文档库 最新最全的文档下载
当前位置:文档库 › ch9+电磁感应和电磁场+习题及答案Word版

ch9+电磁感应和电磁场+习题及答案Word版

ch9+电磁感应和电磁场+习题及答案Word版
ch9+电磁感应和电磁场+习题及答案Word版

第9章 电稳感应和电磁场 习题及答案

1. 通过某回路的磁场与线圈平面垂直指向纸面内,磁通量按以下关系变化:

23(65)10t t Wb -Φ=++?。求2t s =时,回路中感应电动势的大小和方向。

解:310)62(-?+-=Φ

-=t dt

d ε

当s t 2=时,V 01.0-=ε

由楞次定律知,感应电动势方向为逆时针方向

2. 长度为l 的金属杆ab 以速率υ在导电轨道abcd 上平行移动。已知导轨处于均匀磁场B

中,

B 的方向与回路的法线成60°角,如图所示,B

的大小为B =kt (k 为正常数)。

设0=t 时杆位于cd 处,求:任一时刻t 导线回路中感应电动势的大小和方向。

解:任意时刻通过通过回路面积的磁通量为

202

1

60cos t kl t Bl S d B m υυ==?=Φ

导线回路中感应电动势为 t kl t

m

υε-=Φ-

=d d 方向沿abcda 方向。

3. 如图所示,一边长为a ,总电阻为R 的正方形导体框固定于一空间非均匀磁场中,磁场方向垂直于纸面向外,其大小沿x 方向变化,且)1(x k B +=,0>k 。求: (1)穿过正方形线框的磁通量;

(2)当k 随时间t 按t k t k 0)(=(0k 为正值常量)变化时,线框中感生电流的大小和方向。

解:(1)通过正方形线框的磁通量为

??=?=Φa S Badx S d B 0 ?+=a dx x ak 0)1()2

1

1(2a k a +=

(2)当t k k 0=时,通过正方形线框的磁通量为

)2

1

1(02a t k a +

=Φ 正方形线框中感应电动势的大小为

dt d Φ=

ε)2

1

1(02a k a += 正方形线框线框中电流大小为

)2

11(02a R k a R I +==ε

,方向:顺时针方向

4.如图所示,一矩形线圈与载有电流t I I ωcos 0=长直导线共面。设线圈的长为b ,宽为a ;

0=t 时,线圈的AD 边与长直导线重合;线圈以匀速度υ

垂直离开导线。求任一时刻线圈中的感

应电动势的大小。

解:建立图示坐标系,长直导线在右边产生的磁感应强度大小为

x

I

B πμ20=

t 时刻通过线圈平面的磁通量为

???=ΦS S d B bdx x I a t t ?+=υυπμ20

t

a t I

b υυπμ+=ln 20

I

A

B

C

D

b a

υ

t υ

O

x

t

a

t t b I υυωπμ+=

ln cos 200 任一时刻线圈中的感应电动势为

]ln sin )(cos [200t

a

t t t a t t a b I dt d i υυωωυωπμε+++=Φ-

= 5.如图所示,在两平行载流的无限长直导线的平面内有一矩形线圈。两导线中的电流方向相反、大小相等,且电流以

t

I

d d 的变化率增大,求: (1)任一时刻线圈内所通过的磁通量; (2)线圈中的感应电动势。

解:(1) 任一时刻通过线圈平面的磁通量为 r l r

I

r l r I

a

b b

a

d d m d π2d π200?

?

++-=

Φμμ

)(d

a d

b a b Il +-+=ln ln π20μ (2) 线圈中的感应电动势为

t

I

b a b d a d l t d d ln ln π2d d 0)(+-+=Φ-

=με 6. 如图所示,长直导线AB 中的电流I 沿导线向上,并以12-?=s A dt

dI

的变化率均匀增长。导

线附近放一个与之共面的直角三角形线框,其一边与导线平行,位置及线框尺寸如图所示。求此线框中产生的感应电动势的大小和方向。

解:建立图示的坐标系,在直角三角形线框上x 处取平行于y 轴的宽度为dx 、高度为y 的窄条。由几何关系得到 2.02+-=x y (SI) 通过此窄条的磁通量为

=

?=ΦS d B d

ydx x I

)(5.0020+πμdx x x I )

((5.002)2.020++-=πμ

通过直角三角形线框的磁通量为

?Φ=Φd dx x x I

b

?++-=

00)05.02.02(

μ

I b I Ib 8001059.205

.005.0ln 15.0-?=++-=πμπμ (SI)

三角形线框中产生的感应电动势为

V dt

dI

dt d 881018.51059.2--?-=?-=Φ-

=ε 感应电动势大小为8

5.1810V -? ,方向为逆时针方向。

7. 如图所示,长直导线通以电流I ,在其右方放一长方形线圈,两者共面.线圈长b ,宽a ,线圈以速率υ垂直于直线平移远离。求:线圈离长直导线距离为d 时,线圈中感应电动势的大小和

方向。

解:AB 、CD 运动速度υ

方向与磁力线平行,不产生感应电动势。 DA 产生动生电动势为

?==??=A

D d

I

b Bb l B πμυυυε2d )(01

BC 产生电动势为

O

x

y

)

(π2d )(02d a I

b l B C

B

+-=??=?

μυυε

回路中总感应电动势为

)11

(π2021a

d d Ib +-=

+=υμεεε 方向沿顺时针。

8. 如图所示,载有电流I 的长直导线附近,放一导体半圆环MeN 与长直导线共面,且端点MN 的连线与长直导线垂直。半圆环的半径为b ,环心O 与导线相距a 。设半圆环以速率υ平行导线平移。求半圆环内感应电动势的大小和方向及MN 两端的电压N M U U -。

解:作辅助线MN ,则在MeNM 回路中,沿υ

方向运动时0d =m Φ

∴ 0=MeNM ε

即 MN MeN εε= 又∵ ?

+-<+-=

=

b

a b

a MN b

a b

a I dl B 0ln 2cos 0πυμπυε 所以MeN ε沿NeM 方向,大小为

b

a b

a I -+ln 20πυμ M 点电势高于N 点电势,即

b

a b

a I U U N M -+=

-ln 20πυμ 9. 如图所示,一长直导线中通有电流I ,有一垂直于导线、长度为l 的金属棒AB 在包含

导线的平面内,以恒定的速度υ

沿与棒成θ角的方向移动。开始时,棒的A 端到导线的距离为

a ,求任意时刻金属棒中的动生电动势,并指出棒哪端的电势高。

解:建立图示坐标系,电流I 在其右边产生的磁感应强度大小为

x

I

B πμ20=

方向:垂直纸面向里 在棒上取l d

,dl 段上的动生电动势为

dl B l d B d )2cos()(θπ

υυε+=??=

dx x I

θυπμsin 20-=

AB 上的感应电动势为

??+++-==θυθυθυπμεεcos cos 0 sin 2 t l a t a B A AB x dx I

d

θ

υθυθυμcos cos ln sin 20t a t l a I +++π-=

电动势的方向从B 指向A ,A 端电势高。

10. 导线ab 长为l ,绕过O 点的垂直轴以匀角速ω转动,aO =3

l

,磁感应强度B 平行于转轴,

如图所示。试求:

(1)ab 两端的电势差; (2)b a ,两端哪一点电势高?

解:(1)在Ob 上取dr r r +→一小段

I a l A B

θ v

O

x

则 ?=

=

320

2

9

2d l

Ob l B r rB ωωε 同理 ?=

=30218

1d l

Oa l B r rB ωωε 故 226

1

)92181(l B l B Ob aO ab ωωεεε=+-=+=

(2)0>ab ε 即0<-b a U U ,故b 点电势高。

11. 在两根平行放置相距为a 2的无限长直导线之间,有一与其共面的矩形线圈,线圈边长分

别为l 和b 2,且l 边与长直导线平行,两根长直导线中通有等值同向稳恒电流I ,线圈以恒定速度υ

垂直直导线向右运动,如图所示。求:线圈运动到两导线的中心位置(即线圈的中心线与两根导线距离均为a )时,线圈中的感应电动势。

解:

20000

22

11()22(ln(2)ln ln(22)ln(2))21111

()

222222x b

x

I B dS ldr r a r

Il

x b x x b a x a Ilv d d dx dt dx dt x b x x b a x a

Ilv b

x a b a b μφπμπ

μφφεπμεπ+=?=--=

+-++---===-+-++--=-=-??

12. 如图所示,金属杆AOC 以恒定速度υ在均匀磁场B 中垂直于磁场方向向上运动,已知AO OC L ==,求杆中的动生电动势。

解:AO 段上产生的动生电动势为

?

??=O A

AO l d B

)(υε?=L

dl B 0

cos πυL B υ-= OC 段上产生的动生电动势为

???=C O

AO l d B )(υε?-=L

dl B 0

)cos(θπυ

θυcos L B -=

杆中的动生电动势为

OC AO εεε+=)cos 1(θυ+-=L B

方向由C 到A ,A 点电势高。

13. 磁感应强度为B

的均匀磁场充满一半径为R 的圆柱形空间,一金属杆放在如图所示位置,

杆长为R 2,其中一半位于磁场内、另一半在磁场外。当t

B

d d >0时,求:杆两端的感应电动势的大

小和方向。

解:CB AC AB εεε+=

t B

R B R t t AC d d 43)43(d d d d 21=--=Φ-

=ε =Φ-=t

CB d d 2εt B

R B R t d d 12π)12π(d d 22=--

故 t B

R R AB d d )12π43(22+=ε ∵ 0

d d >t

B

故 0>AB ε(即ε从B A →)

14.一同轴电缆由两个同轴圆筒构成,内筒半径为1.00mm ,外筒半径为7.00mm ,求每米该同轴电缆的自感系数(两筒的厚度可忽略)。

解:设电流I 由内筒流出、外筒流回,由安培环路定理i

I r B l d B ?∑=?=?02μπ

内、外筒之间,

∑=I I i r

I

B πμ20=

内、外筒之间每米长度所通过的磁通量:

??=?=Φ71Bdr S d B S ?=7102dr r I πμ7ln 20π

μI

=

每米同轴电缆的自感系数:7ln 20

π

μ=Φ=I L

15. 一无限长的直导线和一正方形的线圈如图所示放置(导线与线圈接触处绝缘)。求:线圈与

导线间的互感系数。

解:设长直电流为I ,其磁场通过正方形线圈的互感磁通为

?

==323

00122ln π

2d π2a a Ia

r r Ia μμΦ ∴ 2ln π

2012

a

I

M μΦ=

=

16. 一无限长圆柱形直导线,其截面上电流均匀分布,总电流为I 。

求:导线内部单位长度上所储存的磁能。

解:在R r <时 2

0π2R Ir

B μ=

∴ 4

222002

π82R r I B w m μμ=

= 取 r r V d π2d =(∵导线长1=l )

则 ?

?

=

==

R

R

m I R

r

r I r r w W 0

2

04

320π

16π4d d 2μμπ

17.什么叫位移电流?它与传导电流有何区别?

答:通过电场中某一截面的电通量对时间的变化率称为通过该截面的位移电流。位移电流和传导电流是两个不同的物理概念,它们的区别表现在两个方面:

(1)传导电流是由运动电荷产生,而位移电流是由变化的电场所引起。通常情况下,导体中主要是传导电流,位移电流可以忽略。而在电介质中的电流主要是位移电流,传导电流忽略不计。

(2)传导电流在导体中传播时会产生焦耳热,位移电流可以脱离导体传播且不产生焦耳热。

18.证明充电时平行板中的位移电流dt

dU

C

I d =,C 为平行板电容器的电容,U 为两极板的电势差。

证明:设平行板电容器极板面积为S ,极板间距为d ,则

S d

U ES DS S D D εε===?=Φ

而电容:d

S

C ε=

所以,CU

D =Φ

则dt

dU

C dt d I

D d =Φ=

19. 给电容为C 的平行板电容器充电,传导电流为t

e i -=2.0 ( SI ),0=t 时电容器极板上

无电荷。求:

(1) 极板间电压U 随时间t 而变化的关系式;

(2) t 时刻极板间总的位移电流d I (忽略边缘效应)。

解:(1)传导电流与极板上电量的关系:dt

dq

i =

,所以 ???

-==t

t t q

dt e idt dq 0

2.0

=q )e 1(2.0t --

极板间电压U 随时间t 而变化的关系式

)e 1(2.0t C C q U --==

(2)位移电流:dt

dU

C I d =t e -=2.0

(注:可编辑下载,若有不当之处,请指正,谢谢!)

(完整版)电磁场与电磁波答案(第四版)谢处方

一章习题解答 1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e 4y z =-+B e e 52x z =-C e e 求:(1)A a ;(2)-A B ;(3)A B g ; (4)AB θ;(5)A 在B 上的分量;(6)?A C ; (7)()?A B C g 和()?A B C g ;(8)()??A B C 和()??A B C 。 解 (1 )23A x y z +-= ==-e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e e e 64x y z +-=e e e (3)=A B g (23)x y z +-e e e (4)y z -+=e e g -11 (4)由 cos AB θ ===A B A B g ,得 1cos AB θ- =(135.5=o (5)A 在B 上的分量 B A =A cos AB θ ==A B B g (6)?=A C 1 235 02x y z -=-e e e 41310x y z ---e e e (7)由于?=B C 04 1502x y z -=-e e e 8520x y z ++e e e ?=A B 123041 x y z -=-e e e 1014x y z ---e e e 所以 ()?=A B C g (23)x y z +-e e e g (8520)42x y z ++=-e e e ()?=A B C g (1014)x y z ---e e e g (52)42x z -=-e e (8)()??=A B C 1014502x y z ---=-e e e 2405x y z -+e e e ()??=A B C 1 238 5 20 x y z -=e e e 554411x y z --e e e

哈工大电磁场与电磁波实验报告

电磁场与电磁波实验报告 班级: 学号: 姓名: 同组人:

实验一电磁波的反射实验 1.实验目的: 任何波动现象(无论是机械波、光波、无线电波),在波前进的过程中如遇到障碍物,波就要发生反射。本实验就是要研究微波在金属平板上发生反射时所遵守的波的反射定律。 2.实验原理: 电磁波从某一入射角i射到两种不同介质的分界面上时,其反射波总是按照反射角等于入射角的规律反射回来。 如图(1-2)所示,微波由发射喇叭发出,以入射角i设到金属板M M',在反射方向的位置上,置一接收喇叭B,只有当B处在反射角i'约等于入射角i时,接收到的微波功率最大,这就证明了反射定律的正确性。 3.实验仪器: 本实验仪器包括三厘米固态信号发生器,微波分度计,反射金属铝制平板,微安表头。 4.实验步骤: 1)将发射喇叭的衰减器沿顺时针方向旋转,使它处于最大衰减位置; 2)打开信号源的开关,工作状态置于“等幅”旋转衰减器看微安表是否有显示,若有显示,则有微波发射; 3)将金属反射板置于分度计的水平台上,开始它的平面是与两喇叭的平面平行。 4)旋转分度计上的小平台,使金属反射板的法线方向与发射喇叭成任意角度i,然后将接收喇叭转到反射角等于入射角的位置,缓慢的调节衰减器,使微 μ)。 安表显示有足够大的示数(50A

5)熟悉入射角与反射角的读取方法,然后分别以入射角等于30、40、50、60、70度,测得相应的反射角的大小。 6)在反射板的另一侧,测出相应的反射角。 5.数据的记录预处理 记下相应的反射角,并取平均值,平均值为最后的结果。 5.实验结论:?的平均值与入射角0?大致相等,入射角等于反射角,验证了波的反射定律的成立。 6.问题讨论: 1.为什么要在反射板的左右两侧进行测量然后用其相应的反射角来求平均值? 答:主要是为了消除离轴误差,圆盘上有360°的刻度,且外部包围圆盘的基座上相隔180°的两处有两个游标。,不可能使圆盘和基座严格同轴。 在两者略有不同轴的情况下,只读取一个游标的读数,应该引入离轴误差加以考虑——不同轴的时候,读取的角度差不完全等于实际角度差,圆盘半径偏小

电磁场与电磁波波试卷3套含答案

《电磁场与电磁波》试卷1 一. 填空题(每空2分,共40分) 1.矢量场的环流量有两种特性:一是环流量为0,表明这个矢量场 无漩涡流动 。另一个是环流量不为0,表明矢量场的 流体沿着闭合回做漩涡流动 。 2.带电导体内静电场值为 0 ,从电位的角度来说,导体是一个 等电位体 ,电荷分布在导体的 表面 。 3.分离变量法是一种重要的求解微分方程的方法,这种方法要求待求的偏微分方程的解可以表示为 3个 函数的乘积,而且每个函数仅是 一个 坐标的函数,这样可以把偏微分方程化为 常微分方程 来求解。 4.求解边值问题时的边界条件分为3类,第一类为 整个边界上的电位函数为已知 ,这种条件成为狄利克莱条件。第二类为已知 整个边界上的电位法向导数 ,成为诺伊曼条件。第三类条件为 部分边界上的电位为已知,另一部分边界上电位法向导数已知 ,称为混合边界条件。在每种边界条件下,方程的解是 唯一的 。 5.无界的介质空间中场的基本变量B 和H 是 连续可导的 ,当遇到不同介质的分 界面时,B 和H 经过分解面时要发生 突变 ,用公式表示就是 12()0n B B ?-=,12()s n H H J ?-=。 6.亥姆霍兹定理可以对Maxwell 方程做一个简单的解释:矢量场的 旋度 ,和 散度 都表示矢量场的源,Maxwell 方程表明了 电磁场 和它们的 源 之间的关系。 二.简述和计算题(60分) 1.简述均匀导波系统上传播的电磁波的模式。(10分) 答:(1)在电磁波传播方向上没有电场和磁场分量,即电场和磁场完全在横平面内,这种模式的电磁波称为横电磁波,简称TEM 波。 (2)在电磁波传播方向上有电场和但没有磁场分量,即磁场在横平面内,这种模式的电磁波称为横磁波,简称TM 波。因为它只有纵向电场分量,又成为电波或E 波。 (3)在电磁波传播方向上有磁场但没有电场分量,即电场在横平面内,这种模式的电磁波称为横电波,简称TE 波。因为它只有纵向磁场分量,又成为磁波或M 波。 从Maxwell 方程和边界条件求解得到的场型分布都可以用一个或几个上述模式的适当幅相组合来表征。 2.写出时变电磁场的几种场参量的边界条件。(12分) 解:H 的边界条件 12()s n H H J ?-= E 的边界条件

电磁场与电磁波课后习题及答案六章习题解答

第六章 时变电磁场 6.1 有一导体滑片在两根平行的轨道上滑动,整个装置位于正弦时变磁场 5cos mT z e t ω=B 之中,如题6.1图所示。滑片的位置由0.35(1cos )m x t ω=-确定,轨道终端接有电阻0.2R =Ω,试求电流i. 解 穿过导体回路abcda 的磁通为 5cos 0.2(0.7) cos [0.70.35(1cos )]0.35cos (1cos )z z d B ad ab t x t t t t ωωωωωΦ==?=?-=--=+? B S e e 故感应电流为 11 0.35sin (12cos ) 1.75sin (12cos )mA in d i R R dt t t t t R ωωωωωωΦ = =-=-+-+E 6.2 一根半径为a 的长圆柱形介质棒放入均匀磁场0z B =B e 中与z 轴平行。设棒以角 速度ω绕轴作等速旋转,求介质内的极化强度、体积内和表面上单位长度的极化电荷。 解 介质棒内距轴线距离为r 处的感应电场为 00z r r r B φωω=?=?=E v B e e B e 故介质棒内的极化强度为 00000(1)()e r r r r B r B εεεωεεω==-=-P E e e X 极化电荷体密度为 200 00 11()()2()P rP r B r r r r B ρεεωεεω?? =-??=- =--??=--P 极化电荷面密度为 0000()()P r r r a e r a B σεεωεεω==?=-?=-P n B e 则介质体积内和表面上同单位长度的极化电荷分别为 220020012()212()P P PS P Q a a B Q a a B πρπεεωπσπεεω=??=--=??=- 6.3 平行双线传输线与一矩形回路共面,如题6.3图所示。设0.2a m =、0.1m b c d ===、7 1.0cos(210)A i t π=?,求回路中的感应电动势。

浙江大学-电磁场与电磁波实验(第二次).doc

本科实验报告 课程名称:电磁场与微波实验 姓名:wzh 学院:信息与电子工程学院 专业:信息工程 学号:xxxxxxxx 指导教师:王子立 选课时间:星期二9-10节 2017年 6月 17日 Copyright As one member of Information Science and Electronic Engineering Institute of Zhejiang University, I sincerely hope this will enable you to acquire more time to do whatever you like instead of struggling on useless homework. All the content you can use as you like. I wish you will have a meaningful journey on your college life. ——W z h 实验报告 课程名称:电磁场与微波实验指导老师:王子立成绩:__________________ 实验名称: CST仿真、喇叭天线辐射特性测量实验类型:仿真和测量 同组学生姓名: 矩形波导馈电角锥喇叭天线CST仿真 一、实验目的和要求 1. 了解矩形波导馈电角锥喇叭天线理论分析与增益理论值基本原理。 2.熟悉 CST 软件的基本使用方法。 3.利用 CST 软件进行矩形波导馈电角锥喇叭天线设计和仿真。 二、实验内容和原理 1. 喇叭天线概述 喇叭天线是一种应用广泛的微波天线,其优点是结构简单、频带宽、功率容量大、调整与使用方便。合理的选择喇叭尺寸,可以取得良好的辐射特性:相当尖锐的主瓣,较小副瓣和较高的增益。因此喇叭天线在军事和民用上应用都非常广泛,是一种常见的测试用天线。喇叭天线的基本形式是把矩形波导和圆波导的开口面逐渐扩展而形成的,由于是波导开口面的逐渐扩大,改善了波导与自由空间的匹配,使得波导中的反射系数小,即波导中传输的绝大部分能量由喇叭辐射出去,反

电磁场与电磁波试题及答案

1.麦克斯韦的物理意义:根据亥姆霍兹定理,矢量场的旋度和散度都表示矢量场的源。麦克斯韦方程表明了电磁场和它们的源之间的全部关系:除了真实电流外,变化的电场(位移电流)也是磁场的源;除电荷外,变化的磁场也是电场的源。 1. 写出非限定情况下麦克斯韦方程组的微分形式,并简要说明其物理意义。 2.答非限定情况下麦克斯韦方程组的微分形式为,,0,D B H J E B D t t ρ????=+ ??=-??=??=??,(3分)(表明了电磁场和它们的源之间的全部关系除了真实电流外,变化的电场(位移电流)也是磁场的源;除电荷外,变化的磁 场也是电场的源。 1.简述集总参数电路和分布参数电路的区别: 2.答:总参数电路和分布参数电路的区别主要有二:(1)集总参数电路上传输的信号的波长远大于传输线的几何尺寸;而分布参数电路上传输的信号的波长和传输线的几何尺寸可以比拟。(2)集总参数电路的传输线上各点电压(或电流)的大小与相位可近似认为相同,无分布参数效应;而分布参数电路的传输线上各点电压(或电流)的大小与相位均不相同,呈现出电路参数的分布效应。 1.写出求解静电场边值问题常用的三类边界条件。 2.答:实际边值问题的边界条件可以分为三类:第一类是整个边界上的电位已知,称为“狄利克莱”边界条件;第二类是已知边界上的电位法向导数,称为“诺依曼”边界条件;第三类是一部分边界上电位已知,而另一部分上的电位法向导数已知,称为混合边界条件。 1.简述色散效应和趋肤效应。 2.答:在导电媒质中,电磁波的传播速度(相速)随频率改变的现象,称为色散效应。在良导体中电磁波只存在于导体表面的现象称为趋肤效应。 1.在无界的理想媒质中传播的均匀平面波有何特性?在导电媒质中传播的均匀平面波有何特性? 2. 在无界的理想媒质中传播的均匀平面波的特点如下:电场、磁场的振幅不随传播距离增加而衰减,幅度相差一个实数因子η(理想媒质的本征阻抗);时间相位相同;在空间相互垂直,与传播方向呈右手螺旋关系,为TEM 波。 在导电媒质中传播的均匀平面波的特点如下:电磁场的振幅随传播距离增加而呈指数规律衰减;电、磁场不同相,电场相位超前于磁场相位;在空间相互垂直,与传播方向呈右手螺旋关系,为色散的TEM 啵。 1. 写出时变电磁场在1为理想导体与2为理想介质分界面时的边界条件。 2. 时变场的一般边界条件 2n D σ=、20t E =、2t s H J =、20n B =。 (或矢量式2n D σ=、20n E ?=、 2s n H J ?=、20n B =) 1. 写出矢量位、动态矢量位与动态标量位的表达式,并简要说明库仑规范与洛仑兹规范的意义。 2. 答矢量位,0B A A =????=;动态矢量位A E t ??=-?- ?或A E t ??+=-??。库仑规范与洛仑兹规范的作用都 是限制A 的散度,从而使A 的取值具有唯一性;库仑规范用在静态场,洛仑兹规范用在时变场。 1. 简述穿过闭合曲面的通量及其物理定义 2. s A ds φ=??? 是矢量A 穿过闭合曲面S 的通量或发散量。若Ф> 0,流出S 面的通量大于流入的通量,即通 量由S 面内向外扩散,说明S 面内有正源若Ф< 0,则流入S 面的通量大于流出的通量,即通量向S 面内汇集,说明S 面内有负源。若Ф=0,则流入S 面的通量等于流出的通量,说明S 面内无源。 1. 证明位置矢量 x y z r e x e y e z =++ 的散度,并由此说明矢量场的散度与坐标的选择无关。 2. 证明在直角坐标系里计算 ,则有 ()()x y z x y z r r e e e e x e y e z x y z ? ? ?????=++?++ ?????? 3x y z x y z ???= ++=??? 若在球坐标系里计算,则 23 22 11()()()3r r r r r r r r r ????===??由此说明了矢量场的散度与坐标的选择无关。 1. 在直角坐标系证明0A ????= 2.

高中物理第二章 电磁感应与电磁场单元测试题及解析

第二章电磁感应与电磁场章末综合检测 (时间:90分钟;满分100分) 一、单项选择题(本题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一个选项正确) 1.下列过程中一定能产生感应电流的是( ) A.导体和磁场做相对运动 B.导体一部分在磁场中做切割磁感线运动 C.闭合导体静止不动,磁场相对导体运动 D.闭合导体内磁通量发生变化 2.关于磁通量的概念,下列说法中正确的是( ) A.磁感应强度越大,穿过闭合回路的磁通量也越大 B.磁感应强度越大,线圈面积越大,穿过闭合回路的磁通量也越大 C.穿过线圈的磁通量为零时,磁感应强度不一定为零 D.磁通量发生变化时,磁感应强度一定发生变化 3.如图2-3,半径为R的圆形线圈和矩形线圈abcd在同一平面内,且在矩形线圈内有变化的磁场,则( ) 图2-3 A.圆形线圈有感应电流,矩形线圈无感应电流 B.圆形线圈无感应电流,矩形线圈有感应电流 C.圆形线圈和矩形线圈都有感应电流 D.圆形线圈和矩形线圈都无感应电流 4.以下叙述不正确的是( ) A.任何电磁波在真空中的传播速度都等于光速 B.电磁波是横波 C.电磁波可以脱离“波源”而独自存在 D.任何变化的磁场都可以产生电磁波 5.德国《世界报》曾报道过个别西方发达国家正在研制电磁脉冲波武器——电磁炸弹.若一枚原始脉冲波功率10 kW、频率5千兆赫的电磁炸弹在不到100 m的高空爆炸,它将使方圆400 m2~500 m2地面范围内电场达到每米数千伏,使得电网设备、通信设施和计算机中的硬盘与软盘均遭到破坏.电磁炸弹有如此破坏力的主要原因是( ) A.电磁脉冲引起的电磁感应现象 B.电磁脉冲产生的动能 C.电磁脉冲产生的高温 D.电磁脉冲产生的强光 6.在图2-4中,理想变压器的原副线圈的匝数比为n1∶n2=2∶1,A、B为完全相同的灯泡,电源电压为U,则B灯两端的电压有( ) 图2-4 A.U/2 B.2U

电磁场与电磁波答案(无填空答案).

电磁场与电磁波复习材料 简答 1. 简述恒定磁场的性质,并写出其两个基本方程。 2. 试写出在理想导体表面电位所满足的边界条件。 3. 试简述静电平衡状态下带电导体的性质。 答:静电平衡状态下,带电导体是等位体,导体表面为等位面;(2分) 导体内部电场强度等于零,在导体表面只有电场的法向分量。(3分) 4. 什么是色散?色散将对信号产生什么影响? 答:在导电媒质中,电磁波的传播速度随频率变化的现象称为色散。 (3分) 色散将使信号产生失真,从而影响通信质量。 (2分) 5.已知麦克斯韦第二方程为t B E ??- =?? ,试说明其物理意义,并写出方程的积分形式。 6.试简述唯一性定理,并说明其意义。 7.什么是群速?试写出群速与相速之间的关系式。

8.写出位移电流的表达式,它的提出有何意义? 9.简述亥姆霍兹定理,并说明其意义。 答:当一个矢量场的两类源(标量源和矢量源)在空间的分布确定时,该矢量场就唯一地确定了,这一规律称为亥姆霍兹定理。 (3分) 亥姆霍兹定理告诉我们,研究任意一个矢量场(如电场、磁场等),需要从散度和旋度两个方面去研究,或者是从矢量场的通量和环量两个方面去研究 10.已知麦克斯韦第二方程为S d t B l d E S C ???-=???,试说明其物理意义,并写出方程的微 分形式。 答:其物理意义:随时间变化的磁场可以产生电场。 (3分) 方程的微分形式: 11.什么是电磁波的极化?极化分为哪三种? 答:电磁波的电场强度矢量的方向随时间变化所描绘的轨迹称为极化。(2分) 极化可以分为:线极化、圆极化、椭圆极化。 12.已知麦克斯韦第一方程为 t D J H ??+ =?? ,试说明其物理意义,并写出方程的积分形式。

电磁场与电磁波点电荷模拟实验报告

重庆大学 电磁场与电磁波课程实践报告 题目:点电荷电场模拟实验 日期:2013 年12 月7 日 N=28

《电磁场与电磁波》课程实践 点电荷电场模拟实验 1.实验背景 电磁场与电磁波课程内容理论性强,概念抽象,较难理解。在电磁场教学中,各种点电荷的电场线成平面分布,等势面通常用等势线来表示。MATLAB 是一种广泛应用于工程、科研等计算和数值分析领域的高级计算机语言,以矩阵作为数据操作的基本单位,提供十分丰富的数值计算函数、符号计算功能和强大的绘图能力。为了更好地理解电场强度的概念,更直观更形象地理解电力线和等势线的物理意义,本实验将应用MATLAB 对点电荷的电场线和等势线进行模拟实验。 2.实验目的 应用MATLAB 模拟点电荷的电场线和等势线 3.实验原理 根据电磁场理论,若电荷在空间激发的电势分布为V ,则电场强度等于电势梯度的负值,即: E V =-? 真空中若以无穷远为电势零点,则在两个点电荷的电场中,空间的电势分布为: 1 212010244q q V V V R R πεπε=+=+ 本实验中,为便于数值计算,电势可取为

1212 q q V R R =+ 4.实验内容 应用MATLAB 计算并绘出以下电场线和等势线,其中q 1位于(-1,0,0),q 2位于(1,0,0),n 为个人在班级里的序号: (1) 电偶极子的电场线和等势线(等量异号点电荷对q 2:q 1 = 1,q 2为负电荷); (2) 两个不等量异号电荷的电场线和等势线(q 2:q 1 = 1 + n /2,q 2为负电荷); (3) 两个等量同号电荷的电场线和等势线; (4) 两个不等量同号电荷的电场线和等势线(q 2:q 1 = 1 + n /2); (5) 三个电荷,q 1、q 2为(1)中的电偶极子,q 3为位于(0,0,0)的单位正电荷。、 n=28 (1) 电偶极子的电场线和等势线(等量异号点电荷对q 2:q 1 = 1,q 2为负电荷); 程序1: clear all q=1; xm=2.5; ym=2; x=linspace(-xm,xm); y=linspace(-ym,ym); [X,Y]=meshgrid(x,y); R1=sqrt((X+1).^2+Y.^2); R2=sqrt((X-1).^2+Y.^2); U=1./R1-q./R2; u=-4:0.5:4; figure contour(X,Y,U,u,'--'); hold on plot(-1,0,'o','MarkerSize',12); plot(1,0,'o','MarkerSize',12); [Ex,Ey]=gradient(-U,x(2)-x(1),y(2)-y(1));

电磁场与电磁波试题

?电磁场?试卷1 一、单项选择题 1. 静电场是( ) A. 无散场 B. 旋涡场 C.无旋场 D. 既是有散场又是旋涡场 2. 已知(23)()(22)x y z D x y e x y e y x e =-+-+-,如已知电介质的介电常数为0ε,则自由电荷密度ρ为( ) A. B. 1/ C. 1 D. 0 3. 磁场的标量位函数的单位是( ) A. V/m B. A C. A/m D. Wb 4. 导体在静电平衡下,其内部电场强度( ) A.为零 B.为常数 C.不为零 D.不确定 5. 磁介质在外部磁场作用下,磁化介质出现( ) A. 自由电流 B. 磁化电流 C. 传导电流 D. 磁偶极子 6. 磁感应强度与磁场强度的一般关系为( ) A.H B μ= B.0H B μ= C.B H μ= D.0B H μ= 7. 极化强度与电场强度成正比的电介质称为( )介质。 A.各向同性 B. 均匀 C.线性 D.可极化 8. 均匀导电媒质的电导率不随( )变化。 A.电流密度 B.空间位置 C.时间 D.温度 9. 磁场能量密度等于( ) A. E D B. B H C. 21E D D. 2 1B H 10. 镜像法中的镜像电荷是( )的等效电荷。 A.感应电荷 B.原电荷 C. 原电荷和感应电荷 D. 不确定 二、填空题(每空2分,共20分) 1. 电场强度可表示为_______的负梯度。 2. 体分布电荷在场点r 处产生的电位为_______。 3. 一个回路的自感为回路的_______与回路电流之比。 4. 空气中的电场强度5sin(2)x E e t z πβ=-V/m ,则位移电流密度d J = 。 5. 安培环路定律的微分形式是 ,它说明磁场的旋涡源是 。 6. 麦克斯韦方程组的微分形式是 , , , 。 三、简答题(本大题共2小题,每小题5分,共10分) 1.写出电荷守恒定律的数学表达式,说明它揭示的物理意义。 2.写出坡印廷定理的微分形式,说明它揭示的物理意义。 四、计算题(本大题) 1.假设在半径为a 的球体内均匀分布着密度为0ρ的电荷,试求任意点的电场强度。 2.一个同心球电容器的内、外半径为a 、b ,其间媒质的电导率为σ,求该电容器的漏电电导。 3.已知空气媒质的无源区域中,电场强度100cos()z x E e e t z αωβ-=-,其中βα,为常数,求磁场强度。 0ε0ε

习题9电磁感应与电磁场

习题9 9-1在磁感应强度B 为0.4T 的均匀磁场中放置一圆形回路,回路平面与B 垂直,回路的面积与时间的关系为:S=5t 2+3(cm 2),求t=2s 时回路中感应电动势的大小? 解:根据法拉第电磁感应定律得 dt d m Φ- =εdt dS B =Bt 10= V 4108-?=ε 9-2 如题9-2图所示,载有电流I 的长直导线附近,放一导体半圆环MeN 与长直导线共面,且端点MN 的连线与长直导线垂直.半圆环的半径为b ,环心O 与导线相距a .设半圆环以速度v 平行导线平移.求半圆环感应电动势的大小和方向及MN 两端的电压U M -U N . 题9-2 解: 作辅助线MN ,则在MeNM 回路中,沿v 方向运动时0d =m Φ ∴ 0=MeNM ε 即 MN MeN εε= 又∵ ? +-<+-= =b a b a MN b a b a Iv l vB 0ln 2d cos 0πμπε 所以MeN ε沿NeM 方向, 大小为 b a b a Iv -+ln 20πμ M 点电势高于N 点电势,即 b a b a Iv U U N M -+= -ln 20πμ

题9-3 9-3 如题9-3图所示,在两平行载流的无限长直导线的平面有一矩形线圈.两导线中的电流 方向相反、大小相等,且电流以d I d t 的变化率增大,求: (1)任一时刻线圈所通过的磁通量; (2)线圈中的感应电动势. 解: 以向外磁通为正则 (1) ]ln [ln π2d π2d π2000d a d b a b Il r l r I r l r I a b b a d d m +-+= -= ?? ++μμμΦ (2) t I b a b d a d l t d d ]ln [ln π2d d 0+-+=-=μΦε 题9-4 9-4 如题9-4图所示,长直导线通以电流I =5 A ,在其右方放一长方形线圈,两者共面.线圈长b =0.06 m ,宽a =0.04 m ,线圈以速度v =0.03 m/s 垂直于直线平移远离.求:d =0.05 m 时线圈中感应电动势的大小和方向. 解: AB 、CD 运动速度v 方向与磁力线平行,不产生感应电动势.

电磁场与电磁波(第三版)课后答案第1章

第一章习题解答 1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e 4y z =-+B e e 52x z =-C e e 求:(1)A a ;(2)-A B ;(3)A B ;(4)A B θ;(5)A 在B 上的分量;(6)?A C ; (7)()?A B C 和()?A B C ;(8)()??A B C 和()??A B C 。 解 (1 )23A x y z +-= = =e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e e e 64x y z +-=e e e (3)=A B (23)x y z +-e e e (4)y z -+=e e -11 ( 4 ) 由 c o s AB θ =1 1 2 3 8 = A B A B , 得 1 c o s A B θ- =(135.5- = (5)A 在B 上的分量 B A =A c o s AB θ = =- A B B (6)?=A C 1 235 02x y z -=-e e e 41310x y z ---e e e (7)由于?=B C 04 1502x y z -=-e e e 8520x y z ++e e e ?=A B 1 230 4 1 x y z -=-e e e 1014x y z ---e e e 所以 ()?=A B C (23)x y z +-e e e (8520)42x y z ++=-e e e ()?=A B C (1014)x y z ---e e e (52)42x z -=-e e (8)()??=A B C 1014502 x y z ---=-e e e 2405x y z -+e e e ()??=A B C 1 238 5 20 x y z -=e e e 554411x y z --e e e 1.2 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。 (1)判断123P P P ?是否为一直角三角形; (2)求三角形的面积。

电磁场与电磁波实验实验六布拉格衍射实验

邮电大学 电磁场与微波测量实验报告

实验六布拉格衍射实验 一、实验目的 1、观察微波通过晶体模型的衍射现象。 2、验证电磁波的布拉格方程。 二、实验设备与仪器 DH926B型微波分光仪,喇叭天线,DH1121B型三厘米固态信号源,计算机 三、实验原理 1、晶体结构与密勒指数 固体物质可分成晶体和非晶体两类。任何的真实晶体,都具有自然外形和各向异性的性质,这和晶体的离子、原子或分子在空间按一定的几何规律排列密切相关。 晶体的离子、原子或分子占据着点阵的结构,两相邻结点的距离叫晶体的晶 10m,与X射线的波长数量级相当。因此,格常数。晶体格点距离的数量级是-8 对X射线来说,晶体实际上是起着衍射光栅的作用,因此可以利用X射线在晶体点阵上的衍射现象来研究晶体点阵的间距和相互位置的排列,以达到对晶体结构的了解。 图4.1 立方晶格最简单的晶格是立方体结构。 如图6.1这种晶格只要用一个边长为a的正立方体沿3个直角坐标轴方向重复即可得到整个空间点阵,a就称做点阵常数。通过任一格点,可以画出全同的晶面和某一晶面平行,构成一组晶面,所有的格点都在一族平行的晶面上而无遗漏。这样一族晶面不仅平行,而且等距,各晶面上格点分布情况相同。

为了区分晶体中无限多族的平行晶面的方位,人们采用密勒指数标记法。先找出晶面在x、y、z3个坐标轴上以点阵常量为单位的截距值,再取3截距值的倒数比化为最小整数比(h∶k∶l),这个晶面的密勒指数就是(hkl)。当然与该面平行的平面密勒指数也是(hkl)。利用密勒指数可以很方便地求出一族平行晶面的间距。对于立方晶格,密勒指数为(hkl)的晶面族,其面 间距 hkl d可按下式计算:2 2 2l k h a d hkl + + = 图6.2立方晶格在x—y平面上的投影 如图6.2,实线表示(100)面与x—y平面的交线,虚线与点画线分别表示(110)面和(120)面与x—y平面的交线。由图不难看出 2、微波布拉格衍射 根据用X射线在晶体原子平面族的反射来解释X射线衍射效应的理论,如有一单色平行于X射线束以掠射角θ入射于晶格点阵中的某平面族,例如图4.2所示之(100)晶面族产生反射,相邻平面间的波程差为 θ sin 2 100 d QR PQ= +(6.1) 式(6.1)中 100 d是(100)平面族的面间距。若程差是波长的整数倍,则二反射波有相长干涉,即因满足

电磁场与电磁波试题及答案

1. 写出非限定情况下麦克斯韦方程组的微分形式,并简要说明其物理意义。 2.答非限定情况下麦克斯韦方程组的微分形式为 ,,0,D B H J E B D t t ρ????=+??=-??=??=??v v v v v v v ,(3分)(表明了电磁场和它们的源之 间的全部关系除了真实电流外,变化的电场(位移电流)也是磁场的源;除电荷外,变化的磁场也是电场的源。 1. 写出时变电磁场在1为理想导体与2为理想介质分界面时的边界条件。 2. 时变场的一般边界条件 2n D σ=、20t E =、2t s H J =、20n B =。 (或矢量式2n D σ=v v g 、20n E ?=v v 、2s n H J ?=v v v 、20n B =v v g ) 1. 写出矢量位、动态矢量位与动态标量位的表达式,并简要说明库仑规范与洛仑兹规范的意义。 2. 答矢量位,0B A A =????=v v v ;动态矢量位A E t ??=-?-?v v 或A E t ??+=-??v v 。库仑规范 与洛仑兹规范的作用都是限制A v 的散度,从而使A v 的取值具有唯一性;库仑规范用在静态场,洛仑兹规范用在时变场。 1. 简述穿过闭合曲面的通量及其物理定义 2. s A ds φ=???v v ò 是矢量A 穿过闭合曲面S 的通量或发散量。若Ф> 0,流出S 面的通量大于流入的通量,即通量由S 面内向外扩散,说明S 面内有正源若Ф< 0,则流入S 面的通量大于流出的通量,即通量向S 面内汇集,说明S 面内有负源。若Ф=0,则流入S 面的通量等于流出的通量,说明S 面内无源。 1. 证明位置矢量x y z r e x e y e z =++r r r r 的散度,并由此说明矢量场的散度与坐标的选择

大物B课后题08-第八章 电磁感应 电磁场

习题 8-6 一根无限长直导线有交变电流0sin i I t ω=,它旁边有一与它共面的矩形线圈ABCD ,如图所示,长为l 的AB 和CD 两边与直导向平行,它们到直导线的距离分别为a 和b ,试求矩形线圈所围面积的磁通量,以及线圈中的感应电动势。 解 建立如图所示的坐标系,在矩形平面上取一矩形面元dS ldx =,载流长直导线的磁场穿过该面元的磁通量为 02m i d B dS ldx x μφπ=?= 通过矩形面积CDEF 的总磁通量为 0000ln ln sin 222b m a i il I l b b ldx t x a a μμμφωπππ===? 由法拉第电磁感应定律有 00ln cos 2m d I l b t dt a φμωεωπ=- =- 8-7 有一无限长直螺线管,单位长度上线圈的匝数为n ,在管的中心放置一绕了N 圈,半径为r 的圆形小线圈,其轴线与螺线管的轴线平行,设螺线管内电流变化率为dI dt ,球小 线圈中感应的电动势。 解 无限长直螺线管内部的磁场为 0B nI μ= 通过N 匝圆形小线圈的磁通量为 2 0m NBS N nI r φμπ== 由法拉第电磁感应定律有 20m d dI N n r dt dt φεμπ=- =- 8-8 一面积为S 的小线圈在一单位长度线圈匝数为n ,通过电流为i 的长螺线管内,并与螺线管共轴,若0sin i i t ω=,求小线圈中感生电动势的表达式。 解 通过小线圈的磁通量为 0m BS niS φμ== 由法拉第电磁感应定律有 000cos m d di nS nSi t dt dt φεμμωω=- =-=- 8-9 如图所示,矩形线圈ABCD 放在1 6.010B T -=?的均匀磁场中,磁场方向与线圈平面的法线方向之间的夹角为60α=?,长为0.20m 的AB 边可左右滑动。若令AB 边以速率 15.0v m s -=?向右运动,试求线圈中感应电动势的大小及感应电流的方向。 解 利用动生电动势公式

电磁场与电磁波实验报告电磁波反射和折射实验

电磁场与微波测量实验报告 学院: 班级: 组员: 撰写人: 学号: 序号:

实验一电磁波反射和折射实验 一、实验目的 1、熟悉S426型分光仪的使用方法 2、掌握分光仪验证电磁波反射定律的方法 3、掌握分光仪验证电磁波折射定律的方法 二、实验设备与仪器 S426型分光仪 三、实验原理 电磁波在传播过程中如遇到障碍物,必定要发生反射,本处以一块大的金属板作为障碍物来研究当电磁波以某一入射角投射到此金属板上所遵循的反射定律,即反射线在入射线和通过入射点的法线所决定的平面上,反射线和入射线分居在法线两侧,反射角等于入射角。 四、实验内容与步骤 1、熟悉分光仪的结构和调整方法。 2、连接仪器,调整系统。 仪器连接时,两喇叭口面应相互正对,它们各自的轴线应在一条直线上,指示 两喇叭的位置的指针分别指于工作平台的90刻度处,将支座放在工作平台上, 并利用平台上的定位销和刻线对正支座,拉起平台上的四个压紧螺钉旋转一个 角度后放下,即可压紧支座。 3、测量入射角和反射角 反射金属板放到支座上时,应使金属板平面与支座下面的小圆盘上的某一对刻 线一致。而把带支座的金属反射板放到小平台上时,应使圆盘上的这对与金属 板平面一致的刻线与小平台上相应90度的一对刻线一致。这是小平台上的0刻 度就与金属板的法线方向一致。 转动小平台,使固定臂指针指在某一角度处,这角度读书就是入射角, 五、实验结果及分析 记录实验测得数据,验证电磁波的反射定律 表格分析: (1)、从总体上看,入射角与反射角相差较小,可以近似认为相等,验证了电磁波的反射定律。 (2)、由于仪器产生的系统误差无法避免,并且在测量的时候产生的随机误差,所以入射角

电磁场与电磁波试题及参考答案

2010-2011-2学期《电磁场与电磁波》课程 彳片?k 8.复数场矢量E = E -e^ je y e Jz,则其极化方式为(A )。 考试试卷参考答案及评分标准命题教师:李学军审题教师:米燕 一、判断题(10分)(每题1分) 1?旋度就是任意方向的环量密度 2.某一方向的的方向导数是描述标量场沿该方向的变化情况 3?点电荷仅仅指直径非常小的带电体 4. 静电场中介质的相对介电常数总是大于1 5. 静电场的电场力只能通过库仑定律进行计算 6. 理想介质和导电媒质都是色散媒质 7. 均匀平面电磁波在无耗媒质里电场强度和磁场强度保持同相位 8. 复坡印廷矢量的模值是通过单位面积上的电磁功率 9. 在真空中电磁波的群速与相速的大小总是相同的 10趋肤深度是电磁波进入导体后能量衰减为零所能够达到的深度 二、选择填空(10分). 4 1.已知标量场u的梯度为G,则勺沿l方向的方向导数为( A. G l B. G l ° C. G l A.左旋圆极化 B.右旋圆极化 C.线极化 9.理想媒质的群速与相速比总是(C)。 A.比相速大 B.比相速小 C.与相速相同 10.导体达到静电平衡时,导体外部表面的场Dn可简化为(B) (: X) (V) (X) (V) (X) (X) (V) (X) (V) (X) B )。 A. Dn=0 B. D n C. D n = q 三、简述题(共10分)(每题5分) 1.给出亥姆霍兹定理的简单表述、说明定理的物理意义是什么(5分) 答:若矢量场F在无限空间中处处单值,且其导数连续有界,而源分布在有限空间区域中, 则矢量场由其散度、旋度和边界条件唯一确定,并且可以表示为一个标量函数的梯度和一个矢量 函数的旋度之和;(3分) 物理意义:分析矢量场时,应从研究它的散度和旋度入手,旋度方程和散度方程构成了矢 量场的基本方 程。 (2 分) 2.写出麦克斯韦方程组中的全电流(即推广的安培环路)定律的积分表达式,并说明其物 2.半径为a导体球,带电量为Q,球外套有外半径为b,介电常数为S的同心介质球壳, 壳外是空气,则介质球壳内的电场强度E等于( C )。理意义。(5分). 答:全电流定律的积分表达式为:J|H d 7 = s(: 工)d S。(3分)全电流定律的物理意义是:表明传导电流和变化的电场都能产生磁场。(2分) 四、一同轴线内导体的半径为a,外导体的内半径为b,内、外导体之间填充两种绝缘材 料,a

电磁感应电磁场习题

第十三章 电磁感应 电磁场习题 (一) 教材外习题 电磁感应习题 一、选择题: 1.一块铜板放在磁感应强度正在增大的磁场中时,铜板中出现涡流(感应电流),则涡流将 (A )加速铜板中磁场的增加 (B )减缓铜板中磁场的增加 (C )对磁场不起作用 (D )使铜板中磁场反向 ( ) 2.在如图所示的装置中,当把原来静止的条形磁铁从螺线管中按图示情况抽出时, (A )螺线管线圈中感生电流方向如A 点处箭头所示。 (B )螺线管右端感应呈S 极。 (C )线框EFGH 从图下方粗箭头方向看去将逆时针旋转。 (D )线框EFGH 从图下方粗箭头方向看去将顺时针旋转。 ( ) 3.在无限长的载流直导线附近放置一矩形闭合线圈,开始时线圈与导线在同一平面内,且线圈中两条边与导线平行,当线圈以相同的速率作如图所示的三种不同方向的平动时,线圈中的感应电流 (A )以情况Ⅰ中为最大 (B )以情况Ⅱ中为最大 (C )以情况Ⅲ中为最大 (D )在情况Ⅰ和Ⅱ中相同 ( ) 4.如图所示,一矩形金属线框,以速度v 从无场空间进入一均匀磁场中,然后又从磁场中 出来,到无场空间中。不计线圈的自感,下面哪一条图线正确地表示了线圈中的感应电流对

时间的函数关系?(从线圈刚进入磁场时刻开始计时,I 以顺时针方向为正) 5.如图,一矩形线框(其长边与磁场边界平行)以匀速v 自左侧无场区进入均匀磁场又穿出,进入右侧无场区,试问图(A )—(E )中哪一图象能最合适地表示线框中电流i 随时间t 的变化关系?(不计线框自感) ( ) 6.在一个塑料圆筒上紧密地绕有两个完全相同的线圈aa '和bb ',当线圈aa '和bb '如图(1)绕制时其互感系数为M 1,如图(2)绕制时其互感系数为M 2,M 1与M 2的关系是 (A )M 1 = M 2 ≠ 0 (B )M 1 = M 2 = 0 (C )M 1 ≠ M 2,M 2=0 (D )M 1≠M 2,M 2≠0 ( ) 7.真空中两根很长的相距为2a 的平行直导线与电源组成闭合回路如图。已知导线中的电流强度为I ,则在两导线正中间某点P 处的磁能密度为 (A )200)2(1a I πμμ (B )200)2(21 a I πμμ (C )200)2(21 a I πμμ (D )0 ( )

电磁场与电磁波试题答案

《电磁场与电磁波》试题1 一、填空题(每小题1分,共10分) 1.在均匀各向同性线性媒质中,设媒质的导磁率为,则磁感应强度和磁场满足的方程为:。 2.设线性各向同性的均匀媒质中,称为方程。 3.时变电磁场中,数学表达式称为。 4.在理想导体的表面,的切向分量等于零。 5.矢量场穿过闭合曲面S的通量的表达式为:。 6.电磁波从一种媒质入射到理想表面时,电磁波将发生全反射。 7.静电场是无旋场,故电场强度沿任一条闭合路径的积分等于。 8.如果两个不等于零的矢量的等于零,则此两个矢量必然相互垂直。 9.对平面电磁波而言,其电场、磁场和波的传播方向三者符合关系。 10.由恒定电流产生的磁场称为恒定磁场,恒定磁场是无散场,因此,它可用函数的旋度来表示。 二、简述题(每小题5分,共20分) 11.已知麦克斯韦第二方程为,试说明其物理意义,并写出方程的积分形式。 12.试简述唯一性定理,并说明其意义。 13.什么是群速?试写出群速与相速之间的关系式。 14.写出位移电流的表达式,它的提出有何意义? 三、计算题(每小题10分,共30分) 15.按要求完成下列题目 (1)判断矢量函数是否是某区域的磁通量密度? (2)如果是,求相应的电流分布。

16.矢量,,求 (1) (2) 17.在无源的自由空间中,电场强度复矢量的表达式为 (1)试写出其时间表达式; (2)说明电磁波的传播方向; 四、应用题(每小题10分,共30分) 18.均匀带电导体球,半径为,带电量为。试求 (1)球内任一点的电场强度 (2)球外任一点的电位移矢量。 19.设无限长直导线与矩形回路共面,(如图1所示), (1)判断通过矩形回路中的磁感应强度的方向(在图中标出);(2)设矩形回路的法向为穿出纸面,求通过矩形回路中的磁通量。 20.如图2所示的导体槽,底部保持电位为,其余两面电位为零,(1)写出电位满足的方程; (2)求槽内的电位分布

相关文档
相关文档 最新文档