文档库 最新最全的文档下载
当前位置:文档库 › 08_组播协议操作

08_组播协议操作

目录

第1章 IGMP Snooping配置······················································1-1

1.1 IGMP Snooping介绍········································································1-1

1.2 IGMP Snooping配置任务·································································1-1

1.3 IGMP Snooping举例········································································1-3

1.4 IGMP Snooping排错帮助·································································1-5第2章组播VLAN配置·······························································2-1

2.1 组播VLAN介绍·················································································2-1

2.2 组播 VLAN配置任务········································································2-1

2.3 组播VLAN举例·················································································2-2第3章 IPv4组播协议·································································3-1

3.1 IPv4组播协议概述············································································3-1

3.1.1 组播简介·································································································3-1

3.1.2 组播地址·································································································3-1

3.1.3 IP组播报文转发·······················································································3-2

3.1.4 IP组播应用······························································································3-3

3.2 PIM-DM····························································································3-3

3.2.1 PIM-DM介绍···························································································3-3

3.2.2 PIM-DM配置任务序列·············································································3-4

3.2.3 PIM-DM典型案例····················································································3-5

3.2.4 PIM-DM排错帮助····················································································3-6

3.3 PIM-SM·····························································································3-6

3.3.1 PIM-SM介绍····························································································3-6

3.3.2 PIM-SM配置任务序列·············································································3-8

3.3.3 PIM-SM典型案例··················································································3-10

3.3.4 PIM-SM排错帮助··················································································3-12

3.4 DVMRP···························································································3-12

3.4.1 DVMRP介绍··························································································3-12

3.4.2 配置任务序列·······················································································3-13

3.4.3 DVMRP典型案例··················································································3-15

3.4.4 DVMRP排错帮助··················································································3-16

3.5 DCSCM··························································································3-16

3.5.1 DCSCM介绍·························································································3-16

3.5.2 DCSCM配置任务序列···········································································3-17

3.5.3 DCSCM典型案例··················································································3-19

3.5.4 DCSCM排错帮助··················································································3-20

3.6 IGMP······························································································3-20

3.6.1 IGMP介绍·····························································································3-20

3.6.2 配置任务序列·······················································································3-21

3.6.3 IGMP典型案例······················································································3-23

3.6.4 IGMP排错帮助······················································································3-24第4章 IPv6组播协议·································································4-1

4.1 PIM-DM6··························································································4-1

4.1.1 PIM-DM6介绍·························································································4-1

4.1.2 PIM-DM配置任务序列·············································································4-2

4.1.3 PIM-DM典型案例····················································································4-3

4.1.4 PIM-DM排错帮助····················································································4-4

4.2 PIM-SM6···························································································4-4

4.2.1 PIM-SM6介绍·························································································4-4

4.2.2 PIM-SM配置任务序列·············································································4-5

4.2.3 PIM-SM典型案例····················································································4-7

4.2.4 PIM-SM排错帮助····················································································4-9

第1章 IGMP Snooping配置

1.1 IGMP Snooping介绍

IGMP(Internet Group Management Protocol)互联网组管理协议,用于实现IP的组播。IGMP被支持组播的网络设备(如路由器)用来进行主机资格查询,也被想加入某组播组的主机用来通知路由器接收某个组播地址的数据包,而这些都是通过IGMP消息交换来完成的。路由器首先利用一个可寻址到所有主机的组地址(即224.0.0.1)发送一条IGMP主机成员资格查询(IGMP Host Membership Query)消息。若一个主机希望加入某组播组,它就利用该组播组的组地址回应一条IGMP主机成员资格报告(IGMP Host Membership Report)消息。

IGMP Snooping即IGMP侦听。交换机通过IGMP Snooping来限制组播流量的泛滥,只把组播流量转发给与组播设备相连的端口。交换机侦听组播路由器和主机之间的IGMP 消息,根据侦听结果维护组播转发表,而交换机根据组播转发表来决定组播包的转发。

交换机实现了IGMP Snooping功能,并且支持IGMP v3,这样,用户可以用交换机实现IP组播。

1.2 IGMP Snooping配置任务

1.启动IGMP Snooping功能

2.配置IGMP Snooping

1.启动IGMP Snooping功能

命令解释

全局配置模式

ip igmp snooping no ip igmp snooping 启动IGMP Snooping功能。no 操作关闭全局IGMP snooping功能。

2.配置IGMP Snooping

命令解释全局配置模式

ip igmp snooping vlan

no ip igmp snooping vlan 启动指定vlan的IGMP Snooping功能。No 操作关闭之指定vlan上的IGMP Snooping。

ip igmp snooping vlan < vlan-id > limit {group | source } no ip igmp snooping vlan < vlan-id > limit

设置IGMP snooping 可加入组的个数和每个组中源个数的最大值。no 操作恢复默认值。

ip igmp snooping vlan l2-general-querier no ip igmp snooping vlan l2-general-querier

将该vlan 设为二层普通查询者,每一个网段推荐配置一个二层普通查询者。no 操作取消

二层普通查询者设置。

ip igmp snooping vlan mrouter-port interface

no ip igmp snooping vlan mrouter-port interface

设置指定vlan 内的静态mrouter 的端口。no 操作取消mrouter 端口设置。 ip igmp snooping vlan mrpt < value >

no ip igmp snooping vlan mrpt

设置mrouter 端口存活时间,no 操作恢复默认值。

ip igmp snooping vlan query-interval

no ip igmp snooping vlan query-interval

设置查询间隔,no 操作恢复默认值。 ip igmp snooping vlan immediate-leave no ip igmp snooping vlan immediate-leave

设置指定vlan 的IGMP Snooping 具有快速离开组播组功能,no 操作取消

immediate-leave 设置。

ip igmp snooping vlan query-mrsp

no ip igmp snooping vlan query-mrsp

设置查询的最大响应时间,no 操作恢复默认值

ip igmp snooping vlan query-robustness

no ip igmp snooping vlan query-robustness

设置查询鲁棒值,no 操作恢复默认值。 ip igmp snooping vlan suppression-query-time no ip igmp snooping vlan suppression-query-time 设置抑制查询时间值,no 操作恢复默认值。

1.3 IGMP Snooping举例

案例1:IGMP Snooping功能。

图 1-1 打开交换机IGMP Snooping功能图

如图所示,switch上配置vlan 100包含端口1、2、6、10、12。四台主机分别连在端口2、6、10、12上,组播路由器连在端口1上。假设我们需要在vlan 100上做igmp snooping,缺省情况下,交换机的全局igmp snooping功能和各vlan上的igmp snooping功能都不打开。因此,需要打开全局下的igmp snooping功能,同时在vlan 100上打开igmp snooping,还需要设置vlan 100的1号端口为mrouter端口。

配置步骤如下:

switch#config

switch (config)#ip igmp snooping

switch (config)#ip igmp snooping vlan 100

switch (config)#ip igmp snooping vlan 100 mrouter-port interface ethernet 0/0/1

组播配置:

假设有两个组播服务器Multicast Server 1和Multicase Server 2,其中组播服务器1上提

供节目1、节目2,组播服务器2上提供节目3。分别使用组地址Group1,Group2和Group 3四台主机上同时运行组播应用软件,连在端口2、6上的两台主机播放节目1,连在端口10上的主机播放节目2,连在端口12上的主机播放节目3。

IGMP snooping侦听结果:

vlan 100上igmp snooping建立的组播表显示:其中端口1、2、6在(Multicasting Server 1, Group1)中,端口1、10在(Multicast Server 1, Group 2)中,端口1、12在(Multicast Server 2, Group 3)中。

四台主机都能正常地收到自己感兴趣的节目,端口2、6不会收到节目2和节目3的流量,端口10不会收到节目1和节目3的流量,端口12不会收到节目1和节目2的流量。

案例2:IGMP L2-general-querier

图 1-2 交换机作为IGMP Querier功能图

switch B的配置与案例1中交换机相同,交换机switch A取代案例1中的Multicast Router。假设其上配置vlan 60包含端口1、2、10、12。端口1连接组播服务器,端口2连接switchB。为了定期发Query,需要打开全局下的igmp snooping功能,同时需要执行igmp snooping vlan 60 l2-general-querier,将vlan 60设置成为二层普通查询者。

配置步骤如下:

switchA#config

switchA(config)#ip igmp snooping

switchA(config)#ip igmp snooping vlan 60

switchA(config)#ip igmp snooping vlan 60 l2-general-querier

switchB#config

switchB(config)#ip igmp snooping

switchB(config)#ip igmp snooping vlan 100

switchB(config)#ip igmp snooping vlan 100 mrouter interface ethernet 0/0/1

组播配置:

同案例1。

IGMP snooping侦听结果:

与案例1相似。

1.4 IGMP Snooping排错帮助

在配置、使用IGMP Snooping功能时,可能会由于物理连接、配置错误等原因导致

IGMPSnooping未能正常运行。因此,用户应注意以下要点:

应该保证物理连接的正确无误;

保证全局配置模式下IGMP Snooping打开(使用ip igmp snooping)

保证全局配置模式下vlan上配置IGMP Snooping(使用ip igmp snooping vlan

确保同一网段内配置了一个vlan作为二层普通查询者,或者确保配置了静态mrouter 使用show ip igmp snooping vlan 命令查看IGMP snooping信息是否正确

如果使用检查都尝试仍无法解决IGMP Snooping的问题,那么请使用debug igmp snooping 等调试命令,然后将3分钟内的DEBUG信息拷贝下来,发送给神州数码技术服务中心。

第2章 组播VLAN配置

2.1 组播VLAN介绍

基于当前的组播点播方式,当处于不同的VLAN 的用户点播时,每个VLAN 会在本VLAN 内复制一个组播流。这样的组播点播方式,浪费了大量的带宽。因此我们通过配置组播VLAN 的方式,将交换机的端口加入到组播VLAN 内,并在使能了IGMP Snooping 功能以后,使不同VLAN 内的用户公用一个组播VLAN,组播流只是在一个组播VLAN 内进行传输,从而节省了带宽。由于组播VLAN 与用户VLAN 完全隔离,因此安全和带宽都得以保证。在配置了组播VLAN 以后就保证了组播信息流能够持续不断的发送到用户。

2.2 组播 VLAN配置任务

1.启动组播VLAN功能

2.配置IGMP Snooping

1.启动组播VLAN功能

命令解释

VLAN配置模式

multicast-vlan

no multicast-vlan 配置一个VLAN启动组播VLAN功能。no 操作关闭该VLAN的组播VLAN功能。

multicast-vlan association no multicast-vlan association 将一个组播VLAN与多个VLAN关联。No 操作删除组播VLAN的关联VLAN。

2.配置IGMP Snooping

命令解释全局配置模式

ip igmp snooping vlan

no ip igmp snooping vlan 启动组播vlan的IGMP Snooping功能。No 操作关闭之组播vlan上的IGMP Snooping。

ip igmp snooping

no ip igmp snooping 启动IGMP Snooping功能。no 操作关闭全局IGMP snooping功能。

2.3 组播VLAN举例

SWITCHA SWITCHB

Work Station PC1PC2

图2-2-1 组播VLAN功能配置图

如图所示,组播服务器通过端口0/0/1与三层交换机switchA相连,端口0/0/1属于交换机的vlan10。三层交换机switchA通过端口0/0/10与二层交换机switchB相连。Vlan20为组播vlan。switchB上配置vlan 100包含端口0/0/15,vlan101包含端口0/0/20。PC1和PC2分别连在端口0/0/15和0/0/20上。switchB通过端口0/0/10与交换机switchA相连。Vlan20为组播vlan。

通过配置组播VLAN,使PC1和PC2通过组播VLAN接收组播数据。

以下配置基于switchA的IP地址已经配置,并且设备连接正确的情况下进行配置

配置步骤如下:

switchA#config

switchA (config)#vlan 10

switchA (config-vlan10)#switchport access ethernet 0/0/1

switchA (config-vlan10)exit

switchA (config)#interface vlan 10

switch(Config-if-Vlan10)#ip pim dense-mode

switch(Config-if-Vlan10)#exit

switchA (config)#vlan 20

switchA (config-vlan20)#multicast-vlan

switchA (config-vlan20)#exit

switchA (config)#ip igmp snooping

switchA (config)#ip igmp snooping vlan 20

switchA (config)#interface vlan 20

switchA(Config-if-Vlan20)#ip pim dense-mode

switchA(Config-if-Vlan20)#exit

switchA (config)#ip pim multicast

switchA (config)# interface ethernet 0/0/10

switchA (Config-Ethernet0/0/10)switchport mode trunk

switchB#config

switchB (config)#vlan 100

switchB (config-vlan100)#switchport access ethernet 0/0/15 switchB (config-vlan100)exit

switchB#config

switchB (config)#vlan 101

switchB (config-vlan101)#switchport access ethernet 0/0/20 switchB (config-vlan101)exit

switchB (config)# interface ethernet 0/0/10

switchB (Config-Ethernet0/0/10)#switchport mode trunk switchB (Config-Ethernet0/0/10)#exit

switchB (config)#vlan 20

switchA (config-vlan20)#multicast-vlan

switchA (config-vlan20)#multicast-vlan association 100,101 switchA (config-vlan20)#exit

switchA (config)#ip igmp snooping

switchA (config)#ip igmp snooping vlan 20

第3章 IPv4组播协议

3.1 IPv4组播协议概述

本章对IPv4组播协议的配置进行介绍,本章所有的IP都是指IPv4。

3.1.1 组播简介

当信息(包括数据、语音和视频)传送的目的地是网络中的少数用户时,可以采用多种传送方式。可以采用单播(Unicast)的方式,即为每个用户单独建立一条数据传送通路;或者采用广播(Broadcast)的方式,把信息传送给网络中的所有用户,不管他们是否需要,都会接收到广播来的信息。例如,在一个网络上有200个用户需要接收相同的信息时,传统的解决方案是用单播方式把这一信息分别发送200次,以便确保需要数据的用户能够得到所需的数据;或者采用广播的方式,在整个网络范围内传送数据,需要这些数据的用户可直接在网络上获取。这两种方式都浪费了大量宝贵的带宽资源,而且广播方式也不利于信息的安全和保密。

IP组播技术的出现及时解决了这个问题。组播源仅发送一次信息,组播路由协议为组播数据包建立树型路由,被传递的信息在尽可能远的分叉路口才开始复制和分发,因此,信息能够被准确高效地传送到每个需要它的用户。

需要注意的是,组播源不一定需要加入组播组,它向某些组播组发送数据,自己不一定是该组的接收者。可以同时有多个源向一个组播组发送报文。网络中可能有不支持组播的路由器,组播路由器可以使用隧道方式将组播包封装在单播IP包中传送给相邻的组播路由器,相邻的组播路由器再将单播IP头剥掉,然后继续进行组播传输。从而避免对网络的结构进行较大的改动。组播的优势主要在于:

1) 提高效率:降低网络流量,减轻服务器和CPU负荷;

2) 优化性能:减少冗余流量;

3) 分布式应用:使多点应用成为可能。

3.1.2 组播地址

组播报文的目的地址使用D类IP地址,范围是从224.0.0.0到239.255.255.255。D类地址不能出现在IP报文的源IP地址字段。单播数据传输过程中,一个数据包传输的路径是从源地址路由到目的地址,利用“逐跳”(hop-by-hop)的原理在IP网络中传输。然而在IP组播环境中,数据包的目的地址不是一个,而是一组,形成组地址。所有的信息接收者都加入到一个组内,并且一旦加入之后,流向组地址的数据立即开始向接收者传输,组中的所有成员都能接收到数据包。组播组中的成员是动态的,主机可以在任何时刻加入和离开组播组。

组播组可以是永久的也可以是临时的。组播组地址中,有一部分由官方分配的,称为永

久组播组。永久组播组保持不变的是它的IP地址,组中的成员构成可以发生变化。永久组播组中成员的数量都可以是任意的,甚至可以为零。那些没有保留下来供永久组播组使用的IP 组播地址,可以被临时组播组利用。

224.0.0.0~224.0.0.255为预留的组播地址(永久组地址),地址224.0.0.0保留不做分配,其它地址供路由协议使用; 224.0.1.0~238.255.255.255为用户可用的组播地址(临时组地址),全网范围内有效;239.0.0.0~239.255.255.255为本地管理组播地址,仅在特定的本地范围内有效。常用的预留组播地址列表如下:

224.0.0.0 基准地址(保留)

224.0.0.1 所有主机的地址

224.0.0.2 所有组播路由器的地址

224.0.0.3 不分配

224.0.0.4 DVMRP 路由器

224.0.0.5 OSPF 路由器

224.0.0.6 OSPF DR

224.0.0.7 ST 路由器

224.0.0.8 ST 主机

224.0.0.9 RIP-2 路由器

224.0.0.10 IGRP 路由器

224.0.0.11 活动代理

224.0.0.12 DHCP 服务器/中继代理

224.0.0.13 所有PIM 路由器

224.0.0.14 RSVP 封装

224.0.0.15 所有CBT 路由器

224.0.0.16 指定SBM

224.0.0.17 所有SBMS

224.0.0.18 VRRP

以太网传输单播IP报文的时候,目的MAC地址使用的是接收者的MAC地址。但是在传输组播报文时,传输目的不再是一个具体的接收者,而是一个成员不确定的组,所以使用的是组播MAC地址。组播MAC地址是和组播IP地址对应的。IANA(Internet Assigned Number Authority)规定,组播MAC地址的高25bit为0x01005e,MAC 地址的低23bit为组播IP地址的低23bit。

由于IP组播地址的后28位中只有23位被映射到MAC地址,这样就会有32个IP组播地址映射到同一MAC地址上。

3.1.3 IP组播报文转发

在组播模型中,源主机向IP数据包目的地址字段内的组播组地址所表示的主机组传送信息。和单播模型不同的是,组播模型必须将组播数据包转发到多个外部接口上以便能传送到所有接收站点,因此组播转发过程比单播转发过程更加复杂。

为了保证组播信息包都是通过最短路径到达路由器,组播必须依靠单播路由表或者单独提供给组播使用的单播路由表(如DVMRP路由),对组播信息包的接收接口进行一定的检查,这种检查机制就是大部分组播路由协议进行组播转发的基础——RPF(Reverse Path Forwarding,逆向路径转发)检查。组播路由器利用到达的组播数据包的源地址来查询单播路由表或者独立的组播路由表,以确定此数据包到达的入接口处于接收站点至源地址的最短路径上。如果使用的是有源树,这个源地址就是发送组播数据包的源主机的地址;如果使用的是共享树,该源地址就是共享树的根的地址。当组播数据包到达路由器时,如果RPF 检查通过,数据包则按照组播转发项进行转发,否则,数据包被丢弃。

3.1.4 IP组播应用

IP组播技术有效地解决了单点发送多点接收的问题,实现了IP网络中点到多点的高效数据传送,能够大量节约网络带宽、降低网络负载。利用网络的组播特性可以方便地提供一些新的增值业务。在线直播、网络电视、远程教育、远程医疗、网络电台、实时视/音频会议等互联网的信息服务领域可以提供如下应用:

1) 多媒体、流媒体的应用;

2) 数据仓库、金融应用(股票)等;

3) 任何“点到多点”的数据发布应用。

在IP 网络中多媒体业务日渐增多的情况下,组播有着巨大的市场潜力,组播业务也将逐渐得到推广和普及。

3.2 PIM-DM

3.2.1 PIM-DM介绍

PIM-DM(Protocol Independent Multicast,Dense Mode,协议独立组播-密集模式)属于密集模式的组播路由协议,适用于小型网络,在这种网络环境下,组播组的成员相对比较密集。

PIM-DM 的工作过程可以概括为:邻居发现、扩散—剪枝过程、嫁接阶段。

1. 邻居发现

PIM-DM 路由器刚开始启动时,需要使用Hello报文来发现邻居。运行PIM-DM的各网络节点之间使用Hello报文保持联系。PIM-DM Hello报文是周期性发送的。

2. 扩散—剪枝过程(Flooding&Prune)

PIM-DM 假设网络上的所有主机都准备接收组播数据。当某组播源S开始向组播组G发送数据时,在路由器接收到组播报文后,首先根据单播路由表进行RPF检查,如果检查通过,路由器创建一个(S,G)表项,然后将组播报文向网络上所有下游PIM-DM节点转发(Flooding)。如果没有通过RPF检查,即组播报文是从错误的接口输入,则将该报文丢弃。经过这个过程,在PIM-DM组播域内,每个节点都会创建一个(S,G)表项。如果下游节点没有组播组成员,则向上游节点发剪枝(Prune)消息,通知上游节点不用再转发该组播

组数据。上游节点收到剪枝消息后,就将相应的接口从其组播转发表项(S,G)对应的输出接口列表中删除,这就建立了一个以源S为根的SPT(Shortest Path Tree,SPT)树。剪枝过程最先由叶子路由器发起。

上述过程就称为扩散—剪枝过程。各个被剪枝的节点同时提供超时机制,当剪枝超时时,路由器重新开始扩散—剪枝过程。PIM-DM的扩散—剪枝机制周期性进行。

3. RPF检查

PIM-DM采用RPF检查,利用现存的单播路由表构建一棵从数据源始发的组播转发树。当一个组播包到达时,路由器首先判断到达路径的正确性。如果到达接口是单播路由指示的通往组播源的接口,就认为这个组播包是从正确路径而来;否则,将组播包作为冗余报文丢弃。作为路径判断依据的单播路由信息可以来源于任何一种单播路由协议,如RIP、OSPF 等发现的路由信息,而不依赖于特定的单播路由协议。

4. Assert机制

如果处于一个LAN网段上的两台组播路由器A和B,各自有到组播源S的接收途径,它们在接收到组播源S发出的组播数据报文以后,都会向LAN上转发该组播报文,这时,下游节点组播路由器C就会收到两份相同的组播报文。路由器检测到这种情况后,需要通过Assert 机制来选定一个唯一的转发者。通过发送Assert报文,选出一条最优的转发路径,如果两条或两条以上路径的优先级和开销相同,则选择IP地址大的节点作为该(S,G)项的上游邻居,由它负责该(S,G)组播报文的转发。

5. 嫁接(Graft)

当被剪枝的下游节点需要恢复到转发状态时,该节点使用嫁接报文通知上游节点恢复组播数据转发。

3.2.2 PIM-DM配置任务序列

1、启动PIM-DM(必须)

2、配置PIM-DM辅助参数(可选)

配置PIM-DM接口参数

配置PIM-DM hello报文间隔时间

1. 启动PIM-DM协议

在DCRS系列三层交换机上运行PIM-DM路由协议的基本配置很简单,需全局配置模式下打开PIM组播开关,然后在相应接口下打开PIM-DM开关即可。

命令解释

全局配置模式

ip pim multicast-routing 使各个接口上的PIM-DM协议进入使能状态(但真正在接口上开始PIM-DM协议,还需下面的命令)。

然后在接口上打开PIM-SM开关

命令解释

接口配置模式

ip pim dense-mode 启动本接口PIM-DM 协议。(必须)

2. 配置PIM-DM 辅助参数 (1)配置PIM-DM 接口参数

1)配置PIM-DM hello 报文间隔时间 命令

解释 接口配置模式

ip pim hello-interval < interval > no ip pim hello-interval 配置接口PIM-DM hello 报文间隔时间;本命令的no 操作恢复为缺省值。 命令

解释 接口配置模式

ip pim state-refresh origination-interval no ip pim state-refresh

origination-interval 配置接口PIM-DM state-refresh 报文间隔时间;本命令的no 操作恢复为缺省值。

3. 关闭PIM-DM 协议 命令

解释 接口配置模式

no ip pim dense-mode 在接口上关闭

PIM-DM 协议。

全局配置模式

no ip pim multicast-routing

全局关闭PIM-DM 协议。

3.2.3 PIM-DM 典型案例

如下图,将switchA ,switchB 的以太网接口加入到相应的vlan 中,并在各vlan 接口上启动PIM-DM 协议

SWITCHA

SWITCHB

vlan2

vlan1vlan2

vlan1

图 3-1 PIM-DM典型环境

switchA 和switchB配置步骤如下:

(1) 配置SwitchA:

Switch (Config)#ip pim multicast-routing

Switch (Config)#interface vlan 1

Switch(Config-if-Vlan1)# ip address 10.1.1.1 255.255.255.0

Switch(Config-if-Vlan1)# ip pim dense-mode

Switch(Config-if-Vlan1)#exit

Switch (Config)#interface vlan2

Switch(Config-if-Vlan2)# ip address 12.1.1.1 255.255.255.0

Switch(Config-if-Vlan2)# ip pim dense-mode

(2) 配置SwitchB:

Switch (Config)#ip pim multicast-routing

Switch (Config)#interface vlan 1

Switch(Config-if-Vlan1)# ip address 12.1.1.2 255.255.255.0

Switch(Config-if-Vlan1)# ip pim dense-mode

Switch(Config-if-Vlan1)#exit

Switch (Config)#interface vlan 2

Switch(Config-if-Vlan2)# ip address 20.1.1.1 255.255.255.0

Switch(Config-if-Vlan2)# ip pim dense-mode

同时要注意配置好单播路由协议,确保网络中各设备之间能够在网络层互通,并且能够借助单播路由协议实现动态路由更新。

3.2.4 PIM-DM排错帮助

在配置、使用PIM-DM协议时,可能会由于物理连接、配置错误等原因导致PIM-DM

协议未能正常运行。因此,用户应注意以下要点:

应该保证物理连接的正确无误

保证接口和链路协议是UP(使用show interface命令)

保证全局配置模式下打开PIM协议(使用ip pim multicast-routing)

在接口上启动PIM-DM协议(使用ip pim dense-mode命令)

组播协议需使用单播路由进行RPF检查,因此必须首先确保单播路由的正确性

如果使用检查都尝试仍无法解决PIM-DM的问题,那么请使用debug pim 等调试命令,然后将3分钟内的DEBUG信息拷贝下来,发送给神州数码技术服务中心。

3.3 PIM-SM

3.3.1 PIM-SM介绍

PIM-SM(Protocol Independent Multicast,Sparse Mode)即与协议无关组播-稀疏模式,属于稀疏模式的组播路由协议,主要用于组成员分布相对分散、范围较广、大规模的网络。与密集模式的扩散—剪枝不同,PIM-SM协议假定所有的主机都不需要接收组播数据包,只有主机明确指定需要时,PIM-SM路由器才向它转发组播数据包。

PIM-SM通过设置汇聚点RP(Rendezvous Point)和自举路由器BSR(Bootstrap Router),向所有PIM-SM路由器通告组播信息,并利用路由器的加入/剪枝信息,建立起基于RP的共享树RPT(RP-rooted shared tree)。从而减少数据报文和控制报文占用的网络带宽,降低路由器的处理开销。组播数据沿着共享树流到该组播组成员所在的网段,当数据流量达到一定程度,组播数据流可以切换到基于源的最短路径树SPT,以减少网络延迟。PIM-SM不依赖于特定的单播路由协议,而是使用现存的单播路由表进行RPF检查。

1. PIM-SM工作原理

PIM-SM的工作过程主要有:邻居发现、RP共享树(RPT)的生成、组播源注册、SPT 切换等。其中,邻居发现机制与PIM-DM相同,这里不再介绍。

(1) RP共享树(RPT)的生成

当主机加入一个组播组G时,与该主机直接相连的叶子路由器通过IGMP报文了解到有组播组G的接收者,就为组播组G计算出对应的汇聚点RP,然后向朝着RP方向的上一级节点发送加入组播组的消息(join 消息)。从叶子路由器到RP之间途经的每个路由器都会在转发表中生成(*,G)表项,表示由任意源发出的,发送至组播组G的,都适用于该表项。当RP收到发往组播组G的报文后,报文就会沿着已经建立好的路径到达叶子路由器,进而到达主机。这样就生成了以RP为根的RPT。

(2) 组播源注册

当组播源S向组播组G发送了一个组播报文时,与其直接相连的PIM-SM组播路由器接收到该报文以后,就负责将该组播报文封装成注册报文,单播给对应的RP。如果一个网段上有多个PIM-SM组播路由器,这时候将由指定路由器DR(Designated Router)负责发送该组播报文。

(3) SPT切换

当组播路由器发现从RP发来的目的地址为G的组播报文的速率超过了阈值时,组播路由器就向朝着源S的上一级节点发送加入消息,导致RPT向SPT的切换。

2. PIM-SM 配置前准备工作

(1) 配置候选RP

在PIM-SM网络中,可以存在多个RP(候选RP),每个候选RP(Candidate-RP,C-RP)负责转发目的地址在一定范围内的组播报文。配置多个候选RP可以实现RP负载分担。候选RP之间没有主次之分,所有的组播路由器收到BSR通告的候选RP消息后,根据相同的算法计算出与某一组播组对应的RP。

注意,一个RP可以为多个组播组服务,也可以为所有组播组服务。每个组播组在任意时刻,只能唯一地对应一个RP,不能同时对应多个RP。

(2) 配置BSR

BSR 是PIM-SM 网络里的管理核心,它负责收集候选RP发来的信息,并把它们广播

出去。

一个网络内部只能有一个BSR,但可以配置多个候选BSR(Candidate-BSR, C-BSR)。这样,一旦某个BSR发生故障后,能够切换到另外一个。C-BSR通过自动选举产生BSR。

3.3.2 PIM-SM配置任务序列

1、启动PIM-SM(必须)

2、配置PIM-SM辅助参数(可选)

(1)配置PIM-SM接口参数

1)配置PIM-SM hello报文间隔时间

2)配置接口为PIM-SM域边界

(1) 配置PIM-SM全局参数

1) 配置交换机作为候选BSR

2) 配置交换机作为候选RP

3、关闭PIM-SM协议

1. 启动PIM-SM协议

在DCRS系列三层交换机上运行PIM-SM路由协议的基本配置很简单,需全局配置模式下打开PIM组播开关,然后在相应接口下打开PIM-SM开关即可。

命令解释

全局配置模式

ip pim multicast-routing 使各个接口上的PIM-SM协议进入使能状态(但真正在接口上开始PIM-SM协议,还需下面的命令)。(必须)

然后在接口上打开PIM-SM开关

命令解释

接口配置模式

ip pim sparse-mode 启动本接口PIM-SM协议。(必须)2. 配置PIM-SM辅助参数

(1)配置PIM-SM接口参数

1)配置PIM-SM hello报文间隔时间

命令解释

接口配置模式

ip pim hello-interval < interval> no ip pim hello-interval 配置接口PIM-SM hello报文间隔时间;本命令的no操作恢复为缺省值。

2)配置PIM-SM hello报文holdtime时间命令解释接口配置模式

ip pim hello-holdtime no ip pim hello-holdtime 配置接口PIM-SM hello 报文中的holdtime 域的值;本命令的no 操作恢复为缺省值。

3)配置PIM-SM 邻居访问列表 命令

解释 接口配置模式

[no] ip pim

neighbor-filter{ } 配置邻居访问列表。如果被列表过滤,如果已经同此邻居建立连接,则此连接马上被切断,如果没有建立连接,则这个连接不能建立。

(2)配置PIM-SM 全局参数

1) 配置交换机作为候选BSR 命令 解释 全局配置模式

ip pim bsr-candidate {vlan

|

}[ ][

rity > ]

no ip pim bsr-candidate 该命令为全局候选BSR 配置命令,用于配置

PIM-SM 候选BSR 的信息,以用于同其它候选

BSR 竞争BSR 路由器;本命令的no 操作为取

消候选BSR 的配置。

2) 配置交换机作为候选RP 命令 解释 全局配置模式

ip pim rp-candidate { vlan < vlan-id >| } [][] (no) ip pim rp-candiate 该命令为全局候选RP 配置命令,用于配置PIM-SM 候选RP 的信息,以用于同其它候选RP 竞争RP 路由器;本命令的no 操作为取消候选RP 的配置。

3) 配置静态RP 命令 解释 全局配置模式

ip pim rp-address

[]

no ip pim rp-address

{|}

该命令为全局候选RP 配置命令,用于配置

PIM-SM 候选RP 的信息,以用于同其它候选

RP 竞争RP 路由器;本命令的no 操作为取消

候选RP 的配置。

3关闭PIM-SM 协议 命令 解释 接口配置模式

no ip pim sparse-mode | no ip pim multicast-routing (全局配置模式)

关闭PIM-SM 协议。

3.3.3 PIM-SM 典型案例

如下图所示,将

switchA ,switchB ,switchC ,switchD 的以太网接口加入到相应vlan 中,并在各vlan 接口上启动PIM-SM 协议

S W IT C H A

S W IT C H B

v lan 1

v lan 1

v lan 2 rp

v la n 2v lan 2

v lan 2 b sr

v lan 1

v lan 1v la n 3v lan 3

S W IT C H D

S W IT C H C

图 3-2 PIM-SM 典型环境

switchA 和switchB ,switchC ,switchD 配置步骤如下: (1) 配置SwitchA :

Switch (Config)#ip pim multicast-routing Switch (Config)#interface vlan 1

Switch(Config-If-Vlan1)# ip address 12.1.1.1 255.255.255.0 Switch(Config-If-Vlan1)# ip pim sparse-mode Switch(Config-If-Vlan1)#exit

PIM组播协议密集模式

PIM组播协议密集模式(DM模式) 【实验名称】 PIM组播协议密集模式(DM模式) 【实验目的】 熟悉如何配置PIM密集模式 【背景描述】 你是一个某单位的网络管理员,单位有存放资料的组播服务器,,服务器为用户提供组播服务,请你满足现在的网络需求。采用PIM的密集模式来实现。 【实现功能】 实现PIM密集模式下组播流量的传输,如果没有组成员,自动修剪组播发送信息。 【实验拓扑】 S1 vlan1:192.168.1.253 vlan10:192.168.10.1 vlan12:192.168.12.1 vlan20:192.168.20.1 vlan100:192.168.100.1 S2 vlan1:192.168.2.253 vlan50:192.168.50.1 vlan12:192.168.12.2 vlan60:192.168.60.1 S2126 vlan1:192.168.1.254 S2150vlan1:192.168.2.254

【实验设备】 S3550-24(2台)、S2126G(1台)、S2150G(1台)、PC(4台) 【实验步骤】 第一步:基本配置 switch(config)#hostname S1 S1(config)#vlan 10 ! 创建一个vlan10 S1(config-vlan)#exi S1(config)#vlan 12 S1(config-vlan)#exi S1(config)#vlan 20 S1(config-vlan)#exi S1(config)#vlan 100 S1(config-vlan)#exi S1(config)#interface f0/24 S1(config-if)#switchport mode trunk !把f0/24接口作为trunk接口 S1(config-if)#switchport trunk allowed vlan remove 100 ! trunk链路不传输vlan 100的信息 S1(config)#interface vlan 1 S1(config-if)#ip address 192.168.1.253 255.255.255.0 S1(config-if)#no shutdown S1(config)#interface vlan 10 S1(config-if)#ip address 192.168.10.1 255.255.255.0 !创建一个SVI地址 S1(config-if)#no shutdown S1(config)#interface vlan 12 S1(config-if)#ip address 192.168.12.1 255.255.255.0 S1(config-if)#no shutdown S1(config)#interface vlan 20 S1(config-if)#ip address 192.168.20.1 255.255.255.0 S1(config-if)#no shutdown S1(config)#interface vlan 100 S1(config-if)#ip address 192.168.100.1 255.255.255.0 S1(config-if)#no shutdown S1(config)#interface fastethernet f0/1 !把接口加入到vlan 10 S1(config-if)#switchport access vlan 10 S1(config)#interface fastethernet f0/2 S1(config-if)#switchport access vlan 20 S1(config)#interface fastethernet f0/12 S1(config-if)#switchport access vlan 12 switch(config)#hostname S2 S2(config)#vlan 12 S2(config-vlan)#exi

组播路由协议配置(华为)

常用组播路由协议配置方法 1IGMP协议配置 1.1 IGMP基本设置 1.1.1配置路由器加入到一个组播组: # 将VLAN 接口VLAN-interface10 包含的以太网端口Ethernet 0/1 加入组播组 #225.0.0.1。 [Quidway-Vlan-interface10] igmp host-join 225.0.0.1 port Ethernet 0/1 1.1.2控制某个接口下主机能够加入的组播组 igmp group-policy acl-number [ 1 | 2 | port { interface_type interface_ num |interface_name } [ to { interface_type interface_num|interface_name } ] ] 【例如】 # 配置访问控制列表acl 2000 [Quidway] acl number 2000 [Quidway-acl-basic-2000] rule permit source 225.0.0.0 # 指定VLAN-interface10上满足acl2000中规定的范组,指定组的IGMP版本为2。 [Quidway-Vlan-interface10] igmp group-policy 2000 2 1.1.3IGMP版本切换 igmp version { 1 | 2 } # 在VLAN 接口VLAN-interface10 上运行IGMP 版本1。 [Quidway-Vlan-interface10] igmp version 1 1.1.4IGMP查询间隔时间:默认60s igmp timer query seconds # 将VLAN-interface2 接口上的主机成员查询报文发送间隔设置为150 秒。 [Quidway-Vlan-interface2] igmp timer query 150 1.1.5IGMP查询超时时间:默认为2倍的查询间隔时间 igmp timer other-querier-present # 配置Querier 的存活时间为300 秒 [Quidway-Vlan-interface10] igmp timer other-querier-present 300 1.1.6IGMP查询最大响应时间:默认为10s igmp max-response-time seconds # 配置主机成员查询报文中包含的最大响应时间为8 秒。 [Quidway-Vlan-interface10] igmp max-response-time 8 1.2 IGMP Proxy 1.2.1组网需求

组播协议详细

目录 第1章组播概述.....................................................................................................................1-1 1.1 组播简介.............................................................................................................................1-1 1.1.1 单播方式的信息传输过程.........................................................................................1-1 1.1.2 广播方式的信息传输过程.........................................................................................1-2 1.1.3 组播方式传输信息....................................................................................................1-2 1.1.4 组播中各部分的角色................................................................................................1-3 1.1.5 组播的优点和应用....................................................................................................1-4 1.2 组播模型分类.....................................................................................................................1-4 1.3 组播的框架结构..................................................................................................................1-5 1.3.1 组播地址..................................................................................................................1-6 1.3.2 组播协议..................................................................................................................1-9 1.4 组播报文的转发机制........................................................................................................1-10 1.4.1 RPF机制的应用.....................................................................................................1-11 1.4.2 RPF检查................................................................................................................1-11第2章 IGMP Snooping配置...................................................................................................2-1 2.1 IGMP Snooping简介..........................................................................................................2-1 2.1.1 IGMP Snooping原理................................................................................................2-1 2.1.2 IGMP Snooping基本概念........................................................................................2-1 2.1.3 IGMP Snooping工作机制........................................................................................2-2 2.2 IGMP Snooping配置..........................................................................................................2-4 2.2.1 启动IGMP Snooping................................................................................................2-5 2.2.2 配置IGMP Snooping版本........................................................................................2-5 2.2.3 配置IGMP Snooping相关定时器..............................................................................2-6 2.2.4 配置端口从组播组中快速删除功能..........................................................................2-6 2.2.5 配置组播组过滤功能................................................................................................2-7 2.2.6 配置端口可以通过的组播组最大数量.......................................................................2-8 2.2.7 配置静态成员端口....................................................................................................2-9 2.2.8 配置静态路由器端口................................................................................................2-9 2.2.9 配置IGMP Snooping模拟主机加入功能.................................................................2-10 2.2.10 配置查询报文的VLAN Tag..................................................................................2-11 2.2.11 配置组播VLAN.....................................................................................................2-12 2.3 IGMP Snooping显示和维护.............................................................................................2-14 2.4 IGMP Snooping典型配置举例..........................................................................................2-14 2.4.1 配置IGMP Snooping功能......................................................................................2-14 2.4.2 配置组播VLAN功能...............................................................................................2-16

迈普交换机4128e08_组播协议操作

目录 第1章IGMP SNOOPING配置 (2) 1.1 IGMP S NOOPING介绍 (2) 1.2 IGMP S NOOPING配置任务 (2) 1.3 IGMP S NOOPING举例 (4) 1.4 IGMP S NOOPING排错帮助 (7) 第2章组播VLAN配置 (8) 2.1 组播VLAN介绍 (8) 2.2 组播VLAN配置任务 (8) 2.3 组播VLAN举例 (9) 第3章IP组播协议 (1) 3.1 DCSCM (1) 3.1.1 DCSCM介绍 (1) 3.1.2 DCSCM配置任务序列 (1) 3.1.3 DCSCM典型案例 (5) 3.1.4 DCSCM排错帮助 (6)

第1章IGMP Snooping配置 1.1IGMP Snooping介绍 IGMP(Internet Group Management Protocol)互联网组管理协议,用于实现IP的组播。IGMP 被支持组播的网络设备(如路由器)用来进行主机资格查询,也被想加入某组播组的主机用来通知路由器接收某个组播地址的数据包,而这些都是通过IGMP消息交换来完成的。路由器首先利用一个可寻址到所有主机的组地址(即224.0.0.1)发送一条IGMP主机成员资格查询(IGMP Host Membership Query)消息。若一个主机希望加入某组播组,它就利用该组播组的组地址回应一条IGMP主机成员资格报告(IGMP Host Membership Report)消息。 IGMP Snooping即IGMP侦听。交换机通过IGMP Snooping来限制组播流量的泛滥,只把组播流量转发给与组播设备相连的端口。交换机侦听组播路由器和主机之间的IGMP消息,根据侦听结果维护组播转发表,而交换机根据组播转发表来决定组播包的转发。 1.2IGMP Snooping配置任务 1.启动IGMP Snooping功能 2.配置IGMP Snooping 1.启动IGMP Snooping功能

08_组播协议操作

目录 第1章 IGMP Snooping配置······················································1-1 1.1 IGMP Snooping介绍········································································1-1 1.2 IGMP Snooping配置任务·································································1-1 1.3 IGMP Snooping举例········································································1-3 1.4 IGMP Snooping排错帮助·································································1-5第2章组播VLAN配置·······························································2-1 2.1 组播VLAN介绍·················································································2-1 2.2 组播 VLAN配置任务········································································2-1 2.3 组播VLAN举例·················································································2-2第3章 IPv4组播协议·································································3-1 3.1 IPv4组播协议概述············································································3-1 3.1.1 组播简介·································································································3-1 3.1.2 组播地址·································································································3-1 3.1.3 IP组播报文转发·······················································································3-2 3.1.4 IP组播应用······························································································3-3 3.2 PIM-DM····························································································3-3 3.2.1 PIM-DM介绍···························································································3-3 3.2.2 PIM-DM配置任务序列·············································································3-4 3.2.3 PIM-DM典型案例····················································································3-5 3.2.4 PIM-DM排错帮助····················································································3-6 3.3 PIM-SM·····························································································3-6 3.3.1 PIM-SM介绍····························································································3-6 3.3.2 PIM-SM配置任务序列·············································································3-8 3.3.3 PIM-SM典型案例··················································································3-10 3.3.4 PIM-SM排错帮助··················································································3-12 3.4 DVMRP···························································································3-12 3.4.1 DVMRP介绍··························································································3-12 3.4.2 配置任务序列·······················································································3-13 3.4.3 DVMRP典型案例··················································································3-15 3.4.4 DVMRP排错帮助··················································································3-16 3.5 DCSCM··························································································3-16

组播协议

组播协议允许将一台主机发送的数据通过网络路由器和交换机复制到多个加入此组播的主机,是一种一对多的通讯方式。 IP组播的好处、优势 组播协议与现在广泛使用的单播协议的不同之处在于,一个主机用单播协议向n个主机发送相同的数据时,发送主机需要分别向n个主机发送,共发送n 次。一个主机用组播协议向n个主机发送相同的数据时,只要发送1次,其数据由网络中的路由器和交换机逐级进行复制并发送给各个接收方,这样既节省服务器资源也节省网络主干的带宽资源。 与广播协议相比,只有组播接收方向路由器发出请求后,网络路由器才复制一份数据给接收方,从而节省接收方的带宽。而广播方式无论接收方是否需要,网络设备都将所有广播信息向所有设备发送,从而大量占据接收方的接入带宽。 IP组播历史 在1980年代初斯坦福大学的一位博士生叫Steve Deering,在为其导师David Cheriton工作,设计一种叫做Vsystem的分布式操作系统。此操作系统允许一台计算机使用MAC层组播向在本地Ethernet段的一组其他计算机传递信息。 随着工作的扩展组播必须跨越路由器,所以必须将组播扩展到OSI模型的第三层,此历史重任落到了Steve Deering身上,他总结了组播路由的通信协议基础,并最终在1991年12月发表的博士论文中进行了详细的阐述。

组播协议的优势: 组播协议的优势在于当需要将大量相同的数据传输到不通主机时, 1.能节省发送数据的主机的系统资源和带宽; 2.组播是有选择地复制给又要求的主机; 3. 组播可以穿越公网广泛传播,而广播则只能在局域网或专门的广播网内部传播; 4. 组播能节省网络主干的带宽; 组播协议的缺点: 与单播协议相比,组播没有补包机制,因为组播采用的是UTP的传输方式,并且不是针对一个接受者,所以无法有针对的进行补包。所以直接组播协议传输的数据是不可靠的。 二、为什么宽带网必须使用组播协议

迈普MyPower S4300千兆汇聚路由交换机配置手册V2.0_操作手册_09_组播协议操作概论

目录 第1章IPv4组播协议 (1) 1.1 IPv4组播协议概述 (1) 1.1.1 组播简介 (1) 1.1.2 组播地址 (1) 1.1.3 IP组播报文转发 (3) 1.1.4 IP组播应用 (3) 1.2 PIM-DM (3) 1.2.1 PIM-DM介绍 (3) 1.2.2 PIM-DM配置任务序列 (4) 1.2.3 PIM-DM典型案例 (6) 1.2.4 PIM-DM排错帮助 (7) 1.3 PIM-SM (8) 1.3.1 PIM-SM介绍 (8) 1.3.2 PIM-SM配置任务序列 (9) 1.3.3 PIM-SM典型案例 (12) 1.3.4 PIM-SM排错帮助 (15) 1.4 MSDP配置 (15) 1.4.1 MSDP介绍 (15) 1.4.2 MSDP配置任务简介 (16) 1.4.3 配置MSDP基本功能 (17) 1.4.4 配置MSDP对等体 (18) 1.4.5 配置报文收发 (18) 1.4.6 配置SA-cache参数 (19) 1.4.7 MSDP举例 (20) 1.4.8 MSDP排错帮助 (26) 1.5 ANYCAST RP配置 (26) 1.5.1 ANYCAST RP介绍 (26) 1.5.2 ANYCAST RP配置任务 (27) 1.5.3 ANYCAST RP典型案例 (29) 1.5.4 ANYCAST RP排错帮助 (30) 1.6 PIM-SSM (31) 版权所有?2009,迈普通信技术股份有限公司,保留所有权利1

1.6.1 PIM-SSM 介绍 (31) 1.6.2 PIM-SSM 配置任务序列 (31) 1.6.3 PIM-SSM 典型案例 (31) 1.6.4 PIM-SSM 排错帮助 (34) 1.7 DVMRP (34) 1.7.1 DVMRP介绍 (34) 1.7.2 配置任务序列 (35) 1.7.3 DVMRP典型案例 (37) 1.7.4 DVMRP排错帮助 (38) 1.8 DCSCM (38) 1.8.1 DCSCM介绍 (38) 1.8.2 DCSCM配置任务序列 (39) 1.8.3 DCSCM典型案例 (41) 1.8.4 DCSCM排错帮助 (42) 1.9 IGMP (42) 1.9.1 IGMP介绍 (42) 1.9.2 配置任务序列 (44) 1.9.3 IGMP典型案例 (46) 1.9.4 IGMP排错帮助 (47) 1.10 IGMP Snooping配置 (47) 1.10.1 IGMP Snooping介绍 (47) 1.10.2 IGMP Snooping配置任务 (47) 1.10.3 IGMP Snooping典型案例 (49) 1.10.4 IGMP Snooping排错帮助 (52) 1.11 IGMP Proxy配置 (53) 1.11.1 IGMP Proxy介绍 (53) 1.11.2 IGMP Proxy配置任务 (53) 1.11.3 IGMP Proxy举例 (54) 1.11.4 IGMP Proxy排错帮助 (57) 第2章IPv6组播协议 (58) 2.1 PIM-DM6 (58) 2.1.1 PIM-DM6介绍 (58) 2.1.2 PIM-DM6配置任务序列 (59) 2.1.3 PIM-DM6典型案例 (61) 版权所有?2009,迈普通信技术股份有限公司,保留所有权利1

相关文档