PIM-SM 全局参数

1) 配置交换机作为候选BSR 命令

解释 全局配置模式

ip pim bsr-candidate {vlan

|

}[ ][

rity > ]

no ip pim bsr-candidate 该命令为全局候选BSR 配置命令,用于配置

PIM-SM 候选BSR 的信息,以用于同其它候选

BSR 竞争BSR 路由器;本命令的no 操作为取

消候选BSR 的配置。

2) 配置交换机作为候选RP 命令

解释 全局配置模式

ip pim rp-candidate

{vlan |loopback

|} []

[]

no ip pim rp-candidate 该命令为全局候选RP 配置命令,用于配置

PIM-SM 候选RP 的信息,以用于同其它候选

RP 竞争RP 路由器;本命令的no 操作为取消

候选RP 的配置。

3) 配置静态RP 命令

解释 全局配置模式

ip pim rp-address

[]

no ip pim rp-address

{|} 该命令为全局或某个组播地址范围的组播组配

置静态RP ,本命令的no 操作为取消静态RP

的配置。

4.关闭PIM-SM 协议 命令

解释 接口配置模式

no ip pim sparse-mode | no ip pim multicast-routing (全局配置模式)

关闭PIM-SM 协议。

1.3.3 PIM-SM 典型案例

如下图所示,将switchA ,switchB ,switchC ,switchD 的以太网接口加入到相应vlan 中,并在各vlan 接口上启动PIM-SM 协议。如果vlan 内同时配置了IGMP SNOOPING ,则组播流量能精确到端口,而不在整个vlan 内泛洪。

S W IT C H A

S W IT C H B

v lan 1

v lan 1

v lan 2 rp

v la n

2v lan 2

v lan 2 b sr

v lan 1

v lan 1v la n 3v lan 3

S W IT C H D

S W IT C H C

图 1-2 PIM-SM 典型环境

switchA 和switchB ,switchC ,switchD 配置步骤如下: (1) 配置SwitchA :

Switch (config)#ip pim multicast-routing Switch (config)#interface vlan 1

Switch(Config-If-Vlan1)# ip address 12.1.1.1 255.255.255.0 Switch(Config-If-Vlan1)# ip pim sparse-mode Switch(Config-If-Vlan1)#exit Switch (config)#interface vlan 2

Switch(Config-If-Vlan2)# ip address 13.1.1.1 255.255.255.0 Switch(Config-If-Vlan2)# ip pim sparse-mode (2) 配置SwitchB :

Switch (config)#ip pim multicast-routing Switch (config)#interface vlan 1

Switch(Config-If-Vlan1)# ip address 12.1.1.2 255.255.255.0

Switch(Config-If-Vlan1)# ip pim sparse-mode

Switch(Config-If-Vlan1)#exit

Switch (config)#interface vlan 2

Switch(Config-If-Vlan2)# ip address 24.1.1.2 255.255.255.0

Switch(Config-If-Vlan2)# ip pim sparse-mode

Switch(Config-If-Vlan2)# exit

Switch (config)# ip pim rp-candidate vlan2

(3) 配置SwitchC:

Switch (config)#ip pim multicast-routing

Switch (config)#interface vlan 1

Switch(Config-If-Vlan1)# ip address 34.1.1.3 255.255.255.0

Switch(Config-If-Vlan1)# ip pim sparse-mode

Switch(Config-If-Vlan1)#exit

Switch (config)#interface vlan 2

Switch(Config-If-Vlan2)# ip address 13.1.1.3 255.255.255.0

Switch(Config-If-Vlan2)# ip pim sparse-mode

Switch(Config-If-Vlan2)#exit

Switch (config)#interface vlan 3

Switch(Config-If-Vlan3)# ip address 30.1.1.1 255.255.255.0

Switch(Config-If-Vlan3)# ip pim sparse-mode

Switch(Config-If-Vlan3)# exit

Switch (config)# ip pim bsr-candidate vlan2 30 10

(4) 配置SwitchD:

Switch (config)#ip pim multicast-routing

Switch (config)#interface vlan 1

Switch(Config-If-Vlan1)# ip address 34.1.1.4 255.255.255.0

Switch(Config-If-Vlan1)# ip pim sparse-mode

Switch(Config-If-Vlan1)#exit

Switch (config)#interface vlan 2

Switch(Config-If-Vlan2)# ip address 24.1.1.4 255.255.255.0

Switch(Config-If-Vlan2)# ip pim sparse-mode

Switch(Config-If-Vlan2)#exit

Switch (config)#interface vlan 3

Switch(Config-If-Vlan3)# ip address 40.1.1.1 255.255.255.0

Switch(Config-If-Vlan3)# ip pim sparse-mode

同时要注意配置好单播路由协议,确保网络中各设备之间能够在网络层互通,并且能够借助单播路由协议实现动态路由更新。

1.3.4 PIM-SM 排错帮助

在配置、使用PIM-SM 协议时,可能会由于物理连接、配置错误等原因导致PIM-SM 协议未能正常运行。因此,用户应注意以下要点: ) 应该保证物理连接的正确无误;

) 保证接口和链路协议是UP (使用show interface 命令);

) 保证全局配置模式下PIM 协议打开(使用ip pim multicast-routing ); ) 保证接口上配置PIM-SM (使用ip pim sparse-mode );

) 组播协议需使用单播路由进行RPF 检查,因此必须首先确保单播路由的正确性; ) PIM-SM 协议需要有rp 和bsr 的支持,所以首先使用show ip pim bsr-router ,看是

否有bsr 信息,如果不存在,则需要查看是否有通向bsr 的单播路由;

) 使用show ip pim rp-hash 命令查看rp 信息是否正确,如果没有rp 信息,也要检查单

播路由; 如果使用检查都尝试仍无法解决PIM-SM 的问题,那么请使用debug pim/ debug pim bsr 等调试命令,然后将3分钟内的DEBUG 信息拷贝下来,发送给神州数码技术服务中心。

1.4 MSDP 配置 1.4.1 MSDP 介绍

MSDP (Multicast Source Discovery Protocol ,组播源发现协议)用来发现其它PIM-SM 域内的组播源信息。配置了MSDP 对等体的RP 将其域内的活动组播源信息通过SA 消息通告给它的所有MSDP 对等体,这样,一个PIM-SM 域内的组播源信息就会被传递到另一个PIM-SM 域。在 MSDP 里使用的是域间信源树而不是共享树,而且要求域内组播路由协议必须是 PIM-SM 。

? PIM-SM 协议中RP 工作原理

1 PIM 注册报文

3 组播数据沿共享树

下发 点播者

1.4.2 MSDP配置任务简介

1. 配置MSDP基本功能

1)使能MSDP(必选)

2)创建MSDP对等体(必选)

3)配置Connect-Source接口

4)配置静态RPF对等体

5)配置Originator-RP

6)配置TTL阀值

2. 配置MSDP对等体参数

1)配置Connect-Source接口

2)配置MSDP对等体的描述信息

3)配置AS号

4)配置MSDP全连接组

5)配置缓存最大数目

3. 配置报文收发参数

1)配置SA报文创建过滤策略

2)配置SA报文接收和转发过滤规则

3)配置SA请求报文

4)配置SA-Request报文过滤策略

4. 配置SA-cache参数

1)配置SA报文缓存

2)配置缓存表项的存活时间

3)配置缓存最大数目

1.4.3 配置MSDP基本功能

本节的所有命令都是在PIM-SM域内的RP上配置的,这些RP将成为MSDP对等体的一端。

1.4.3.1 配置准备

在配置MSDP基本功能之前,需完成以下任务:

z配置任一单播路由协议,实现域内和域间网络层互通

z配置PIM-SM基本功能,实现域内组播

在配置MSDP基本功能之前,需准备以下数据:

z MSDP对等体的IP地址

z过滤策略列表

注意:MSDP不能和Any-cast RP一起使用,但是可以配置基于MSDP协议的Any-cast RP。

1.4.3.2 使能MSDP

在配置MSDP 各功能之前,必须先使能MSDP 。 1.启动MSDP 功能 2.配置MSDP

1.启动MSDP 功能 命令

解释 全局配置模式

router msdp no router msdp 启动MSDP 功能。no 命令关闭全局MSDP 功能。

2.配置MSDP 辅助参数 命令

解释 MSDP 配置模式

connect-source no connect-source

配置MSDP Peer 的Connect-Source 接口。no 命令取消配置的Connect-Source 接口。 default-rpf-peer [rp-policy < prefix_name>]

no default-rpf-peer

配置静态RPF Peer 。

no 命令取消配置的RPF Peer 。 originating-rp <

interface-number>

no originating-rp 配置Originator-RP 。

no 命令取消配置的Originator-RP 。

ttl-threshold no ttl-threshold

配置TTL 阀值。

no 命令取消配置的TTL 阀值。

1.4.4 配置MSDP 对等体

1.4.4.1 创建MSDP Peer

命令

解释 MSDP 配置模式

peer no peer

创建MSDP Peer 。 no 命令删除MSDP Peer 。

1.4.4.2 配置MSDP 辅助参数

命令

解释 MSDP Peer 配置模式

connect-source no connect-source 配置MSDP Peer 的Connect-Source 接口。no 命令取消配置的Connect-Source 接口。description no description 配置MSDP 对等体的描述信息。 no 命令删除MSDP 对等体的描述信息。 remote-as no remote-as 配置MSDP Peer 的AS 号。

no 命令取消配置MSDP Peer 的AS 号。 mesh-group no mesh-group

配置MSDP Peer 加入指定全连接组。 no 命令取消配置MSDP Peer 的全连接组成员身份。

1.4.5 配置报文收发

命令

解释 MSDP 配置模式

redistribute [list ] no redistribute

配置SA 报文创建过滤策略。

no 命令取消配置SA 报文创建过滤策略。 MSDP 配置模式或MSDP Peer 配置模式

sa-filter (in|out )[ list | rp-list ]

no sa-filter (in|out )[[ list | rp-list ] 配置SA 报文接收和转发过滤规则。 no 命令取消配置的SA 报文接收和转发过滤规则。 MSDP Peer 配置模式

sa-request no sa-request 配置发送SA 请求报文。 no 命令取消发送SA 请求报文。 MSDP 配置模式

sa-request-filter [list ]

no sa-request-filter [list

]

配置SA-Request 报文过滤策略。

取消配置SA-Request 报文过滤策略。

PIM组播协议密集模式

PIM组播协议密集模式(DM模式) 【实验名称】 PIM组播协议密集模式(DM模式) 【实验目的】 熟悉如何配置PIM密集模式 【背景描述】 你是一个某单位的网络管理员,单位有存放资料的组播服务器,,服务器为用户提供组播服务,请你满足现在的网络需求。采用PIM的密集模式来实现。 【实现功能】 实现PIM密集模式下组播流量的传输,如果没有组成员,自动修剪组播发送信息。 【实验拓扑】 S1 vlan1:192.168.1.253 vlan10:192.168.10.1 vlan12:192.168.12.1 vlan20:192.168.20.1 vlan100:192.168.100.1 S2 vlan1:192.168.2.253 vlan50:192.168.50.1 vlan12:192.168.12.2 vlan60:192.168.60.1 S2126 vlan1:192.168.1.254 S2150vlan1:192.168.2.254

【实验设备】 S3550-24(2台)、S2126G(1台)、S2150G(1台)、PC(4台) 【实验步骤】 第一步:基本配置 switch(config)#hostname S1 S1(config)#vlan 10 ! 创建一个vlan10 S1(config-vlan)#exi S1(config)#vlan 12 S1(config-vlan)#exi S1(config)#vlan 20 S1(config-vlan)#exi S1(config)#vlan 100 S1(config-vlan)#exi S1(config)#interface f0/24 S1(config-if)#switchport mode trunk !把f0/24接口作为trunk接口 S1(config-if)#switchport trunk allowed vlan remove 100 ! trunk链路不传输vlan 100的信息 S1(config)#interface vlan 1 S1(config-if)#ip address 192.168.1.253 255.255.255.0 S1(config-if)#no shutdown S1(config)#interface vlan 10 S1(config-if)#ip address 192.168.10.1 255.255.255.0 !创建一个SVI地址 S1(config-if)#no shutdown S1(config)#interface vlan 12 S1(config-if)#ip address 192.168.12.1 255.255.255.0 S1(config-if)#no shutdown S1(config)#interface vlan 20 S1(config-if)#ip address 192.168.20.1 255.255.255.0 S1(config-if)#no shutdown S1(config)#interface vlan 100 S1(config-if)#ip address 192.168.100.1 255.255.255.0 S1(config-if)#no shutdown S1(config)#interface fastethernet f0/1 !把接口加入到vlan 10 S1(config-if)#switchport access vlan 10 S1(config)#interface fastethernet f0/2 S1(config-if)#switchport access vlan 20 S1(config)#interface fastethernet f0/12 S1(config-if)#switchport access vlan 12 switch(config)#hostname S2 S2(config)#vlan 12 S2(config-vlan)#exi

IGMP Snooping协议简介

IGMP Snooping协议简介 3.1.1 igmp snooping原理 igmp snooping运行在数据链路层,是二层以太网交换机上的组播约束机制,用于管理和控制组播组。 当二层以太网交换机收到主机和路由器之间传递的igmp报文时,igmp sno oping分析igmp报文所带的信息。当监听到主机发出的igmp主机报告报文时,交换机就将该主机加入到相应的组播表中;当监听到主机发出的igmp离开报文时,交换机就将删除与该主机对应的组播表项。通过不断地监听igmp报文,交换机就可以在二层建立和维护mac组播地址表。之后,交换机就可以根据mac 组播地址表转发从路由器下发的组播报文。 没有运行igmp snooping时,组播报文将在二层广播,如图3-1所示。 运行igmp snooping后,报文将不再在二层广播,而是进行二层组播,如图 3-2所示.

3.1.2 igmpv3 snooping简介 s9500交换机支持igmpv1、 igmpv2、igmpv3协议。igmpv3协议是在igmpv 2报文的基础上的扩充。igmpv3允许主机指定接收某些网络发送的某些组播组,相比以前的版本,增加了主机的控制能力,不仅可以指定组播组,还能指定组播的源。 igmp查询报文分通用查询报文、特定组查询报文,下文着重介绍igmpv3新增的报文。 3.1.3 查询报文 igmpv3新增特定源组查询报文格式如下,从图中可以分辨igmpv2、igmpv3查询报文的格式的不同: 对于通用查询报文,igmpv2报文长度为8字节,igmpv3长度为12字节。 对于特定组查询报文,igmpv2报文长度为8字节,igmpv3长度大于等于12字节。 igmpv3特定源组查询报文,长度大于12字节。

组播路由协议配置(华为)

常用组播路由协议配置方法 1IGMP协议配置 1.1 IGMP基本设置 1.1.1配置路由器加入到一个组播组: # 将VLAN 接口VLAN-interface10 包含的以太网端口Ethernet 0/1 加入组播组 #225.0.0.1。 [Quidway-Vlan-interface10] igmp host-join 225.0.0.1 port Ethernet 0/1 1.1.2控制某个接口下主机能够加入的组播组 igmp group-policy acl-number [ 1 | 2 | port { interface_type interface_ num |interface_name } [ to { interface_type interface_num|interface_name } ] ] 【例如】 # 配置访问控制列表acl 2000 [Quidway] acl number 2000 [Quidway-acl-basic-2000] rule permit source 225.0.0.0 # 指定VLAN-interface10上满足acl2000中规定的范组,指定组的IGMP版本为2。 [Quidway-Vlan-interface10] igmp group-policy 2000 2 1.1.3IGMP版本切换 igmp version { 1 | 2 } # 在VLAN 接口VLAN-interface10 上运行IGMP 版本1。 [Quidway-Vlan-interface10] igmp version 1 1.1.4IGMP查询间隔时间:默认60s igmp timer query seconds # 将VLAN-interface2 接口上的主机成员查询报文发送间隔设置为150 秒。 [Quidway-Vlan-interface2] igmp timer query 150 1.1.5IGMP查询超时时间:默认为2倍的查询间隔时间 igmp timer other-querier-present # 配置Querier 的存活时间为300 秒 [Quidway-Vlan-interface10] igmp timer other-querier-present 300 1.1.6IGMP查询最大响应时间:默认为10s igmp max-response-time seconds # 配置主机成员查询报文中包含的最大响应时间为8 秒。 [Quidway-Vlan-interface10] igmp max-response-time 8 1.2 IGMP Proxy 1.2.1组网需求

IP组播路由协议详细介绍

IP组播路由协议详细介绍 一、概述 1、组播技术引入的必要性 随着宽带多媒体网络的不断发展,各种宽带网络应用层出不穷。IP TV、视频会议、数据和资料分发、网络音频应用、网络视频应用、多媒体远程教育等宽带应用都对现有宽带多媒体网络的承载能力提出了挑战。采用单播技术构建的传统网络已经无法满足新兴宽带网络应用在带宽和网络服务质量方面的要求,随之而来的是网络延时、数据丢失等等问题。此时通过引入IP组播技术,有助于解决以上问题。组播网络中,即使组播用户数量成倍增长,骨干网络中网络带宽也无需增加。简单来说,成百上千的组播应用用户和一个组播应用用户消耗的骨干网带宽是一样的,从而最大限度的解决目前宽带应用对带宽和网络服务质量的要求。 2、IP网络数据传输方式 组播技术是IP网络数据传输三种方式之一,在介绍IP组播技术之前,先对IP网络数据传输的单播、组播和广播方式做一个简单的介绍: 单播(Unicast)传输:在发送者和每一接收者之间实现点对点网络连接。如果一台发送者同时给多个的接收者传输相同的数据,也必须相应的复制多份的相同数据包。如果有大量主机希望获得数据包的同一份拷贝时,将导致发送者负担沉重、延迟长、网络拥塞;为保证一定的

服务质量需增加硬件和带宽。 组播(Multicast)传输:在发送者和每一接收者之间实现点对多点网络连接。如果一台发送者同时给多个的接收者传输相同的数据,也只需复制一份的相同数据包。它提高了数据传送效率。减少了骨干网络出现拥塞的可能性。 广播(Broadcast)传输:是指在IP子网内广播数据包,所有在子网内部的主机都将收到这些数据包。广播意味着网络向子网每一个主机都投递一份数据包,不论这些主机是否乐于接收该数据包。所以广播的使用范围非常小,只在本地子网内有效,通过路由器和交换机网络设备控制广播传输。 二、组播技术 1、 IP组播技术体系结构 组播协议分为主机-路由器之间的组成员关系协议和路由器-路由 器之间的组播路由协议。组成员关系协议包括IGMP(互连网组管理协议)。组播路由协议分为域内组播路由协议及域间组播路由协议。域内组播路由协议包括PIM-SM、PIM-DM、DVMRP等协议,域间组播路由协议包括MBGP、MSDP等协议。同时为了有效抑制组播数据在链路层的扩散,引入了IGMP Snooping、CGMP等二层组播协议。 IGMP建立并且维护路由器直联网段的组成员关系信息。域内组播路由协议根据IGMP维护的这些组播组成员关系信息,运用一定的组播路

组播协议详细

目录 第1章组播概述.....................................................................................................................1-1 1.1 组播简介.............................................................................................................................1-1 1.1.1 单播方式的信息传输过程.........................................................................................1-1 1.1.2 广播方式的信息传输过程.........................................................................................1-2 1.1.3 组播方式传输信息....................................................................................................1-2 1.1.4 组播中各部分的角色................................................................................................1-3 1.1.5 组播的优点和应用....................................................................................................1-4 1.2 组播模型分类.....................................................................................................................1-4 1.3 组播的框架结构..................................................................................................................1-5 1.3.1 组播地址..................................................................................................................1-6 1.3.2 组播协议..................................................................................................................1-9 1.4 组播报文的转发机制........................................................................................................1-10 1.4.1 RPF机制的应用.....................................................................................................1-11 1.4.2 RPF检查................................................................................................................1-11第2章 IGMP Snooping配置...................................................................................................2-1 2.1 IGMP Snooping简介..........................................................................................................2-1 2.1.1 IGMP Snooping原理................................................................................................2-1 2.1.2 IGMP Snooping基本概念........................................................................................2-1 2.1.3 IGMP Snooping工作机制........................................................................................2-2 2.2 IGMP Snooping配置..........................................................................................................2-4 2.2.1 启动IGMP Snooping................................................................................................2-5 2.2.2 配置IGMP Snooping版本........................................................................................2-5 2.2.3 配置IGMP Snooping相关定时器..............................................................................2-6 2.2.4 配置端口从组播组中快速删除功能..........................................................................2-6 2.2.5 配置组播组过滤功能................................................................................................2-7 2.2.6 配置端口可以通过的组播组最大数量.......................................................................2-8 2.2.7 配置静态成员端口....................................................................................................2-9 2.2.8 配置静态路由器端口................................................................................................2-9 2.2.9 配置IGMP Snooping模拟主机加入功能.................................................................2-10 2.2.10 配置查询报文的VLAN Tag..................................................................................2-11 2.2.11 配置组播VLAN.....................................................................................................2-12 2.3 IGMP Snooping显示和维护.............................................................................................2-14 2.4 IGMP Snooping典型配置举例..........................................................................................2-14 2.4.1 配置IGMP Snooping功能......................................................................................2-14 2.4.2 配置组播VLAN功能...............................................................................................2-16

组播协议相关

组播相关: 一、组播协议体系: 1)组成员关系协议包括IGMP(互连网组管理协议); 2)组播路由协议分为域内组播路由协议及域间组播路由协议; 3)域内组播路由协议包括MOSPF,CBT,PIM-SM、PIM-DM、DVMRP等协议; 4)域内的组播协议又分为密集,与稀疏模式的协议。 DVMRP,PIM-DM,MOSPF属于密集模式,CBT,PIM-SM属于稀疏模式。 5) 针对域间组播路由有两类解决方案:短期方案和长期方案。 短期方案包括三个协议MBGP/MSDP/PIM-SM:MBGP(组播边缘网关协议),用于在自治域间交换组播路由信息;MSDP(组播信源发现协议),用于在ISP之间交换组播信源信息;以及域内组播路由协议PIM-SM 长期方案目前讨论最多的是MASC/MBGP/BGMP,它建立在现有的组播业务模型上,其中MASC实现域间组播地址的分配、MBGP在域间传递组播路由信息、BGMP完成域间路由树的构造。此外还有一些组播路由策略,如PIM-SSM(特定信源协议无关组播)等,建立在其它的组播业务模型上。 目前仅短期方案MBGP/MSDP/PIM-SM是成熟的,并在许多的运营商中广泛使用。 6)同时为了有效抑制组播数据在链路层的扩散,引入了IGMP Snooping、HGMP,HMVR,RGMP,GMRP等二层组播协议。 名词解释: 组播路由协议有距离矢量组播路由协议(DVMRP)、协议无关组播-密集模式(PIM-DM)、协议无关组播-稀疏模式(PIM-SM)、开放式组播最短路径优先(MOSPF)、有核树组播路由协议(CBT) IGMP协议简介: IGMP(Internet Group Management Protocol,因特网组管理协议)是TCP/IP协议族中负责IP组播成员管理的协议。它用来在IP主机和与其直接相邻的组播路由器之间建立、维护组播组成员关系。IGMP不包括组播路由器之间的组成员关系信息的传播与维护,这部分工作由各组播路由协议完成。所有参与组播的主机必须实现IGMP协议。 IGMP有三个版本:IGMP版本1(由RFC1112定义)、IGMP版本2(由RFC2236定义)和IGMP版本3。目前应用最多的是版本2。 IGMP版本2对版本1所做的改进主要有: 1. 共享网段上组播路由器的选举机制 共享网段即一个网段上有多个组播路由器的情况。在这种情况下,由于此网段下运行IGMP 的路由器都能从主机那里收到成员资格报告消息,因此,只需要一个路由器发送成员资格查询消息,这就需要一个路由器选举机制来确定一个路由器作为查询器。 在IGMP版本1中,查询器的选择由组播路由协议决定;IGMP版本2对此做了改进,规定同一网段上有多个组播路由器时,具有最低IP地址的组播路由器被选举出来充当查询器。 2. IGMP版本2增加了离开组机制 在IGMP版本1中,主机悄然离开组播组,不会给任何组播路由器发出任何通知。造成组播路由器只能依靠组播组响应超时来确定组播成员的离开。而在版本2中,当一个主机决定离

08_组播协议操作

目录 第1章 IGMP Snooping配置······················································1-1 1.1 IGMP Snooping介绍········································································1-1 1.2 IGMP Snooping配置任务·································································1-1 1.3 IGMP Snooping举例········································································1-3 1.4 IGMP Snooping排错帮助·································································1-5第2章组播VLAN配置·······························································2-1 2.1 组播VLAN介绍·················································································2-1 2.2 组播 VLAN配置任务········································································2-1 2.3 组播VLAN举例·················································································2-2第3章 IPv4组播协议·································································3-1 3.1 IPv4组播协议概述············································································3-1 3.1.1 组播简介·································································································3-1 3.1.2 组播地址·································································································3-1 3.1.3 IP组播报文转发·······················································································3-2 3.1.4 IP组播应用······························································································3-3 3.2 PIM-DM····························································································3-3 3.2.1 PIM-DM介绍···························································································3-3 3.2.2 PIM-DM配置任务序列·············································································3-4 3.2.3 PIM-DM典型案例····················································································3-5 3.2.4 PIM-DM排错帮助····················································································3-6 3.3 PIM-SM·····························································································3-6 3.3.1 PIM-SM介绍····························································································3-6 3.3.2 PIM-SM配置任务序列·············································································3-8 3.3.3 PIM-SM典型案例··················································································3-10 3.3.4 PIM-SM排错帮助··················································································3-12 3.4 DVMRP···························································································3-12 3.4.1 DVMRP介绍··························································································3-12 3.4.2 配置任务序列·······················································································3-13 3.4.3 DVMRP典型案例··················································································3-15 3.4.4 DVMRP排错帮助··················································································3-16 3.5 DCSCM··························································································3-16

迈普交换机4128e08_组播协议操作

目录 第1章IGMP SNOOPING配置 (2) 1.1 IGMP S NOOPING介绍 (2) 1.2 IGMP S NOOPING配置任务 (2) 1.3 IGMP S NOOPING举例 (4) 1.4 IGMP S NOOPING排错帮助 (7) 第2章组播VLAN配置 (8) 2.1 组播VLAN介绍 (8) 2.2 组播VLAN配置任务 (8) 2.3 组播VLAN举例 (9) 第3章IP组播协议 (1) 3.1 DCSCM (1) 3.1.1 DCSCM介绍 (1) 3.1.2 DCSCM配置任务序列 (1) 3.1.3 DCSCM典型案例 (5) 3.1.4 DCSCM排错帮助 (6)

第1章IGMP Snooping配置 1.1IGMP Snooping介绍 IGMP(Internet Group Management Protocol)互联网组管理协议,用于实现IP的组播。IGMP 被支持组播的网络设备(如路由器)用来进行主机资格查询,也被想加入某组播组的主机用来通知路由器接收某个组播地址的数据包,而这些都是通过IGMP消息交换来完成的。路由器首先利用一个可寻址到所有主机的组地址(即224.0.0.1)发送一条IGMP主机成员资格查询(IGMP Host Membership Query)消息。若一个主机希望加入某组播组,它就利用该组播组的组地址回应一条IGMP主机成员资格报告(IGMP Host Membership Report)消息。 IGMP Snooping即IGMP侦听。交换机通过IGMP Snooping来限制组播流量的泛滥,只把组播流量转发给与组播设备相连的端口。交换机侦听组播路由器和主机之间的IGMP消息,根据侦听结果维护组播转发表,而交换机根据组播转发表来决定组播包的转发。 1.2IGMP Snooping配置任务 1.启动IGMP Snooping功能 2.配置IGMP Snooping 1.启动IGMP Snooping功能

IGMP协议详解与测试方法

拟 制 人时 间 IGMP 协议详解与测试方法 1 基本信息 1.1 摘要 本文主要介绍IGMP协议与我司终端产品IGMP的测试方法。 1.2关键字 IGMP,SNOOPING 1.3 缩略语 IGMP Internet Group Management Protocol Internet 组管理协议SMB SmartBits 思博伦通信网络分析仪CPE Customer Premise Equipment 用户侧设备

2 协议解释 2.1 IGMP 作用 ? 实现一对多数据流业务,有很多种实现方式,如广播,但是浪费带宽,会造成广播风暴: ? 如果用IGMP 的话,根据成员的需要去接受数据流业务: 组播成员2 组播成员1

2.2 IGMP协议 ?IGMP协议用于IPv4系统向任何邻居组播路由器报告其组播成员资格。IP组播路由器自己本身也可以是一到多个组播组的成员。这时,组播路由器要实现协议的组播路由器部分和组成员部分。 ?报文格式 IGMP V1 报文格式 Ver Type Reserved Checksum Group Address IGMP V2 报文格式 Type Max Resp Time Checksum Group Address Membership Query: 成员关系查询(0x11) V1 Membership Report: 版本 1 成员关系报告(0x12) V2 Membership Report: 版本 2 成员关系报告(0x16) Leave Group: 离开组报告(0x17) ?IGMP组播地址 组播IP地址用于标识一个IP组播组。IANA把D类地址空间分配给IP组播,其范围是从224.0.0.0到239.255.255.255。如下图所示(二进制表示),IP组播地址前四位均为1110。 八位组(1)八位组(2)八位组(3)八位组(4) 1110XXXX XXXXXXXX XXXXXXXX XXXXXXXX 组播地址的分类: 保留——224.0.0.0 - 224.0.0.255 用户组播地址——224.0.1.0 - 238.255.255.255 本地管理组——239.0.0.0 - 239.255.255.255 (用于私人组播领域,类似私有IP地址)

组播协议

组播协议允许将一台主机发送的数据通过网络路由器和交换机复制到多个加入此组播的主机,是一种一对多的通讯方式。 IP组播的好处、优势 组播协议与现在广泛使用的单播协议的不同之处在于,一个主机用单播协议向n个主机发送相同的数据时,发送主机需要分别向n个主机发送,共发送n 次。一个主机用组播协议向n个主机发送相同的数据时,只要发送1次,其数据由网络中的路由器和交换机逐级进行复制并发送给各个接收方,这样既节省服务器资源也节省网络主干的带宽资源。 与广播协议相比,只有组播接收方向路由器发出请求后,网络路由器才复制一份数据给接收方,从而节省接收方的带宽。而广播方式无论接收方是否需要,网络设备都将所有广播信息向所有设备发送,从而大量占据接收方的接入带宽。 IP组播历史 在1980年代初斯坦福大学的一位博士生叫Steve Deering,在为其导师David Cheriton工作,设计一种叫做Vsystem的分布式操作系统。此操作系统允许一台计算机使用MAC层组播向在本地Ethernet段的一组其他计算机传递信息。 随着工作的扩展组播必须跨越路由器,所以必须将组播扩展到OSI模型的第三层,此历史重任落到了Steve Deering身上,他总结了组播路由的通信协议基础,并最终在1991年12月发表的博士论文中进行了详细的阐述。

组播协议的优势: 组播协议的优势在于当需要将大量相同的数据传输到不通主机时, 1.能节省发送数据的主机的系统资源和带宽; 2.组播是有选择地复制给又要求的主机; 3. 组播可以穿越公网广泛传播,而广播则只能在局域网或专门的广播网内部传播; 4. 组播能节省网络主干的带宽; 组播协议的缺点: 与单播协议相比,组播没有补包机制,因为组播采用的是UTP的传输方式,并且不是针对一个接受者,所以无法有针对的进行补包。所以直接组播协议传输的数据是不可靠的。 二、为什么宽带网必须使用组播协议

迈普MyPower S4300千兆汇聚路由交换机配置手册V2.0_操作手册_09_组播协议操作概论

目录 第1章IPv4组播协议 (1) 1.1 IPv4组播协议概述 (1) 1.1.1 组播简介 (1) 1.1.2 组播地址 (1) 1.1.3 IP组播报文转发 (3) 1.1.4 IP组播应用 (3) 1.2 PIM-DM (3) 1.2.1 PIM-DM介绍 (3) 1.2.2 PIM-DM配置任务序列 (4) 1.2.3 PIM-DM典型案例 (6) 1.2.4 PIM-DM排错帮助 (7) 1.3 PIM-SM (8) 1.3.1 PIM-SM介绍 (8) 1.3.2 PIM-SM配置任务序列 (9) 1.3.3 PIM-SM典型案例 (12) 1.3.4 PIM-SM排错帮助 (15) 1.4 MSDP配置 (15) 1.4.1 MSDP介绍 (15) 1.4.2 MSDP配置任务简介 (16) 1.4.3 配置MSDP基本功能 (17) 1.4.4 配置MSDP对等体 (18) 1.4.5 配置报文收发 (18) 1.4.6 配置SA-cache参数 (19) 1.4.7 MSDP举例 (20) 1.4.8 MSDP排错帮助 (26) 1.5 ANYCAST RP配置 (26) 1.5.1 ANYCAST RP介绍 (26) 1.5.2 ANYCAST RP配置任务 (27) 1.5.3 ANYCAST RP典型案例 (29) 1.5.4 ANYCAST RP排错帮助 (30) 1.6 PIM-SSM (31) 版权所有?2009,迈普通信技术股份有限公司,保留所有权利1

1.6.1 PIM-SSM 介绍 (31) 1.6.2 PIM-SSM 配置任务序列 (31) 1.6.3 PIM-SSM 典型案例 (31) 1.6.4 PIM-SSM 排错帮助 (34) 1.7 DVMRP (34) 1.7.1 DVMRP介绍 (34) 1.7.2 配置任务序列 (35) 1.7.3 DVMRP典型案例 (37) 1.7.4 DVMRP排错帮助 (38) 1.8 DCSCM (38) 1.8.1 DCSCM介绍 (38) 1.8.2 DCSCM配置任务序列 (39) 1.8.3 DCSCM典型案例 (41) 1.8.4 DCSCM排错帮助 (42) 1.9 IGMP (42) 1.9.1 IGMP介绍 (42) 1.9.2 配置任务序列 (44) 1.9.3 IGMP典型案例 (46) 1.9.4 IGMP排错帮助 (47) 1.10 IGMP Snooping配置 (47) 1.10.1 IGMP Snooping介绍 (47) 1.10.2 IGMP Snooping配置任务 (47) 1.10.3 IGMP Snooping典型案例 (49) 1.10.4 IGMP Snooping排错帮助 (52) 1.11 IGMP Proxy配置 (53) 1.11.1 IGMP Proxy介绍 (53) 1.11.2 IGMP Proxy配置任务 (53) 1.11.3 IGMP Proxy举例 (54) 1.11.4 IGMP Proxy排错帮助 (57) 第2章IPv6组播协议 (58) 2.1 PIM-DM6 (58) 2.1.1 PIM-DM6介绍 (58) 2.1.2 PIM-DM6配置任务序列 (59) 2.1.3 PIM-DM6典型案例 (61) 版权所有?2009,迈普通信技术股份有限公司,保留所有权利1

相关文档